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Abstract—To ensure safe, reliable and efficient operations of
the traction batteries under the most demanding and grueling
driving conditions, an effective Battery Management System
(BMS) must be used. However, an efficient battery model and and
accurate prediction of the battery internal states are required.

In this paper, lithium-ion battery is modeled as a second-order
RC Equivalent Circuit Model. Furthermore, the battery State of
Charge is then estimated based on an improved sliding mode
observer.

Index Terms—Battery Management System, Sliding Mode
Observer Design,Lithium-ion Battery, Equivalent Circuit Model,
State of Charge Estimation.

I. INTRODUCTION

Electric vehicles (EVs) represent interesting opportunities
as a technology to reduce greenhouse gas emissions in the
transport sector, one of the largest emitting sectors. They are
also considered to be a tool for reducing local air pollu-
tion. According to Business, Energy and Industrial Strategy
Committee in UK, International market trends suggest that
electric cars and vans will reach price equivalency with internal
combustion engine (ICE) vehicles by the mid-2020s, and that
EV sales will overtake petrol and diesel sales by the late 2030s
[1]. EV batteries denote the main determinant of both the range
and cost of the vehicle, thought to be the major limitations on
their sales. Therefore, a careful choice of the battery chemistry
is what differentiates the automotive market products.

Thanks to their high energy density, high power density
and long cycle life, Lithium-ion batteries have become the
main storage component of EVs. Due to the fact that Lithium-
ion batteries may present an operating failure if overcharged,

completely discharged or operated outside their safe temper-
ature window, they all require a Battery Management System
(BMS).

Among the key features of the BMS is the estimation of
the battery internal states and especially its state of charge
SOC. SOC is defined as a ratio of the remaining capacity to
the nominal capacity of the cell. Knowledge of the state of
charge conditions the driver’s confidence in his vehicle. Its
value gives the driver an idea of the remaining period of safe
use. However, since the internal states of battery cells can not
be directly measured using sensors, advanced mathematical
algorithms are required to estimate the SOC.

A variety of SOC estimation techniques have been reviewed
in literature, in order to estimate state of charge precisely
and accurately. In reference [2], the estimation methods were
classified into four main categories:

• The direct measurement methods estimate the SOC based
on the battery’s physical properties. For example, the
Open Circuit Voltage method uses the stable battery
electromotive force in the open circuit state and SOC
relationship to estimate the SOC value [3].

• Book keeping estimation methods use the battery charge
and discharge current as an input. Among the methods
belonging to this category, we find the coulomb counting
method which integrates the battery charging / discharg-
ing current over time to find SOC [4].

• In model-based methods, the battery parameters and SOC
are estimated using adaptive filters and observers [5]–[8].

• The last methods require high computational time and



storage size and are based purely on computer intelli-
gence [9]–[11].

In this paper, a second-order RC Equivalent Circuit Model
(ECM) is realized and their parameters are then identified,
based on an electrochemical-thermal battery pack of three
parallel connected cylindrical Lithium-ion cells modelled in
our previous work using COMSOL Multiphysics. The Sliding
Mode Observer method is then investigated and studied for
battery SOC estimation. Moreover, an improved version of
this technique is presented and applied in order to estimate
more accurately the battery SOC.

II. BATTERY MODEL

Building an accurate battery model represents an essential
task in BMS design to improve the battery internal states
estimation accuracy. According to literature, battery modeling
methodologies can be classified into two main categories:
Electrochemical Models (EMs) and Equivalent Circuit Models
(ECMs) [12].

Electrochemical models give a detailed description of phys-
ical and chemical processes occurring inside the battery cell
using coupled Partial Differential Equations (PDEs) [13], [14].
However, EMs suffer from a major drawback being the com-
plexity of solving the partial differential equations specially
for real time applications. Equivalent Circuit Battery (ECM)
models have been presented as an alternative of EMs in order
to simplify their computational complexity. According to liter-
ature, ECMs include the Rint model, the Partnership for a New
Generation of Vehicle (PNGV) model, the Thevenin model and
the second-order resistor-capacitor (2RC) model [15]. These
models use electrical components as voltage sources, resistors
and capacitors to model the dynamic behavior of the battery.
In this paper, the second-order RC model is chosen to model
the Lithium-ion battery since it balances the accuracy and
availability in online applications [16]. It consists of an ideal
voltage source Uoc, an ohmic resistance R0, and two RC
parallel circuits, as shown in Fig.1.

The circuit components are chosen so that each represents
a specific aspect of the battery. The internal resistance R0
is responsible for the immediate voltage rise or drop when
the battery is being charged or discharged. The RC parallel
polarization blocks are responsible for the transient response
of the battery.

According to the second-order RC equivalent circuit model
(figure 1), the battery terminal voltage is expressed by applying
the Kirchhoff’s theorem to this electrical circuit:

Ub(t) = UOC(SOC)−R0 × I(t)−URC1(t)−URC2(t) (1)

where UOC denotes the Open Circuit Voltage (OCV) of the
battery. The author has chosen to adopt a sixth-order poly-
nomial equation describing the nonlinear relationship between
the OCV and the SOC, as presented in [20]:

Fig. 1. Schematic diagram of the second-order equivalent circuit model

UOC(SOC) = 14.7958× SOC6 − 36.6148× SOC5

+ 29.2355× SOC4 − 6.2817× SOC3 − 1.6476× SOC2

+ 1.2866× SOC + 3.4049 (2)

Based on the coulomb counting method, the SOC is ex-
pressed as:

˙SOC(t) =
−η
Q
× I(t) (3)

where η is the battery coulombic efficiency and Q is the
rated capacity of the battery. The voltage dynamics of the two
RC networks can be then given as follows:

U̇RC1
(t) =

−1
R1 × C1

× URC1
(t) +

1

C1
× I(t) (4)

U̇RC2
(t) =

−1
R2 × C2

× URC2
(t) +

1

C2
× I(t) (5)

As a result, the electrical behaviour of the proposed model
can be summarized as follows:

 ˙SOC(t)
˙URC1

(t)
˙URC2

(t)

 =

 −η
Q × I(t)

−1
R1×C1

× URC1
(t) + 1

C1
× I(t)

−1
R2×C2

× URC2
(t) + 1

C2
× I(t)

 (6)

[
Ub(t) = UOC −R0 × I(t)− URC1 − URC2

]
(7)

III. BATTERY PARAMETERS ESTIMATION

The model parameters are estimated by discharging the
electrochemical-thermal battery model developed in our pre-
vious work [32], using a multipulse discharge current of
30s, each followed by a relaxation period of 120s at various
temperatures. The parameter estimation process is performed
for each temperature in order to identify the values of the
various battery parameters during its discharge, as shown in
the graphs below [17].
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Fig. 2. Battery model parameters

IV. BATTERY STATE OF CHARGE ESTIMATION

A. Sliding Mode Observer Design

In accordance with the established second-order equivalent
circuit model and parameter identification of lithium-ion bat-
tery, aiming to improve the estimation accuracy of lithium
battery SOC, an improved sliding mode observer for SOC
estimation of lithium battery is proposed in this section.

A sliding mode observer is developed as to think of the
observer system as comprising a model of the plant together
with a feedback term which corrects the estimates by injecting
back the discrepancy between its output and the output of
the system, through a designer-specified gain. In this observer
form, instead of feeding back the output error between the

observer and the system in a linear fashion, the output error
is fed back via a discontinuous switched signal [18], [19].

Based on equations 8 and 9, the state-space model used to
estimate the SOC can be derived as follows:

ẋ = Ax+Bu (8)

y = h(x) +Du (9)

where the system state matrix A, the system input matrix



B and the coupling matrix D are defined as:

A =

0 0 0
0 −a1 0
0 0 −a2

 ; a1 =
1

R1 × C1
; a2 =

1

R2 × C2

(10)

B =
[−1
Q

−1
C1

−1
C2

]T
(11)

h(x) = UOC(SOC(t))− URC1
− URC2

(12)

D =
[
R0

]
(13)

The system state vector x, the input vector u and the output
vector y are chosen as follows:

x =
[
SOC(t) URC1

(t) URC2
(t)
]T

(14)

u =
[
I(t)

]
(15)

y =
[
Ub(t)

]
(16)

According to the system state representation (8) and (9), the
SMO based estimation can be written as:

˙̂x = Ax̂+Bu+ L(y − ŷ) +M(e, ρ)

= Ax̂+Bu+Key

ŷ = h(x̂) +Du

(17)

M(e, ρ) =

{
s(||e||, ρ) e 6= 0
0 e = 0

(18)

where K denotes the feedback gain matrix, x̂ denotes the
observation value of x, and ḣ(x) denotes the derivative of
h(x).

The observability of the battery SOC estimation system is
proven by demonstrating that the observable matrix is full rank
[3]. The observable matrix of nonlinear system is defined as
the Jacobian of the vector o(x):

O =
do(x)

dx
=

d

dx
(

[
h(x)
Lfh(x)

]
) (19)

where x is system state matrix and Lf is the Lie derivative
of function, which is defined as:

Lfh(x) =
dh(x)

dx
× ẋ (20)

Applying this to the battery state model proposed in this
paper, h(x) and Lf are presented as follows:

h(x) = UOC − URC1
− URC2

(21)

Lfh(x) =
1

R1C1
× URC1

(22)

Then, substituting equations (21) and (22) into equation
(19), the observable matrix of the battery system is:

O =

[
1 d

dt (UOC)
1

R1C1
0

]
(23)

Since d
dt (UOC) 6= 0 based on equation (2), O is then a full

rank matrix. Therefore, the system is observable.
The SMO based on the battery model and used to estimate

accurately the battery SOC is proposed as follows [21], [22]:

 ˙̂x1
˙̂x2
˙̂x3

 =

 1
Qu− l3ey − c1

−a1x̂1 − 1
C1
u− l2ey − c2sqn(ey)

−a2x̂2 − 1
C2
u− l3ey − c3sqn(ey)

 (24)

And,  ˙̂x1
˙̂x2
˙̂x3

 =

 1
Qu− k3ey

−a1x̂1 − 1
C1
u− k2ey

−a2x̂2 − 1
C2
u− k3ey

 (25)

where ey = y − ŷ, sgn is the approximate expression of
signum function and is defined as:

sgn(ey) =
ey

0.05 + |ey|
(26)

The constants ki(i = 1, 2, 3) is defined as follows:

li < ki = li +
ci

|ey|+ 0.05
< li +

ci
0.05

(27)

B. Results and Discussion

For the sake of confirming the applicability of the proposed
SMO method used to estimate the battery SOC and verify
its results accuracy, the proposed battery was investigated in
a real-time EV application, by applying as system input the
current generated by Urban Dynamometer Driving Schedule
(UDDS) tests, presented as follows:
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Fig. 3. Input current profile - UDDS Test

In this section, a simulation experiment is built based on
the SOC estimation second-order RC ECM model, in order
to confirm the effectiveness and accuracy of the proposed
improved SMO algorithm.

The following figure presents a comparison between real
SOC values and SOC values obtained using the proposed SMO
algorithm:



Fig. 4. SOC estimation curve

V. CONSLUSION

This research paper proposed an enhanced SMO to estimate
SOC of lithium-ion batteries. An equivalent circuit model with
2 RC networks is built up. This model parameters were then
identified on the basis of measurement data required from a
3D electrochemical-thermal battery pack developed previously
in COMSOL Multiphysics. Then, an enhanced SMO was
designed and used to estimate SOC of the Li-ion battery.

Simulation results denote that the proposed SMO algorithm
presents high accuracy by improving the robustness of SOC
estimation. The proposed model can be further improved to
take into account both hysteresis and battery aging factors as
residual capacity, internal resistance and peak power. And to
predict other battery states.
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