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Abstract. We report on numerical simulations demonstrating the emergence of stroboscopic
thermalisation in a chain of atoms submitted to a laser �eld whose frequency is periodically
modulated close to resonance with a transition towards a Rydberg state. We relate the conditions
of equilibration of the Rydberg population to the spectrum of the Floquet Hamiltonian and
suggest a possible experimental implementation.
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1. Introduction

For the last two decades, Rydberg atoms [1] have been the subject of an intense research activity,
mainly due to their potential use in quantum technologies [2, 3]. This interest is motivated by the
so-called Rydberg blockade which results from the strong dipole-dipole interactions that two atoms
exhibit when prepared in a highly excited level [4, 5]. Since its discovery, Rydberg blockade was
put forward as a powerful way to create entanglement among information-carrying atoms [6, 7]
and therefore implement quantum computation [5, 8, 9], communication [10�12] and simulation
protocols [13, 14]. The highly non-linear optical response of Rydberg-excited atomic media and its
applications were also addressed experimentally and theoretically, either in free-space or in cavity
qed setups [15�26].

Rydberg atoms furthermore appeared as versatile systems to investigate fundamental
paradigmatic problems, such as quantum dynamics after a quench. Atomic ensembles suddenly
submitted to a resonant laser excitation towards a Rydberg level were indeed numerically shown to
thermalise [27, 28]: the expectation values of certain observables � speci�cally single-particle ones
such as the populations � exhibit rapidly damped oscillations before entering a thermal regime, in
which they slightly �uctuate around an average thermal-like value [29�36]. This e�ect appears in
simulations though the model does not include any coupling to the environment: Rydberg levels
being long-lived [1], their spontaneous emission may indeed be safely neglected on the typical
timescales of experiments and the atomic system may therefore satisfactorily be considered closed.
Here, equilibration is fundamentally due to the dephasing process resulting from the combined
action of single-particle laser excitation and long-range two-particle dipole-dipole interactions. To
be more explicit, the (typically factorized) state of the ensemble just before the quench decomposes
on a large number of eigenstates of the quenched Hamiltonian: if the associated eigenenergies are
distributed in a su�ciently wide range, the di�erent eigencomponents in the system state vector
dephase, hence the observed e�ective thermalisation. According to the Eigenstate thermalisation
Hypothesis - ETH [35], the reached thermalised state can be described by a canonical thermal
ensemble.

Periodically driven (so-called Floquet) systems, may also exhibit stroboscopic thermalisation.
In other words, the discrete-time expectation values of observables measured every period may
converge towards a thermalised value, thus implying a synchronization of the system with the drive
[37]. Floquet thermalisation was investigated in various systems and models, including interacting
fermions [38], driven Hubbard model [39], and the O (N) model [40]. Other behaviours may arise in
Floquet systems, including the emergence of Floquet time crystals [41], which exhibit macroscopic
oscillations at integer multiples of the driving period. Floquet stroboscopic evolution can also be
speci�cally engineered in order to emulate exotic phases of matter [42, 43] or light [44]. Recently, a
protocol for a Rydberg-based Floquet time crystal has been theoretically suggested [45] and analyzed
and the implementation of interacting Floquet Rydberg cavity polaritons has been demonstrated
[46].

The present work focuses on Floquet thermalisation in a chain of atoms excited towards a
Rydberg level by a frequency-modulated laser beam. Here, we simulate the stroboscopic dynamics
of the population in the Rydberg state, analyze the conditions for its equilibration and numerically
investigate the in�uence of the di�erent parameters of the system. We also present a potential
implementation of our scheme in a system of atoms trapped in optical tweezers.

The article is structured as follows. In Sec. II, we brie�y recall basic notions of Floquet systems
and thermalisation, and introduce useful notations. In Sec. III, we present our model, provide
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numerical simulations and interpret our results. In Sec. IV we conclude and give perspectives of
our work.

2. Stroboscopic thermalisation of a closed system submitted to a periodic drive

In this section, we introduce the general notions and notations which will be used in the remainder
of the article. To this end, we consider a generic many-body closed system of natural Hamiltonian
H0, initially prepared in the state |Ψ0〉. At time t = 0, a T -periodic time-dependent drive V (t) is
switched on: the full Hamiltonian of the system H = H0 + V is therefore itself T -periodic, i.e.

H (t+ T ) = H (t)

After one period, the system is in the state |Ψ1〉 ≡ UF |Ψ0〉 where UF ≡ T
{

exp
[
− i

~
� T

0
dt H (t)

]}
is the evolution operator over one period and T is the chronological product. As a unitary operator,
UF can be put under the diagonal form UF =

∑
α exp (−iωαT ) |α〉 〈α| where exp (−iωαT ) and |α〉

denote the eigenvalues and eigenstates of UF , respectively, with ωαT uniquely determined in the
interval [−π, π]. The Floquet Hamiltonian HF can then be uniquely and unambiguously de�ned
by HF ≡

∑
α ~ωα |α〉 〈α|. The evolutions induced by H and HF at an arbitrary time t are a priori

di�erent but they do coincide at times equal to multiples of the period T , i.e. at tn = nT where
n ∈ N.

For an arbitrary observable O of the system, expectation values at times nT (for n ∈ N),
denoted by On ≡ 〈O〉 (nT ), therefore simply write

On =
〈

Ψ0

∣∣∣(U†F)nO (UF )
n
∣∣∣Ψ0

〉
=
∑
αβ

einT (ωα−ωβ)c∗αcβOαβ (1)

where Oαβ ≡ 〈α |O|β〉 and cα ≡ 〈α|Ψ0〉 is the projection onto the eigenvector |α〉 of the initial state
of the system � just before switching the drive on. Though the continuous-time function 〈O〉 (t)
should not be a priori expected to thermalise � the system is subject to a time-dependent drive �
On's may equilibrate with increasing n's, a phenomenon referred to as Floquet thermalisation.

As noted above, On's are expectation values of the observable O measured at discrete times
nT in the system of interest evolving either with the original time-dependent Hamiltonian H (t) or
with the constant Floquet Hamiltonian HF . To be more explicit, denoting by 〈O〉F the expectation
value of O for the system evolving with HF , one has On = 〈O〉 (nT ) = 〈O〉F (nT ) � though for
an arbitrary time t, 〈O〉 (t) 6= 〈O〉F (t). A su�cient condition for the stroboscopic thermalisation
of On's is therefore the continuous-time thermalisation of 〈O〉F (t) which can be analyzed in the
formalism developed in [36].

After [36], we introduce the frequency gaps

Gαβ ≡ (ωα − ωβ) (2)

their respective amplitudes

vO,αβ ≡
c∗αcβOαβ

∆O
(3)

where ∆O is the di�erence between the highest and lowest eigenvalues of O, and their respective
relevances

qO,αβ ≡
|vO,αβ |2∑
ab |vO,ab|

2 (4)
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When the gaps Gαβ which contribute to the sum in equation (1), i.e. whose relevances qO,αβ do not
vanish, distribute on a su�ciently large range ∆G and in a su�ciently homogeneous manner without
degeneracy, the di�erent spectral components in equation (1) dephase and interfere destructively.
For t ≥ t̄ ≈ 2π/∆G, i.e. for a number of periods n ≥ n̄ = [2π/∆G×T ] � where [·] denotes the integer
part � the expectation value On equilibrates around the value

Ō ≡
∑
α

|cα|2 Oαα (5)

which can be seen as the mean value Tr [ρ̄O] calculated in the mixed state ρ̄ ≡
∑
α |cα|

2 |α〉 〈α| also
called the thermalised state. Fluctuations of On around Ō can be characterized by their variance
σ2
O,n ≡ 1

n

∑n
j=0

(
Oj − Ō

)2
and its long-time limit

σ̄2
O ≡ σ2

O (n→ +∞) =
∑
α6=β

(c∗αcβOαβ)
2 (6)

In the next section, we apply the formalism introduced above to a linear chain of atoms
submitted to a laser �eld whose frequency is periodically modulated close to resonance with a
transition towards a Rydberg state.

3. Floquet thermalisation in a Rydberg-blockaded atomic chain

3.1. Model and assumptions

In this section, we consider a system comprising N atoms with a two-level structure involving a
ground and a Rydberg states, respectively denoted by |g〉 and |r〉 (see �gure 1 a). The atoms
are regularly arranged along a line with the step a. They are submitted to a laser beam which
near-resonantly drives the transition |g〉 ↔ |r〉 with the Rabi frequency Ω and the time-dependent
T -periodic detuning ∆ (t). Atoms excited in the Rydberg state moreover exhibit strong dipole-
dipole interactions leading to the so-called Rydberg blockade [2�5]. In the usual rotating wave
approximation, the full time-dependent Hamiltonian takes the form H (t) = H0 + V (t) with

H0 ≡ C6

a6

∑
m 6=n

σ
(m)
rr σ

(n)
rr

|m− n|6
(7)

V (t) ≡ ~
∑
n

[
∆ (t)σ(n)

rr +
Ω

2

(
σ(n)
rg + σ(n)

gr

)]
(8)

where σ(m)
kl ≡ I⊗ · · · ⊗ |k〉m 〈l| ⊗ · · · ⊗ I is the operator σkl ≡ |k〉 〈l| acting on the mth atom in the

chain, and C6 denotes the coe�cient of the van der Waals interaction between two atoms in the
state |r〉.

Emission from the Rydberg state can usually be neglected provided experimental runs are
short enough. For instance, for n > 50, the s, p, d, and f states of rubidium have typical
lifetimes (including radiative and blackbody e�ects) greater than about 50µs at room temperature
while experiment sequences can be achieved on the MHz-scale [2]. We therefore shall not consider
spontaneous emission in our model.
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Figure 1. (a) The model system : N atoms with two levels {|g〉 , |r〉} are regularly arranged
on a line with the step a, and submitted to a near-resonant laser �eld of Rabi frequency Ω and
time-dependent detuning ∆ (t). (b) Typical shapes used for ∆ (t) in simulations (see equations
9,10) in the text).

3.2. Numerical results

In this section we present the numerical results we obtained for a system of N = 10 atoms submitted
to a frequency-modulated laser beam. We set ΩT = 2π and consider the following two types of
modulated detunings (see �gure 1 b)

∆ (t) = ∆0 ×
{

1− 4
(
t
T − n

)
, for n ≤ t

T ≤ n+ 1
2

4
(
t
T − n

)
− 3, for n+ 1

2 ≤
t
T ≤ n+ 1

(9)

and

∆ (t) = ∆0 cos

(
2πt

T

)
(10)

For a given set of parameters {∆0T,C6T/~a6} we numerically compute the Floquet evolution
UF by splitting the period [0, T ] into K short time steps τ ≡ T

K and resorting to the approximate
discretized form

UF ≈ e−
iτ
~ H(Kτ) × · · · × e− iτ

~ H(2τ) × e− iτ
~ H(τ) (11)

For the parameters we use in our simulations, we numerically check that K = 100 steps are enough
to obtain a converged value of UF ; in other words, increasing K beyond 100 does not signi�cantly
change UF nor the results obtained, e.g., for the dynamics of populations. The eigenenergies ~ωα,
eigenstates |α〉 and the Floquet HamiltonianHF are derived as described in section 2. Assuming the
system is initially in the factorized ground state |Ψ0〉 ≡ |g · · · g〉, we can straightforwardly compute
the stroboscopic evolution of the expectation value of the observable of interest, i.e. the population

of the Rydberg level in the ensemble Pr =
∑N
n=1 σ

(n)
rr . We set Pr,n ≡

〈
Ψ0

∣∣∣(U†F)n Pr (UF )
n
∣∣∣Ψ0

〉
.
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Figure 2. Trivial non-interacting and non-modulated case � The Rydberg population Pr

is represented as a function of time on the �rst period of the drive. The parameters used in this
simulation are ΩT = 2π and C6T/~a6 = ∆0T = 0.

We can also derive the respective relevances qαβ of the gaps Gαβ for the observable of interest, as
well as the thermalised value P̄r and associated standard deviation σ̄r.

Before presenting and analysing our results, let us note that our choice for |Ψ0〉 ≡ |g · · · g〉
corresponds to the typical initial state in Rydberg experiments. This con�guration was considered in
the �rst articles on thermalisation in Rydberg atomic systems (see, e.g., [27, 28]). Other choices for
|Ψ0〉 =

∑
α cα |α〉 should a priori lead to di�erent Floquet thermalised states ρ̄ =

∑
α |cα|

2 |α〉 〈α|. It
was, however, shown that a nonintegrable periodically driven model generically leads to a Floquet
thermalised state independent of the initial condition [47]. By contrast to this generic scenario,
recent works pointed out the existence of quantum scars in certain Rydberg atomic systems, i.e.
eigenstates leading to persistent coherent oscillatory dynamics [48]. According to the preliminary
numerical checks we performed on systems with moderate numbers of atoms, starting from randomly
picked initial states |Ψ0〉 (with one or several Rydberg excitations), our system seems to follow the
generic case. But, in the absence of a systematic joint numerical and theoretical study, we cannot
claim quantum scars do not exist in our system. This will be the subject of future work.

We start with the trivial case C6T
~a6 = ∆0T = 0 which corresponds to non-interacting atoms

undergoing independent and identical Rabi oscillations at the frequency 2π/Ω = T induced by the
resonant laser beam. Figure 2 displays the continuous-time evolution of the population Pr (t) over
the �rst period of the time-dependent detuning (though in this case, the amplitude of modulation
is zero): one full oscillation can be clearly identi�ed. Measuring the population Pr (t) at the
beginning of each period therefore yields zero and accordingly Pr,n remains constantly zero.

By contrast, �gure 3 shows Pr,n over 800 periods for ∆0T = 5 and C6T/~a6 = 8 in the case of a
triangular T -periodic time-dependent detuning ∆ (t) de�ned in equation (9). Now, one observes a
quick equilibration of Pr,n around the average value P̄r ≈ 4.62 with reduced long-term �uctuations
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Figure 3. Triangular frequency modulation : Floquet thermalisation of the Rydberg

state population � The Rydberg population Pr,n is represented by a full (blue) line, the
thermalised value P̄r by a dashed (red) line, the �uctuation area is delimited by dashed-dotted
(black) lines. The parameters used in this simulation are ΩT = 2π, C6T/~a6 = 8 and ∆0T = 5.

σ̄r ≈ 0.10. With this choice of parameters, the simultaneous excitation of two neighbouring atoms
is highly prevented, i.e. one imposes nearest-neighbour Rydberg blockade, as con�rmed by the
average number of excited along the chain, P̄r ≈ N/2.

The dynamical behaviour of Pr,n may be qualitatively accounted for through analyzing the
distributions of energy gaps and associated relevances of the system, represented in �gures 4, 5 and
6. We �rst make two remarks: A. For sake of readibility of �gures 4, 5 and 6, we chose not to display
: i) degenerate state pairs (|α〉 , |α〉) of zero energy gaps which play no role in the time-dependent
part of equation (1) and ii) the state pairs (|α〉 , |β〉) of negligible relevances qr,αβ , i.e. for which
qr,αβ ≤ 10−6. This is why, e.g., only ≈ 3500 state pairs appear in �gure 4, while the actual number
of state pairs in the system is 220 ≈ 106. B. The relevance distribution is symmetric with respect
to the zero energy gap. This results from the reality of the expectation value in equation (1).

We now turn to the interpretation of �gures 4, 5 and 6. The relevance distribution on �gure
4 can be roughly split into a (dominating) low-frequency and a high-frequency parts, respectively
displayed on �gures 5 (a) and 6 (a). The boundary between low- and high-frequency contributions
was �xed at |Gαβ | ≈ 0.1 × Ω which, in order of magnitude, corresponds to 0.1 × T−1 for
the parameters used in our simulations. Following the (oversimplistic but intuitive) picture of
populations performing slowly damped Rabi oscillations, the separation between low and high
frequencies thus de�ned therefore allows us to isolate the slow damping from rapid Rabi oscillations.
The associated reduced low-frequency and high-frequency dynamics are represented on �gures
5 (b) and 6 (b), respectively, and compared to the exact full dynamics on �gures 5 (c) and 6
(c), respectively. Note that the zero-frequency component (associated to degenerate state pairs
(|α〉 , |α〉)) was implicitly included in the calculation of both low-frequency and high-frequency
reduced dynamics to make the comparison with the full dynamics easier.

The low-frequency part is dominated by two symmetric peaks denoted by A on �gure 5 (a), of
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Figure 4. Triangular frequency modulation � Energy gaps Gαβ and associated relevances
qr,αβ are represented by a dashed (black) and a full (blue) lines, respectively. For sake of clarity,
the x-axis does not show degenerate state pairs (|α〉 , |α〉) of zero energy gaps, nor state pairs
(|α〉 , |β〉) for which qr,αβ ≤ 10−6. The remaining pairs are arbitrarily numbered in such a way
that Gαβ 's appear in decreasing order. The parameters used in this simulation are ΩT = 2π,
C6T/~a6 = 8 and ∆0T = 5.

gaps ±GA ≈ ±0.02×T−1, surrounded by a band of gaps of width ∆G ≈ 0.1×T−1. The associated
dynamics consists of very slow damped oscillations of period 2π/GA ≈ 292× T and typical damping
timescale τd = 2π/∆G ≈ 65× T . The two pairs of secondary peaks outside the main band, denoted
by B and C on 5 (a), induce surviving oscillations of typical period is given by 4π/(GB−GC) ≈ 75×T .
This simple analysis is in good qualitative agreement with the dynamics observed on �gures 5 (b)
and (c).

The high-frequency part is dominated by a pair of symmetric peaks, denoted by A on �gure 6
(a), of gaps ±GA ≈ ±0.20× T−1 associated to relatively slow oscillations of period 2π/GA ≈ 31× T
which can be qualitatively identi�ed on �gures 6 (b) and (c). Because of its complexity, the rest
of the distribution does not lend itself to direct interpretation : it comprises many high-frequency
peaks which induce fast periodic dynamics of respective periods ≈ 1, 2, 6, 10, 20, · · · × T (among
others) and result in the noisy �uctuations observed on �gures 6 (b) and (c).

Floquet thermalisation is also accompanied by a synchronization phenomenon: in other words,
the continuous-time function Pr (t) tends to synchronize with the drive and becomes itself T -
periodic. This can be seen on �gure 7 which shows superimposed plots of the function Pr (t) on
the �rst (top) and last (bottom) ten periods of the range considered in �gure 3: while the behaviour
of Pr (t) is quite di�erent on the �rst ten periods, the traces of Pr (t) on the last ten periods almost
coincide.

Figures 8 and 9 analyze the dependence on the parameters ∆0T and C6T/~a6, respectively,
of the quantities P̄r, σ̄r and σ̄r/P̄r. The latter is particularly signi�cant since it quanti�es how
e�ective Floquet thermalisation is. As shown on �gures 8 and 9, thermalisation is robust with
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Figure 5. Triangular frequency modulation : low-frequency dynamics � (a) Low-
frequency energy gaps Gαβ , i.e. for which

∣∣Gαβ∣∣ ≤ 0.1×T−1, and associated relevances qr,αβ are
represented by a full (black) and a dashed (red) lines, respectively. For sake of clarity, the x-axis
does not show degenerate state pairs (|α〉 , |α〉) of zero energy gaps, nor state pairs (|α〉 , |β〉) for
which qr,αβ ≤ 10−6. The remaining pairs are arbitrarily numbered in such a way that Gαβ 's
appear in decreasing order. (b) The reduced stroboscopic dynamics of the Rydberg population
Pred
r,n induced by the low-frequency gaps only � including zero-frequency components Gαα not

displayed on �gure (a), is represented by a full (blue) line as a function of the number of periods
n, the thermalised value P̄r by a dashed (red) line, the �uctuation area is delimited by dashed-
dotted (black) lines. (c) The exact and reduced stroboscopic dynamics of the Rydberg population,
Pr,n and Pred

r,n , are represented by a full (blue) and a dashed (red) lines, respectively, as functions
of the number of periods n. The parameters used in this simulation are ΩT = 2π, C6T/~a6 = 8
and ∆0T = 5.
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Figure 6. Triangular frequency modulation : high-frequency dynamics � (a) High-
frequency energy gaps Gαβ , i.e. for which

∣∣Gαβ∣∣ ≥ 0.1×T−1, and associated relevances qr,αβ are
represented by a full (black) and a dashed (red) lines, respectively. For sake of clarity, the x-axis
does not show degenerate state pairs (|α〉 , |α〉) of zero energy gaps, nor state pairs (|α〉 , |β〉) for
which qr,αβ ≤ 10−6. The remaining pairs are arbitrarily numbered in such a way that Gαβ 's
appear in decreasing order. (b) The reduced stroboscopic dynamics of the Rydberg population
Pred
r,n induced by the high-frequency gaps only � also including zero-frequency components Gαα

not displayed on �gure (a), is represented by a full (blue) line as a function of the number of
periods n, the thermalised value P̄r by a dashed (red) line, the �uctuation area is delimited by
dashed-dotted (black) lines. (c) The exact and reduced stroboscopic dynamics of the Rydberg
population, Pr,n and Pred

r,n , are represented by a full (blue) and a dashed (red) lines, respectively,
as functions of the number of periods n. The parameters used in this simulation are ΩT = 2π,
C6T/~a6 = 8 and ∆0T = 5.
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Figure 7. Triangular frequency modulation : Synchronization with the drive � The
plots of the continuous-time function Pr over the �rst (top) and last (bottom) ten periods are
superimposed. The parameters used in this simulation are ΩT = 2π, C6T/~a6 = 8 and ∆0T = 5.

respect to variations in the system's parameters: in the range of ∆0T values investigated around
∆0T = 5,σ̄r/P̄r ≤ 0.022, while, in the range of C6T/~a6 values investigated around C6T/~a6 = 8,
σ̄r/P̄r ≤ 0.022.

In the same spirit, one can investigate the robustness of the phenomenon against a slight
distortion of the modulation scheme. Our ambition here is not to provide a quantitative and
systematic analysis of the in�uence of the frequency modulation shape on, e.g., the spectral
properties of HF and/or the population dynamics, this is much beyond the scope of the present
work. More modestly, on the speci�c example presented below, we merely want to point out that
the observed thermalisation phenomenon seems to remain qualitatively unchanged when slightly
modifying the modulation scheme.

Figures 10-16 address the case of a T -periodic cosine time-dependent detuning, de�ned in
equation (10) with the same parameters ΩT = 2π, C6T/~a6 = 8 and ∆0T = 5 as above. The results
obtained are very much alike previous ones. Equilibration of Pr,n is observed around its average
P̄r ≈ 4.74 with reduced long-time �uctuations σ̄r ≈ 0.09 (�gure 10), as well as synchronization of
Pr (t) (�gure 14).

As in the triangle-frequency-modulation case, the dynamical behaviour of Pr,n is qualitatively
accounted for through analyzing the distributions of energy gaps and associated relevances of the
system, represented in �gure 11. Again, the relevance distribution on �gure 11 can be roughly split
into a (dominating) low-frequency and a high-frequency parts, respectively displayed on �gures 12
(a) and 13 (a). The associated reduced low-frequency and high-frequency dynamics are represented
on �gures 12 (b) and 13 (b), respectively, and compared to the exact full dynamics on �gures 12
(c) and 13 (c), respectively.

The low-frequency part is again dominated by two symmetric peaks denoted by A on �gure
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Figure 8. Triangular frequency modulation : in�uence of the parameter ∆0T on the

thermalisation phenomenon � The thermalised Rydberg population P̄r, standard deviation
σ̄r and ratio σ̄r/P̄r are represented by (blue) stars, (red) triangles and (black) circles, respectively,
as functions of ∆0T . The parameters used in this simulation are ΩT = 2π and C6T/~a6 = 8.
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Figure 9. Triangular frequency modulation : in�uence of the parameter C6T/~a6

on the thermalisation phenomenon � The thermalised Rydberg population P̄r, standard
deviation σ̄r and ratio σ̄r/P̄r are represented by (blue) stars, (red) triangles and (black) circles,
respectively, as functions of C6T/~a6. The parameters used in this simulation are ΩT = 2π and
∆0T = 5.
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Figure 10. Cosine frequency modulation � Floquet thermalisation of the Rydberg state
population. The Rydberg population Pr,n is represented by a full (blue) line, the thermalised
value P̄r by a dashed (red) line, the �uctuation area is delimited by dashed-dotted (black) line.
The parameters used in this simulation are ΩT = 2π, C6T/~a6 = 8 and ∆0T = 5.
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Figure 11. Cosine frequency modulation � Energy gaps Gαβ and associated relevances
qr,αβ are represented by a dashed (black) and a full (blue) lines, respectively. For sake of clarity,
the x-axis does not show degenerate state pairs (|α〉 , |α〉) of zero energy gaps, nor state pairs
(|α〉 , |β〉) for which qr,αβ ≤ 10−6. The remaining pairs are arbitrarily numbered in such a way
that Gαβ 's appear in decreasing order. The parameters used in this simulation are ΩT = 2π,
C6T/~a6 = 8 and ∆0T = 5.
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12 (a), of gaps ±GA ≈ ±0.039× T−1, surrounded by a band of gaps of width ∆G ≈ 0.094× T−1.
The associated dynamics consists of very slow damped oscillations of period 2π/GA ≈ 160× T and
typical damping timescale τd = 2π/∆G ≈ 70 × T . The pair of secondary peaks outside the main
band, denoted by B on 12 (a) (and peaks close to B), of gaps ±GB ≈ ±0.06×T−1 induce surviving
oscillations of typical period by 2π/GB ≈ 105 × T . Here again our simple analysis reproduces the
essential features observed on �gures 12 (b) and (c).

The high-frequency part is dominated by a pair of symmetric peaks, denoted by A on �gure 13
(a), of gaps ±GA ≈ ±0.135×T−1 associated to relatively slow oscillations of period 2π/GA ≈ 46×T
which can be qualitatively identi�ed on �gures 13 (b) and (c). The presence of many secondary
peaks makes, however, further analysis illusive: the noisy �uctuations observed on �gures 13 (b)
and (c) results from the superposition of oscillations with periods ≈ 1, 2, 6, 10, 13, 17, 23, · · · × T
(among others).

Finally �gures 15 and 16 show the strong robustness of Floquet thermalisation with respect to
changes in the system's parameters ∆0T and C6T/~a6: in the range of ∆0T values investigated
around ∆0T = 5,σ̄r/P̄r ≤ 0.020, while, in the range of C6T/~a6 values investigated around
C6T/~a6 = 8,σ̄r/P̄r ≤ 0.021.

3.3. Experimental implementation

To close this section we suggest a possible experimental implementation to investigate the Floquet
thermalisation identi�ed above. We consider the same con�guration as in [45], i.e. rubidium
atoms 87Rb with a ground and Rydberg states, respectively |g〉 =

∣∣5s1/2;F = 1;mF = 1
〉
and |r〉 =

|60s; j = 1/2;mj = 1/2〉, coupled through a two-photon process via the non-resonant intermediate
state |e〉 =

∣∣5p1/2;F = 1;mF = 0
〉
. Adiabatic elimination of |e〉 [49] yields an e�ective model of

interacting two-level atoms as considered above. The van der Waals coe�cient of the Rydberg
state is C6

~ = 2π × 1.4× 1011Hz · µm6 and its spontaneous decay rate is γr = 2π × 2.0 kHz.
Setting T ≈ 80ns, ∆0 ≈ 2π × 10MHz, Ω = 2π × 12.5MHz and a ≈ 4.5µm � which are feasible

parameters in current experiments with atoms trapped in optical tweezers [13] � we get C6T
~a6 ≈ 8

and ∆0T = 5 which allow to observe the thermalisation identi�ed above.
Note that with our choice of parameters, γrT ≈ 10−3. For approximately the �rst hundred

periods, spontaneous emission will therefore have no noticeable in�uence on the dynamics of the
system. This is su�cient for the system to reach the thermal regime and therefore exhibit Floquet
thermalisation and synchronization in both triangle and cosine frequency modulation schemes
studied here. The analysis of the impact of spontaneous emission is, however, important since it
may compete with the phenomena investigated here and lead to qualitatively di�erent phenomena
in the long-time limit. It will be addressed in a future work.

4. Conclusion

In this article we investigated the emergence of Floquet thermalisation and synchronization in a
chain of atoms excited by a frequency-modulated laser beam on a transition towards a Rydberg
state. We related this phenomenon to properties of the Floquet Hamiltonian spectrum, i.e. the
distribution of energy gaps contributing to the Rydberg population dynamics. We found this process
is robust against small variations of the parameters, such as the detuning modulation amplitude
or the distance between atoms. Finally we suggested a possible experimental situation in which
Rydberg-blockade induced Floquet thermalisation could be investigated.
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Figure 12. Cosine frequency modulation : low-frequency dynamics � (a) Low-frequency
energy gapsGαβ , i.e. for which

∣∣Gαβ∣∣ ≤ 0.1×T−1, and associated relevances qr,αβ are represented
by a full (black) and a dashed (red) lines, respectively. For sake of clarity, the x-axis does not
show degenerate state pairs (|α〉 , |α〉) of zero energy gaps, nor state pairs (|α〉 , |β〉) for which
qr,αβ ≤ 10−6. The remaining pairs are arbitrarily numbered in such a way that Gαβ 's appear

in decreasing order. (b) The reduced stroboscopic dynamics of the Rydberg population Pred
r,n

induced by the low-frequency gaps only � including zero-frequency components Gαα not displayed
on �gure (a), is represented by a full (blue) line as a function of the number of periods n, the
thermalised value P̄r by a dashed (red) line, the �uctuation area is delimited by dashed-dotted
(black) lines. (c) The exact and reduced stroboscopic dynamics of the Rydberg population, Pr,n

and Pred
r,n , are represented by a full (blue) and a dashed (red) lines, respectively, as functions of

the number of periods n. The parameters used in this simulation are ΩT = 2π, C6T/~a6 = 8 and
∆0T = 5.
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Figure 13. Cosine frequency modulation : high-frequency dynamics � (a) High-
frequency energy gaps Gαβ , i.e. for which

∣∣Gαβ∣∣ ≥ 0.1×T−1, and associated relevances qr,αβ are
represented by a full (black) and a dashed (red) lines, respectively. For sake of clarity, the x-axis
does not show degenerate state pairs (|α〉 , |α〉) of zero energy gaps, nor state pairs (|α〉 , |β〉) for
which qr,αβ ≤ 10−6. The remaining pairs are arbitrarily numbered in such a way that Gαβ 's
appear in decreasing order. (b) The reduced stroboscopic dynamics of the Rydberg population
Pred
r,n induced by the high-frequency gaps only � also including zero-frequency components Gαα

not displayed on �gure (a), is represented by a full (blue) line as a function of the number of
periods n, the thermalised value P̄r by a dashed (red) line, the �uctuation area is delimited by
dashed-dotted (black) lines. (c) The exact and reduced stroboscopic dynamics of the Rydberg
population, Pr,n and Pred

r,n , are represented by a full (blue) and a dashed (red) lines, respectively,
as functions of the number of periods n. The parameters used in this simulation are ΩT = 2π,
C6T/~a6 = 8 and ∆0T = 5.
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Figure 14. Cosine frequency modulation : Synchronization with the drive � The
plots of the continuous-time function Pr over the �rst (top) and last (bottom) ten periods are
superimposed. The parameters used in this simulation are ΩT = 2π, C6T/~a6 = 8 and ∆0T = 5.

54.6 4.8 5.2 5.44.5 4.7 4.9 5.1 5.3 5.5

0

10

2

4

6

8

1

3

5

7

9

54.6 4.8 5.2 5.44.5 4.7 4.9 5.1 5.3 5.5

0

0.02

0.04

0.01

0.03

0.05

0.005

0.015

0.025

0.035

0.045

Figure 15. Cosine frequency modulation : in�uence of the parameter ∆0T on the

thermalisation phenomenon � The thermalised Rydberg population P̄r, standard deviation
σ̄r and ratio σ̄r/P̄r are represented by (blue) stars, (red) triangles and (black) circles, respectively,
as functions of ∆0T . The parameters used in this simulation are ΩT = 2π and C6T/~a6 = 8.
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Figure 16. Cosine frequency modulation : in�uence of the parameter C6T/~a6 on the

thermalisation phenomenon � The thermalised Rydberg population P̄r, standard deviation
σ̄r and ratio σ̄r/P̄r are represented by (blue) stars, (red) triangles and (black) circles, respectively,
as functions of C6T/~a6. The parameters used in this simulation are ΩT = 2π and ∆0T = 5.

The impact of unavoidable spontaneous emission from the Rydberg level remains to be
systematically investigated. The in�uence of the spatial arrangement of the atoms on the
phenomenon is also worth studying, in particular the choice of other geometries than the line
or the introduction of disorder in the atomic positions. Richer level con�gurations involving several
Rydberg states could also be considered, such as, e.g., the excitation of a Förster resonance. These
aspects shall be considered in future works.
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