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Introduction

For the last two decades, Rydberg atoms [START_REF] Gallagher | Rydberg atoms[END_REF] have been the subject of an intense research activity, mainly due to their potential use in quantum technologies [START_REF] Saman | [END_REF]3]. This interest is motivated by the so-called Rydberg blockade which results from the strong dipole-dipole interactions that two atoms exhibit when prepared in a highly excited level [4,5]. Since its discovery, Rydberg blockade was put forward as a powerful way to create entanglement among information-carrying atoms [6,7] and therefore implement quantum computation [5,8,9], communication [1012] and simulation protocols [13,14]. The highly non-linear optical response of Rydberg-excited atomic media and its applications were also addressed experimentally and theoretically, either in free-space or in cavity qed setups [1526].

Rydberg atoms furthermore appeared as versatile systems to investigate fundamental paradigmatic problems, such as quantum dynamics after a quench. Atomic ensembles suddenly submitted to a resonant laser excitation towards a Rydberg level were indeed numerically shown to thermalise [27,28]: the expectation values of certain observables specically single-particle ones such as the populations exhibit rapidly damped oscillations before entering a thermal regime, in which they slightly uctuate around an average thermal-like value [2936]. This eect appears in simulations though the model does not include any coupling to the environment: Rydberg levels being long-lived [START_REF] Gallagher | Rydberg atoms[END_REF], their spontaneous emission may indeed be safely neglected on the typical timescales of experiments and the atomic system may therefore satisfactorily be considered closed. Here, equilibration is fundamentally due to the dephasing process resulting from the combined action of single-particle laser excitation and long-range two-particle dipole-dipole interactions. To be more explicit, the (typically factorized) state of the ensemble just before the quench decomposes on a large number of eigenstates of the quenched Hamiltonian: if the associated eigenenergies are distributed in a suciently wide range, the dierent eigencomponents in the system state vector dephase, hence the observed eective thermalisation. According to the Eigenstate thermalisation Hypothesis -ETH [35], the reached thermalised state can be described by a canonical thermal ensemble.

Periodically driven (so-called Floquet) systems, may also exhibit stroboscopic thermalisation. In other words, the discrete-time expectation values of observables measured every period may converge towards a thermalised value, thus implying a synchronization of the system with the drive [37]. Floquet thermalisation was investigated in various systems and models, including interacting fermions [38], driven Hubbard model [39], and the O (N ) model [40]. Other behaviours may arise in Floquet systems, including the emergence of Floquet time crystals [41], which exhibit macroscopic oscillations at integer multiples of the driving period. Floquet stroboscopic evolution can also be specically engineered in order to emulate exotic phases of matter [42,43] or light [44]. Recently, a protocol for a Rydberg-based Floquet time crystal has been theoretically suggested [45] and analyzed and the implementation of interacting Floquet Rydberg cavity polaritons has been demonstrated [46].

The present work focuses on Floquet thermalisation in a chain of atoms excited towards a Rydberg level by a frequency-modulated laser beam. Here, we simulate the stroboscopic dynamics of the population in the Rydberg state, analyze the conditions for its equilibration and numerically investigate the inuence of the dierent parameters of the system. We also present a potential implementation of our scheme in a system of atoms trapped in optical tweezers.

The article is structured as follows. In Sec. II, we briey recall basic notions of Floquet systems and thermalisation, and introduce useful notations. In Sec. III, we present our model, provide numerical simulations and interpret our results. In Sec. IV we conclude and give perspectives of our work.

2. Stroboscopic thermalisation of a closed system submitted to a periodic drive In this section, we introduce the general notions and notations which will be used in the remainder of the article. To this end, we consider a generic many-body closed system of natural Hamiltonian H 0 , initially prepared in the state |Ψ 0 . At time t = 0, a T -periodic time-dependent drive V (t) is switched on: the full Hamiltonian of the system H = H 0 + V is therefore itself T -periodic, i.e.

H (t + T ) = H (t)

After one period, the system is in the state

|Ψ 1 ≡ U F |Ψ 0 where U F ≡ T exp -i ¡ T 0 dt H (t)
is the evolution operator over one period and T is the chronological product. As a unitary operator, U F can be put under the diagonal form U F = α exp (-iω α T ) |α α| where exp (-iω α T ) and |α denote the eigenvalues and eigenstates of U F , respectively, with ω α T uniquely determined in the interval [-π, π]. The Floquet Hamiltonian H F can then be uniquely and unambiguously dened by H F ≡ α ω α |α α|. The evolutions induced by H and H F at an arbitrary time t are a priori dierent but they do coincide at times equal to multiples of the period T , i.e. at t n = nT where n ∈ N.

For an arbitrary observable O of the system, expectation values at times nT (for n ∈ N), denoted by O n ≡ O (nT ), therefore simply write

O n = Ψ 0 U † F n O (U F ) n Ψ 0 = αβ e inT (ωα-ω β ) c * α c β O αβ (1) 
where O αβ ≡ α |O| β and c α ≡ α| Ψ 0 is the projection onto the eigenvector |α of the initial state of the system just before switching the drive on. [36].

After [36], we introduce the frequency gaps

G αβ ≡ (ω α -ω β ) (2) 
their respective amplitudes

v O,αβ ≡ c * α c β O αβ ∆ O (3) 
where ∆ O is the dierence between the highest and lowest eigenvalues of O, and their respective relevances

q O,αβ ≡ |v O,αβ | 2 ab |v O,ab | 2 (4) 
When the gaps G αβ which contribute to the sum in equation ( 1 

σ2 O ≡ σ 2 O (n → +∞) = α =β (c * α c β O αβ ) 2 (6) 
In the next section, we apply the formalism introduced above to a linear chain of atoms submitted to a laser eld whose frequency is periodically modulated close to resonance with a transition towards a Rydberg state.

3. Floquet thermalisation in a Rydberg-blockaded atomic chain

Model and assumptions

In this section, we consider a system comprising N atoms with a two-level structure involving a ground and a Rydberg states, respectively denoted by |g and |r (see gure 1 a). The atoms are regularly arranged along a line with the step a. They are submitted to a laser beam which near-resonantly drives the transition |g ↔ |r with the Rabi frequency Ω and the time-dependent T -periodic detuning ∆ (t). Atoms excited in the Rydberg state moreover exhibit strong dipoledipole interactions leading to the so-called Rydberg blockade [25]. In the usual rotating wave approximation, the full time-dependent Hamiltonian takes the form H (t) = H 0 + V (t) with

H 0 ≡ C 6 a 6 m =n σ (m) rr σ (n) rr |m -n| 6 (7) 
V (t) ≡ n ∆ (t) σ (n) rr + Ω 2 σ (n) rg + σ (n) gr (8) 
where σ

(m) kl ≡ I ⊗ • • • ⊗ |k m l| ⊗ • • • ⊗ I is the operator σ kl ≡ |k
l| acting on the m th atom in the chain, and C 6 denotes the coecient of the van der Waals interaction between two atoms in the state |r .

Emission from the Rydberg state can usually be neglected provided experimental runs are short enough. For instance, for n > 50, the s, p, d, and f states of rubidium have typical lifetimes (including radiative and blackbody eects) greater than about 50µs at room temperature while experiment sequences can be achieved on the MHz-scale [START_REF] Saman | [END_REF]. We therefore shall not consider spontaneous emission in our model. 

Numerical results

In this section we present the numerical results we obtained for a system of N = 10 atoms submitted to a frequency-modulated laser beam. We set ΩT = 2π and consider the following two types of modulated detunings (see gure 1 b)

∆ (t) = ∆ 0 × 1 -4 t T -n , for n ≤ t T ≤ n + 1 2 4 t T -n -3, for n + 1 2 ≤ t T ≤ n + 1 (9) 
and

∆ (t) = ∆ 0 cos 2πt T (10) 
For a given set of parameters {∆ 0 T, C6T / a 6 } we numerically compute the Floquet evolution U F by splitting the period [0, T ] into K short time steps τ ≡ T K and resorting to the approximate discretized form

U F ≈ e -iτ H(Kτ ) × • • • × e -iτ H(2τ ) × e -iτ H(τ ) (11) 
For the parameters we use in our simulations, we numerically check that K = 100 steps are enough to obtain a converged value of U F ; in other words, increasing K beyond 100 does not signicantly change U F nor the results obtained, e.g., for the dynamics of populations. The eigenenergies ω α , eigenstates |α and the Floquet Hamiltonian H F are derived as described in section 2. Assuming the system is initially in the factorized ground state |Ψ 0 ≡ |g • • • g , we can straightforwardly compute the stroboscopic evolution of the expectation value of the observable of interest, i.e. the population of the Rydberg level in the ensemble We can also derive the respective relevances q αβ of the gaps G αβ for the observable of interest, as well as the thermalised value Pr and associated standard deviation σr . Before presenting and analysing our results, let us note that our choice for |Ψ 0 ≡ |g • • • g corresponds to the typical initial state in Rydberg experiments. This conguration was considered in the rst articles on thermalisation in Rydberg atomic systems (see, e.g., [27,28]). Other choices for |Ψ 0 = α c α |α should a priori lead to dierent Floquet thermalised states ρ = α |c α | 2 |α α|. It was, however, shown that a nonintegrable periodically driven model generically leads to a Floquet thermalised state independent of the initial condition [47]. By contrast to this generic scenario, recent works pointed out the existence of quantum scars in certain Rydberg atomic systems, i.e. eigenstates leading to persistent coherent oscillatory dynamics [48]. According to the preliminary numerical checks we performed on systems with moderate numbers of atoms, starting from randomly picked initial states |Ψ 0 (with one or several Rydberg excitations), our system seems to follow the generic case. But, in the absence of a systematic joint numerical and theoretical study, we cannot claim quantum scars do not exist in our system. This will be the subject of future work.

P r = N n=1 σ (n) rr . We set P r,n ≡ Ψ 0 U † F n P r (U F ) n Ψ 0 .
We start with the trivial case C6T a 6 = ∆ 0 T = 0 which corresponds to non-interacting atoms undergoing independent and identical Rabi oscillations at the frequency 2π /Ω = T induced by the resonant laser beam. Figure 2 displays the continuous-time evolution of the population P r (t) over the rst period of the time-dependent detuning (though in this case, the amplitude of modulation is zero): one full oscillation can be clearly identied. Measuring the population P r (t) at the beginning of each period therefore yields zero and accordingly P r,n remains constantly zero.

By contrast, gure 3 shows P r,n over 800 periods for ∆ 0 T = 5 and C6T / a 6 = 8 in the case of a triangular T -periodic time-dependent detuning ∆ (t) dened in equation ( 9). Now, one observes a quick equilibration of P r,n around the average value Pr ≈ 4.62 with reduced long-term uctuations σr ≈ 0.10. With this choice of parameters, the simultaneous excitation of two neighbouring atoms is highly prevented, i.e. one imposes nearest-neighbour Rydberg blockade, as conrmed by the average number of excited along the chain, Pr ≈ N /2. The dynamical behaviour of P r,n may be qualitatively accounted for through analyzing the distributions of energy gaps and associated relevances of the system, represented in gures 4, 5 and 6. We rst make two remarks: A. For sake of readibility of gures 4, 5 and 6, we chose not to display : i) degenerate state pairs (|α , |α ) of zero energy gaps which play no role in the time-dependent part of equation (1) and ii) the state pairs (|α , |β ) of negligible relevances q r,αβ , i.e. for which q r,αβ ≤ 10 -6 . This is why, e.g., only ≈ 3500 state pairs appear in gure 4, while the actual number of state pairs in the system is 2 20 ≈ 10 6 . B. The relevance distribution is symmetric with respect to the zero energy gap. This results from the reality of the expectation value in equation [START_REF] Gallagher | Rydberg atoms[END_REF].

We now turn to the interpretation of gures 4, 5 and 6. The relevance distribution on gure 4 can be roughly split into a (dominating) low-frequency and a high-frequency parts, respectively displayed on gures 5 (a) and 6 (a). The boundary between low-and high-frequency contributions was xed at |G αβ | ≈ 0.1 × Ω which, in order of magnitude, corresponds to 0.1 × T -1 for the parameters used in our simulations. Following the (oversimplistic but intuitive) picture of populations performing slowly damped Rabi oscillations, the separation between low and high frequencies thus dened therefore allows us to isolate the slow damping from rapid Rabi oscillations. The associated reduced low-frequency and high-frequency dynamics are represented on gures 5 (b) and 6 (b), respectively, and compared to the exact full dynamics on gures 5 (c) and 6 (c), respectively. Note that the zero-frequency component (associated to degenerate state pairs (|α , |α )) was implicitly included in the calculation of both low-frequency and high-frequency reduced dynamics to make the comparison with the full dynamics easier.

The low-frequency part is dominated by two symmetric peaks denoted by A on gure 5 (a), of The high-frequency part is dominated by a pair of symmetric peaks, denoted by A on gure 6 (a), of gaps ±G A ≈ ±0.20 × T -1 associated to relatively slow oscillations of period 2π /G A ≈ 31 × T which can be qualitatively identied on gures 6 (b) and (c). Because of its complexity, the rest of the distribution does not lend itself to direct interpretation : it comprises many high-frequency peaks which induce fast periodic dynamics of respective periods ≈ 1, 2, 6, 10, 20, • • • × T (among others) and result in the noisy uctuations observed on gures 6 (b) and (c).

Floquet thermalisation is also accompanied by a synchronization phenomenon: in other words, the continuous-time function P r (t) tends to synchronize with the drive and becomes itself Tperiodic. This can be seen on gure 7 which shows superimposed plots of the function P r (t) on the rst (top) and last (bottom) ten periods of the range considered in gure 3: while the behaviour of P r (t) is quite dierent on the rst ten periods, the traces of P r (t) on the last ten periods almost coincide.

Figures 8 and9 analyze the dependence on the parameters ∆ 0 T and C6T / a 6 , respectively, of the quantities Pr , σr and σr / Pr. The latter is particularly signicant since it quanties how eective Floquet thermalisation is. As shown on gures 8 and 9, thermalisation is robust with , and associated relevances q r,αβ are by a full (black) and a dashed (red) lines, respectively. For sake of clarity, the x-axis does not show degenerate state pairs (|α , |α ) of zero energy gaps, nor state pairs (|α , |β ) for which q r,αβ ≤ 10 -6 . The remaining pairs are arbitrarily numbered in such a way that G αβ 's appear in decreasing order. (b) The reduced stroboscopic dynamics of the Rydberg population P red r,n induced by the low-frequency gaps only including zero-frequency components Gαα not displayed on gure (a), is represented by a full (blue) line as a function of the number of periods n, the thermalised value Pr by a dashed (red) line, the uctuation area is delimited by dasheddotted (black) lines. (c) The exact and reduced stroboscopic dynamics of the Rydberg population, Pr,n and P red r,n , are represented by a full (blue) and a dashed (red) lines, respectively, as functions of the number of periods n. The parameters used in this simulation are ΩT = 2π, C 6 T / a 6 = 8 and ∆ 0 T = 5. respect to variations in the system's parameters: in the range of ∆ 0 T values investigated around ∆ 0 T = 5, σr / Pr ≤ 0.022, while, in the range of C6T / a 6 values investigated around C6T / a 6 = 8, σr / Pr ≤ 0.022.

In the same spirit, one can investigate the robustness of the phenomenon against a slight distortion of the modulation scheme. Our ambition here is not to provide a quantitative and systematic analysis of the inuence of the frequency modulation shape on, e.g., the spectral properties of H F and/or the population dynamics, this is much beyond the scope of the present work. More modestly, on the specic example presented below, we merely want to point out that the observed thermalisation phenomenon seems to remain qualitatively unchanged when slightly modifying the modulation scheme.

Figures 10111213141516address the case of a T -periodic cosine time-dependent detuning, dened in equation (10) with the same parameters ΩT = 2π, C6T / a 6 = 8 and ∆ 0 T = 5 as above. The results obtained are very much alike previous ones. Equilibration of P r,n is observed around its average Pr ≈ 4.74 with reduced long-time uctuations σr ≈ 0.09 (gure 10), as well as synchronization of P r (t) (gure 14).

As in the triangle-frequency-modulation case, the dynamical behaviour of P r,n is qualitatively accounted for through analyzing the distributions of energy gaps and associated relevances of the system, represented in gure 11. Again, the relevance distribution on gure 11 can be roughly split into a (dominating) low-frequency and a high-frequency parts, respectively displayed on gures 12 (a) and 13 (a). The associated reduced low-frequency and high-frequency dynamics are represented on gures 12 (b) and 13 (b), respectively, and compared to the exact full dynamics on gures 12 (c) and 13 (c), respectively.

The low-frequency part is again dominated by two symmetric peaks denoted by A on gure The parameters used in this simulation are ΩT = 2π, C 6 T / a 6 = 8 and ∆ 0 T = 5.
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3 000 500 1 500 2 500 3 500 Finally gures 15 and 16 show the strong robustness of Floquet thermalisation with respect to changes in the system's parameters ∆ 0 T and C6T / a 6 : in the range of ∆ 0 T investigated around ∆ 0 T = 5, σr / Pr ≤ 0.020, while, in the range of C6T / a 6 values investigated around C6T / a 6 = 8, σr / Pr ≤ 0.021.

Experimental implementation

To close this section we suggest a possible experimental implementation to investigate the Floquet thermalisation identied above. We consider the same conguration as in [45], i.e. rubidium atoms 87 Rb with a ground and Rydberg states, respectively |g = 5s1 /2 ; F = 1; m F = 1 and |r = |60s; j = 1 /2; m j = 1 /2 , coupled through a two-photon process via the non-resonant intermediate state |e = 5p1 /2 ; F = 1; m F = 0 . Adiabatic elimination of |e [49] yields an eective model of interacting two-level atoms as considered above. The van der Waals coecient of the Rydberg state is C6 = 2π × 1.4 × 10 11 Hz • µm 6 and its spontaneous decay rate is γ r = 2π × 2.0 kHz.

Setting T ≈ 80ns, ∆ 0 ≈ 2π × 10MHz, Ω = 2π × 12.5MHz and a ≈ 4.5µm which are feasible parameters in current experiments with atoms trapped in optical tweezers [13] we get C6T a 6 ≈ 8 and ∆ 0 T = 5 which allow to observe the thermalisation identied above.

Note that with our choice of parameters, γ r T ≈ 10 -3 . For approximately the rst hundred periods, spontaneous emission will therefore have no noticeable inuence on the dynamics of the system. This is sucient for the system to reach the thermal regime and therefore exhibit Floquet thermalisation and synchronization in both triangle and cosine frequency modulation schemes studied here. The analysis of the impact of spontaneous emission is, however, important since it may compete with the phenomena investigated here and lead to qualitatively dierent phenomena in the long-time limit. It will be addressed in a future work.

Conclusion

In this article we investigated the emergence of Floquet thermalisation and synchronization in a chain of atoms excited by a frequency-modulated laser beam on a transition towards a Rydberg state. We related this phenomenon to properties of the Floquet Hamiltonian spectrum, i.e. the distribution of energy gaps contributing to the Rydberg population dynamics. We found this process is robust against small variations of the parameters, such as the detuning modulation amplitude or the distance between atoms. Finally we suggested a possible experimental situation in which Rydberg-blockade induced Floquet thermalisation could be investigated. , and associated relevances q r,αβ are represented by a full (black) and a dashed (red) lines, respectively. For sake of clarity, the x-axis does not show degenerate state pairs (|α , |α ) of zero energy gaps, nor state pairs (|α , |β ) for which q r,αβ ≤ 10 -6 . The remaining pairs are arbitrarily numbered in such a way that G αβ 's appear in decreasing order. (b) The reduced stroboscopic dynamics of the Rydberg population P red r,n induced by the high-frequency gaps only also including zero-frequency components Gαα not displayed on gure (a), is represented by a full (blue) line as a function of the number of periods n, the thermalised value Pr by a dashed (red) line, the uctuation area is delimited by dashed-dotted (black) lines. (c) The exact and reduced stroboscopic dynamics of the Rydberg population, Pr,n and P red r,n , are represented by a full (blue) and a dashed (red) lines, respectively, as functions of the number of periods n. The parameters used in this simulation are ΩT = 2π, C 6 T / a 6 = 8 and ∆ 0 T = 5. The impact of unavoidable spontaneous emission from the Rydberg level remains to be systematically investigated. The inuence of the spatial arrangement of the atoms on the phenomenon is also worth studying, in particular the choice of other geometries than the line or the introduction of disorder in the atomic positions. Richer level congurations involving several Rydberg states could also be considered, such as, e.g., the excitation of a Förster resonance. These aspects shall be considered in future works.
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 1 Figure 1. (a) The model system : N atoms with two levels {|g , |r } are regularly arranged on a line with the step a, and submitted to a near-resonant laser eld of Rabi frequency Ω and time-dependent detuning ∆ (t). (b) Typical shapes used for ∆ (t) in simulations (see equations 9,10) in the text).

Figure 2 .

 2 Figure 2. Trivial non-interacting and non-modulated case The Rydberg population Pr is represented as a function of time on the rst period of the drive. The parameters used in this simulation are ΩT = 2π and C 6 T / a 6 = ∆ 0 T = 0.

Figure 3 .

 3 Figure 3. Triangular frequency modulation : Floquet thermalisation of the Rydberg state population The Rydberg population Pr,n is represented by a full (blue) line, the thermalised value Pr by a dashed (red) line, the uctuation area is delimited by dashed-dotted (black) lines. The parameters used in this simulation are ΩT = 2π, C 6 T / a 6 = 8 and ∆ 0 T = 5.
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  ±G A ≈ ±0.02 × T -1 , surrounded by a band of gaps of width ∆G ≈ 0.1 × T -1 . The associated dynamics consists of very slow damped oscillations of period 2π /G A ≈ 292 × T and typical damping timescale τ d = 2π /∆G ≈ 65 × T . The two pairs of secondary peaks outside the main band, denoted by B and C on 5 (a), induce surviving oscillations of typical period is given by 4π /(G B -G C ) ≈ 75 × T . This simple analysis is in good qualitative agreement with the dynamics observed on gures 5 (b) and (c).

Figure 5 .

 5 Figure 5. Triangular frequency modulation : low-frequency dynamics (a) Lowfrequency energy gaps G αβ , i.e. for which G αβ ≤ 0.1 × T -1, and associated relevances q r,αβ are by a full (black) and a dashed (red) lines, respectively. For sake of clarity, the x-axis does not show degenerate state pairs (|α , |α ) of zero energy gaps, nor state pairs (|α , |β ) for which q r,αβ ≤ 10 -6 . The remaining pairs are arbitrarily numbered in such a way that G αβ 's appear in decreasing order. (b) The reduced stroboscopic dynamics of the Rydberg population P red r,n induced by the low-frequency gaps only including zero-frequency components Gαα not displayed on gure (a), is represented by a full (blue) line as a function of the number of periods n, the thermalised value Pr by a dashed (red) line, the uctuation area is delimited by dasheddotted (black) lines. (c) The exact and reduced stroboscopic dynamics of the Rydberg population, Pr,n and P red r,n , are represented by a full (blue) and a dashed (red) lines, respectively, as functions of the number of periods n. The parameters used in this simulation are ΩT = 2π, C 6 T / a 6 = 8 and ∆ 0 T = 5.

Figure 6 .

 6 Figure 6. Triangular frequency modulation : high-frequency dynamics (a) Highfrequency energy gaps G αβ , i.e. for which G αβ ≥ 0.1 × T -1, and associated relevances q r,αβ are represented by a full (black) and a dashed (red) lines, respectively. For sake of clarity, the x-axis does not show state pairs (|α , |α ) of zero energy gaps, nor state pairs (|α , |β ) for which q r,αβ ≤ 10 -6 . The remaining pairs are arbitrarily numbered in such a way that G αβ 's appear in decreasing order. (b) The reduced stroboscopic dynamics of the Rydberg population P red r,n induced by the high-frequency gaps only also including zero-frequency components Gαα not displayed on gure (a), is represented by a full (blue) line as a function of the number of periods n, the thermalised value Pr by a dashed (red) line, the uctuation area is delimited by dashed-dotted (black) lines. (c) The exact and reduced stroboscopic dynamics of the Rydberg population, Pr,n and P red r,n , are represented by a full (blue) and a dashed (red) lines, respectively, as functions of the number of periods n. The parameters used in this simulation are ΩT = 2π, C 6 T / a 6 = 8 and ∆ 0 T = 5.

Figure 7 .

 7 Figure 7. Triangular frequency modulation : Synchronization with the drive The plots of the continuous-time function Pr over the rst (top) and last (bottom) ten periods are superimposed. The parameters used in this simulation are ΩT = 2π, C 6 T / a 6 = 8 and ∆ 0 T = 5.

Figure 8 .

 8 Figure 8. Triangular frequency modulation : inuence of parameter ∆ 0 T on the thermalisation phenomenon The thermalised Rydberg population Pr, standard deviation σr and ratio σr/ Pr are represented by (blue) stars, (red) triangles and (black) circles, respectively, as functions of ∆ 0 T . The parameters used in this simulation are ΩT = 2π and C 6 T / a 6 = 8.
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 910 Figure 9. Triangular frequency modulation : inuence of the parameter C 6 T / a 6 on the thermalisation phenomenon The thermalised Rydberg population Pr, standard deviation σr and ratio σr/ Pr are represented by (blue) stars, (red) triangles and (black) circles, respectively, as functions of C 6 T / a 6 . The parameters used in this simulation are ΩT = 2π and ∆ 0 T = 5.

  12 (a), of gaps ±G A ≈ ±0.039 × T -1 , surrounded by a band of gaps of width ∆G ≈ 0.094 × T -1 . The associated dynamics consists of very slow damped oscillations of period 2π /G A ≈ 160 × T and typical damping timescale τ d = 2π /∆G ≈ 70 × T . The pair of secondary peaks outside the main band, denoted by B on 12 (a) (and peaks close to B), of gaps ±G B ≈ ±0.06 × T -1 induce surviving oscillations of typical period by 2π /G B ≈ 105 × T . Here again our simple analysis reproduces the essential features observed on gures 12 (b) and (c).The high-frequency part is dominated by a pair of symmetric peaks, denoted by A on gure 13 (a), of gaps ±G A ≈ ±0.135 × T -1 associated to relatively slow oscillations of period 2π /G A ≈ 46 × T which can be qualitatively identied on gures 13 (b) and (c). The presence of many secondary peaks makes, however, further analysis illusive: the noisy uctuations observed on gures 13 (b) and (c) results from the superposition of oscillations with periods ≈ 1, 2, 6, 10, 13, 17, 23, • • • × T (among others).

Figure 13 .

 13 Figure 13. Cosine frequency modulation : high-frequency dynamics (a) Highfrequency energy gaps G αβ , i.e. for which G αβ ≥ 0.1 × T -1 , and associated relevances q r,αβ are represented by a full (black) and a dashed (red) lines, respectively. For sake of clarity, the x-axis does not show degenerate state pairs (|α , |α ) of zero energy gaps, nor state pairs (|α , |β ) for which q r,αβ ≤ 10 -6 . The remaining pairs are arbitrarily numbered in such a way that G αβ 's appear in decreasing order. (b) The reduced stroboscopic dynamics of the Rydberg population P red r,n induced by the high-frequency gaps only also including zero-frequency components Gαα not displayed on gure (a), is represented by a full (blue) line as a function of the number of periods n, the thermalised value Pr by a dashed (red) line, the uctuation area is delimited by dashed-dotted (black) lines. (c) The exact and reduced stroboscopic dynamics of the Rydberg population, Pr,n and P red r,n , are represented by a full (blue) and a dashed (red) lines, respectively, as functions of the number of periods n. The parameters used in this simulation are ΩT = 2π, C 6 T / a 6 = 8 and ∆ 0 T = 5.

Figure 14 .

 14 Figure 14. Cosine frequency modulation : Synchronization with the drive The plots of the continuous-time function Pr over the rst (top) and last (bottom) ten periods are superimposed. The parameters used in this simulation are ΩT = 2π, C 6 T / a 6 = 8 and ∆ 0 T = 5.

Figure

  Figure Cosine frequency modulation : inuence of the parameter ∆ 0 T on the thermalisation phenomenon The thermalised Rydberg population Pr, standard deviation σr and ratio σr/ Pr are represented by (blue) stars, (red) triangles and (black) circles, respectively, as functions of ∆ 0 T . The parameters used in this simulation are ΩT = 2π and C 6 T / a 6 = 8.
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Figure 16 .

 16 Figure 16. Cosine frequency modulation : inuence of the parameter C 6 T / a 6 on the thermalisation phenomenon The thermalised Rydberg population Pr, standard deviation σr and ratio σr/ Pr are represented by (blue) stars, (red) triangles and (black) circles, respectively, as functions of C 6 T / a 6 . The parameters used in this simulation are ΩT = 2π and ∆ 0 T = 5.

  ), i.e. whose relevances q O,αβ do not vanish, distribute on a suciently large range ∆G and in a suciently homogeneous manner without

	degeneracy, the dierent spectral components in equation (1) dephase and interfere destructively.
	For t ≥ t ≈ 2π /∆G, i.e. for a number of periods n ≥ n = [ 2π /∆G×T ] where [•] denotes the integer
	part the expectation value O n equilibrates around the value	
	Ō ≡	|c α | 2 O αα	(5)
	α		
	which can be seen as the mean value Tr [ρO] calculated in the mixed state ρ ≡ α |c α | called the thermalised state. Fluctuations of O n around Ō can be characterized by their variance 2 |α α| also σ 2 O,n ≡ 1 n n j=0 O j -Ō 2 and its long-time limit

  Figure 4. Triangular frequency modulation Energy gaps G αβ and associated relevances
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q r,αβ are represented by a dashed (black) and a full (blue) lines, respectively. For sake of clarity, the x-axis does not show degenerate state pairs (|α , |α ) of zero energy gaps, nor state pairs (|α , |β ) for which q r,αβ ≤ 10 -6 . The remaining pairs are arbitrarily numbered in such a way that G αβ 's appear in decreasing order. The parameters used in this simulation are ΩT = 2π, C 6 T / a 6 = 8 and ∆ 0 T = 5.

  Figure 11. Cosine frequency modulation Energy gaps G αβ and associated relevances q r,αβ are represented by a dashed (black) and a full (blue) lines, respectively. For sake of clarity, the x-axis does not show degenerate state pairs (|α , |α ) of zero energy gaps, nor state pairs (|α , |β ) for which q r,αβ ≤ 10 -6 . The remaining pairs are arbitrarily numbered in such a way that G αβ 's appear in decreasing order. The parameters used in this simulation are ΩT = 2π, C 6 T / a 6 = 8 and ∆ 0 T = 5.
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  Figure 12. Cosine frequency modulation : low-frequency dynamics (a) Low-frequency energy gaps G αβ , i.e. for which G αβ ≤ 0.1×T -1 , and associated relevances q r,αβ are represented by a full (black) and a dashed (red) lines, respectively. For sake of clarity, the x-axis does not show degenerate state pairs (|α , |α ) of zero energy gaps, nor state pairs (|α , |β ) for which q r,αβ≤ 10 -6 . The remaining pairs are arbitrarily numbered in such a way that G αβ 's appear in decreasing order. (b) The reduced stroboscopic dynamics of the Rydberg population P red The parameters used in this simulation are ΩT = 2π, C 6 T / a 6 = 8 and

	induced by the low-frequency gaps only including zero-frequency components	r,n

Gαα not displayed on gure (a), is represented by a full (blue) line as a function of the number of periods n, the thermalised value Pr by a dashed (red) line, the uctuation area is delimited by dashed-dotted (black) lines. (c) The exact and reduced stroboscopic dynamics of the Rydberg population, Pr,n and P red r,n , are represented by a full (blue) and a dashed (red) lines, respectively, as functions of the number of periods n. ∆ 0 T = 5.
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