
HAL Id: hal-02486345
https://hal.science/hal-02486345

Submitted on 20 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient modular operations using the adapted modular
number system

Laurent-Stéphane Didier, Fangan-Yssouf Dosso, Pascal Véron

To cite this version:
Laurent-Stéphane Didier, Fangan-Yssouf Dosso, Pascal Véron. Efficient modular operations using the
adapted modular number system. Journal of Cryptographic Engineering, 2020, �10.1007/s13389-019-
00221-7�. �hal-02486345�

https://hal.science/hal-02486345
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Efficient modular operations using the Adapted Modular
Number System

Laurent-Stéphane Didier · Fangan-Yssouf Dosso · Pascal Véron

This is a pre-print of an article published in “Journal of

Cryptographic Engineering”. The final authenticated version is available online at:

https://doi.org/10.1007/s13389-019-00221-7

the date of receipt and acceptance should be inserted later

Abstract The Adapted Modular Number System

(AMNS) is an integer number system which aims to

speed up arithmetic operations modulo a prime p. Such

a system is defined by a tuple (p, n, γ, ρ, E), where p,

n, γ and ρ are integers and E ∈ Z[X]. In [12] condi-

tions required to build AMNS with E(X) = Xn+1 are

provided. In this paper, we generalise their approach

and provide a method to generate multiple AMNS for

a given prime p with E(X) = Xn − λ and λ ∈ Z \
{0}. Moreover, we propose a complete set of algorithms

without conditional branching to perform arithmetic

and conversion operations in the AMNS, using a Mont-

gomery-like method described in [26]. We show that our

implementation outperforms GNU MP and OpenSSL

libraries. Finally, we highlight some properties of the

AMNS which state that it could lead to a helpful coun-

termeasure against some side channel attacks.

Keywords Modular number system · Modular

arithmetic · Side-channel countermeasure

1 Introduction

Efficient implementations of most modern public-key

cryptography algorithms rely on the efficiency of the

modular arithmetic implementation. Such cryptosys-

tems usually need fast and regular arithmetic modulo

integers of size from 160 bits up to several thousand

bits. Adapting or building unusual arithmetic for cryp-

tographic purpose may offer significant improvements.

L.-S. Didier, F.-Y. Dosso, P. Véron
Institut de Mathématiques de Toulon
Université de Toulon, France
E-mail: didier@univ-tln.fr
E-mail: dosso@univ-tln.fr
E-mail: veron@univ-tln.fr

For instance, Residue Number Systems [14] is a non

positional arithmetic which have parallel properties. This

makes them suitable for SIMD architectures [2] and well

fitted to many cryptosystems [5,4,2]. This system offers

also countermeasures against some side channel attacks.

[6,3].

In usual positional number system, a positive inte-

ger k is represented in radix γ as follows:

k =
n−1∑
i=0

kiγ
i,

where 0 6 ki < γ. If kn−1 6= 0, k is called a n-digit

radix-γ number. The radix is often taken as a power of

two.

In modular arithmetic, the computations are per-

formed modulo p. This modulus is generally used sev-
eral times and the radix γ is chosen according to the

target architecture. In this context, elements modulo p

are represented as polynomials of degree lower than the

digits number of p in base γ, with γ ≈ p1/n.

As an example, let us consider p = 521 and the radix

γ = 2. Ten digits are required to represent p. Each inte-

ger 0 6 a < p is represented by a polynomial A(x) such

that deg(A(x))< 10, ‖A‖∞ < γ and A(γ) ≡ a (mod p).

1.1 The Modular Number System

In [7], Bajard et al. introduced the Modular Number

System (MNS) as an extension of the positional num-

ber system in order to represent integers modulo p. In

a MNS, every integer 0 6 x < p is represented as a

polynomial in γ. The main idea of the MNS consists to

relax the condition γ ≈ p1/n by allowing it to be freely

chosen in Z/pZ.

2 Laurent-Stéphane Didier et al.

Definition 1 [7] A modular number system (MNS) B
is defined by a tuple (p, n, γ, ρ), such that for every inte-

ger 0 6 x < p, there exists a vector V = (v0, . . . , vn−1)

such that:

x ≡
n−1∑
i=0

viγ
i (mod p) ,

with |vi| < ρ, ρ ≈ p1/n and 0 < γ < p.

In this case, we say that V (or equivalently the polyno-

mial V (X) = v0 + v1X + · · · + vn−1X
n−1) is a repre-

sentative of x in B and we notate V ≡ xB.

Example 1 Let p = 19 and B = (19, 3, 7, 2) be a MNS.

In Table 1, we give a representative in the MNS B of

each element of Z/19Z.

0 1 2 3

0 1 −X2 −X + 1 X2 −X − 1

4 5 6 7

X2 −X X2 −X + 1 X − 1 X

8 9 10 11

X + 1 −X2 + 1 X2 − 1 X2

12 13 14 15

X2 + 1 −X + 1 −X2 +X − 1 −X2 +X

16 17 18

−X2 +X + 1 X2 +X − 1 −1

Table 1: The elements of Z/19Z in B = (19, 3, 7, 2)

It can be checked in Table 1 that any representative

A of an element a ∈ Z/19Z is such that: deg(A) <

3, ‖A‖∞ < 2 and A(γ) ≡ a (mod p). For instance,

γ2 − γ + 1 = 49 − 7 + 1 = 43 ≡ 5 mod 19 shows that

X2 −X + 1 is a representative of 5 in B.

In MNS, the arithmetic computations are performed

on polynomials. Let V ≡ xB and W ≡ yB be two MNS

numbers. The polynomial T = VW satisfies T (γ) ≡ xy
(mod p). However, T might not be a valid represen-

tative of xy in B because its degree could be greater

than or equal to n. To keep the degree bounded by n,

the product VW has to be computed modulo a poly-

nomial E such that: E(γ) ≡ 0 (mod p) and deg(E) =

n. This operation is called the external reduction. In

fact, if E(γ) ≡ 0 (mod p) and T = VW (mod E), then

T (γ) ≡ xy (mod p) and deg(T) < n.

Even if deg(T) < n, T might not be a representative

of xy (mod p) in B, because its coefficients could be

greater than or equal to ρ. In order to retrieve the result

in B, a specific primitive called the internal reduction

has to be applied.

The polynomial S = V +W satisfies S(γ) ≡ (x+ y)

(mod p) and deg(S) < n. Again, S might not be a

valid representative in B, since its coefficients could be

greater than or equal to ρ. So, an internal reduction

might be required to retrieve the result in B.

In order to perform the external reduction and the

internal reduction efficiently, two subsets of the MNS

have been introduced: the Adapted Modular Number

system (AMNS) and the Polynomial Modular Number

system (PMNS).

1.2 The Polynomial Modular Number System

In [8], Bajard et al. introduce the Polynomial Modu-

lar Number System (PMNS). A PMNS is defined by a

tuple (p, n, γ, ρ, E) such that: (p, n, γ, ρ) is a MNS and

E(X) = Xn − αX − λ is an irreducible polynomial in

Z[X], where α and λ are very small integers and γ is a

root modulo p of E. The shape of the polynomial E al-

lows to perform the external reduction very efficiently.

Bajard et al. show that once the parameters p, n, E and

γ are chosen and if ρ is such that ρ > (|α| + |λ|)p1/n,

then the tuple (p, n, γ, ρ, E) defines a PMNS. Unfortu-

nately, their proof has some issues. It appears that a

factor n is missing and that the correct bound should

be : ρ > n(|α|+ |λ|)p1/n .
They also provide a method to build a PMNS for a

given prime integer p.

In the same paper, the authors describe how to per-

form the internal reduction using two methods: one us-

ing lookup tables and the other using the Barrett mul-

tiplication algorithm [10]. The lookup tables method

requires a lot of read operations and the memory stor-

age grows very fast with the value of n and/or p. The

Barrett-like method is less memory consuming but re-

quires more computations. For both methods, the au-

thors provide examples, the complexity of their pro-

posals and make some comparisons. But their results

do not allow to conclude whether or not PMNS can be

an interesting alternative to the usual number system.

1.3 The Adapted Modular Number system

In [7], Bajard et al. introduced the Adapted Modular

Number System (AMNS) as a subset of the MNS. In

this system, γn ≡ λ (mod p) where λ is a very small

nonzero integer (for instance, λ = ±1, ±2 or ±3). Here,

Efficient and secure modular operations using AMNS 3

the operations are done modulo the polynomial E(X) =

Xn − λ. This choice of E is the best in order to get

an efficient external reduction. Notice that E(γ) ≡ 0

(mod p) since γn ≡ λ (mod p). Also, the polynomial E

is not required to be irreducible, unlike the PMNS.

In the same paper, the authors propose a method to

build AMNS which allows a very efficient internal re-

duction. However, in this approach, the modulus p can-

not be chosen. Its value is computed during the process

and one can only choose the modulus size. It makes this

class of AMNS irrelevant for some cryptographic stan-

dards where the value of p is already known (see for

example RFC5903 for IPSEC [30]).

In [26], Negre and Plantard propose a method based

on the Montgomery multiplication [25] for the internal

reduction in AMNS with a given p. It is more efficient

than those proposed in [8]. It is the best known method

to perform the internal reduction in AMNS (even in

PMNS). Their algorithm (see Algorithm 3) requires two

polynomials M and M ′ such that M ∈ B, M(γ) ≡ 0

(mod p) and M ′ = −M−1 mod(E, φ), with φ ∈ N\{0}.
Many reductions modulo φ and exact divisions by φ are

done in this algorithm. So, a significant speed-up can

be achieved when φ is a power of two.

Negre and Plantard also give a necessary but not

sufficient condition to ensure the existence of M ′. More-

over, the construction they propose does not guarantee

the existence of M ′ nor that φ can be chosen as a power

of two. In other words, once p given, there is no proof

that one can always build an AMNS which allows to

use their Montgomery-like method.

Some applications of AMNS have been published. In

[13], El Mrabet and Negre give a new approach for mul-

tiplication in Fpk using the AMNS. It allows to decrease

the number of multiplications in Fp by slightly increas-

ing the number of additions in Fp. With well chosen

AMNS, their approach decreases the number of multi-

plications in Fp by 50%. For modular operations in Fp
(using the AMNS), they suggest to use the method pro-

posed in [26]. However, they do not address the issue of

the existence of the polynomial M ′.

In [12], El Mrabet and Gama propose to use AMNS

in order to speed-up multiplication over extension fields.

Their proposal uses the Montgomery-like method de-

scribed in [26] for arithmetic operations in the base

field associated to the extension field. They consider

the case where φ is a power of two and E(X) = Xn+1.

For the first time, they suggest a new construction of

the AMNS parameters that guarantees the existence of

the polynomial M ′. The construction they propose al-

lows to build systems that make multiplications over

extension fields more efficient than some existing so-

lutions. They provide software implementation results

and show that their approach is faster than the NTL

library [29] implementation of multiplication over ex-

tension fields in many cases. In their construction, they

distinguish two cases: when the modulus p can be freely

chosen and when the modulus p is already known. In

the latter case, the proof of their construction has un-

fortunately some issues.

2 Contributions

Some issues remain in the AMNS construction when the

modulus p is known. The first issue is about the internal

reduction process using the Montgomery-like method

which is the most efficient. So far, there is no correct

proof of the existence of the polynomial M ′ when φ is

a power of two.

In this article, we show that it is always possible

to build many AMNS for any prime p. We present a

construction process which ensures the existence of the

polynomial M ′ used in the Montgomery-like method

[26], when φ is a power of two. Here, we consider the

polynomial E(X) = Xn−λ with λ ∈ Z \ {0}. Thus, we

generalise the work done in [12]. We give a complete set

of algorithms without conditional branching to perform

arithmetic and conversion operations in AMNS using

the Montgomery-like internal reduction method.

As already mentioned, after an addition, an internal

reduction might be required to bring back the result in

the MNS. However, all the internal reduction methods

available in the literature [7,8,26] are too costly com-

pared to the polynomials addition. For instance, in [26]

the proposed reduction costs more than two polynomi-

als multiplications modulo E (see Algorithm 3). In this

article, we address this issue by introducing a parame-

ter δ, such that up to δ consecutive additions followed

by one multiplication only requires one internal reduc-

tion to bring back the final result in the AMNS. The

value of δ depends on the target application and has to

be chosen during the generation process of the AMNS.

Finally, we provide software implementations and

some results which show that AMNS can be a faster al-

ternative to the usual number system. We also discuss

some properties of the AMNS that can be very helpful

against some side channel attacks.

This paper is organised as follows. We remind the

principal definitions and properties of the AMNS in

Section 3. In Section 4, we present a complete set of

algorithms to perform usual arithmetic, forward and

backward conversion operations. We also introduce the

parameter δ mentioned above. In Section 5, we show

4 Laurent-Stéphane Didier et al.

that an AMNS can always be built for any prime and

we present a new generation process including the con-

struction of the polynomials M , M ′ and all the param-

eters. In Section 6, we provide the complexity and the

memory requirement of the software implementation of

the AMNS. We also discuss the number of AMNS that

can be built given a prime, along with our software

implementation strategy. Additionally, we provide soft-

ware implementation results for cryptographic sizes in-

tegers. We compare our implementations to popular big

integer libraries. We also give some analyses about side

channel attacks.

3 Adapted Modular Number System

In the sequel of this article, an element A in the AMNS

is considered either as a polynomial A(X) of degree

n− 1 such that A(X) = a0 + a1X + · · ·+ an−1X
n−1 or

equivalently as a vector (a0, a1, . . . , an−1) depending

on the context.

Definition 2 [7] An Adapted Modular Number Sys-

tem (AMNS) is defined by a tuple B = (p, n, γ, ρ, E)

such that (p, n, γ, ρ) is a MNS, γ is a root of the poly-

nomial E(X) = Xn − λ, with λ a very small nonzero

integer (for instance, λ = ±1, ±2 or ±3).

Example 2 Let’s take the MNS (19, 3, 7, 2) given in Ex-

ample 1. We have γn = 73 ≡ 1 (mod 19), which is very

small. So, with E(X) = X3−1, the tuple (19, 3, 7, 2, E)

defines an AMNS.

In the sequel of the article, the tuple B = (p, n, γ, ρ, E)

defines the parameters of an AMNS. We denote either

the set of parameters or the corresponding AMNS by

B. We present the generation process of the AMNS in

Section 5.

Proposition 1 gives a necessary condition on ρ for a

tuple B = (p, n, γ, ρ, E) to be an AMNS, when p and n

are given.

Proposition 1 If B is an AMNS, then:

d(n
√
p− 1)/2e 6 ρ .

Proof. The number of elements in B is (2ρ−1)n, as ele-

ments may have negative coefficients and their absolute

values are lower than ρ (see Definition 1). We want to

represent all elements in Z/pZ, so ρ has to be bounded

such that p 6 (2ρ− 1)n.

3.1 Some notations and conventions

We denote by Zn[X] the set of polynomials in Z[X]

which degrees are strictly lower than n:

Zn[X] = {A ∈ Z[X], such that: deg(A) < n}

Let A ∈ Z[X], we denote by A mod (E, φ) the polyno-

mial reduction A mod E where the coefficients of the

result are computed modulo φ.

Finally, in the sequel of this paper, we assume that

the parameter n of the AMNS is such that n > 2. This

should always be the case, otherwise using AMNS does

not have any interest.

From Section 1, we know that the arithmetic opera-

tions in the MNS require an external reduction and an

internal reduction. We remind how these two operations

work in the AMNS.

3.2 External reduction

The external reduction is a polynomial modular reduc-

tion. The purpose of this operation is to keep degree of

the AMNS representatives bounded by n. Let C ∈ Z[X]

be a polynomial. This operation consists in computing

a polynomial R such that:

deg(R) < n and R(γ) ≡ C(γ) (mod p)

The Euclidean division of C by E computes Q and R

so that:

C = Q× E +R

with deg(R) < n and Q ∈ Z[X]. Now, C(γ) = Q(γ) ×
E(γ) +R(γ). Because E(γ) ≡ 0 (mod p), then R(γ) ≡
C(γ) (mod p). The external reduction process computes

R = C mod E. The polynomial E is called the external

reduction polynomial.

Let A ∈ Zn[X] and B ∈ Zn[X]. Let C = AB be

a polynomial. Then, deg(C) < 2n − 1. When E(X) =

Xn−λ, with λ very small, the external reduction can be

done very efficiently. Algorithm 1, proposed by Plantard

in [27] (see Algorithm 28, Section 3.2.1), can be used to

perform this operation.

3.3 Internal reduction

The aim of the internal reduction is to ensure that the

coefficients of polynomials are bounded by ρ. Let C ∈
Zn[X] be a polynomial, with ‖C‖∞ ≥ ρ. This operation

Efficient and secure modular operations using AMNS 5

Algorithm 1 External Reduction in AMNS, [27]

Require: C ∈ Z[X] with deg(C) < 2n−1 and E(X) =

Xn − λ
Ensure: R ∈ Z[X] such that R = C mod E

1: for i = 0 . . . n− 2 do

2: ri ← ci + λcn+i

3: end for

4: rn−1 ← cn−1

5: return R # R = (r0, . . . , rn−1)

consists in computing a polynomial R such that R ∈ B
and R(γ) ≡ C(γ) (mod p).

Several implementations of this operation have been

provided. For the specific class of AMNS defined in

[7], the internal reduction is essentially a vector-matrix

multiplication plus a polynomials addition that are re-

peated as many times as necessary to get the result

in the AMNS. The generation process of these AMNS

allows to choose a very sparse matrix whose non zero el-

ements are powers of two. This makes the vector-matrix

multiplication very fast. However, this generation pro-

cess does not give control on the value of the modulus

but a partial control on its size in bits.

When the value of the modulus is required, the most

efficient algorithm to perform the internal reduction

in AMNS and PMNS is a Montgomery-like reduction

method, which has been published by Negre and Plan-

tard [26]. In their approach, they combine the multi-

plication operation with their Montgomery-like inter-

nal reduction (Algorithm 2). However, they do not deal

with the addition which might require an internal re-

duction in order to keep the result in the AMNS. In

this paper, we split the multiplication process from the

internal reduction (see Algorithms 4 and 3) because the

internal reduction will also be used to convert an integer

in the AMNS (and vice versa).

Algorithm 2 Modular Multiplication in AMNS, [26]

Require: A ∈ B, B ∈ B and B = (p, n, γ, ρ, E)

Ensure: S ∈ B with S(γ) ≡ A(γ)B(γ)φ−1 (mod p)

1: V ← A×B mod E

2: Q← V ×M ′ mod (E, φ)

3: T ← Q×M mod E

4: S ← (V + T)/φ

5: return S

4 Arithmetic and conversion operations in

AMNS

In this section, we present a set of algorithms to per-

form addition, multiplication and conversion operations

in the AMNS, using the Montgomery-like internal re-

duction method [26]. All these operations make use of

the internal reduction operation.

4.1 The internal reduction with Montgomery

In [26], Negre and Plantard combine the polynomials

multiplication modulo E with the internal reduction in

one algorithm. Here, we put apart the internal reduc-

tion from the multiplication because we use it in other

operations. Algorithm 3 corresponds to the internal re-

duction method embedded in the modular multiplica-

tion given in [26].

Algorithm 3 RedCoeff (Coefficient reduction), [26]

Require: B = (p, n, γ, ρ, E), V ∈ Zn[X], M ∈ B such

that M(γ) ≡ 0 (mod p), φ ∈ N \ {0} and M ′ =

−M−1 mod(E, φ).

Ensure: S(γ) = V (γ)φ−1 (mod p)

1: Q← V ×M ′ mod (E, φ)

2: T ← Q×M mod E

3: S ← (V + T)/φ

4: return S

Similarly to the Montgomery modular reduction me-

thod, Algorithm 3 outputs S such that S(γ) ≡ V (γ)/φ
(mod p), because M(γ) ≡ 0 (mod p) and E(γ) ≡ 0

(mod p) imply T (γ) ≡ 0 (mod p). We show in Section

4.4 how to deal with this multiplicative constant.

Algorithm 3 requires two polynomials multiplica-

tions (one modulo E and another modulo (E, φ)), one

polynomials addition and n integer divisions by φ (at

line 3). These divisions are proven to be exact in [26].

Usually, φ is a power of two in order to simplify the re-

ductions modulo φ (line 1) and divisions by φ (line 3).

The polynomials M and M ′ have to be carefully built.

In Section 5.4, we present a generation process of M

which ensures the existence of M ′, when φ is a power

of two.

Theorem 1 (Theorem 1 in [26]) gives sufficient con-

ditions on ρ and φ so that the output S of Algorithm 2

remains in B.

Theorem 1 [26] Let A and B ∈ B. If ρ and φ are such

that:

6 Laurent-Stéphane Didier et al.

ρ > 2n|λ|‖M‖∞ and φ > 2n|λ|ρ

then, the output S of the Algorithm 2 is such that

‖S‖∞ < ρ (i.e., S ∈ B).

As a consequence, we have:

Corollary 1 Let V ∈ Zn[X] be a polynomial. If ρ, φ

and V are such that:

‖V ‖∞ < n|λ|ρ2, ρ > 2n|λ|‖M‖∞ and φ > 2n|λ|ρ

then, the output S of the Algorithm 3 is such that

‖S‖∞ < ρ (i.e., S ∈ B).

Proof. With the polynomials A and B of Theorem 1

as inputs, the polynomial V (at line 1 of Algorithm

2) satisfies ‖V ‖∞ < n|λ|ρ2 as shown in Equation 5,

Section 3 of [7]. Hence, Theorem 1 can be applied to

conclude.

4.2 Multiplication

The multiplication in AMNS is a polynomials multipli-

cation followed by an external reduction and then by an

internal reduction. Algorithm 4 implements the multi-

plication that is identical to the one proposed in [26],

except that the inputs are considered to be in Zn[X].

This extension on the input domain will be helpful in

the sequel to show how to postpone the internal reduc-

tion process after a succession of additions.

Algorithm 4 Multiplication in AMNS

Require: A,B ∈ Zn[X] and B = (p, n, γ, ρ, E)

Ensure: S ∈ Zn[X] such that S(γ) ≡ A(γ)B(γ)φ−1

(mod p)

1: R← A×B mod E

2: S ← RedCoeff(R)

3: return S

In Algorithm 4, we have R(γ) ≡ A(γ)B(γ) (mod p),

because E(γ) ≡ 0 (mod p). Thus, this algorithm out-

puts a polynomial S such that S(γ) ≡ A(γ)B(γ)φ−1

(mod p). As shown in [26], the result S is an AMNS el-

ement (i.e., ‖S‖∞ < ρ), if the requirements of Theorem

1 are met.

4.3 Addition

Elements being polynomials in AMNS, an addition in

B is a simple polynomials addition (see Section 5.1 of

[8]).

Algorithm 5 Addition in AMNS

Require: A ∈ B, B ∈ B and B = (p, n, γ, ρ, E)

Ensure: S = A+B

1: S ← A+B

2: return S

The output S of Algorithm 5 is such that ‖S‖∞ < 2ρ

and might not be in B. In [27] (see Algorithm 29, Sec-

tion 3.2.2), Plantard proposed a polynomials addition

followed by an internal reduction. However, it is not

efficient to perform an internal reduction after each ad-

dition, because all the internal reduction methods avail-

able in the literature [7,8,26] are too costly compared

to the polynomials addition. We propose here a solu-

tion that allows to perform as much additions as we

want without an internal reduction before a modular

multiplication.

We denote δ the maximum number of consecutive

additions of elements in B that have to be done before a

modular multiplication. This value relies on the target

application and is usually known. For instance, in ellip-

tic curve cryptography, the formulas for point addition

and doubling are known; so, δ can easily be estimated.

The following proposition gives new bounds on ρ

and φ that ensure that a multiplication can be per-

formed with Algorithm 4, with inputs being the results

of δ consecutive additions of elements in B.

Proposition 2 Let δ be the maximum number of con-

secutive additions of elements in B that have to be done

before a modular multiplication. Let U and W be the re-
sults of such consecutive additions, using Algorithm 5.

If ρ and φ are such that:

ρ > 2n|λ|‖M‖∞ and φ > 2n|λ|ρ(δ + 1)2

then, with U and W as inputs, Algorithm 4 outputs a

polynomial S such that ‖S‖∞ < ρ (i.e., S ∈ B).

Proof. We have: ‖U‖∞ < (δ + 1)ρ and ‖W‖∞ <

(δ+1)ρ. We also have ρ > 2n|λ|‖M‖∞. So, as proven in

[26] (see proof of Theorem 1), the output S of Algorithm

4 is such that: ‖S‖∞ < n|λ|(δ+1)2ρ2

φ + ρ
2 .

In order to have ‖S‖∞ < ρ, it suffices to take φ such

that φ > 2n|λ|ρ(δ + 1)2.

One may observe that, for δ = 0, Proposition 2 and

Theorem 1 in [26] are the same. Our approach does not

affect the bound on ρ. So, there is no additional mem-

ory cost.

Efficient and secure modular operations using AMNS 7

Corollary 2 is a generalization of Corollary 1 which

gives conditions on ρ and φ to ensure that RedCoeff

outputs a result in B.

Corollary 2 Let V ∈ Zn[X] be a polynomial. If ρ, φ

and V are such that:

‖V ‖∞ < n|λ|(δ + 1)2ρ2,

ρ > 2n|λ|‖M‖∞,

φ > 2n|λ|ρ(δ + 1)2,

then, the output S of the Algorithm 3 (with V as input)

is such that ‖S‖∞ < ρ (i.e., S ∈ B).

Proof. With the polynomials U and W of Proposition

2 as inputs, the polynomial R (at line 1 of Algorithm 4)

satisfies ‖R‖∞ < n|λ|(δ + 1)2ρ2 as shown in Section 3

of [7]. Hence, Proposition 2 can be applied to conclude.

From Corollary 2, we deduce that the result of up to

n|λ|(δ+ 1)2ρ−1 consecutive additions of elements in B
is brought back into the AMNS with one call to Red-

Coeff. It means that if no modular multiplication is

done, many polynomials additions can be done before

performing an internal reduction.

4.4 Conversion operations

The modular multiplication method (Algorithm 4) pre-

sented in Section 4.2 uses the internal reduction method

RedCoeff (Algorithm 3) which introduces a multiplica-

tive coefficient φ−1 in the result. As a consequence,

the computation of the product α1α2 · · ·αk, with αi ∈
Z/pZ, using their representatives in B, outputs a poly-

nomial S such that S(γ) ≡ φ−k
∏k
i=1 αi (mod p).

A common solution to deal with this multiplicative

coefficient is to keep the values αi in the Montgomery

domain. In this domain, any element a ∈ Z/pZ is re-

placed by aφ (mod p) and has a representative A ∈ B
such that A(γ) ≡ aφ (mod p). Thus, if A, B ∈ B are

the representatives in the Montgomery domain of a, b

∈ Z/pZ, then the internal reduction procedure RedCo-

eff, applied to V = A×B mod E, outputs a polynomial

S ∈ B, such that S(γ) ≡ abφ (mod p), which is also in

the Montgomery domain.

So, in order to ensure that the modular multiplication

in the AMNS (Algorithm 4) is consistent, we will keep

the values in the Montgomery domain.

In the sequel of this section, we assume that:

ρ > 2n|λ|‖M‖∞ and φ > 2n|λ|ρ(δ + 1)2 and n > 2.

4.4.1 Conversion from binary representation to

AMNS.

The idea is to use, in the target AMNS, the radix-ρ

decomposition of the integer to be converted. As al-

ready explained, we need to keep the intermediate val-

ues in the Montgomery domain. For this method (Algo-

rithm 6), we must precompute the exact representatives

Pi(X) of (ρiφ2) in B (and not the representatives in the

Montgomery domain). We will later explain how to do

it. This algorithm is identical to Algorithm 30 in [27]

(Section 3.2.3) except that the output and the polyno-

mials Pi(X) are different here, because it is required to

work in the Montgomery domain.

Algorithm 6 Conversion from classical representation

to AMNS
Require: a ∈ Z/pZ and B = (p, n, γ, ρ, E)

Ensure: A ≡ (aφ)B

1: t = (tn−1, ..., t0)ρ # radix-ρ decomposition of a

2: U ←
n−1∑
i=0

tiPi(X)

3: A← RedCoeff(U)

4: return A

At line 2 of Algorithm 6, U is a representative of aφ2

and ‖U‖∞ < nρ2. Hence, from Proposition 2, ‖A‖∞ <

ρ and A ≡ (aφ)B.

The complexity of the radix-ρ decomposition of a

at line 1 becomes very low if ρ is a power of two. It

is always possible to make this choice. For instance,

one can take ρ = 2dlog2(2n|λ|‖M‖∞)e, as one only needs

ρ > 2n|λ|‖M‖∞. The operation at line 2 requires n2

multiplications of integers lower than ρ and n(n − 1)

additions of integers lower than ρ2. This cost is less

than the cost of the multiplication A× BmodE, with

A,B ∈ B, see Table 2. Thus, Algorithm 6 is faster than

a modular multiplication in AMNS (Algorithm 4).

Computation of the representatives Pi

Algorithm 6 requires the representatives Pi(X) of (ρiφ2)

in B. In order to compute them, we need Proposition

3 which allows to quantify the effect of the internal re-

duction algorithm (cf. Algorithm 3) on the coefficients

of a polynomial.

Proposition 3 Let V ∈ Zn[X] be a polynomial. If ρ,

φ are such that:

ρ > 2n|λ|‖M‖∞ and φ > 2n|λ|ρ(δ + 1)2

8 Laurent-Stéphane Didier et al.

then, one call to RedCoeff (Algorithm 3) divides the

coefficients of V by at least 2ρ.

Proof. We remind the assumption n > 2 (see Section

3.1). Let S = RedCoeff(V), i.e., S is the output of Al-

gorithm 3 with V as input.

We have ‖S‖∞ 6 (‖V ‖∞ + ‖T‖∞)/φ.

Since T = QM mod E, then from [7] (see Section 3),

‖T‖∞ < n|λ|‖Q‖∞‖M‖∞ < n|λ|φ‖M‖∞, because

‖Q‖∞ < φ. As a consequence,

‖S‖∞ < (‖V ‖∞ + nφ|λ|‖M‖∞)/φ .

We have φ > 2n|λ|ρ(δ + 1)2 > 4ρ (because n > 2) and

ρ > 2n|λ|‖M‖∞. It follows that:

‖S‖∞ <
‖V ‖∞

4ρ
+
ρ

2
.

So, if ‖V ‖∞ < 2ρ2, then ‖S‖∞ < ρ (i.e., S ∈ B).

But, if ‖V ‖∞ > 2ρ2, then ‖S‖∞ < ‖V ‖∞
2ρ . This means

that one call to RedCoeff divides the coefficients of V

by at least 2ρ, if ‖V ‖∞ > 2ρ2.

From Proposition 3, we know that one call to RedCoeff

method, with an input V , outputs a polynomial S such

that:

– ‖S‖∞ < ‖V ‖∞
2ρ , if ‖V ‖∞ > 2ρ2

– ‖S‖∞ < ρ (i.e: S ∈ B), if ‖V ‖∞ < 2ρ2

Also, we have S(γ) ≡ V (γ)φ−1 (mod p).

Let τ = φn (mod p). Algorithm 7, based on Propo-

sition 3, describes an iterative way to compute the rep-

resentatives of ρiφ2. This idea of iterative conversion
was already mentioned in [7] (Section 6.1) and also in

[27] (Section 3.2.3).

Algorithm 7 Exact conversion from binary to AMNS

Require: a ∈ Z/pZ, B = (p, n, γ, ρ, E) and τ =

φn mod p

Ensure: A ≡ aB
1: α = a× τ (mod p)

2: A = (α, 0, . . . , 0) # a polynomial of degree 0

3: for i = 0 . . . n− 1 do

4: A← RedCoeff(A)

5: end for

6: return A

At line 2 (in Algorithm 7), A is a polynomial of de-

gree 0 which constant coefficient is strictly less than p.

From Proposition 1, we know that p 6 (2ρ−1)n. Thus,

p < (2ρ)n. As a consequence, calling n times RedCoeff

on A ensures that the algorithm outputs A in B, accord-

ing to Proposition 3. Hence, if we apply this algorithm

to a = ρiφ2, the output is its representative Pi(X).

Algorithm 7 uses one modular multiplication in Z/pZ
plus n calls to RedCoeff. So, this algorithm is not suit-

able to convert the elements of Z/pZ in B. Also, it is

a lot more costly than Algorithm 6. We only use it to

precompute the representatives Pi(X).

There is a faster way to compute the polynomials

Pi(X), using Algorithm 7. First, compute the polyno-

mials Φ ≡ (ρφ)B and P0 ≡ (φ2)B, using Algorithm 7.

Then, for 1 6 i < n, Pi is computed by multiplying

Pi−1 by Φ, using Algorithm 4.

This second approach requires 3n− 1 calls to RedCoeff

and two modular multiplications in Z/pZ while the first

one needs n2 calls to RedCoeff and n modular multipli-

cations in Z/pZ.

4.4.2 Conversion from AMNS to binary

representation.

Most of the algorithms in this paper make use of Red-

Coeff procedure. We already explained that one has to

keep the intermediate values in the Montgomery do-

main. An element a ∈ Z/pZ is represented in B by a

polynomial A such that A(γ) ≡ (aφ) (mod p). For the

sake of consistency, we consider that the values we want

to convert are in this domain.

We present here a slight modification of two algo-

rithms given in [27] that compute the integer value cor-

responding to an element in Zn[X].

Method 1

An easy way to perform this operation is to use the

classical Horner’s scheme [18]. Algorithm 8 is a slight

modification of Algorithm 31 in [27] (Section 3.2.3).

Compared to that algorithm, we add line 1 to convert

the input from the Montgomery domain. So, it has an

additional cost of one call to RedCoeff method.

Method 2

Algorithm 8 is straightforward and does not require any

precomputed data. However, it requires n− 1 modular

multiplications and one call to RedCoeff. Algorithm 9

improves Algorithm 8, at the cost of some precompu-

tations and data storage. The values gi = γi (mod p),

for i = 1, . . . , n − 1 have to be precomputed before

Efficient and secure modular operations using AMNS 9

Algorithm 8 Conversion from AMNS to classical rep-

resentation
Require: A ∈ Zn[X] and B = (p, n, γ, ρ, E)

Ensure: a = A(γ)φ−1 (mod p)

1: A← RedCoeff(A)

2: a← an−1

3: for i = n− 2 . . . 0 do

4: a← (aγ + ai) (mod p)

5: end for

6: return a

using it. This algorithm is a slight modification of Al-

gorithm 32 in [27] (Section 3.2.3), to take account of the

Montgomery domain. Compared to that algorithm, we

add line 1 to convert the input from the Montgomery

domain. So, it has an additional cost of one call to Red-

Coeff method.

Algorithm 9 Conversion from AMNS to classical rep-

resentation

Require: A ∈ Zn[X], B = (p, n, γ, ρ, E) and gi ≡ γi

(mod p), for i = 1, . . . , n− 1

Ensure: a = A(γ)φ−1 (mod p)

1: A← RedCoeff(A)

2: a← a0

3: for i = 1 . . . n− 1 do

4: a← a+ aigi

5: end for

6: a← a (mod p)

7: return a

In this algorithm, n−1 multiplications and one mod-

ular reduction are done (plus one call to RedCoeff). If

A ∈ B, then |ai| < ρ. Thus, the multiplications aigi are

not full multiplications in Z/pZ. At the end of the loop

(before line 6), we have |a| < nρp. As ρ ≈ p1/n, the

modular reduction at line 6 is less expensive than a full

modular reduction in Z/pZ.

4.5 Exact coefficients reduction

In Section 4.4, we explained that to keep elements in

the Montgomery domain, a representative A ∈ B of an

element a ∈ Z/pZ is such that A(γ) ≡ aφ (mod p).

Once in the Montgomery domain, another issue may

occur when one needs to compute α1+α2+· · ·+αk, with

αi ∈ Z/pZ, using their representatives in B. The cor-

responding result is a polynomial R such that R(γ) ≡
φ
∑k
i=1 αi (mod p).

If k 6 (δ+ 1), then, as shown with Proposition 2, there

is no need for an internal reduction.

However, if k > (δ + 1) and one needs (or wants) to

bring back the result R in the AMNS (for storage re-

quirement, for instance), then an internal reduction has

to be done. RedCoeff method (Algorithm 3) introduces

a multiplicative constant φ−1. So, applying it on R will

output a polynomial S such that S(γ) ≡ R(γ)φ−1 ≡∑k
i=1 αi (mod p). Hence, S is no more in the Mont-

gomery domain. To solve this issue, we propose Algo-

rithm 10, which takes as input a polynomial V and out-

puts a polynomial S such that S(γ) ≡ V (γ) (mod p).

So, if V is in the Montgomery domain, then S will also

be in this domain.

Algorithm 10 ExactRedCoeff

Require: V ∈ Zn[X], P0 ≡ (φ2)B and B =

(p, n, γ, ρ, E)

Ensure: S(γ) ≡ V (γ) (mod p)

1: T ← RedCoeff(V)

2: U ← T × P0 mod E

3: S ← RedCoeff(U)

4: return S

At line 1 of Algorithm 10, we have T (γ) ≡ V (γ)φ−1

(mod p). Since P0(γ) ≡ φ2 (mod p), we have U(γ) ≡
V (γ)φ (mod p). Thus, S(γ) ≡ V (γ) (mod p).

ExactRedCoeff (Algorithm 10) is more expensive

than the modular multiplication (Algorithm 4); an ad-

ditional call to RedCoeff method is done. Also, it uses

P0, an exact representative of φ2 in the AMNS, i.e.,

P0(γ) ≡ φ2 (mod p). In Section 4.4.1, we have explained

how to compute P0 because it is also needed for (fast)

conversion in the AMNS.

Proposition 4 gives the requirements on ρ, φ and the

input V for the output S of Algorithm 10 to be in B.

Proposition 4 Let V ∈ Zn[X] be a polynomial. If ρ,

φ and V are such that:

‖V ‖∞ < n|λ|(δ + 1)2ρ2,

ρ > 2n|λ|‖M‖∞,

φ > 2n|λ|ρ(δ + 1)2,

then, the output S of the Algorithm 10 (with V as input)

is such that ‖S‖∞ < ρ (i.e., S ∈ B).

10 Laurent-Stéphane Didier et al.

Proof. From Corollary 2, we have: ‖T‖∞ < ρ (at line 1

of Algorithm 10). Then, line 2 and line 3 combined are

equivalent to a modular multiplication, with inputs in

B. So, Proposition 2 suffices to conclude that S ∈ B.

Let ω = n|λ|(δ+ 1)2ρ− 1. From Proposition 4, one can

deduce that if a polynomial V is the result of up to ω

consecutive additions of elements in B, then one call to

ExactRedCoeff is enough to bring back V in B, with

the result still in the Montgomery domain.

To sum up, let µ ∈]δ, ω], ExactRedCoeff is meant

to be used when µ consecutive additions of elements in

B has been done and the result has to be brought back

into the AMNS.

Until now, we have defined the AMNS and given its

essential properties in Section 3. In Section 4, we gave

a complete set of algorithms to perform conversion and

main arithmetic operations in the AMNS, along with

some additional properties. This allows us to present all

the parameters required for these algorithms and also

to give the constraints these parameters must respect.

In the following section, we show how to generate all

the required parameters.

5 AMNS parameter generation

We remind here the complete set of parameters of the

AMNS B that are used in all the algorithms described

in Section 4:

– p: a prime integer, p > 3.

– n: the number of coefficients of the elements in AMNS,

n > 2.

– λ: a small nonzero integer.

– γ: a nth-root (modulo p) of λ.

– E: the external reduction polynomial, defined as:

E(X) = Xn − λ.

– M : the internal reduction polynomial.

– ρ: the upper-bound on the infinity norm of the ele-

ments of B, ρ > 2n|λ|‖M‖∞.

– δ: the maximum number of consecutive additions

that will be done before a modular multiplication,

as defined in Section 4.3.

– φ: the integer used in RedCoeff, φ > 2n|λ|ρ(δ+ 1)2.

– M ′: a polynomial such thatM ′ = −M−1 mod (E, φ).

Some of these parameters have to be chosen while the

others are computed. In the following section, we pro-

vide the parameter generation process.

5.1 Parameter generation process

The parameters δ and the prime p are chosen with re-

gard to the target application. The parameter δ is the

maximum number of consecutive additions that need to

be done before a modular multiplication. The next step

is to choose the parameter n with regard to the target

architecture. Let’s consider that we have a k-bit pro-

cessor architecture. Then n must be chosen such that

nk > dlog2(p)e in order to ensure that each coefficient

of an AMNS element can fit in one data word.

After the choice of n, we choose a small integer λ ∈
Z \ {0} such that a nth-root γ modulo p of λ exists. In

Section 5.2, we show that it is always possible to find

such λ and γ, given p and n. Then, we set the external

reduction polynomial E(X) = Xn − λ.

The internal reduction polynomial M has to be gen-

erated while ensuring the existence of the polynomial

M ′ = −M−1 mod (E, φ), for any φ being a power of

two. In Section 5.3, we give the requirements on the

polynomial M such that M ′ exists. In Section 5.4, we

explain how to generate the polynomial M while fulfill-

ing these requirements.

After the computation of M , we compute ρ and φ

as:

ρ = 2dlog2(2n|λ|‖M‖∞)e,

φ = 2dlog2(2n|λ|ρ(δ+1)2)e,

to satisfy the requirements of Section 4.

Next, M ′ is computed as follows:

M ′ = −M−1 mod (E, φ) .

Additionally, for the (fast) conversion method (Algo-

rithm 6), we need to precompute representatives Pi(X)

of (ρiφ2) in B (as explained in Section 4.4.1). We re-

mind that P0 is also required for ExactRedCoeff (Al-

gorithm 10). If fast conversion from AMNS to classical

representation is wanted, elements gi = γi (mod p), for

i = 1, . . . , n − 1, have to be precomputed in order to

use Algorithm 9.

For software implementation, another strategy re-

garding the choice of φ can lead to a better efficiency.

Assuming that we have a k-bit processor architecture,

a good idea is to take φ = 2k. With this choice, division

and modular reduction by φ can be done with very sim-

ple mask and shift operations. This choice also makes

the multiplication in Z/φZ (line 1, Algorithm 3) very

efficient. Additionally, since ρ < φ, this choice implies

that n > b log2 p
k c + 1. It also ensures that each coeffi-

cient of an element in B fits in one data word. Which

is also good for efficiency.

Efficient and secure modular operations using AMNS 11

Table 2 (Section 6.1) shows that the value of n has

a large impact on the efficiency of the arithmetic opera-

tions in the AMNS. Thus, for φ = 2k, the optimal value

for n is b log2 p
k c + 1. The parameter ρ is computed as

follows: ρ = 2dlog2(2n|λ|‖M‖∞)e. So, in order to guaran-

tee that we can take φ = 2k with φ > 2n|λ|ρ(δ+1)2, we

need to compute the polynomial M with ‖M‖∞ small

enough to allow that. In section 5.4, we explain how

this can be accomplished, thanks to lattice reduction.

5.2 Existence of γ

The first constraint in the generation of an AMNS is

to ensure the existence and the computation of γ, a

nth-root modulo p of λ. Here, we give some results that

show that, for a given p and n, it is always possible to

find a small λ ∈ Z \ {0} such that γ exists.

Proposition 5 Let E(X) = Xn − λ, for λ ∈ Z \ {0}.
Let g be a generator of (Z/pZ) \ {0} and y such that

gy ≡ λmod p. If gcd(n, p − 1) | y, then there exists

gcd(n, p− 1) roots γ of E(X) in Z/pZ.

Proof. If gcd(n, p−1) | y, the equation nx ≡ y (mod p−
1) admits k solutions, where k = gcd(n, p − 1). Let

x0 be one of these solutions, and let consider γ ≡ gx0

(mod p). Then γn ≡ λ (mod p).

Proposition 5 gives a requirement on the existence

of the nth-roots modulo p of λ and their number. This

proposition relies on the discrete logarithm of λ in Z/pZ.

It requires y such that gy ≡ λmod p. The computation

of such y can be very hard if p is large enough.

We give below sufficient (but not necessary) con-

ditions that are easy to verify and that guarantee the

existence of a nth-root modulo p of λ, taking eventually

λ = 1.

Corollary 3 If gcd(n, p − 1) = 1 then there exists a

unique nth-root γ of λ in Z/pZ, for any λ ∈ Z \ {0}.

Proof. If gcd(n, p − 1) = 1, this nth-root can be easily

computed. In fact, using the extended euclidean algo-

rithm, we compute Bezout coefficients for (n, p − 1).

That is, u and v in Z such that nu + (p − 1)v = 1.

So, λ = λnu+(p−1)v = (λu)n(λp−1)v. As, λp−1 ≡ 1

(mod p), it is obvious that λ ≡ (λu)n (mod p). Which

means that λu (mod p) is a nth-root modulo p of λ.

If gcd(n, p−1) = 1 and λ = 1, then, using Corollary

3, the unique nth-root γ of λ is 1. With γ = 1, an

AMNS can not be built. In this case, the largest value

that can be represented in this AMNS is lower than nρ.

Indeed, the elements in the AMNS are polynomials of

degree n − 1 evaluated in γ = 1 and their coefficients

are bounded by ρ. So, it is not possible to generate all

elements in Z/pZ with such a system, because ρ ≈ p1/n.

The following corollary deals with the case λ = 1 and

gcd(n, p− 1) > 1.

Corollary 4 If gcd(n, p − 1) > 1, then there exists at

least one non-trivial nth-root γ of 1. Therefore, we can

take λ = 1.

Proof. Let λ = 1, we are looking for γ such that γn ≡ 1

(mod p). It is well known that there are gcd(n, p − 1)

nth-roots of unity modulo p. Let g be a generator of

(Z/pZ) \ {0}, d = gcd(n, p− 1) with d > 1, and let h =

g(p−1)/d (mod p). Then, hn ≡ 1 (mod p) and h 6= 1.

So, h is a non-trivial nth-root of λ.

The other nth-roots are hi (mod p), for 2 6 i 6 d.

Remark 1 Except the algorithms for conversion from

AMNS to classical representation, none of the algo-

rithms we presented uses the parameter γ. Hence, this

parameter has no impact on the efficiency of the arith-

metic operations and the conversion operations from

classical representation to AMNS.

From Corollary 3 and 4, given p and n, we deduce

that if gcd(n, p−1) = 1, then we can choose λ being any

small integer different from 0 and 1.This states that a

(unique) nth-root γ exists and its computation is easy.

Likewise, if gcd(n, p− 1) > 1, it suffices to take λ = 1,

because, in this case, non-trivial nth-roots of λ exist

and can be computed easily.

Remark 2 If gcd(n, p − 1) > 1, Corollary 4 does not

imply that it is necessary to take λ = 1. If a given

λ 6= 1 has nth-roots modulo p, then there exists an al-

gorithm [19] (used in SageMath library [31]) that com-

putes these nth-roots. However, this algorithm com-

putes a discrete logarithm in a small field. Its practical

efficiency relies on the size of this “small” field.

Another possibility is to compute the irreducible factors

of E(X) = Xn − λ in Z/pZ and to see if the degree of

some of them is one. Their root will give a nth-root of

λ. A probabilistic polynomial time algorithm to achieve

this goal is given in [15].

5.3 Existence of the polynomial M ′

In [26], the authors state that M must be chosen such

that gcd(E,M)= 1, but this does not guarantee the ex-

istence of M ′. Indeed, if gcd(E,M)= 1, then it exists

M ′ ∈ Q[X] such that MM ′ ≡ 1 (mod E), but noth-

ing guarantees that the coefficients of M ′ are invert-

ible modulo φ > 2. Hence, there is no evidence that

gcd(E,M)=1 implies that M ′M ≡ 1 mod(E, φ).

12 Laurent-Stéphane Didier et al.

A first attempt, to prove it, has been published in

[12]. In Section 3.3 of that article, when the value of

p is already known and φ is a power of 2, the authors

show how to build a lattice whose reduced basis always

contains a polynomial M invertible modulo (E, φ). Un-

fortunately, their proof uses the fact that a polynomial

M is invertible modulo (E, φ) if the evaluation of M

over all integers is odd. This is a necessary but not a

sufficient condition. For instance, let E(X) = X6 + 1

and M(X) = X4 +X2 + 1, the evaluation of M is odd

over all integers. However, it is not invertible modulo

(E, φ) whenever φ is an even number, because the re-

sultant of E and M is 16. This leads us to first remind

some essential elements about the resultant of two poly-

nomials.

Definition 3 (Resultant) [24, Def. 7.2.2, p. 227] Let

A be a commutative ring with identity. Let A and B be

two polynomials in A[X]. The resultant Res(A,B) of

A and B is the determinant of their Sylvester matrix.

Therefore, it is an element of A.

If A(X) = a0 + a1X + · · · + anX
n and B(X) =

b0 + b1X + · · ·+ bmX
m, then their Sylvester matrix is

the (n+m)× (n+m) matrix defined as follows:

SA,B =



an 0 . . . 0 bm 0 . . . 0

an−1 an
. . .

...
... bm

. . .
...

... an−1

. . . 0
...

. . . 0
...

...
. . . an b1 bm

a0 an−1 b0
. . .

...
...

0
. . .

... 0
. . . b1

...
...

. . . a0
...

...
. . . b0 b1

0 . . . 0 a0 0 . . . 0 b0


Notice that the matrix SA,B above corresponds to

the transpose of the representation given by Definition

7.2.1 in [24, p. 227]. Since matrix transposition does not

modify matrix determinant, the two conventions apply

to Definition 3.

In Z[X], there is no Bézout’s identity, but the fol-

lowing essential property will help us to set an existence

criteria for the polynomial M ′.

Proposition 6 [24, Lemma 7.2.1, p. 228] Let A be a

commutative ring with identity and let A and B two

non-zero polynomials in A[X] such that

deg(A)+deg(B) > 1. There exist U and V in A[X] such

that A(X)U(X) + B(X)V (X) = Res(A,B),

deg(U) < deg(B), and deg(V) < deg(A).

We can now state our existence criteria for the poly-

nomial M ′.

Proposition 7 (Existence criteria) Let M ∈ Z[X],

E ∈ Z[X] and φ > 2 an integer.

If gcd(Res(E,M), φ) = 1, then there exists J ∈ Z[X]

such that JM ≡ 1 mod (E, φ). That is, J = M−1 mod

(E, φ) exists.

Proof. Let r = Res(E,M) and let ψ be the inverse of

r modulo φ. From Proposition 6, there exist U and

V in Z[X] such that U(X)M(X) + V (X)E(X) = r.

Hence, ψU(X)M(X) + ψV (X)E(X) = ψr, which im-

plies ψU(X)M(X) ≡ 1 mod (E, φ).

With Proposition 7, we established the requirements

on E and M for the existence of the polynomial J =

M−1 mod (E, φ). Since M ′ = −M−1 mod (E, φ), M ′

exists if and only if J exists.

The RedCoeff method (Algorithm 3) is efficiently

implemented if φ is a power of two. This leads us to

Corollary 5.

Corollary 5 Let M ∈ Z[X], E ∈ Z[X] and φ = 2j,

with j > 1 an integer.

If Res(E,M) is odd, then there exists J ∈ Z[X] such

that JM ≡ 1 mod (E, φ).

Proof. As φ is a power of two, gcd(Res(E,M), φ) = 1 is

equivalent to Res(E,M) is odd. Then, we can conclude

with Proposition 7.

Corollary 5 states that the Montgomery-like method

can be used, with φ being a power of two, when Res(E,M)

is odd.

In the sequel of this section, we give criteria on E

and M so that Res(E,M) is odd. Let E(X) = Xn −
λ and M(X) = m0 + m1X + · · · + mn−1X

n−1. The

Sylvester matrix of E and M is the (2n− 1)× (2n− 1)

matrix defined as follows:

SE,M =



1 0 . . . 0 mn−1 0 . . . 0 0
0 1 . . . 0 mn−2 mn−1 . . . 0 0
...

. . .
...

...
0 0 . . . 1 m1 m2 . . . mn−1 0
0 0 . . . 0 m0 m1 . . . mn−2 mn−1

−λ 0 . . . 0 0 m0 . . . mn−3 mn−2

...
...

. . .
...

0 0 . . . 0 0 0 . . . m0 m1

0 0 . . . −λ 0 0 . . . 0 m0


When φ is a power of two, the polynomial M ′ exists

when Res(E,M) is odd. Since Res(E,M) = det(SE,M),

it is equivalent to ensure that det(SE,M) is odd. In or-

der to establish conditions on E and M that guarantee

det(SE,M) is odd, we distinguish two cases according

to the parity of the parameter λ of the AMNS. Before

that, we need to introduce the following property.

Efficient and secure modular operations using AMNS 13

Property 1 (Matrix determinant parity)

Let A,B ∈ Mn×n(Z) be two matrices, such that: A =

(aij)06i,j<n andB = (bij)06i,j<n, with bij = aij (mod 2).

Then, the determinants of A and B have the same par-

ity.

Proof. The application ϕ from Z to Z/2Z such that

ϕ(n) = n mod 2 is a ring morphism.

5.3.1 Existence of the polynomial M ′ when λ is even.

Proposition 8 Let E(X) = Xn − λ be a polynomial

such that λ is even. Let M = m0+m1X+· · ·+mn−1X
n−1

be a polynomial. Then, det(SE,M) is odd if and only if

m0 is odd.

Proof. Since λ is even, using Property 1, it is obvious

that the determinant of SE,M has the same parity than

the following matrix (where mi = mi (mod 2) and λ is

replaced by 0) :



1 0 . . . 0 mn−1 0 . . . 0 0
0 1 . . . 0 mn−2 mn−1 . . . 0 0
...

. . .
...

...
0 0 . . . 1 m1 m2 . . . mn−1 0
0 0 . . . 0 m0 m1 . . . mn−2 mn−1

0 0 . . . 0 0 m0 . . . mn−3 mn−2

...
...

. . .
...

0 0 . . . 0 0 0 . . . m0 m1

0 0 . . . 0 0 0 . . . 0 m0


It is an upper triangular matrix with only the value 1

or m0 on the diagonal. So, its determinant is 1 if and

only if m0 is odd. Therefore, det(SE,M) is odd if and

only if m0 is odd.

From Proposition 8, when φ is a power of two and

λ even, the polynomial M ′ exists if m0 is odd.

5.3.2 Existence of the polynomial M ′ when λ is odd.

For the case λ odd, we need some additional results.

Let H1 be the matrix obtained from SE,M by replacing

mi by mi = mi (mod 2). We also replace λ by −1.

H1 =



1 0 . . . 0 mn−1 0 . . . 0 0
0 1 . . . 0 mn−2 mn−1 . . . 0 0
...

. . .
...

...
0 0 . . . 1 m1 m2 . . . mn−1 0
0 0 . . . 0 m0 m1 . . . mn−2 mn−1

−1 0 . . . 0 0 m0 . . . mn−3 mn−2

...
...

. . .
...

0 0 . . . 0 0 0 . . . m0 m1

0 0 . . . −1 0 0 . . . 0 m0



Since λ is odd, Property 1 assures us that det(SE,M)

and det(H1) have the same parity.

The addition of one row to another row does not

change the value of the determinant. Therefore, det(H2)

= det(H1), with H2 defined as follows:

H2 =



1 0 . . . 0 mn−1 0 . . . 0 0
0 1 . . . 0 mn−2 mn−1 . . . 0 0
...

. . .
...

...
0 0 . . . 1 m1 m2 . . . mn−1 0
0 0 . . . 0 m0 m1 . . . mn−2 mn−1

0 0 . . . 0 mn−1 m0 . . . mn−3 mn−2

...
...

. . .
...

0 0 . . . 0 m2 m3 . . . m0 m1

0 0 . . . 0 m1 m2 . . . mn−1 m0


Then, we have det(H3) = det(H2), where H3 is the

circulant matrix defined as follows:

H3 =


m0 m1 . . . mn−2 mn−1

mn−1 m0 . . . mn−3 mn−2

...
. . .

...
m2 m3 . . . m0 m1

m1 m2 . . . mn−1 m0


Therefore, det(SE,M) and det(H3) have the same par-

ity. Since H3 ∈Mn×n(Z/2Z), det(H3) is either 0 or 1.

In the sequel of this section, we will focus on the circu-

lant matrix H3 to establish the requirement on M so

that M ′ exists.

With Definition 4, we introduce a notation useful to

establish our requirement.

Definition 4 Let P ∈ Z[X] be a polynomial such that

P (X) = p0 + p1X + · · ·+ pn−1X
n−1. We denote by P

the polynomial such that: P (X) = p′0 + p′1X + · · · +
p′n−1X

n−1 where p′i = pi mod (2).

To establish the requirement on M using H3, we

need the application Υ defined in Proposition 9.

Proposition 9 [9, Section 3.4] Let Rn = F2[X]/(Xn−
1) be the algebra of all polynomials modulo (Xn − 1)

over F2. Let Cn be the ring of n × n binary circulant

matrices.

Let Υ be the application defined as follows:

Υ : Rn → Cn

a0 + · · ·+ an−1Xn−1 7→


a0 a1 . . . an−2 an−1

an−1 a0 . . . an−3 an−2

...
. . .

...
a2 a3 . . . a0 a1
a1 a2 . . . an−1 a0


Then, Rn is isomorphic to Cn and Υ (Rn) = Cn.

From Proposition 9, we deduce Corollary 6 which

is essential to establish the existence of the polynomial

M ′.

14 Laurent-Stéphane Didier et al.

Corollary 6 Let A ∈ Rn be a polynomial, det(Υ (A))

= 1 if and only if gcd(A,Xn − 1) = 1.

Proof. A is invertible if and only if gcd(A,Xn−1) = 1.

An element in Cn is invertible if and only if its deter-

minant is 1. Since Rn is isomorphic to Cn through Υ ,

this concludes the proof.

Using Definition 4 and Corollary 6, we can now state

the existence criteria for the polynomial M ′.

Proposition 10 Let E(X) = Xn − λ such that λ is

odd. Let M = m0+m1X+· · ·+mn−1X
n−1 be a polyno-

mial. Then, det(SE,M) is odd if and only if gcd(M,Xn−
1) = 1.

Proof. The circulant matrix H3, defined above, is such

that H3 = Υ (M). As M ∈ Rn, det(H3) = 1 if and

only if gcd(M,Xn − 1) = 1, using Corollary 6. Since

det(SE,M) and det(H3) have the same parity, we deduce

that det(SE,M) is odd iff gcd(M,Xn − 1) = 1.

From Proposition 10, when φ is a power of two and λ

is odd, the polynomial M ′ exists if gcd(M,Xn−1) = 1.

To sum up, when φ is a power of two and E(X) =

Xn − λ with λ ∈ Z \ {0}, the polynomial M ′ exists:

– if λ is even and m0 is odd,

– if λ is odd and gcd(M,Xn − 1) = 1.

5.4 Generation of the polynomial M

Let φ be a power of two, we show in this section how

to build the internal reduction polynomial M(X) =

m0 +m1X + · · ·+mn−1X
n−1 so that the requirements

for the existence of M ′ are met. Before that, we need

to consider some facts about the polynomial M .

From Proposition 1, we have p 6 (2ρ − 1)n. It is

wise to choose ρ as small as possible. This way, it low-

ers the memory amount required to represent elements

in Z/pZ. The parameter ρ is such that ρ > 2n|λ|‖M‖∞.

As a consequence, ‖M‖∞ must be small to ensure that

ρ be small. Choosing ‖M‖∞ small is also important for

the generation strategy we presented in Section 5.1 for

software implementation.

In order to find such a polynomial, we use the lattice

L of all polynomials having γ as root modulo p and

which degree is lower than n:

L = {a(X) ∈ Z[X], such that: deg(a) < n and

a(γ) ≡ 0 mod (p)}

This lattice is well defined in [8]. The idea for finding

M is to compute a reduced basis of L using a lattice re-

duction algorithm (like LLL algorithm [23]) and then to

take M as an element (or a special combination of ele-

ments) of this reduced basis. However, a naive approach

does not guarantee that this reduced basis always pro-

vides a polynomial M which meets the requirements

of the existence of the polynomial M ′. In Section 5.4.1

and Section 5.4.2, we address this issue according to the

parity of λ.

5.4.1 Generation of M when λ is even.

Here, we expect to built a polynomial M such that m0

is odd. This ensures that M ′ exists.

A simple basis of the lattice L is:

M1 =



p 0 0 . . . 0 0

t1 1 0 . . . 0 0

t2 0 1 . . . 0 0
...

. . .
...

tn−2 0 0 . . . 1 0

tn−1 0 0 . . . 0 1


where ti = (−γ)i mod p.

In the basisM1, each row corresponds to a polynomial

having γ as a root modulo p. For instance, row two

corresponds to the polynomial X + t1.

Proposition 11 Let G = {G0, . . . ,Gn−1} be a reduced

basis of the lattice L obtained from the basisM1. Then,

at least one (row) vector Gi of G is such that Gi,0 is odd.

Proof. G is a basis of L, so the vector V = (p, 0, . . . , 0)

(i.e., the first line of M1) is a linear combination (over

Z) of elements of G. Now, let’s assume that the first

component of all elements of G is even. This means

that every linear combination of elements from G will

output a vector whose first component is even. As p is

odd, this is in contradiction with the fact that V ∈ L
and G is a basis of L. Thus, at least one element Gi of

G is such that Gi,0 is odd.

From Proposition 11, we deduce that any lattice re-

duction algorithm applied to the basis M1 outputs a

reduced basis which contains at least one polynomial

M such that m0 is odd.

5.4.2 Generation of M when λ is odd.

Here, we expect to built a polynomial M such that

gcd(M,Xn − 1) = 1. This ensures that M ′ exists.

We consider another basis of the lattice L:

Efficient and secure modular operations using AMNS 15

M2 =



p 0 0 . . . 0 0

s1 1 0 . . . 0 0

s2 0 1 . . . 0 0
...

. . .
...

sn−2 0 0 . . . 1 0

sn−1 0 0 . . . 0 1


where: si = ti + pki with ti = (−γ)i mod p and ki =

ti mod 2. Notice that all si are even, because p is odd.

Similarly to the previous case, each row corresponds to

a polynomial having γ as a root modulo p.

Proposition 12 Let G = {G0, . . . ,Gn−1} be a reduced

basis of the lattice L obtained from the basisM2. Then,

there exists a linear combination (β0, . . . , βn−1), with

βi ∈ {0, 1}, such that M =
∑n−1
i=0 βiGi satisfies:

gcd(M,Xn − 1) = 1 .

Proof. Since all si are even in M2, we have that:

M2 =



1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

. . .
...

0 0 0 . . . 1 0

0 0 0 . . . 0 1


where M2ij =M2ij mod 2.

Let Rn = F2[X]/(Xn − 1) be the algebra of all poly-

nomials modulo (Xn − 1) over F2 (see Proposition 9).

Each line i of M2 corresponds to the polynomial Xi ∈
Rn, for 0 6 i < n. This means that M2 is a ba-

sis of Rn. Let U ∈ Rn be a polynomial such that

gcd(U,Xn − 1) = 1. Since M2 is a basis of Rn, there

exists T = (t0, . . . , tn−1) ∈ Fn2 such that U = TM2. As

TM2 = TM2, we obtain that U = TM2.

We have TM2 ∈ L, so there exists V = (v0, . . . , vn−1) ∈
Zn such that V G = TM2, since G is a basis of L. Thus,

U = V G.

Let β = (β0, . . . , βn−1) ∈ Fn2 such that βi = vi mod 2,

then one has U = βG.

Let M ∈ L be a polynomial such that M =
∑n−1
i=0 βiGi,

then M = U , hence gcd(M,Xn − 1) = 1.

From Proposition 12, any lattice reduction algorithm

applied to the basisM2 outputs a reduced basis G such

that at least one binary linear combination of its row

gives a polynomial M such that gcd(M,Xn − 1) = 1.

Thus, one needs to check at most 2n linear combina-

tions (of the rows of G) to find a suitable polynomial

M . For cryptographic sizes, n is small enough to al-

low the test of all these combinations (see examples in

Appendix B, for some possible values of n).

Let θ = max
06i<n

‖Gi‖∞. For each binary linear combi-

nation, the corresponding polynomial M verifies

‖M‖∞ 6 nθ. As a consequence, if elements of G are

small, then ‖M‖∞ is also small, because n is small and

negligible compared to θ.

6 Implementation and analyses

In this section, we study the complexity of the main

operations and the memory requirement of AMNS. We

also discuss the number of AMNS that can be built

for a given prime. Additionally, we provide some im-

plementation strategies, along with some comparison

with multiprecision libraries implementations. We end

this section with a discussion on some features of the

AMNS regarding side channel attacks.

6.1 Theoretical performances and memory

requirement

The performances and the required memory storage of

an AMNS depend mainly on the target architecture

and the value of n. Let’s consider a k-bit processor ar-

chitecture, then the basic arithmetic computations are

performed on k-bit words.

We assume that the inputs of our algorithms be-

long to the AMNS B = (p, n, γ, ρ, E), with ρ = 2t,

E(X) = Xn − λ and λ = ±2i + ε2j , with t, i, j ∈ N
and ε ∈ {−1, 0, 1}. This kind of λ ensures the fastest

external reduction; especially for ε = 0. From Section

5.2, we know that it is always possible to choose such λ.
We give here the theoretical performances and memory

requirement according to the software implementation

strategy we explained in Section 5.1. The memory usage

is expressed as a function of the number of k-bit data

words. The operations performances are expressed as a

function of the number of k-bit integer multiplications,

additions and shifts.

Since elements are polynomials in B, n k-bit data

words are required to represent each of them. As a con-

sequence, an element in B requires nk bits to be repre-

sented.

Let M and A respectively denote the multiplication

and the addition of two k-bit integers. We also respec-

tively denote Sil and Sir a left shift and a right shift of

i bits. In Table 2, we give the costs of the polynomi-

als addition, multiplication, the internal reduction and

the external reduction. We remind that, with the pa-

rameter δ, it is always possible to postpone as late as

16 Laurent-Stéphane Didier et al.

wanted the internal reduction after an addition. The

polynomials M and M ′ are constants that are known

once the AMNS is generated. The multiplications by

these polynomials (modulo E) are optimised by directly

combining them with the reduction modulo E. In this

table, Mod. Mult. is a complete modular multiplication

of two elements in B. It is the sequence of a polynomi-

als multiplication (Poly. Mult.), an external reduction

(Ext. reduct.) and an internal reduction (Int. reduct).

Also, Poly. Add. denotes the addition of two elements

in B.

Let x = x1x2 and y = y1y2, where xi and yi are

k-bit data words, i.e., x and y are products of two k-bit

integers. In Table 2, we consider that the computation

x+ y costs 2A.

Table 2: Theoretical cost of operations, where E(X) =

Xn−λ, with λ = ±2i + ε2j , ε ∈ {−1, 0, 1} and φ = 2k.

Poly. Add. nA

Poly. Mult. n2M + (2n2 − 4n+ 2)A

Ext. reduct. 2(n− 1)A + (n− 1)Sil
+ |ε|

(
2(n− 1)A + (n− 1)Sjl

)
Int. reduct. 2n2M + (3n2 − n)A + nSkr

Mod. Mult. 3n2M + (5n2 − 3n)A + (n− 1)Sil + nSkr

+ |ε|
(
2(n− 1)A + (n− 1)Sjl

)

6.2 Some advantages of the AMNS

In Section 4, we have presented a set of algorithms that

are the basis of all the other operations that might be

done in the AMNS. Here, we highlight some advantages

of these algorithms.

First, none of them has a conditional branching.

This property is an advantage for efficiency and is also

very helpful against side channel attacks.

Secondly, because the AMNS elements are polyno-

mials, their coefficients are independent and there is no

carry propagation to deal with, when performing arith-

metic operations.

Lastly, except the conversion procedures from AMNS

to binary representation, each line of the algorithms

presented in Section 4 computes a polynomial. As the

coefficients are independent, they can be computed si-

multaneously. As a consequence, AMNS is well fitted

for a parallel implementation.

6.3 Numbers of AMNS for a given prime

An interesting but complex question is how many AMNS

can be generated given a prime number and a target ar-

chitecture. This question is difficult to answer because

of the large range of parameters that define an AMNS

and also because it is linked to the existence of a nth-

root γ of a given λ in Z/pZ.

Here, we give an answer while focusing on the ef-

ficiency of arithmetic operations. This leads us to add

some constraints on n and λ which of course reduce the

number of AMNS.

Let us first assume that we have a k-bit architec-

ture. Once p is known, we have to choose the parame-

ters n, φ and λ. For any AMNS, we have: φ > 2|λ|nρ.

Also, from Proposition 1, we have p 6 (2ρ − 1)n, i.e,:

p < (2ρ)n. So, log2 |λ| 6 log2 φ − log2 n − (log2 p)/n.

Here, we consider the generation strategy for software

implementation presented in Section 5.1. This means

that φ = 2k and n > log2 p
k . Here, n is the number of

k-bit words used to represent elements in B. We want

n as small as possible to minimize the computations.

Let’s assume that we choose n such that:

log2 p

k
+ 1 + c > n >

log2 p

k

This means that we allow at most c more coefficients

than the optimal value b log2 p
k c + 1. According to Ta-

ble 2 (Section 6.1), the smaller is c, the better are

the performances and memory requirement. Therefore,

log2 n > log2 log2 p− log2 k and log2 p
n > k log2 p

log2 p+kc+k
.

So, one has:

log2 |λ| < k + log2 k − log2 log2 p−
k log2 p

log2 p+kc+k
.

Let ζ = bk + log2 k − log2 log2 p−
k log2 p

log2 p+kc+k
c. As said

in Section 6.1, we choose λ such that λ = ±2i + ε2j ,

with i, j ∈ N, ε ∈ {−1, 0, 1} and |λ| 6 2ζ , in order to

speed up the reduction modulo Xn − λ in the external

reduction process.

Let Ω = {λ 6= 0, such that: λ = ±2i + ε2j , with i, j ∈
N, ε ∈ {−1, 0, 1} and |λ| 6 2ζ}, hence we can choose

card(Ω) distinct values for λ. The main difficulty is to

determine the number of nth-roots modulo p which can

be computed with this set of values for λ. Some of them

could have many nth-roots while others not even one.

To give an answer, we distinguish two cases according

to gcd(n, p− 1).

6.3.1 Case 1: gcd(n, p− 1) = 1.

Using Corollary 3, we obtain that any value λ ∈ Z \
{0, 1} gives a suitable nth-root modulo p. So, in this

case, one can generate at least card(Ω)− 1 AMNS.

Efficient and secure modular operations using AMNS 17

6.3.2 Case 2: gcd(n, p− 1) > 1.

This case is more difficult because it required to com-

pute the factorisation of Xn − λ (see Remark 2). How-

ever, from Corollary 4, when λ = 1, at least gcd(n, p−
1)− 1 AMNS can be generated.

Remark 3 In both cases, we provided the minimum num-

bers of AMNS that can be generated. Indeed, once λ

and γ = λ1/n (mod p) are determined, we compute the

polynomial M using the lattice reduction. From Section

5.4, we know that any reduced basis (obtained from

the appropriate base) provides at least one polynomial

which satisfies the required constraints on M . Our nu-

merical experiments show that there are more than one

suitable candidate for M . Moreover, some linear com-

binations of elements of the reduced basis give suitable

candidates for M . For a tuple (p, n, λ, γ), distinct poly-

nomials M lead to distinct AMNS. Thus, one can gen-

erate much more AMNS than the minimum numbers

we gave, using some linear combinations of the polyno-

mials of the reduced basis.

Example 3 We generated a set of AMNS for some primes

of 192, 224, 256, 384 and 521 bits. These sizes corre-

spond to the NIST recommended key sizes for ellip-

tic curve cryptography. For this experiment, we took

k = 64 and c = 2. Doing so, we allow at most 2

more coefficients than the optimal value b log2 p
64 c + 1,

which is quite restrictive but good for performances.

So, ζ = b70− log2 log2 p−
64 log2 p

log2 p+192c. We chose λ ∈ Ω,

as defined above.

For our test, we used SageMath library which im-

plements the algorithm proposed in [19] to compute the

nth-root modulo p of λ. As it can be time consuming,

we put in our code a timeout of thirty minutes. Thus,

some values of λ that have nth-roots might have been

discarded. Finally, in order to extend the number of

AMNS, we checked all the 2n binary combinations of

the vectors of the reduced basis computed during the

generation of the polynomial M . A larger set of combi-

nations should lead to more AMNS.

With these parameters and constraints, the Table 3

gives the number of AMNS we found for each prime.

We call these primes p192, p224, p256, p384 and p521

according to their bit size (see Appendix A for their

values).

6.4 Implementation results

We wrote with the SageMath library [31] a code that

generates a C code for any AMNS defined with its com-

plete set of parameters. Our implementations of AMNS

Prime number p192 p224 p256

Number of AMNS 10418 5118 11877

Prime number p384 p521

Number of AMNS 14787 19871

Table 3: A lower bound on the number of distinct

AMNS for some prime integers, using a timer of 30

minutes for nth-root computation.

generation, the C code generator and the AMNS we

used for our numerical experiments below are available

on GitHub:

https://github.com/arithPMNS/generalisation_amns

For our tests we used a Dell Precision Tower 3620 on

Ubuntu gnome 16.04-64 bits with an Intel Core i7-6700

processor and 32GB RAM. We compiled our tests with

gcc 5.4 using -O3 compiling option and we compared

our results to GNU MP 6.1.1 and OpenSSL 1.0.2g im-

plementations. These libraries have also been compiled

with gcc and -O3 option.

6.4.1 Performances.

For each NIST recommended key size for elliptic curve

cryptography (i.e., 192, 224, 256, 384 and 521 bits),

we generated a set of AMNS for many primes of the

specified size. See Appendix B for some examples of

AMNS.

Like in Example 3, we took k = 64 and φ = 2k.

Therefore, the optimal value of n for software imple-

mentation is nopt = b log2 p
k c + 1. We also took c = 2,

which means that for each prime, we generated AMNS

with n equals to nopt, nopt + 1 and nopt + 2. Addition-

ally, λ was chosen such that λ = ±2i+ε2j , with i, j ∈ N
and ε ∈ {−1, 0, 1}.

For each AMNS, we computed 225 modular multi-

plications using the AMNS representatives of some ran-

dom elements of Z/pZ. As a comparison, we also com-

puted 225 modular multiplications with the well known

libraries GNU MP [17] and OpenSSL [28] with the same

inputs. For OpenSSL, we used both the default modular

multiplication procedure and the Montgomery modular

multiplication. For GNU MP, we compared the AMNS

to both the low level and the high level functions for

modular multiplication.

In Table 4, we give the mean ratio between the

performances obtained for the AMNS, GNU MP and

OpenSSL. We compute these ratios for n equals to nopt,

nopt + 1 and nopt + 2.

18 Laurent-Stéphane Didier et al.

In Table 5, we give the best ratios obtained for n =

nopt for AMNS. They are obtained for λ in {±1, ±2,

±4}.

p size 192 224
n 4 5 6 4 5 6

ratio 1 0.86 1.41 2.04 0.57 0.98 1.41
ratio 2 0.10 0.17 0.24 0.08 0.14 0.19
ratio 3 0.21 0.34 0.49 0.16 0.27 0.39
ratio 4 0.36 0.58 0.86 0.23 0.39 0.58

p size 256 384
n 5 6 7 7 8 9

ratio 1 0.98 1.42 1.84 0.98 1.34 1.67
ratio 2 0.14 0.20 0.26 0.19 0.25 0.31
ratio 3 0.30 0.43 0.55 0.43 0.58 0.73
ratio 4 0.45 0.67 0.87 0.61 0.80 1.04

p size 521
n 10 11 12

ratio 1 0.95 1.18 1.36
ratio 2 0.25 0.29 0.34
ratio 3 0.56 0.69 0.80
ratio 4 0.69 0.83 0.96

ratio 1: AMNS/OpenSSL Montgomery modular mult.
ratio 2: AMNS/OpenSSL default modular mult.
ratio 3: AMNS/GNU MP mult. + modular reduction.
ratio 4: AMNS/GNU MP mult. + modular reduction, using
low level functions.

Table 4: Relative performances of AMNS vs GNU MP and
OpenSSL modular multiplications, with n equals to nopt,
nopt + 1 and nopt + 2 for the AMNS.

(p size, n) (192, 4) (224, 4) (256, 5)
ratio 1 0.77 0.56 0.91

ratio 2 0.09 0.08 0.13
ratio 3 0.19 0.16 0.28
ratio 4 0.33 0.23 0.41

(p size, n) (384, 7) (521, 10)
ratio 1 0.92 0.91

ratio 2 0.18 0.24
ratio 3 0.40 0.54
ratio 4 0.57 0.66

ratio 1: AMNS/OpenSSL Montgomery modular mult.
ratio 2: AMNS/OpenSSL default modular mult.
ratio 3: AMNS/GNU MP mult. + modular reduction.
ratio 4: AMNS/GNU MP mult. + modular reduction, using
low level functions.

Table 5: Relative performances of AMNS vs GNU MP and
OpenSSL modular multiplications, with n equals to nopt for
the AMNS (best ratios).

Remark 4 When p has 521 bits, the optimal value for n

is 9. With our constraints on k, φ, λ and the timer we

used to compute a nth-root modulo p of λ, we did not

find an AMNS with n = 9. So, for this size, the ratios

were computed with n equals to nopt + 1, nopt + 2 and

nopt + 3.

In both Tables 4 and 5, it can be observed that

the AMNS performs modular multiplication more ef-

ficiently than the library GNU MP and the default

method in OpenSSL for all values of n. We also observe

that AMNS modular multiplication is slightly faster

than the Montgomery method in OpenSSL when the

value of n is optimal. Moreover, it can be observed

that when nopt is equal to the number of k-bit blocks

used to represent an integer of Z/pZ in GNU MP and

OpenSSL, AMNS largely outperforms both libraries,

even the Montgomery method in OpenSSL. It is the

case for p = 224 and p = 521. As explained in Remark

4, we did not find AMNS for (p, n) = (521, 9). Yet, with

(p, n) = (521, 10), AMNS is more efficient than both li-

braries.

In the other cases, AMNS uses at least one more block

than GNU MP and OpenSSL but remains competitive.

To sum up, AMNS outperforms both GNU MP and

OpenSSl because:

– there is no carry to manage nor conditional branch-

ing because of the polynomial structure of AMNS

elements,

– the shape of the polynomial E(X) = Xn−λ, makes

the external reduction very fast with Algorithm 1

(Section 3.2). Moreover, the parameter λ has been

chosen equal to ±2i + ε2j , which also speeds up

the external reduction (best ratios are obtained for

λ ∈ {±1,±2,±4}),
– φ has been chosen according to the software imple-

mentation strategy described in Section 5.1.

These results do not take advantage of the paral-

lel aspect of the AMNS. As explained in Section 6.2, a

parallel implementation should speed up arithmetic op-

erations, because the AMNS elements are polynomials.

This approach could divide by n the execution time of

line 1 in Algorithm 4. Likewise, the same thing can be

done with all the lines of the RedCoeff method (Algo-

rithm 3), which is called in Algorithm 4.

Remark 5 Although, AMNS is a lot faster than GNU

MP and OpenSSL default method for modular multipli-

cation, the most relevant ratio in Table 4 and Table 5

is ratio 1, because AMNS requires roughly the same

amount of precomputed data than the Montgomery

modular multiplication.

An AMNS addition should always be faster because

it is a simple polynomials addition without carries to

Efficient and secure modular operations using AMNS 19

manage, unlike the classic binary representation. More-

over, it is possible to simulteanously compute all the n

coefficients of the result. This should speed up addition.

6.4.2 Memory requirement.

Table 6 gives the amount of memory required for storing

an integer modulo p in AMNS, GNU MP and OpenSSL.

We give the number of 64-bit integers used to represent

the elements of Z/pZ. Here, we consider AMNS built

with n = nopt. We give in Appendix D the source code

corresponding to the data structure used for storing an

integer with GNU MP and OpenSSL. For GNU MP low

level functions, an element is an array of 64-bit integers.

In Table 6, it can be observed that the memory us-

age of AMNS and GNU MP mpz t type are almost the

same while OpenSSL requires more memory. However,

AMNS uses generally one more 64-bit integer than for

GNU MP low level functions.

Size in bits of p 192 224 256 384 521

AMNS 4 4 5 7 10

GNU MP (low level) 3 4 4 6 9

GNU MP (mpz t) 4 5 5 7 10

OpenSSL (BIGNUM) 5 6 6 8 11

Table 6: Number of 64-bit words used to store elements

of Z/pZ in GNU MP, OpenSSL and the AMNS (when

n equals to nopt).

Remark 6 For AMNS and OpenSSL Montgomery, some

data must be precomputed. However, the memory re-

quirements of these data are negligible compared to

the overall usage of memory when performing multiple

arithmetic operations.

6.5 About side channel attacks

AMNS have very interesting properties regarding side

channel attacks.

6.5.1 Regular algorithms.

All the described algorithms (reductions, conversions,

addition and multiplication) contain no conditional bran-

ching which are one of the basic weaknesses used in

simple power analysis (SPA) attacks [21].

6.5.2 Randomisation inside the AMNS.

A classical countermeasure to protect an algorithm

against differential power analysis (DPA) attacks [22,1]

is to randomise the input and all intermediate values.

In a recent work [11], Didier et al. show how to use the

redundancy inside the AMNS to reach this goal. Addi-

tionally, they show that their proposal has some specific

advantages regarding special attacks like Goubin’s at-

tack [16].

6.5.3 Randomisation using several AMNS.

In Section 6.3, we show that several AMNS can be built

for the same modulus p. This property could be used

to randomise the representation of the input data of a

cryptographic protocol.

Given a tuple (p, n, λ), if γ a nth-root (modulo p)

of λ exists then, from Proposition 5, the number of

such roots is gcd(n, p−1). Each of them allows to build

at least one AMNS for the same prime p. Moreover,

Corollaries 3 and 4 show that for any pair (p, n), it

is always possible to choose λ ∈ Z \ {0} such that

γn (mod p) ≡ λ, with γ ∈ Z/pZ easily computable.

This means that it is always possible to generate many

AMNS, given a prime p.

For instance, with our implementation, we show that

it is possible to generate thousands of AMNS for many

moduli using restrictive conditions (see Table 3 in Ex-

ample 3).

One could take advantage of the existence of many

distinct AMNS for a given modulus p in order to have

many representatives for each element of Z/pZ and ran-

domise cryptographic protocols. Here, the randomisa-

tion is achieved by first precomputing a set Γ of AMNS

for the modulus p. Then, each time a protocol using

that modulus p is executed, one randomly selects an

AMNS in Γ and performs the arithmetic operations

using that AMNS. Doing so, each execution of that

protocol, with the same input, is expected to lead to

a random representative of that input. In Appendix C,

we give examples of representatives for some elements

from one AMNS to another. Now, it remains to study if

there exist correlations, between the representatives of

Z/pZ elements from one AMNS to another, which can

lead to a potential cryptanalysis. We plan to make this

study in a future work.

6.5.4 A simple DPA countermeasure for ECC.

In [20], the authors show how to randomise the base

point P to thwart DPA attacks [22]. The main idea is to

change the (x, y) coordinates of P by (u−2x, u−3y) for

20 Laurent-Stéphane Didier et al.

a random u ∈ (Z/pZ)\{0}. Such a countermeasure can

easily be implemented in the AMNS conversion proce-

dure. The forward and backward conversion algorithms

are modified to take an extra argument used to change

the representative of x and y (Algorithms 11 and 12).

Hence, before the computation of kP , the procedures

DPA Conv 2 AMNS(x,u−2) and DPA Conv 2 AMNS(y,u−3)

are called. Once the computation is done, a call to

DPA Conv 2 BIN(x,u2) and DPA Conv 2 BIN(y,u3) allows

to find back the coordinates of kP .

Algorithm 11 DPA Conv 2 AMNS(a,β)

Require: a ∈ Z/pZ, B = (p, n, γ, ρ, E) and β ∈
(Z/pZ) \ {0}

Ensure: A ≡ (aβφ)B

1: b = aβ (mod p)

2: t = (bn−1, ..., b0)ρ # radix-ρ decomposition of b

3: U ←
n−1∑
i=0

tiPi(X)

4: A← RedCoeff(U)

5: return A

Algorithm 12 DPA Conv 2 BIN(A,β)

Require: A ∈ B, B = (p, n, γ, ρ, E) and

β ∈ (Z/pZ) \ {0}
Ensure: a = A(γ)βφ−1 (mod p)

1: A← RedCoeff(A)

2: a← an−1

3: for i = n− 2 . . . 0 do

4: a← (aγ + ai) (mod p)

5: end for

6: a← aβ (mod p)

7: return a

7 Conclusion

In this paper, we generalised some results in [12] to

a larger set of polynomials E. We presented a com-

plete set of algorithms for arithmetic and conversion

operations in the AMNS and showed how to generate

all parameters needed for these algorithms. Our imple-

mentations have shown that AMNS allows to perform

modular operations more efficiently than well known

libraries like GNU MP and OpenSSL. Moreover, com-

pared to OpenSSL which is faster than GNU MP when

using the Montgomery multiplication algorithm, AMNS

needs less memory storage. Additionally, AMNS can be

much more efficient if its high parallelisation capability

is used. Finally, we brought some arguments and ele-

ments to point out that AMNS should be considered

as a potential countermeasure in the context of side

channel attacks.

Acknowledgment

The authors would like to thank the referees for their

constructive comments which helped improving the qual-

ity of the paper.

References

1. Abarzúa, R., Valencia, C., López, J.: Survey for per-
formance and security problems of passive side-channel
attacks countermeasures in ECC. Cryptology ePrint
Archive, Report 2019/010 (2019)

2. Antão, S., Bajard, J.C., Sousa, L.: RNS based elliptic
curve point multiplication for massive parallel architec-
tures. The Computer Journal 55(5), 629–647 (2012)

3. Bajard, J.C., Duquesne, S., Ercegovac, M.: Combining
leak-resistant arithmetic for elliptic curves defined over
fp. Publications Mathématiques de Besançon. Algrèbre
et Théorie des Nombres pp. 67–87 (2013), iSSN: 1958-
7236

4. Bajard, J.C., Eynard, J., Hasan, A., Zucca, V.: A full
RNS variant of fv like somewhat homomorphic encryp-
tion schemes. In: SAC 2016, Selected Areas in Cryptog-
raphy, St. John’s, Newfoundland and Labrador, Canada

5. Bajard, J.C., Imbert, L.: A full RNS implementation of
RSA. IEEE Transactions on Computers 53(6), 769–774
(2004)

6. Bajard, J.C., Imbert, L., Liardet, P.Y., Teglia, Y.: Leak
resistant arithmetic. In: Workshop on Cryptographic
Hardware and Embedded Systems CHES 2004, Cam-
bridge (Boston), USA. pp. 62–75. Lecture Notes in Com-
puter Science, Springer (2004)

7. Bajard, J.C., Imbert, L., Plantard, T.: Modular number
systems: Beyond the mersenne family. In: Selected Ar-
eas in Cryptography, 11th International Workshop, SAC
2004, Waterloo, Canada. pp. 159–169 (2004)

8. Bajard, J.C., Imbert, L., Plantard, T.: Arithmetic opera-
tions in the polynomial modular number system. In: 17th
IEEE Symposium on Computer Arithmetic (ARITH-17)
2005, Cape Cod, MA, USA. pp. 206–213 (2005),
Extended (complete) version available at: https://

hal-lirmm.ccsd.cnrs.fr/lirmm-00109201/document

9. Baldi, M.: QC-LDPC Code-Based Cryptography.
SpringerBriefs in Electrical and Computer Engineering,
Springer International Publishing (2014)

10. Barrett, P.: Implementing the Rivest Shamir and Adle-
man public key encryption algorithm on a standard dig-
ital signal processor. In: Odlyzko, A.M. (ed.) Advances
in Cryptology — CRYPTO’ 86. pp. 311–323. Springer,
Berlin, Heidelberg (1987)

11. Didier, L.S., Dosso, F.Y., El Mrabet, N., Mar-
rez, J., Véron, P.: Randomization of Arithmetic
over Polynomial Modular Number System. In: 26th

Efficient and secure modular operations using AMNS 21

IEEE International Symposium on Computer Arith-
metic. vol. 1, pp. 199–206. Kyoto, Japan (Jun 2019).
https://doi.org/10.1109/ARITH.2019.00048

12. El Mrabet, N., Gama, N.: Efficient multiplication over
extension fields. In: WAIFI. Lecture Notes in Computer
Science, vol. 7369, pp. 136–151. Springer (2012)

13. El Mrabet, N., Nègre, C.: Finite field multiplication com-
bining AMNS and DFT approach for pairing cryptog-
raphy. In: ACISP. Lecture Notes in Computer Science,
vol. 5594, pp. 422–436. Springer (2009)

14. Garner, H.L.: The residue number system. IRE Transac-
tions on Electronic Computers EL 8(6), 140–147 (1959)

15. Gathen, J.V.Z., Hartlieb, S.: Factoring modular polyno-
mials. Journal of Symbolic Computation 26(5), 583 – 606
(1998)

16. Goubin, L.: A refined power-analysis attack on elliptic
curve cryptosystems. In: International Workshop on Pub-
lic Key Cryptography. pp. 199–211. Springer (2003)

17. Granlund, T., al.: GNU multiple precision arithmetic li-
brary 6.1.2, https://gmplib.org/

18. Horner, W.G.: A new method of solving numerical equa-
tions of all orders, by continuous approximation. Philo-
sophical Transactions of the Royal Society of London
109, 308–335 (1819)

19. Johnston, A.M.: A generalized qth root algorithm. In:
Proceedings of the Tenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. pp. 929–930. SODA ’99,
Society for Industrial and Applied Mathematics (1999)

20. Joye, M., Tymen, C.: Protections against differential
analysis for elliptic curve cryptography — an algebraic
approach —. In: Koç, Ç.K., Naccache, D., Paar, C.
(eds.) Cryptographic Hardware and Embedded Systems
— CHES 2001. pp. 377–390. Springer, Berlin, Heidelberg
(2001)

21. Kocher, P.C.: Timing attacks on implementations of
diffie-hellman, rsa, dss, and other systems. In: Koblitz,
N. (ed.) Advances in Cryptology — CRYPTO ’96. pp.
104–113. Springer Berlin Heidelberg, Berlin, Heidelberg
(1996)

22. Kocher, P.C., Jaffe, J., Jun, B.: Differential power anal-
ysis. In: CRYPTO. Lecture Notes in Computer Science,
vol. 1666, pp. 388–397. Springer (1999)

23. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring poly-
nomials with rational coefficients. Mathematische An-
nalen 261(4), 515–534 (Dec 1982)

24. Mishra, B.: Algorithmic Algebra. Springer-Verlag, Berlin,
Heidelberg (1993)

25. Montgomery, P.L.: Modular multiplication without trial
division. Mathematics of Computation 44(170), 519–521
(1985)

26. Negre, C., Plantard, T.: Efficient modular arithmetic in
adapted modular number system using lagrange repre-
sentation. In: Information Security and Privacy, 13th
Australasian Conference, ACISP 2008, Wollongong, Aus-
tralia. pp. 463–477 (2008)

27. Plantard, T.: Arithmétique modulaire pour la cryp-
tographie. Ph.D. thesis, Montpellier 2 University, France
(2005)

28. Project, T.O.: Openssl, https://www.openssl.org/
29. Shoup, V., al.: Ntl: A library for doing number theory,

https://www.shoup.net/ntl/
30. Solinas, J., Fu, D.E.: Elliptic Curve Groups modulo a

Prime (ECP Groups) for IKE and IKEv2. RFC 5903
(Jun 2010). https://doi.org/10.17487/RFC5903, https:

//rfc-editor.org/rfc/rfc5903.txt
31. Stein, W., al.: Sagemath, http://www.sagemath.org/

index.html

Appendix A List of prime numbers used for

Table 3

– p192 = 0xE06F20509A52674228D4F0701A08EB3B08C1
714F0A93F719

– p224 = 0xE886C555B533B33B037F4F356CB97E00B56
0DD1B5A9C252CCEAF301B

– p256 = 0x8FFB5E3E4BD153C220C28FDBA587F9C23
D454DBE31C17D0B44462E26684B46E5

– p384 = 0xF3D1CD992E8EA43D29612F131C05A03215F
247E92951AB3D741FEA820526FD185CDBEC7AEFC3
1F75BEA2D2F4F43D1547

– p521 = 0x15683E5BD61DA4E3A10A95DE122E3B015F
AC3F355F6360F33FA19D036CA02897BAF3D615ADA
F6508A1E5B325B0345F39505A7B84ED01A8F913CA0
D6395A9E135BE3

Appendix B Examples of AMNS for different

primes

In this section, we give some examples of the AMNS we
used in Section 6.4.1 for our numerical experiments. All these
AMNS have the common parameter φ = 264.

B.1 AMNS 1: 192-bit prime number.

– p = 0xE06F20509A52674228D4F0701A08EB3B08C171
4F0A93F719

– n = 4
– λ = −1
– ρ = 251

– γ = 0x7AB09A124AA5065B2E20034E0D0FE3D0A
5F2A276C33E2515

– E(X) = X4 + 1
– M(X) = 0x4B3D12868945.X3 − 0x924097D431D8.X2 +

0x39B561D62725.X + 0xC580DC0A05E3
– M ′(Y) = 0x6E2B6D9BAF275F4F.Y 3 +

0x8F59D05762288B18.Y 2 + 0x69A1F846105E39CF.Y
+ 0xBEDE53CF67CF2747

B.2 AMNS 2: 224-bit prime number.

– p = 0xE886C555B533B33B037F4F356CB97E00B560
DD1B5A9C252CCEAF301B

– n = 4
– λ = −2
– ρ = 260

– γ = 0x64892FE7A2B9E28E496952B025FE138C22382
6010F31C90E9354AFEF

– E(X) = X4 + 2
– M(X) = −0x6A2300C9FAC40E.X3

− 0xE12EC6DCB579A6.X2 − 0x272839DE2E827E.X
− 0x43419ADAFCFB61

– M ′(Y) = 0x7D4F705603D9CE42.Y 3

+ 0xE0922181D0445FA6.Y 2 + 0x5A4FA29325678B32.Y
+ 0xDDDE890AB0458D59

22 Laurent-Stéphane Didier et al.

B.3 AMNS 3: 256-bit prime number.

– p = 0x8FFB5E3E4BD153C220C28FDBA587F9C23D454
DBE31C17D0B44462E26684B46E5

– n = 5
– λ = 2
– ρ = 255

– γ = 0x42559355ED8CAAA92688CE0A9322458EE4372
4D997327755F385B1901F25E507

– E(X) = X5 − 2
– M(X) = −0x7F360937497B.X4−0x45FB30302B149.X3−

0x1910C5989E6B8.X2 − 0x28750BDCB9CA3.X +
0x3935AF11550E5

– M ′(Y) = 0x6AC1B8BE18685FC6.Y 4 +
0x1E8123E1FA66C4B2.Y 3+0x5C7430F9C82014D1.Y 2+
0x33A24848D6BF6427.Y + 0xCC7C0CE54B67A803

B.4 AMNS 4: 384-bit prime number.

– p = 0xF3D1CD992E8EA43D29612F131C05A03215F24
7E92951AB3D741FEA820526FD185CDBEC7AEFC31
F75BEA2D2F4F43D1547

– n = 7
– λ = 2
– ρ = 259

– γ = 0xA5C4FB2BBF7D447D0E58D14E3F440AD5C7
A0BB773BCFA856914ED875B1A8B3DD5C6327E24B
34890BDA7782DE3050EEC4

– E(X) = X7 − 2
– M(X) = 0x2B70420C25B6F9.X6 +

0x27597E8FAEFBA6.X5 + 0x2A259AA4E719E1.X4 +
0x12391F5D00D4A7.X3 − 0x26AC55039EACFD.X2 +
0x2747CE657C0F2D.X − 0x426A85C33ACE17

– M ′(Y) = 0x36E06AB70DC02E0C.Y 6 +
0x91EC3470F30AB1DD.Y 5+0x521BCB522168C88C.Y 4+
0x51579EF6AC4A01C8.Y 3+0x7145B435BA15791A.Y 2+
0xCCD28607261C6227.Y + 0x4E6A294F1FBE2093

B.5 AMNS 5: 521-bit prime number.

– p = 0x15683E5BD61DA4E3A10A95DE122E3B015FAC
3F355F6360F33FA19D036CA02897BAF3D615ADAF6
508A1E5B325B0345F39505A7B84ED01A8F913CA0D6
395A9E135BE3

– n = 10
– λ = −2
– ρ = 257

– γ = 0x3BEB85F1AC84420C044C472B8845A1896C68A
CD6C78773C9392B6CE871027BD5C333EF238A11733
384E0A7318139218D99ADDCBB39694C1207938B6CA
6789BC3B1

– E(X) = X10 + 2
– M(X) = −0x3D52F259CF52C.X9 −

0x2F155A2F83CC6.X8 + 0x3C5398A0AA3D2.X7 −
0x6161944D2155C.X6 + 0x92266960FE012.X5 −
0x68DFAA2817992.X4 − 0x996D8B98C7860.X3 −
0x31E83951B9F38.X2 + 0x3E716C4C0B2A4.X +
0x3304421CB90FD

– M ′(Y) = 0xBA9CFB5216CEA3CC.Y 9 +
0x4DD219C801C0DD06.Y 8+0x10DEC022F71CC8F2.Y 7+
0x199161BB290DEE2C.Y 6+0x924D10687452E482.Y 5+
0x7F6A883FEED1B396.Y 4+0x6923B242682C1CA0.Y 3+
0x76FA75CEF1B36AC8.Y 2+0xBD1EDFD16FA95474.Y+
0xC7E79022CD8CD813

Appendix C Examples of AMNS for the same

prime

In Section 6.5.3, we said that the existence of many AMNS
for a given prime could be used to randomise data. Here, we
give three examples of AMNS for the prime p = 2255+95. We
also give representatives of three random elements of Z/pZ in
these AMNS.

C.1 The AMNS

Common parameters:

– p = 2255 + 95

– φ = 264

– n = 5

C.1.1 AMNS 1.

– λ = 2

– ρ = 255

– γ = 0x4A11EC963214E75587B184AF9B09E8871D0DF5
991483661DE2FF6BB1E251199C

– E(X) = X5 − 2

– M(X) = 0x28AE865829ED0.X4+0x3B47735E8CB55.X3−
0x1337D2969BC11.X2 + 0x46647D3BC6C24.X −
0x2B2A32D7CA88B

– M ′(Y) = 0x705370302B557A79.Y 4 +
0xF4EF33F4C4A73DDD.Y 3+0x35A8B6E9AE5BB345.Y 2

+ 0xB1EAB7F74DA8C6B4.Y + 0xF83A6F9196747A23

C.1.2 AMNS 2.

– λ = 4

– ρ = 256

– γ = 0x4FB25BB223F254D0EC52A2EE155F444C45582C
268782AEE4D4E9FCA973434A6C

– E(X) = X5 − 4

– M(X) = −0x38B51AD5722AE.X4+0x53FB8DAF6F024.X3

+ 0x35A85724CB9CE.X2 − 0x3D243A4DF4584.X −
0x117F860FE1135

– M ′(Y) = 0x403B2C2CE09E21F6.Y 4 +
0xB893AB63E6BC1344.Y 3+0x35C181058EB18F0E.Y 2+
0xA4AED1FFC25D5C5C.Y + 0x6FC13791D5CE795D

C.1.3 AMNS 3.

– λ = −3

– ρ = 256

– γ = 0x1EBF5A56EC92F9F46C7F0870E5E3702D3E8383
DEAF56E4B4C3D368BD0BF3BD40

– E(X) = X5 + 3

– M(X) = −0x1C961F979254D.X4+0x1D9EAFCB6057C.X3

− 0x3CE080AECD314.X2 − 0x539D41F2093E8.X +
0x709FEB927094

– M ′(Y) = 0x4C53B117C5A624FC.Y 4 +
0x6F5067DF289E2148.Y 3 + 0x4D82701329D99964.Y 2 +
0x1194DEB36C42D649.Y + 0x823B9BE066BDC6EC

Efficient and secure modular operations using AMNS 23

C.2 The representatives

Here, we give representatives for three elements of Z/pZ in
the preceding AMNS. Let w1, w2 and w3 be three elements
of Z/pZ, such that:

w1 = 0x413F124E07F832A9615B0F4DF8839FB84654F83
EFBE271109B37B5FF3C45F86B

w2 = 0x1D52208BBA6F67BDAB73B52C108E35297
D77D319A2B960774879AD379A9EFA2C

w3 = 0x51D89683548C1AB20A5DD1B6ED40D27539
9CACB8099775C365EAB9E643D0188B

C.2.1 Representatives of w1

Some representatives of w1 in the AMNS above are:

– In AMNS 1: 0x1D919BA97C9EE.X4 +
0x8D2E4EA9D2522.X3 + 0x387177645E956.X2 +
0x8B7F74DE7D127.X + 0x7DDB08BBFB2D4

– In AMNS 2: 0xC2BDA39B9CAA.X4 −
0x5C79DF0B874A7.X3 + 0x38E436F97A141.X2 +
0x83CD4D9F668F0.X + 0x889ED1F53B42

– In AMNS 3: −0xE6E254EE2A56.X4 +
0x1B69F43ED2D64.X3 − 0x910A16595CB6C.X2 +
0x3C2140E66E677.X + 0xDCAABE99C9D26

C.2.2 Representatives of w2

Some representatives of w2 in the AMNS above are:

– In AMNS 1: 0x5D790C3E1A61C.X4 +
0x70948EA695150.X3 + 0xA169F530662D0.X2 +
0xAF3DC447BD060.X + 0xDB6398B75B911

– In AMNS 2: 0x2C77ABDC5D961.X4 −
0x829EAF67CA083.X3 + 0xDFB7B8EBFB188.X2 +
0xB64039D6B0FC.X − 0x8087A5968F930

– In AMNS 3: −0x299A203AE211F.X4 +
0xE944E22B7F0C.X3 − 0x6E0B58CF0B1C4.X2 +
0x54687E54FF785.X + 0x13E4F275D429CF

C.2.3 Representatives of w3

Some representatives of w3 in the AMNS above are:

– In AMNS 1: 0x26CE79EBC2B79.X4 +
0x58D977D7CBF80.X3 + 0x8344B92319D5F.X2 +
0x469C2152EEA87.X + 0xB6CE8E4FA85CF

– In AMNS 2: 0x37D32EF24504E.X4 −
0x3D646DBF95505.X3 + 0xA0F25DE041BA3.X2 −
0x32F2DBD31EB84.X − 0xA65A7B1EB4B8A

– In AMNS 3: −0x5E2A89914C89F.X4 −
0x7EDD111585E3.X3 − 0x3BAB02C97D067.X2 −
0x20F6AFC3EC4DA.X + 0xFB824ADD2ECF8

Appendix D Integers structures in GNU MP

and OpenSSL

In this section, we give the integer structures in GNU MP
and OpenSSL. These are the structures we used to compute
memory consumptions in Table 6.

GNU MP mpz t structure:

typedef struct

{

int _mp_alloc; /* Number of *limbs* allocated and

pointed to by the ’_mp_d’ field. */

int _mp_size; /* abs(_mp_size) is the number of

limbs the last field points to.

If _mp_size is negative this

is a negative number. */

mp_limb_t *_mp_d; /* Pointer to the limbs. */

} __mpz_struct;

In GNU MP mpz t structure, there are 2 integers of type
int and an array of type mp limb t. On the computer we
used for our tests (see features at Section 6.4), int is 32
bits wide and mp limb t is 64 bits wide. In the computa-
tion of memory consumption, we considered the 2 integers
of type int as one integer of 64 bits. For more details, see:
https://gmplib.org/manual/Integer-Internals.html.

OpenSSL bignum st structure:

struct bignum_st

{

BN_ULONG *d; /* Pointer to an array of ’BN_BITS2’

bit chunks. */

int top; /* Index of last used d +1. */

/* The next are internal book keeping for bn_expand. */

int dmax; /* Size of the d array. */

int neg; /* one if the number is negative */

int flags;

};

In OpenSSL bignum st structure, there are 4 integers of type
int and an array of type BN ULONG, which is 64 bits wide
(on our computer). In memory consumption computation, we
considered the 4 integers of type int as two 64-bit integers. For
more details, see: https://linux.die.net/man/3/bn_internal.

