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Local Eigenvalue Asymptotics of
the Perturbed Krein Laplacian

Vincent Bruneau and Georgi Raikov

Abstract. We consider the Krein Laplacian on a regular bounded domain

Ω ⊂ Rd, d ≥ 2, perturbed by a real-valued multiplier V vanishing on the

boundary. Assuming that V has a definite sign, we investigate the asymptotics
of the functions counting the eigenvalues of K+V which converge to the origin

from below or from above. We show that the effective Hamiltonian that governs

the main asymptotic term of these functions is the harmonic Toeplitz operator
TV with symbol V , unitarily equivalent to a pseudodifferential operator on

the boundary. In the cases where V admits a power-like decay at ∂Ω, or V

is compactly supported in Ω, and Ω and suppV are radially symmetric, we
obtain the main asymptotic term of the eigenvalue counting functions.

1. Introduction

In this article we study the spectral properties of the perturbed Krein Laplacian
K + V in a bounded domain Ω ⊂ Rd, d ≥ 2, with boundary ∂Ω ∈ C∞. The Krein
Laplacian K := −∆ is defined on sufficiently regular functions u : Ω → C which
satisfy the boundary condition

∂u

∂ν
= Du on ∂Ω,

where ν is the unit outer normal vector at ∂Ω, and D is the Dirichlet-to-Neumann
operator, a first-order elliptic pseudodifferential operator (ΨDO), self-adjoint in
L2(∂Ω). Then K ≥ 0 is self-adjoint in L2(Ω), and one of its remarkable properties
is that its essential spectrum is not empty. Namely, σess(K) = {0}, and the zero
is an isolated eigenvalue of K of infinite multiplicity. Further, we assume that the
perturbation of K is the multiplier by the function V ∈ C(Ω;R). Then, evidently
the operator K + V , on the domain of K, is self-adjoint in L2(Ω). Moreover,

σess(K + V ) = V (∂Ω)

(see Theorem 2.4 below). Assuming that V vanishes identically on ∂Ω, we get

σess(K + V ) = σess(K) = {0}.
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2 VINCENT BRUNEAU AND GEORGI RAIKOV

However, in contrast to the unperturbed operator K, the zero is an accumulation
point of the discrete eigenvalues of the perturbed operator K + V . We suppose
in addition that V has a definite (negative or positive) sign and investigate the
asymptotic distribution of the eigenvalues of K + V adjoining the origin. First,
in Theorem 2.5 we show that the effective Hamiltonian governing the eigenvalue
counting functions for K + V is the Toeplitz operator TV := PV|KerK , where P
is the orthogonal projection onto KerK. That is why, in Section 3 we discuss the
general spectral properties of TV . Further, in Section 4 we assume that V admits
a power-like decay at ∂Ω, and examine the eigenvalue asymptotics for the com-
pact operator TV , unitarily equivalent to a classical ΨDO on the boundary. We
obtain the main asymptotic term and a sharp remainder estimate of the eigenvalue
counting function for TV . Finally, in Section 5, we analyze the case where V is
compactly supported in Ω. More precisely, we suppose that Ω is the unit ball in
Rd while suppV is the concentric ball of radius c ∈ (0,∞), and obtain the main
asymptotic term of the eigenvalue counting function for TV .

This article is an extended version of the talk given by the second author at
the conference QMath13 Mathematical Results in Quantum Physics held at Georgia
Tech, Atlanta, USA, in October 2016. He is grateful to the organizers of the
conference and those of the Session Quantum Mechanics on Graphs and Similar
Structures for the opportunity to present this work.

A more detailed exposition of some of the results of this paper can be found in
the preprint [13].

2. The Krein Laplacian and its perturbations

Let Ω ⊂ Rd, d ≥ 2, be a bounded domain with smooth boundary ∂Ω.
For s ∈ R denote by Hs(Ω) and Hs(∂Ω) the Sobolev spaces on Ω and ∂Ω respec-
tively. Moreover, as usual, we denote by Hs

0(Ω), s > 1/2, the closure of C∞0 (Ω) in
Hs(Ω). Set also H2

D(Ω) := H2(Ω) ∩H1
0 (Ω). Define the minimal Laplacian

∆min := ∆, Dom ∆min = H2
0 (Ω).

The operator ∆min is symmetric but not self-adjoint in L2(Ω), since we have

(2.1) ∆∗min =: ∆max = ∆, Dom ∆max =
{
u ∈ L2(Ω) |∆u ∈ L2(Ω)

}
,

∆u being the distributional Laplacian of u ∈ L2(Ω). Note that

(2.2) Ker ∆max = H(Ω) :=
{
u ∈ L2(Ω) |∆u = 0 in Ω

}
.

It is well known that H(Ω) is a closed subspace of L2(Ω) (see e.g. [24]). The
Laplace equation ∆u = 0 in (2.2) is understood a priori in the distributional sense.
However, by the Weyl lemma, if u belongs to D′(Ω), the class of distributions over
C∞0 (Ω), and ∆u = 0, then u ∈ C∞(Ω) (see the original work [31] for a proof in the
case u ∈ L1

loc(Ω), and the monograph [17] whose Chapter 10 contains an extension
to general u ∈ D′(Ω)).

Lemma 2.1. The domain Dom ∆max admits the direct-sum decomposition

(2.3) Dom ∆max = H(Ω)uH2
D(Ω).
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Proof. Let us first show that the sum at the r.h.s. of (2.3) is direct. Assume
that u1 ∈ H(Ω), u2 ∈ H2

D(Ω), and u1 + u2 = 0. Then u2 satisfies the homogeneous
boundary-value problem {

∆u2 = 0 in Ω,
u2 = 0 on ∂Ω.

Hence, u2 = 0, and u1 = 0. Evidently, if u1 ∈ H(Ω), u2 ∈ H2
D(Ω), then u1 + u2 ∈

Dom ∆max. Pick now u ∈ Dom ∆max, and define the Dirichlet Laplacian

∆D := ∆, Dom ∆D := H2
D(Ω).

Then u1 and u2 defined by u2 := ∆−1
D ∆u, u1 := u− u2 clearly satisfy

u1 ∈ H(Ω), u2 ∈ H2
D(Ω), u = u1 + u2.

�

Introduce the Krein Laplacian

K := −∆, DomK = H(Ω)uH2
0 (Ω).

The operator K ≥ 0, self-adjoint in L2(Ω), is the von Neumann - Krein “soft”
extension of −∆min, remarkable for the fact that any other self-adjoint extension
S ≥ 0 of −∆min satisfies

(S + I)−1 ≤ (K + I)−1

(see [30, 25]). Evidently, KerK = H(Ω). The domain DomK admits a more
explicit description in the terms of the Dirichlet-to-Neumann operator D. For
f ∈ C∞(∂Ω), Df is defined by

Df =
∂u

∂ν |∂Ω
,

where u is the solution of the boundary-value problem{
∆u = 0 in Ω,
u = f on ∂Ω.

The operator D is a first-order elliptic operator; by the elliptic regularity, it extends
to a bounded operator form Hs(∂Ω) into Hs−1(∂Ω), s ∈ R. Then we have

DomK =

{
u ∈ Dom ∆max

∣∣∣∣ ∂u∂ν |∂Ω
= D

(
u|∂Ω

)}
(see [18, Theorem III.1.2]).

Denote by L the restriction of K onto DomK∩H(Ω)⊥ whereH(Ω)⊥ := L2(Ω)	
H(Ω). Then, L is self-adjoint in the Hilbert space H(Ω)⊥.

Proposition 2.2. ([25], [4, Theorem 5.1]) The spectrum of L is purely discrete
and positive, and, hence, L−1 is a compact operator on H(Ω)⊥. As a consequence,
σess(K) = {0}, and the zero is an isolated eigenvalue of K of infinite multiplicity.

The Krein Laplacian K arises naturally in the so called abstract buckling prob-
lem 

∆2u = −λ∆u,
u|∂Ω = ∂u

∂ν |∂Ω
= 0,

u ∈ Dom ∆max.
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Then the admissible values of λ 6= 0 for which the buckling problem has a non-
trivial solution, coincide with the non-zero eigenvalues of K (see e.g. [19, 5]).

Let V ∈ C(Ω;R). Then the operator K+V with domain DomK is self-adjoint
in L2(Ω). In this article, we investigate the spectral properties of K + V .

Remark: The perturbations KV of the Krein Laplacian K discussed in [6] are
of different nature than the perturbations K + V considered here. Namely, the
authors of [6] assume that V ≥ 0, define the maximal operator KV,max as

KV,max := −∆ + V, DomKV,max := Dom ∆max,

and set

KV := −∆ + V, DomKV := KerKV,max uH
2
0 (Ω).

Thus, if V 6= 0, then the operators KV and K0 = K are self-adjoint on different
domains, while the operators K + V introduced here are self-adjoint on the same
domain DomK. It is shown in [6] that for any 0 ≤ V ∈ L∞(Ω) we have KV ≥ 0,
σess(KV ) = {0}, and the zero is an isolated eigenvalue of KV of infinite multiplic-
ity. As we will see in what follows, the spectral properties of K + V could be quite
different.

In Theorem 2.4 below we locate the essential spectrum of the operator K + V .
For its proof we need some additional notations and definitions. Let P : L2(Ω) →
L2(Ω) be the orthogonal projection onto H(Ω). Assume that V ∈ C(Ω), and
introduce the harmonic Toeplitz operator TV := PV : H(Ω) → H(Ω). Evidently,
TV is bounded, and if V is real-valued, then TV is self-adjoint. Note that TV could
be well defined as a bounded and even compact operator for a much wider class of
symbols V which are locally integrable in Ω and satisfy certain regularity properties
near ∂Ω.

We start our analysis with the location of the essential spectrum σess(TV ) of
TV , and a criterion for the compactness of TV in the case V ∈ C(Ω).

Proposition 2.3. Let Ω ⊂ Rd, d ≥ 2, be a bounded domain with boundary
∂Ω ∈ C∞. Let V ∈ C(Ω).
(i) [14, Theorem 4.5] We have σess(TV ) = V (∂Ω).
(ii) [14, Corollary 4.7] The operator TV is compact in H(Ω) if and only if V = 0
on ∂Ω.

Now we are in position to locate σess(K + V ).

Theorem 2.4. Let V ∈ C(Ω;R). Then we have

(2.4) σess(K + V ) = V (∂Ω).

In particular, σess(K + V ) = {0} if and only if V|∂Ω = 0.

Proof. First, we will show that the operator

(2.5) (K + V − i)−1 − (K + PV P − i)−1

is compact. Set Q := I − P . Then

(2.6) (K + V − i)−1 − (K + PV P − i)−1 =

−(K + V − i)−1(K − i)(K − i)−1(QV + PV Q)(K − i)−1(K − i)(K + PV P − i)−1.
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Evidently, the operators (K + V − i)−1(K − i), (K − i)(K + PV P − i)−1,
P , and V , are bounded in L2(Ω). Moreover, using the orthogonal decomposition
L2(Ω) = H(Ω) ⊕ H(Ω)⊥, and bearing in mind Proposition 2.2, we find that the
operators Q(K− i)−1 and (K− i)−1Q are compact in L2(Ω). Now the compactness
of the operator defined in (2.5) follows from (2.6). Therefore,

(2.7) σess(K + V ) = σess(K + PV P ).

Further, we have K + PV P = TV ⊕ L in L2(Ω) = H(Ω)⊕H(Ω)⊥, and, hence,

(2.8) σess(K + PV P ) = σess(TV ) ∪ σess(L).

By Proposition 2.3 (i), we have σess(TV ) = V (∂Ω), and by Proposition 2.2, σess(L) =
∅. Thus, (2.7) and (2.8) imply (2.4). �

In the rest of the section we assume that 0 ≤ V ∈ C(Ω) with V|∂Ω = 0, and
investigate the asymptotic distribution of the discrete spectrum of the operators
K ± V , adjoining the origin. In particular, we show that the harmonic Toeplitz
operator TV is the effective Hamiltonian governing the main asymptotic term of
the corresponding eigenvalue counting functions (see (2.11) – (2.12) below).

Let λ0 := inf σ(L). By Proposition 2.2, we have λ0 > 0. Introduce the eigen-
value counting functions

N−(λ) := Tr1(−∞,−λ)(K − V ), λ > 0,

N+(λ) := Tr1(λ,λ0)(K + V ), λ ∈ (0, λ0).

Here and in the sequel 1S denotes the characteristic function of the set S; thus
1I(T ) is the spectral projection of the operator T = T ∗ corresponding to the
interval I ⊂ R. Let T = T ∗ be a compact operator in a Hilbert space, and s > 0.
Set

(2.9) n±(s;T ) := Tr1(s,∞)(±T ).

Thus, n+(s;T ) (resp., n−(s;T )) is just the number of the eigenvalues of T larger
than s (resp., smaller than −s), counted with their multiplicities.

If Tj = T ∗j , j = 1, 2, are two compact operators, then the Weyl inequalities

(2.10) n±(s1 + s2;T1 + T2) ≤ n±(s1;T1) + n±(s2;T2)

hold for sj > 0, j = 1, 2, (see e.g. [10, Theorem 9, Section 9.2]).

Theorem 2.5. Assume that 0 ≤ V ∈ C(Ω) and V|∂Ω = 0. Then for any
ε ∈ (0, 1) we have

(2.11) n+(λ;TV ) ≤ N−(λ) ≤ n+((1− ε)λ;TV ) +O(1),

(2.12) n+((1 + ε)λ;TV ) +O(1) ≤ N+(λ) ≤ n+((1− ε)λ;TV ) +O(1),

as λ ↓ 0.

Proof. By the Birman-Schwinger principle [7, Lemma 1.1], we have
(2.13)

N−(λ) = n+(1; (K + λ)−1/2V (K + λ)−1/2) = n+(1;V 1/2(K + λ)−1V 1/2), λ > 0.

It follows from the mini-max principle that

n+(1; (K + λ)−1/2V (K + λ)−1/2) ≥

n+(1;P (K + λ)−1/2V (K + λ)−1/2P ) = n+(λ;PV P ) = n+(λ;TV ),
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which, combined with the first equality in (2.13), implies the lower bound in (2.11).
Further, by the Weyl inequalities (2.10), we have

n+(1;V 1/2(K + λ)−1V 1/2) ≤

(2.14) n+((1− ε)λ;V 1/2PV 1/2) + n+(ε;V 1/2Q(K + λ)−1V 1/2), λ > 0, ε ∈ (0, 1),

where, as above, Q = I − P . Evidently,

(2.15) n+(s;V 1/2PV 1/2) = n+(s;PV P ) = n+(s;TV ), s > 0,

while Proposition 2.2 easily implies that for any ε > 0 we have

(2.16) n±(ε;V 1/2Q(K + λ)−1V 1/2) = O(1), λ→ 0.

Putting together (2.13) and (2.14) – (2.16), we obtain the upper bound in (2.11).
In order to prove (2.12), we recall that the generalized Birman-Schwinger principle
(see e.g. [2, Theorem 1.3]), easily entails

(2.17) N+(λ) = n−(1;V 1/2(K − λ)−1V 1/2) +O(1), λ ↓ 0.

By the Weyl inequalities, the estimates

n+((1 + ε)λ;V 1/2PV 1/2)− n+(ε;V 1/2Q(K − λ)−1V 1/2) ≤

(2.18) n−(1;V 1/2(K − λ)−1V 1/2) ≤

n+((1− ε)λ;V 1/2PV 1/2) + n−(ε;V 1/2Q(K − λ)−1V 1/2)

hold true for every ε ∈ (0, 1). Now (2.17), (2.18), (2.15), and (2.16), imply (2.12).
�

3. General properties of harmonic Toeplitz operators

In this section we establish sufficient conditions which guarantee TV ∈ Sp, the
pth Schatten-von Neumann class, or TV ∈ Sp,w, the weak counterpart of Sp.

We first introduce the notations we need. Let X and Y be separable Hilbert
spaces. We denote by L(X,Y ) (resp., S∞(X,Y )) the class of linear bounded (resp.,
compact) operators T : X → Y . Next, Sp(X,Y ), p ∈ (0,∞), is the class of compact
operators T : X → Y for which the functional

‖T‖p :=
(

Tr (T ∗T )
p/2
)1/p

is finite.
Let T ∈ S∞(X,Y ). Pick s > 0, and bearing in mind notation (2.9), set

(3.1) n∗(s;T ) := n+(s2;T ∗T ).

Thus, n∗(s;T ) is the number of the singular values of the operator T , larger than
s, and counted with their multiplicities. Evidently, if T = T ∗ ∈ S∞(X,X), then

(3.2) n±(s;T ) ≤ n∗(s;T ), s > 0.

Further, Sp,w(X,Y ), p ∈ (0,∞), is the class of operators T ∈ S∞(X,Y ) for which
the functional

(3.3) ‖T‖p,w := sup
s>0

s n∗(s;T )1/p

is finite.
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If X = Y , we write L(X), Sp(X), and Sp,w(X), instead of L(X,X), Sp(X,X),
and Sp,w(X,X), respectively. Moreover, whenever appropriate, we omit X and Y
in the notations L, Sp, and Sp,w.

Let us now turn to the study of the spectral properties of the harmonic Toeplitz
operators TV = PV . It is well known that the projection P onto H(Ω) (see (2.2))
admits an integral kernel R ∈ C∞(Ω× Ω), called the reproducing kernel of P (see
e.g. [24, 14]). Thus

(Pu)(x) =

∫
Ω

R(x, y)u(y)dy, x ∈ Ω, u ∈ L2(Ω).

Let {ϕj}j∈N be an orthogonal basis in H(Ω). Then

(3.4) R(x, y) =
∑
j∈N

ϕj(x)ϕj(y), x, y ∈ Ω,

the series being locally uniformly convergent in Ω× Ω. Evidently, R(x, y) is inde-
pendent of the choice of the basis {ϕj}j∈N. Moreover, the kernel R is real-valued

and symmetric. For x ∈ Ω put

%(x) := R(x, x).

Then, (3.4) implies that

|R(x, y)| ≤ %(x)1/2 %(y)1/2, x, y ∈ Ω.

For x, y ∈ Ω, set

(3.5) r(x) := dist(x, ∂Ω), δ(x, y) := |x− y|+ r(x) + r(y).

Lemma 3.1. [24, Theorem 1.1] For any multiindices α, β ∈ Zd+ there exists a
constant Cα,β ∈ (0,∞) such that

(3.6)
∣∣Dα

xD
β
yR(x, y)

∣∣ ≤ Cα,β
δ(x, y)d+|α|+|β| , x, y ∈ Ω.

Moreover, there exists a constant C ∈ (0,∞) such that

(3.7) %(x) ≥ Cr(x)−d, x ∈ Ω.

For a Borel set A ⊂ Ω set ρ(A) :=
∫
A %(x)dx. By (3.6) with α = β = 0, and

(3.7), ρ is an infinite σ-finite measure on Ω which is absolutely continuous with
respect to the Lebesgue measure.

Our next goal is to establish conditions which guarantee TV ∈ Sp(H(Ω)), p ∈
[1,∞), or TV ∈ Sp,w(H(Ω)), p ∈ (1,∞). For p ∈ (0,∞) define Lpw(Ω; dρ) as the
class of ρ-measurable functions u : Ω→ C for which the quasinorm

‖u‖Lpw(Ω;dρ) := sup
t>0

tρ ({x ∈ Ω | |u(x)| > t})1/p

is finite.

Proposition 3.2. Let Ω ⊂ Rd, d ≥ 2 be a bounded domain with boundary
∂Ω ∈ C∞.
(i) Assume V ∈ Lp(Ω; dρ), p ∈ [1,∞). Then TV ∈ Sp(H(Ω)) and

(3.8) ‖TV ‖p ≤ ‖V ‖Lp(Ω;dρ).

(ii) Assume V ∈ Lpw(Ω; dρ), p ∈ (1,∞). Then TV ∈ Sp,w(H(Ω)) and

(3.9) ‖TV ‖p,w ≤ ‖V ‖Lpw(Ω;dρ).
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Proof. Let us consider the operator PV P as defined on L2(Ω). Evidently,

(3.10) ‖TV ‖p = ‖PV P‖p, ‖TV ‖p,w = ‖PV P‖p,w, p ∈ (0,∞).

We have PV P = F ∗ei arg V F where F : L2(Ω) → L2(Ω) is the operator with
integral kernel

|V (x)|1/2R(x, y), x, y ∈ Ω.

Assume V ∈ L1(Ω; dρ). Then

(3.11) ‖PV P‖1 ≤ ‖F ∗‖2‖ei arg V ‖‖F‖2 = ‖F‖22 = ‖V ‖L1(Ω;dρ).

Assume now V ∈ L∞(Ω; dρ). Since ‖P‖ = 1 and dρ is absolutely continuous with
respect to the Lebesgue measure,

(3.12) ‖PV P‖ ≤ ‖V ‖L∞(Ω) = ‖V ‖L∞(Ω;dρ).

Interpolating between (3.11) and (3.12), and applying [8, Theorem 3.1], we find
that

‖PV P‖p ≤ ‖V ‖Lp(Ω;dρ), p ∈ [1,∞),

‖PV P‖p,w ≤ ‖V ‖Lpw(Ω;dρ), p ∈ (1,∞),

which combined with (3.10), implies (3.8) and (3.9). �

Remark: Let µ ≥ 0 be a finite Borel measure on Ω. In this case, the harmonic
Toeplitz operator Tµ is defined by

(Tµu)(x) :=

∫
Ω

R(x, y)u(y)dµ(y), u ∈ H(Ω), x ∈ Ω.

If dµ(x) = V (x)dx with 0 ≤ V ∈ L1(Ω), then, of course, Tµ = TV . Criteria on µ
which guarantee the boundedness of Tµ, the compactness of Tµ, or the inclusion
Tµ ∈ Sp(H(Ω)), p ∈ [1,∞), are contained in [14]. These criteria are formulated in
terms of the Berezin transform µ̃ of the measure µ, defined by

µ̃(x) := %(x)−1

∫
Ω

R(x, y)2dµ(y), x ∈ Ω.

The combination of Theorem 2.5 with Proposition 3.2 entails the following

Corollary 3.3. Let Ω be a bounded domain with boundary ∂Ω ∈ C∞. Assume
that V ∈ C(Ω;R) ∩ Lpw(Ω; dρ), p ∈ (1,∞). Then for any ε ∈ (0, 1) we have

(3.13) N±(λ) ≤ (1− ε)−pλ−p‖V ‖p
Lpw(Ω;dρ)

+O(1),

for sufficiently small λ > 0.

Proof. Estimate (3.13) follows immediately from (2.11) - (2.12), combined
with (3.2) and (3.3). �

At the end of this section we show that if the symbol V is compactly supported
in Ω, then TV ∈ Sp for any p ∈ (0,∞), even if the behavior of V is quite irregular.
In fact, we will replace in this case V by φ ∈ E ′(Ω), the class of distributions over
E(Ω) := C∞(Ω). We recall that φ ∈ D′(Ω) is in E ′(Ω), if and only if suppφ is
compact in Ω. If φ ∈ E ′(Ω), we define Tφ : H(Ω) → H(Ω) as the operator with
integral kernel

Kφ(x, y) := (φ,R(x, ·)R(·, y)) , x, y ∈ Ω,

where (·, ·) denotes the pairing between E ′(Ω) and E(Ω). Of course, if φ = µ and
µ ≥ 0 is a finite Borel measure such that suppµ is compact in Ω, then Tφ = Tµ.
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Proposition 3.4. Let Ω ⊂ Rd, d ≥ 2, be a bounded domain with boundary
∂Ω ∈ C∞. Assume that φ ∈ E ′(Ω). Then we have Tφ ∈ Sp(H(Ω)) for any p ∈
(0,∞), and, hence,

(3.14) n∗(λ;Tφ) = O(λ−α), λ ↓ 0,

for any α ∈ (0,∞).

Proof. Since suppφ is compact in Ω, we have Kφ ∈ C∞(Ω × Ω). Therefore,
(3.14) follows immediately from, say, [8, Proposition 2.1]. �

Remarks: (i) In Section 5 we will show that if Ω is the unit ball in Rd, and
V ≥ 0 is compactly supported, and possesses a partial radial symmetry, then the
eigenvalues of TV decay exponentially fast.
(ii) Harmonic Toeplitz operators Tφ with φ ∈ E ′(Ω) were considered in [3] where,
in particular, it was proved that rankTφ <∞, if and only if suppφ is finite.

4. Spectral asymptotics of TV for V of power-like decay at ∂Ω

4.1. Statement of the main results. In this section we assume that V is
smooth and positive near the boundary, and admits a power-like decay at ∂Ω, and
investigate the asymptotic behavior of the discrete spectrum of TV near the origin.
We obtain the main asymptotic term of n+(λ;TV ) as λ ↓ 0, and give a sharp esti-
mate of the remainder (see Theorems 4.1 and 4.2 below).

In what follows we consider ∂Ω as a compact (d − 1)-dimensional Riemann-

ian manifold with metric tensor g(y) := {gjk(y)}d−1
j,k=1, y ∈ ∂Ω, generated by the

Euclidean metrics in Rd, and denote by dS the measure induced by g on ∂Ω.
Let a, τ ∈ C∞(Ω) satisfy a > 0 on Ω, τ > 0 on Ω, and τ = r := dist(·, ∂Ω) (see

(3.5)) in a neighborhood of ∂Ω. Assume that

(4.1) V (x) = τ(x)γa(x), γ ≥ 0, x ∈ Ω.

Set a0 := a|∂Ω.

Theorem 4.1. Assume that V satisfies (4.1) with γ > 0. Then we have

(4.2) n+(λ;TV ) = C λ−
d−1
γ

(
1 +O(λ

1
γ )
)
, λ ↓ 0,

where

(4.3) C := ωd−1

(
Γ(γ + 1)

1
γ

4π

)d−1 ∫
∂Ω

a0(y)
d−1
γ dS(y),

and ωn = πn/2/Γ(1 + n/2) is the Lebesgue measure of the unit ball in Rn, n ≥ 1.

The proof of Theorem 4.1 can be found in Subsection 4.2.
The assumption of Theorem 4.1 that V satisfies (4.1) in the whole domain Ω

is rather restrictive. In the following theorem we consider Toeplitz operators with
symbols which satisfy (4.1) with γ > 0 only in a neighborhood of ∂Ω while they
can have quite an irregular behavior on a compact subset of Ω; in particular, away
from the boundary, these symbols are not obliged to be smooth and positive.
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Theorem 4.2. Let V satisfy the assumptions of Theorem 4.1, and φ ∈ E ′(Ω;R).
Then we have

(4.4) n+(λ;TV+φ) = C λ−
d−1
γ

(
1 +O(λ

ε
γ )
)
, λ ↓ 0,

where TV+φ := TV + Tφ, C is the constant defined in (4.3), ε = 1 if d ≥ 3, and
ε < 1 is arbitrary if d = 2.

The proof of Theorem 4.2 is contained in Subsection 4.3.

Remark: Let d ≥ 3. Then Theorem 4.2 implies that (4.2) remains true if we
replace TV by TV+φ with φ ∈ E ′(Ω;R). In particular, (4.2) is valid if V ∈ L1

loc(Ω;R)
satisfies (4.1) with γ > 0 only in a neighborhood of ∂Ω. If d = 2, the prize we have
to pay for the substitution of TV by TV+φ is that the remainder estimate in (4.2) is
better than in (4.4). However, as mentioned in the remark at the end of Subsection
4.3, if d = 2 and the distribution φ ∈ E ′(Ω) is non-negative, then (4.4) holds true
also with ε = 1.

Combining Theorems 2.4 and 4.2, we obtain the following

Corollary 4.3. Assume that 0 ≤ V ∈ C(Ω), and (4.1) with γ > 0 holds true
in a neighborhood of ∂Ω. Then we have

(4.5) lim
λ↓0

λ
d−1
γ N±(λ) = C,

C being the constant defined in (4.3).

Remark: Assume the hypotheses of Corollary 4.3. Then, recalling (3.6) with
α = β = 0, and (3.7), we find that V ∈ Lpw(Ω; dρ) if and only if p = d−1

γ . Thus, if

γ < d− 1, then (4.5) implies that the order of our estimate (3.13) is sharp.

4.2. Proof of Theorem 4.1. Assume that f ∈ Hs(∂Ω), s ∈ R. Then the
boundary-value problem

(4.6)

{
∆u = 0 in Ω,
u = f on ∂Ω,

admits a unique solution u ∈ Hs+1/2(Ω), we have

(4.7) ‖u‖Hs+1/2(Ω) � ‖f‖Hs(∂Ω),

and, therefore, the mapping f 7→ u defines an isomorphism between Hs(∂Ω) and
Hs+1/2(Ω) (see [26, Sections 5, 6, 7, Chapter 2]).

If s = 0, we set

(4.8) u = Gf.

By (4.7) with s = 0, and the compactness of the embedding of H1/2(Ω) into L2(Ω),
we find that the operator G : L2(∂Ω) → L2(Ω) is compact. By [16, Theorem 12,
Section 2.2], we have

(4.9) u(x) =

∫
∂Ω

K(x, y)f(y)dS(y), x ∈ Ω,
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where

(4.10) K(x, y) := − ∂G
∂νy

(x, y), x ∈ Ω, y ∈ ∂Ω,

G is the Dirichlet Green function associated with Ω. Note that

(4.11) K ∈ C∞(Ω× ∂Ω).

Lemma 4.4. We have

(4.12) KerG = {0},

(4.13) RanG = H(Ω).

Proof. Relation (4.12) follows from (4.7) with s = 0. Let us check (4.13).
Pick u ∈ H(Ω). Then, by (4.6) with s = −1/2, we have f := u|∂Ω ∈ H−1/2(∂Ω).

Let fn ∈ L2(∂Ω), n ∈ N, and

(4.14) lim
n→∞

‖fn − f‖H−1/2(∂Ω) = 0.

Set un := Gfn. Then un ∈ RanG, n ∈ N, and by (4.7) with s = −1/2, and (4.14),
we have limn→∞ ‖un − u‖L2(Ω) = 0 which implies (4.13). �

Set J := G∗G. Then the operator J = J∗ ≥ 0 is compact in L2(∂Ω). Due
to (4.12), we have KerJ = {0}. Let {λj}j∈N be the non-increasing sequence of

the eigenvalues λj > 0 of J , and let {φj}j∈N be the corresponding orthonormal

eigenbasis in L2(∂Ω) with Jφj = λjφj , j ∈ N. Define the operator J−1, self-adjoint
in L2(∂Ω), by
(4.15)

J−1u :=
∑
j∈N

λ−1
j 〈u, φj〉φj , Dom J−1 :=

u ∈ L2(∂Ω) |
∑
j∈N

λ−2
j |〈u, φj〉|

2
<∞

 ,

〈·, ·〉 being the scalar product in L2(∂Ω). Evidently, JJ−1 = J−1J = I.

Further, introduce the polar decomposition of the operator G = U |G| = UJ1/2

where U : L2(∂Ω) → L2(Ω) is an isometric operator. By Lemma 4.4, we have
KerU = {0} and RanU = H(Ω). Thus, we obtain the following

Proposition 4.5. The orthogonal projection P onto H(Ω) satisfies

(4.16) P = GJ−1G∗ = UU∗.

Assume that V satisfies (4.1) with γ ≥ 0, and set JV := G∗V G; from this point
of view, we have J = J1.

Proposition 4.6. Let V satisfy (4.1) with γ ≥ 0. Then the operator TV is
unitarily equivalent to (the closure of) the operator J−1/2JV J

−1/2.

Proof. By (4.16), we have

PV P = UJ−1/2G∗V GJ−1/2U∗ = UJ−1/2JV J
−1/2U∗,

and the operator U maps unitarily L2(∂Ω) onto H(Ω). �
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Let y ∈ ∂Ω and η ∈ T ∗y ∂Ω. Set

|η| = |η|y :=

 d−1∑
j,k=1

gjk(y)ηjηk

1/2

,

where
{
gjk(y)

}d−1

j,k=1
is the matrix inverse to g(y).

Proposition 4.7. Under the assumptions of Proposition 4.6, the operator
J−1/2JV J

−1/2 is a ΨDO with principal symbol

(4.17) 2−γΓ(γ + 1)|η|−γa0(y), (y, η) ∈ T ∗∂Ω.

Proof. Using the pseudo-differential calculus due to L. Boutet de Monvel (see
[11, 12]), M. Englǐs showed recently in [15, Sections 6, 7] that if V satisfies (4.1)
with γ ≥ 0, then the operator JV is a ΨDO with principal symbol

2−γ−1Γ(γ + 1)|η|−γ−1a0(y), (y, η) ∈ T ∗∂Ω.

In particular, J = J1 is a ΨDO with principal symbol 2−1|η|−1. Then the pseudo-
differential calculus (see e.g. [29, Chapters I, II]) easily implies that J−1/2 is a
ΨDO with principal symbol 21/2|η|1/2, and J−1/2JV J

−1/2 is a ΨDO with principal
symbol defined in (4.17). �

Now we are in position to prove Theorem 4.1. It is easy to see that under its
assumptions we have Ker J−1/2JV J

−1/2 = {0}. Using the spectral theorem, define
the operator

A :=
(
J−1/2JV J

−1/2
)−1/γ

(cf. (4.15)). Then, by the pseudo-differential calculus, A is a ΨDO with principal
symbol

2Γ(γ + 1)−1/γ |η|a0(y)−1/γ , (y, η) ∈ T ∗∂Ω.

By Proposition 4.6 and the spectral theorem, we have

(4.18) n+(λ;TV ) = n+(λ; J−1/2JV J
−1/2) = Tr1(−∞,λ−1/γ)(A), λ > 0.

A classical result of L. Hörmander [22] easily implies that

Tr1(−∞,E)(A) =

(2π)−d+1
∣∣∣{(y, η) ∈ T ∗∂Ω

∣∣∣ 2Γ(γ + 1)−1/γ |η|a0(y)−1/γ < E
}∣∣∣+O(E−(d−2)) =

(4.19) CEd−1(1 +O(E−1)), E →∞,
where | · | is the Lebesgue measure on T ∗∂Ω, and C is the constant defined in (4.3).
Combining (4.18) and (4.19), we arrive at (4.2).

Remark: The natural idea to parametrize the functions u ∈ H(Ω) by their
restrictions on ∂Ω has been used in the theory of harmonic Toeplitz operators and
related areas by various authors; it could be traced back at least to the classical
work [11], and has been recently applied in [15] in order to obtain a suitable
representation of the operator JV . We would like also to mention here the article
[9] where the authors consider the operator generated by the ratio of two quadratic
differential forms defined on the solutions of a homogeneous elliptic equation. The
order of the numerator is lower than the order of the denominator, and, since the
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domain considered is supposed to be bounded and to have a regular boundary, the
operator generated by the ratio is compact.
The harmonic Toeplitz operator TV could be interpreted as the operator generated
by the quadratic-form ratio

(4.20)

∫
Ω
V |u|2 dx∫

Ω
|u|2 dx

, u ∈ H(Ω).

Note that both the numerator and the denominator in (4.20) are of zeroth order,
and the compactness of TV is now due to the fact that V vanishes at ∂Ω.
In spite of the differences between the operators considered in [9], and the harmonic
Toeplitz operators studied here, the unitary equivalence of TV and J−1/2JV J

−1/2

established in our Proposition 4.6 has much in common with the reduction to a
ΨDO on ∂Ω, performed in [9].

4.3. Proof of Theorem 4.2. The Weyl inequalities (2.10) imply

n+(λ(1 + λθ);TV )− n−(λ1+θ;Tφ) ≤

(4.21) n+(λ;TV+φ) ≤

n+(λ(1− λθ);TV ) + n+(λ1+θ;Tφ),

for λ ∈ (0, 1) and θ > 0. By (4.2),

n+(λ(1± λθ);TV ) =

(4.22) C
(
λ(1± λθ)

)− d−1
γ +O

(
λ−

d−2
γ

)
= Cλ−

d−1
γ +O

(
λ−

d−2
γ

)
, λ ∈ (0, 1),

provided that θ > 1/γ. Next, by estimate (3.14), we have

(4.23) n±(λ1+θ;Tφ) = O(λ−α(1+θ)), λ > 0,

for any α ∈ (0,∞). Assume d ≥ 3 and choose α ∈
(

0, d−2
γ(1+θ)

)
. Then (4.4)

follows from (4.21) - (4.23). If d = 2, then we can pick any ε ∈ (0, 1) and choose

α ∈
(

0, 1−ε
γ(1+θ)

)
, in order to check that in this case (4.21) – (4.23) again imply (4.4).

Remark: Arguing as in the proof of Theorem 4.1 (see Propositions 4.6 and 4.7),
we can show that TV+φ with φ ∈ E ′(Ω;R) is unitarily equivalent to a self-adjoint
ΨDO with principal symbol defined in (4.17). The only problem to extend in a
straightforward manner our proof of Theorem 4.1 to TV+φ is that this operator
may have a non trivial kernel unless, for example, φ ≥ 0. In particular, if d = 2 and
φ ∈ E ′(Ω;R) satisfies φ ≥ 0, then (4.4) holds also for ε = 1. Finally, if we apply the
results stated without proof in [23, Appendix H] (see in particular Theorem H.1
and the remark after it), we could simplify slightly the proofs of our Theorems 4.1
and 4.2, and could show that Theorem 4.2 holds true with ε = 1 for every d ≥ 2
without any additional assumptions.
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5. Spectral asymptotics of TV for compactly supported V

In this section we consider the asymptotics of n+(λ;TV ) as λ ↓ 0 in the case
where V is compactly supported in Ω, i.e. when V vanishes identically in a neigh-
borhood of ∂Ω. In this case TV admits an integral kernel which is in the class
C∞(Ω× Ω), and TV can be considered as a ΨDO of order −∞.

Set

BR :=
{
x ∈ Rd | |x| < R

}
, d ≥ 2, R ∈ (0,∞).

Since we are still unable to handle the case of general bounded Ω and compactly
supported V , we suppose that Ω is the unit ball B1 in Rd while suppV coincides
with Bc with c ∈ (0, 1). Using the known fact that if V is proportional to 1Bc , then
the eigenvalues of TV can be calculated explicitly, we obtain the main asymptotic
term of n+(λ;TV ) as λ ↓ 0, for generic TV such that suppV = Bc.

Let Ω = B1. Thus, ∂Ω = Sd−1 :=
{
x ∈ Rd | |x| = 1

}
. The space H(B1) admits

an explicit orthonormal eigenbasis which we are now going to describe. Recall that
k(k+d− 2), k ∈ Z+, are the eigenvalues of the Beltrami-Laplace operator −∆Sd−1 ,
self-adjoint in L2(Sd−1) (see e.g. [29, Section 22]). Moreover,

dim Ker (−∆Sd−1 − k(k + d− 2)I) =: mk =

(
d+ k − 1

d− 1

)
−
(
d+ k − 3

d− 1

)
where

(
m
n

)
= m!

(m−n)!n! if m ≥ n, and
(
m
n

)
= 0 if m < n (see e.g. [29, Theorem

22.1]). Set

Mk :=

(
d+ k − 1

d− 1

)
+

(
d+ k − 2

d− 1

)
, k ∈ Z.

Evidently,

(5.1) Mk =
2kd−1

(d− 1)!

(
1 +O

(
k−1

))
, k →∞,

(see e.g. [1, Eq. 6.1.47]). By induction, we easily find that

(5.2)

k∑
j=0

mj = Mk, k ∈ Z+.

Let ψk,`, ` = 1, . . . ,mk, be an orthonormal basis in Ker (−∆Sd−1 − k(k + d− 2)I),
k ∈ Z+. It is well known that ψk,` are restrictions on Sd−1 of homogeneous poly-
nomials of degree k, harmonic in Rd (see e.g [29, Section 22]). Then the functions

φk,`(x) :=
√

2k + d |x|kψk,`(x/|x|), x ∈ B1, ` = 1, . . . ,mk, k ∈ Z+,

form an orthonormal basis in H(B1). Let Hk(B1), k ∈ Z+, be the subspace of
H(B1) generated by φk,`, ` = 1, . . . ,mk.

Further, let V (x) = v(|x|), x ∈ B1, and let v : [0, 1)→ R satisfy limr↑1 v(r) = 0,
v ∈ L1((0, 1); rd−1dr). Then TV is self-adjoint and compact in H(B1), and

(5.3) TV u = µku, u ∈ Hk(B1),

where

(5.4) µk(v) := (2k + d)

∫ 1

0

v(r)r2k+d−1dr, k ∈ Z+.
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Set

ξ(s; v) = # {k ∈ Z+ |µk(v) > s} , s > 0.

Let us calculate the eigenvalues of TV in the simple model situation where
v(r) = b1[0,c](r), r ∈ [0, 1), with b > 0 and c ∈ (0, 1). Then (5.4) implies

(5.5) µk(v) = b c2k+d, k ∈ Z+.

Evidently, the sequence {µk(v)}k∈Z+
is decreasing. Setting V (x) := v(|x|), x ∈ Rd,

we get

(5.6) n+(λ;TV ) = Mξ(λ;v)−1, λ > 0.

Let us discuss the asymptotics of n+(λ;TV ) as λ ↓ 0. By (5.5),

(5.7) ξ(λ; v) =
1

2

| lnλ|
| ln c|

+O(1), λ ↓ 0.

By (5.6), (5.1), and (5.7), we get

(5.8) n+(λ;TV ) =
2−d+2

(d− 1)!| ln c|d−1
| lnλ|d−1 +O

(
| lnλ|−d+2

)
, λ ↓ 0.

Remark: The fact that the basis {φk,`} diagonalizes the operator TV with radi-
ally symmetric symbol V , acting in H(B1), was noted in [28, Part 2.3.2], and was
used there, in particular, to obtain asymptotic relations of type (5.8). The fact that
the Toeplitz operators with radially symmetric symbols, acting in the holomorphic
Fock-Segal-Bargmann space, are diagonalized in a certain canonic basis, was utilized
already in [27, 21]. A similar result concerning Toeplitz operators with radially
symmetric symbols, acting in the holomorphic Bergman space, can be found in [20].

Next, we use (5.8) in order to study the spectral asymptotics for Toeplitz
operators with symbols V which possess partial radial symmetry.

Theorem 5.1. Let Ω = B1. Assume that V : B1 → [0,∞) satisfies V ∈
L∞(B1) and suppV = Bc for some c ∈ (0, 1). Suppose moreover that for any
δ ∈ (0, c) we have ess infx∈BδV (x) > 0. Then

(5.9) lim
λ↓0
| lnλ|−d+1 n+(λ;TV ) =

2−d+2

(d− 1)!| ln c|d−1
.

Proof. Pick δ ∈ (0, c). Then for almost every x ∈ B1 we have

b−1Bδ(x) ≤ V (x) ≤ b+1Bc(x),

where

b− := ess infx∈BδV (x), b+ := ess supx∈B1
V (x).

Then the mini-max principle and (5.8) imply

2−d+2

(d− 1)!| ln δ|d−1
≤

lim inf
λ↓0

| lnλ|−d+1 n+(λ;TV ) ≤ lim sup
λ↓0

| lnλ|−d+1 n+(λ;TV ) ≤

2−d+2

(d− 1)!| ln c|d−1
.

Letting δ ↑ c, we obtain (5.9). �
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Remark: Hopefully, in a future work we will extend the result of Theorem 5.1
to more general domains Ω, and more general compactly supported V .

Putting together Theorems 2.5 and 5.1, we obtain the following

Corollary 5.2. Let Ω = B1 ⊂ Rd, d ≥ 2, 0 ≤ V ∈ C(B1). Assume that
suppV = Bc for some c ∈ (0, 1), and that for any δ ∈ (0, c) we have infx∈BδV (x) >
0. Then

lim
λ↓0
| lnλ|−d+1N±(λ) =

2−d+2

(d− 1)!| ln c|d−1
.
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