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Abstract. This article deals with the issue of guaranteeing properties in Dis-
tributed Virtual Environments (DVEs) without a server and without global knowl-
edge of the system state and therefore only by exchanging messages. This issue
is particularly relevant in the case of online games, that operate in a fully dis-
tributed framework and for which network resources such as bandwidth are the
critical resources. In the context of games, players typically need to know the dis-
tance between their character and other characters, at least approximately. Play-
ers all share the same position estimation algorithm but, in general, do not know
the current positions of others. We provide a synchronized distributed algorithm
Alc to guarantee, at any time, that the estimated distance dest between any pair
of characters A and B is always a 1 + ε approximation of the current distance
dact. Our result is twofold: (1) we prove that if characters move randomly on a
d-dimensional grid, or follow a random continuous movement on up to three di-
mensions, the number of messages of Alc is optimal up to a constant factor; (2)
in a more practical setting, we also observe that the number of messages of Alc

for actual game traces is much less than the standard algorithm sending actual
positions at a given frequency.

Keywords: Distributed Virtual Environments · Online games · Random walks ·
Distributed approximation algorithms · Peer-to-peer algorithms

1 Introduction

1.1 Context

The term Distributed Virtual Environment (DVE) refers to systems where geographi-
cally distant users, or players, participate in a highly interactive virtual world. The main
examples of DVEs are online games, where players control characters that interact with
each other, and may modify the shared environment. Usually, interactions between char-
acters and/or objects of the environment are enabled when they are sufficiently close in
the virtual world. For simplicity, in the rest of the paper, we will use player to denote
both the player and the character.

The main difference between a DVE and a classical distributed system like a data-
base, is that the states of objects in the virtual environment evolve even without changes
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issued by the users [14] since non-player characters go about their programmed activi-
ties, and objects must respect the physics of the game. Moreover, the amount of inputs
per time unit is generally high, as players are expected to interact a lot with the envi-
ronment.

DVE participants need to know the state of the virtual world, in order to display
it correctly and to be able to interact with it. The two central aspects that need to be
optimized in a DVE are consistency and responsiveness. Inconsistencies arise when
two users see different versions of the virtual world. This is particularly problematic
in recent games, where players often communicate with each others using voice com-
munication programs, making inconsistencies more noticeable. On the other hand, re-
sponsiveness, the time interval between when a user executes an action (for example,
pushing the button to shift gears) and when the effects of this action is perceived by
the player (the car actually shifting gears), is unsatisfactory when this time delay is
noticeable.

One difficulty is related to the number of exchanged messages. In general, increas-
ing the number of communications between players contributes both to responsiveness
(changes are transmitted earlier) and consistency (more messages allow a more accurate
knowledge of the game’s state). On the other hand, it has been shown in [13] that too
many messages degrade network performance, leading to inconsistencies.

vIn practice, many games rely on a simple strategy, where players send updates at
a regular rate to other players. The main flaw of this technique is a poor scalability in
terms of bandwidth, as the number of messages increases quadratically with the number
of players. Scalability is a concern for DVEs: some games are intended to be played by
a large number of participants at the same time (e.g. MMORPGs). In addition, many
online games are based on a client-server architecture. This has many disadvantages,
as maintaining a server is often expensive, and exposes a single point of failure [16].
This leads to the incentive to study peer-to-peer solutions, where players share the role
of the server among themselves, but in this context, bandwidth becomes crucial, as the
network capacities of peers are usually lower than those of powerful servers. This article
focuses on reducing bandwidth usage by limiting the number of exchanged messages.
Several versatile techniques have been proposed to achieve this goal.

Data compression regroups techniques that can reduce bandwidth usage, but that
are dependent on the application. For example Delta encoding [16], is an implementa-
tion trick where only differences between states are sent.

Dead-reckoning is a widely used tool, standardized in the Appendix E of [3]. Each
player predicts the positions of the other players, extrapolating their movements after
each update, typically based on their speed and acceleration.

Error induced by dead-reckoning can be measured by different means [4, 17], but
Dead-reckoning aims at bounding the additive error on the players positions. The play-
ers know their own actual positions at any time, and for the other players, they only
know estimated positions. Since all the players share the same estimation algorithm,
each player is able to detect if the error on his/her own position as seen by another
player is above a given threshold. When this happens, the player sends a message to
this player to correct the outdated estimated position. Research on dead-reckoning im-
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proved bandwidth usage mainly in two ways : get the best prediction possible [10], or
improve the update policies (a survey on different update policies is given in [15]).

Interest Management consists in filtering updates in order to send them only to
players who might be interested. Different types of interest management are identified in
[6,12]. Some application-specific approaches may also use the fact that human attention
is limited, as in [5], where a set of five interesting players is defined at any given time,
in order to send frequent updates to those players, but much less to other players.

Combinations of all these techniques can be used. In [7], an area of interest, similar
to aura interest management, is used to modify the Dead-reckoning threshold.

In the context of interest management, estimating distances between players is very
useful, as a player is rarely interested in knowing the exact state of far away objects.
In addition, in some application-specific cases, distance may be important, for example
when implementing a spell that heals all allies within a certain range. To the best of
our knowledge, no distributed algorithm has been proposed to solve the problem of es-
timating the distance between users of a DVE. The objective of this paper is to provide
a solution allowing players to estimate the distances between them, with a condition on
the relative error, while guaranteeing that the use of bandwidth is as small as possible.
In particular, it has to be bounded against an ideal algorithm that would send a mini-
mum number of messages, based on a perfect knowledge of the game’s state.

Related Work:
Timewarp. In [14], two techniques are proposed. First, local-lag reduces short-term in-
consistencies, at the cost of less responsiveness: a delay between the time an operation is
issued and the time when the operation becomes effective is added. Secondly, timewarp
is proposed, an algorithm to ensure consistency. In this algorithm, each player remem-
bers all previous operations and the time at which they were issued. If an operation is
received by a player too late, the player rewinds the state of the world, immediately
recomputing the current state, using all needed operations.
Compensatory Dead-Reckoning. In [11], Dead-Reckoning is used to compensate for
latencies and message losses on the network. TATSI, the average spatial error on play-
ers’ positions over a time interval, is estimated with no latency or loss of message.
Then, under the assumption of a constant acceleration, latencies and message losses are
added to the model, and it is shown that the same TATSI can be obtained by lowering
the dead-reckoning threshold (thus making DVE nodes send messages more often).

1.2 Contribution

To summarize, in the literature, the solutions are very consuming in term of messages
and/or target an additive bound on the error on positions and distance. By contrast, this
paper focuses on bounding the relative error on distances and keeping the number of ex-
changed messages low. In terms of optimality in number of messages, Dead-reckoning
is optimal for position estimation. Indeed, when using Dead-reckoning, players know
where other players see them. Thus, a player sends updates if and only if the tolerated
error between his/her actual position and his/her estimated position is exceeded, mak-
ing it an optimal bandwidth strategy. On the other hand, since no two players know
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the actual distance between them, none of them can determine the exact error over the
estimated distance, making distance estimation a much harder problem.

We consider deterministic algorithms that allow each player to estimate, at any time,
the distances between him/her and the other players, while having a guarantee on the
error. Initially, each player knows the exact position of every other player. The metric
we use is the relative error given in Equation 1, where, at each instant t, dact(t) denotes
the actual distance between two players, and dest(t) denotes their estimated distance,

error measurement = |dact(t) − dest(t)|/dest(t). (1)

We make sure this error measurement never exceeds ε, the maximum tolerated rela-
tive error for any pair of players, while minimizing the number of exchanged messages.

That is, Equation 2 must always hold, for every pair of players,

(1 − ε)dest(t) < dact(t) < (1 + ε)dest(t). (2)

We propose an algorithm, called local change and denoted by Alc. It relies on the
same underlying principle as Dead-reckoning, where position estimations are determin-
istic and each player computes his/her own position as seen by other players, using the
same deterministic algorithm. In Alc, player Bob sends his actual position pactB to an-
other player Alice as soon as the estimate pestB of the position of Bob as seen by Alice
deviates too much from his actual position, more precisely as soon as Equation 3 is
violated, where d denotes the distance between two points:

d (pactB(t), pestB(t)) < dest(t) × ε/2. (3)

In addition, Alice will immediately respond to Bob by also sending her actual position.
When there is no latency, we prove that withAlc, Equation 2 is always satisfied, without
assumption on how players move.

To quantify the performance of our algorithm, we compare it against an oracle with
a full knowledge of the current state of the game, called ideal algorithm and denoted
byAid. InAid, an exchange of messages happens only when, and as soon Equation 2 is
violated. The performance ofAlc is measured by M, the number of message exchanges
(a message and its response counting as one) between two players usingAlc, before the
first message sent withAid. Players are synchronized and there is no latency.

We first conduct theoretical analyses in which players move randomly. Thus, the
best possible estimation of the position of other players is to assume they remain still,
so that a player will estimate that the other players are at their last known position. Our
analyses are for two types of movement patterns.

Random Walk is a discrete movement taking place on a d-dimensional grid. If at
instant t, a player following such movement is at position p = (p1, p2, . . . , pd) he/she
has 2d neighbors: (p1 − 1, p2, . . . , pd), (p1 + 1, p2, . . . , pd), (p1, p2 − 1, . . . , pd), etc. The
movement consists, at each integer instant, to chose one of the neighbors, each one
having probability 1

2d to be chosen.
Continuous Movement consists at each turn to select a value smaller than one,

and to add a vector of norm equal to this value, and with a direction randomly chosen.
In 1D, a moving player adds at each instant a random number following a uniform
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distribution on [−1, 1] to his/her position. In 2D, at each instant k, a moving player X
chooses ρk and θk following uniform distributions respectively on [0, 1] and [0, 2π], so
that pactX(k + 1) = pactX(k) + (ρk, θk), where (ρk, θk) is the vector with polar coordinates
ρk and θk. In 3D, at each instant k, a player chooses ρk, θk, and ϕk following uniform
distributions respectively on [0, 1], [0, 2π] and [0, π].

For these movement patterns, we prove that the expectation of M is upper bounded
by a quantity that depends only on ε, and not in particular on the initial distance between
the players. As ε is an entry of our problem, M is O(1).

Theorem 1. Let ∆r =

⌈
log(1+ε)−log(1−ε)

log(1+ ε
2 )

⌉
, with ε ∈]0; 1[. For any two players following a

random walk on Zd (with d ≤ 3), E[M] ≤ ∆r ×
(
2d+1

)∆r
.

Moreover, if only one of the players moves on Z, with ∆l =

⌈
log(1−ε)−log(1+ε)

log(1− ε
2 )

⌉
, then

E[M] ≤ min
(
∆l × 2∆l ;

⌈
4
π
∆l

2
⌉
× 8

)
.

Theorem 2. With the previously defined ∆l, and with two players following a random
continuous movement in 1D, then E[M] ≤ ∆l × 4∆l . Let Γ = 2 log(1+ε)−log(1−ε)

log
(
1+ ε

√
2
+ ε2

4

) . If two

players follow a random continuous movement in 2D, then E[M] ≤ Γ × 8Γ. With moves
in 3D, then E[M] ≤ Γ × 14Γ.

A summary of these results can be found in the following table:

random walk continuous movement
1D case min

(
∆l × 2∆l ;

⌈
4
π
∆l

2
⌉
× 8

)
∆l × 4∆l

2D case ∆r × 8∆r Γ × 8Γ

3D case ∆r × 16∆r Γ × 14Γ

This theoretical analysis is then complemented by experiments. We first performed
experiments on synthetic traces in which players follow random walks or continuous
movements in 1D, 2D or 3D, and then performed experiments on actual traces, where
we compare Alc with a fixed frequency algorithm, denoted by A f f . A f f is commonly
used in practice in online games, and sends updates periodically, by waiting w time units
between updates. We show that overall,Alc behaves better with respect to Equation 2.

In summary, the performance (without latency) ofAid,Alc,A f f and timewarp [14]
are shown in the following table:

number of messages maximal error number of violations
Aid mid ≤ ε 0
Alc O(mid) ≤ ε 0

A f f
T
w n(n − 1)

0 if w = 1
Θ(Tn2)unbounded otherwise

timewarp O(Tn2) 0 0

T denotes the duration of the experiment, and n denotes the number of participants
in the DVE. We consider as a reference mid, the (perfect knowledge based) number of
messages sent by Aid. Note that timewarp has a slightly different purpose than the
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×pactA

©pestA

× pactB

© pestB

Fig. 1: Knowledge of Alice (dashed blue lines) and Bob (continuous red lines)

others: it is intended to ensure strict consistency. The number of violations counts, over
T time units, the number of distance pairs for which the error is above ε. Note that if
the maximal error reaches ε for A f f , then mid is less than the number of messages of
A f f .

This paper is organized as follows. In Section 2, we describe Alc, and the model
used for the theoretical analysis. In Section 3, we prove the 1D-case of the random
walk setting. In Section 4, we prove the 2D and 3D cases of the random walk, stated
in Theorem 1, and in Section 5, we prove the results of continuous movements, from
Theorem 2. Experimental results are then presented in Section 6, and conclusions and
perspectives are given in Section 7.

2 Model and Algorithms

Model: Let us first assume that ε ∈]0; 1[. Indeed, ε = 0 means that no error is tol-
erated, while ε = 1 would accept any estimate on the distance, provided it is larger
than half the actual distance, which is not very informative. Since Alc must enforce
that Equation 3 holds true for any pair of players, we focus on two players Alice and
Bob. We assume that the communication channel connecting them is without message
loss nor latency, that local computations do not take time and that all players share a
synchronized clock. At any instant t (t ∈ N), let us denote the positions of both players
as pactA(t) and pactB(t). A position is a vector whose dimension depends on the virtual
world (for example, for a 3D world, a position is described by a vector in N3, or R3 in
the case of continuous moves). Each player knows his/her own actual position, but may
not know exactly where the other player is. These positions can change unpredictably,
through the actions of users.

As explained in Section 1.2, players will estimate their relative distance. To do this,
each player will compute a deterministic estimation of the other player’s position, i.e.
Bob computes pestA(t), the estimate of the position of Alice, and Alice computes pestB(t).
As they use the same deterministic algorithm, these computations can be replicated, and
pestA(t) and pestB(t) become a shared knowledge (even without communication). Thus,
we will use the distance between those two (estimated but shared) positions as distance
estimate, dest(t). In practice, pestA(t) is generally based on an extrapolation of Alice’s
position, speed and acceleration, at the time of the last message exchanged between
Alice and Bob. To facilitate analysis, we focus in this paper on the case where movement
is limited to the random part based on players’ actions, which cannot be anticipated by
the deterministic prediction algorithm.
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Algorithm 1 Local change (Alc), from the point of view of Alice
1: pact A ← Alice’s initial position . Actual position of Alice. This is a read-only input to the

algorithm
2: pestA ← Alice’s initial position . Position of Alice, as estimated by Bob, the other player
3: pestB ← Bob’s initial position . Estimated position of Bob
4: dest ← d(pestA, pestB) . Estimated distance. Will always be equal to d(pestA, pestB)
5: procedure check_for_update . to be called at each tick, after movement
6: if d(pact A, pestA) ≥ ε

2 dest then
7: pestA ← pact A
8: dest ← d(pestA, pestB)
9: send message (pact A, begin_update) to Bob

10: end if
11: procedure receive_message(position, type) from Bob . to be called when receiving a

message
12: pestB ← position
13: dest ← d(pestA, pestB)
14: if type = begin_update then . type distinction is to avoid infinite messages
15: send message (pact A, update_reply) to Bob
16: end if

Algorithm: In Alc, at every time step t, Alice estimates her relative distance to Bob
using the distance between pestA(t) and pestB(t), both being known to both players, as it
can be seen on Figure 1. In what follows, we prove thatAlc satisfies Equation 2 (Lemma
1) provided thatAlc sends an update of the actual position as soon as Equation 3 is not
satisfied, as depicted in Algorithm 1.

Lemma 1. UsingAlc, Equation 2 holds true at any time step (regardless of movement).

Proof. The following set of inequalities holds true:
dact(t) − dest(t) ≤ d(pactA(t), pestA(t)) + d(pactB(t), pestB(t)) (triangle inequality)
dest(t) − dact(t) ≤ d(pactA(t), pestA(t)) + d(pactB(t), pestB(t)) (triangle inequality)
d(pactB(t), pestB(t)) < ε

2 dest(t) (by construction)
d(pactA(t), pestA(t)) < ε

2 dest(t) (by construction)

so that |dact(t) − dest(t)| < εdest(t), which is equivalent to Equation 2. ut

Above result establishes the correctness ofAlc. To estimate the actual performance
of Alc in terms of message exchanges, we prove in the following section that the ex-
pected number of messages exchanged by Alc is upper bounded by a (constant) value
that depends on ε only and not on the relative distance between Alice and Bob.

3 Competitive Analysis in the 1D Case

In this section, we focus on the 1D case, where players move along the integer line. In
order to evaluate the performance ofAlc, we compare the number of messages induced
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by Alc to the number of messages exchanged with the ideal and clairvoyant algorithm
denoted byAid.Aid is defined as the algorithm where both players send messages with
their new position if and only if Equation 2 becomes wrong. A formal description is
given in Algorithm 2.

Algorithm 2 The ideal algorithm,Aid

1: pact A ← Alice’s initial position . Actual position of Alice. This is a read-only input to the
algorithm

2: pactB ← Bob’s initial position . Actual position of Bob. This is a read-only input to the
algorithm

3: pestA ← Alice’s initial position (for both players) . Estimated position of Alice
4: pestB ← Bob’s initial position (for both players) . Estimated position of Bob
5: dest ← d(pestA, pestB) (for both players) . Estimated distance
6: procedure check_for_update . to be called at each tick, after movement
7: if |dact, dest | ≥ destε then
8: Both players send their positions:
9: pestA ← pact A

10: pestB ← pactB
11: dest ← d(pestA, pestB)
12: end if
13: end procedure

In the following, we aim at estimating the expected number of messages exchanged
with Alc between two messages sent by Aid. To do this, we measure the number of
messages withAlc before the first message sent withAid, which will be denoted by M.
We prove that the expectation of M can be upper bounded by a value that depends only
on ε. Note that this upper bound is true for the expected number of messages exchanged
by Alc for a given probabilistic model for player movements, but not for a worst-case
analysis: M can be infinitely large if players come and go, far enough for Alc to send
messages regularly, but not far enough forAid to send messages.

Let us denote by dest and pest the estimates for Alc. We will consider instants ti
(with i ≥ 1), defined as the instants at which the i-th round trip of the messages is sent
with Alc (as messages are immediately followed by a reply). As already mentioned, to
facilitate the analysis, we focus on the the unpredictable part of the movements due to
the players’ actions, and we model these actions by a random unitary movement (left or
right) on the line. Then, both ti and M are discrete random variables.

Since the movements are 1D (and because d(p1, p2) = |p1 − p2|), the update con-
ditions ofAlc andAid can be represented by intervals. More precisely,Alc generates a
message exchange as soon as pactX leaves IlcX , where IlcX is defined as follows, and X
is either Alice or Bob.

Definition 1. ∀t ∈ ~ti; ti+1~, then IlcX(t) =
]
pestX(ti) − dest(ti) ε2 ; pestX(ti) + dest(ti) ε2

[
Let d0 = dact(0). Thus, Algorithm Aid generates a message as soon as dact leaves

Iid, where Iid is defined by Iid = ]d0 (1 − ε) ; d0 (1 + ε)[. Let topt = min{t : dact(t) < Iid}
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denote the time of the first message sent byAid, then

M = max{i, ti ≤ topt}.

Let us now define the auxiliary random variable M′ : min{i, dest(ti) < Iid}. M′ represents
the index of the first message ofAlc sent after Bob left Iid. At this instant, by construc-
tion, Aid already sent a message. This is formally stated in the following proposition,
which states that an upper bound for M′ also holds for M.

Proposition 1. M′ ≥ M

Proof. By definition of Alc, for every i, dest(ti) = dact(ti). Thus, tM′ ∈ {t, dact(t) < Iid},
so that tM′ ≥ topt. Since topt ≥ tM , tM′ ≥ tM and M′ ≥ M.

3.1 Case when only one of the players moves

Let us start with the case when only one of the players moves on the integer line. Then,
pactA(t) = 0 at any time step and Bob performs a random walk on N, starting at d0 > 0
from Alice so that pactB(0) = d0 and

pactB(t + 1) =

pactB(t) + 1 with probability 1
2

pactB(t) − 1 with probability 1
2 .

Since under our model, the only possible remaining movements are those who are
unpredictable (i.e. due to actions), we assume that dest remains constant between two
message exchanges inAlc, i.e. ∀t ∈ ~ti, ti+1~, dest(t) = dest(ti). As a result, the following
proposition holds true.

Proposition 2. With 1D movements, ∀t ∈ ~ti; ti+1~, Alc triggers the i + 1-th round trip
of messages as soon as pactB(t) gets out of Ilc(t) =

]
dest(ti)

(
1 − ε

2

)
; dest(ti)

(
1 + ε

2

)[
.

Proof. Since Alice always remains at the origin, all messages are generated by Bob
and ∀t ∈ ~ti; ti+1~, pestB(t) = dest(t). Moreover, since dest(t) = dest(ti), then for Bob,
Equation 3 is equivalent to |pactB(t) − dest(ti)| < dest(ti) × ε

2 , which in turn is equivalent
to pactB(t) ∈ Ilc(t). Similarly, in the case ofAid, the first message is sent as soon as pactB

gets out of Iid as pactB(t) = dact(t).

First upper bound on M In this section, we provide a first upper bound on the ex-
pected value of M, that does not depend on the initial distance between the players.

Theorem 3. Let ∆l =

⌈
log(1−ε)−log(1+ε)

log(1− ε
2 )

⌉
and ε ∈ ]0; 1[ . With two players, one of them

following a random walk, on Z, E[M] ≤ ∆l × 2∆l .

When a message is sent in Alc, dest(ti+1) can take only two values, as stated in
Proposition 3.
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Proposition 3. dest(ti+1) =


⌊
dest(ti)

(
1 − ε

2

)⌋
= dest(ti) −

⌈
ε
2 dest(ti)

⌉
(with probability 1

2 )⌈
dest(ti)

(
1 + ε

2

)⌉
= dest(ti) +

⌈
ε
2 dest(ti)

⌉
(with probability 1

2 )

Proof. By definition of Alc, and since positions of Bob are integers, a message is sent
when the position of Bob gets to the first integer position outside of Ilc. The rightmost
equalities directly follow the properties of floor and ceiling function. Thus, the two
possible positions at time ti+1 are at a same distance from dest(ti) and have therefore the
same probability.

As a result, dest(ti+1) can only take two different values depending on dest(ti), both
having the same probability. We will denote the transformation between dest(ti) and
dest(ti+1) as mi, where

mi =

l if dest(ti+1) = l(dest(ti)) where l : x 7→
⌊
x
(
1 − ε

2

)⌋
r if dest(ti+1) = r(dest(ti)) where r : x 7→

⌈
x
(
1 + ε

2

)⌉ (4)

We can now prove Lemma 2 which states that, if there are enough successive de-
creasing jumps, then Bob will get out of Iid, whatever his initial position in the interval
Iid.5

Lemma 2. For all x ∈ Iid, l∆l (x) ≤ d0(1 − ε).

Proof. x ∈ Iid ⇒ x ≤ d0(1 + ε) ⇒ l∆l (x) ≤ l∆l (d0(1 + ε)) since l is increasing,
implying that l∆l (x) ≤ d0(1 + ε)

(
1 − ε

2

)∆l
since ∀x, l(x) ≤ x

(
1 − ε

2

)
. Moreover, since,

∆l ≥
log(1−ε)−log(1+ε)

log(1− ε
2 ) and log

(
1 − ε

2

)
< 0, then (1 + ε)

(
1 − ε

2

)∆l
≤ (1 − ε) and x ∈ Iid ⇒

l∆l (x) ≤ d0(1 − ε)

Proof. Let us now prove Theorem 3. Let us split the sequence of movements of Bob
into phases of length Φ and let us denote by j the index of the phase containing jumps
from m( j−1)Φ to m jΦ−1. Let us consider the following possible events (i) S j: there is at
least one i ∈ ~( j − 1)Φ; jΦ� such that dest(ti) < Iid and (ii) S′j: phase j is composed
of decreasing jumps only (l). In turn, these events can be used to define useful random
variables: (i) X j = 1 if S j is true, 0 otherwise (ii) X′j = 1 if S′j is true, 0 otherwise, (iii)
Y = j if X j = 1 and Xk = 0 for every k < j and (iv) Y ′ = j if X′j = 1 and X′k = 0 for
every k < j. Thus, Y denotes the index of the first phase during which Bob gets out of
Iid.

If S′j is true, then dest(t jΦ) = lΦ(dest(t( j−1)Φ)). Thus, if Φ = ∆l, by Lemma 2, S′j ⇒
S j, so that X′j = 1⇒ X j = 1.

Therefore Y ′ = j⇒ X′j = 1⇒ X j = 1⇒ Y ≤ j and finally E[Y] ≤ E[Y ′] (5)

Moreover, we know that Y ′ follows a geometric distribution with parameter P(S′j) = 1
2Φ

(because each jump has a 1
2 probability of being increasing or decreasing), and E[Y ′] ≤

2Φ. Thus, for Φ = ∆l, by Equation 5, we have E[Y] ≤ 2Φ. Since Y denotes the index
of the first phase during which Bob gets out of Iid, M′ ∈ ~(Y − 1)Φ; YΦ�. In particular,
M′ ≤ YΦ and E[M′] ≤ Φ × 2Φ. Finally, Proposition 1 proves that E[M] ≤ Φ × 2Φ.

5NB: we could have used increasing jumps, but values are better with l-jumps.
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Second upper bound on M

Theorem 4. Let ∆l be defined as previously. If ε ∈ ]0; 1[ , with two players, one of them
following a random walk, on Z, then E[M] ≤

⌈
4
π
∆l

2
⌉
× 8

We provide a tighter analysis for M, which is formally stated in Theorem 4. To establish
this result, we no longer consider phases consisting only of decreasing jumps, but also
phases with a sufficient excess of decreasing jumps. This is because a sequence of an
increasing and a decreasing jump (in any order) tends to reduce the distance, as proved
in Proposition 4.

Let mi, j = m j−1 ◦ m j−2 ◦ · · · ◦ mi, so that dest(t j) = mi, j(dest(ti)). We will need the
following result in order to prove Theorem 4:

Theorem 5. Let σ = card({k,mk = l, k ∈ ~i, j − 1�}) − card({k,mk = r, k ∈ ~i, j − 1�})
denote the excess in l from mi to m j−1. If σ ≥ ∆l, and x ∈ Iid, then mi, j(x) < Iid.

But first, we will prove a few properties:

Proposition 4. ∀p ∈ N, l ◦ r(p) ≤ p, and r ◦ l(p) ≤ p.

Proof. l(p) = p −
⌈

pε
2

⌉
, and r(p) = p +

⌈
pε
2

⌉
, so that

l ◦ r(p) = p +

⌈ pε
2

⌉
−

⌈ pε
2

+

⌈ pε
2

⌉
ε

2

⌉
≤ p since

⌈ pε
2

⌉
≤

⌈ pε
2

+

⌈ pε
2

⌉
ε

2

⌉
and r ◦ l(p) = p −

⌈ pε
2

⌉
+

⌈ pε
2
−

⌈ pε
2

⌉
ε

2

⌉
≤ p since

⌈ pε
2
−

⌈ pε
2

⌉
ε

2

⌉
≤

⌈ pε
2

⌉
.

Proposition 5. ∀(p, q) ∈ N2,∀s ∈ N and ∀ f = f1 ◦ f2 ◦ · · · ◦ fs, where fk = l or r for
all 1 ≤ k ≤ s, if p ≤ q, then f (p) ≤ f (q).

Proof. The proof is obtained by noting that ceiling and the floor functions, l and r and
their compositions are increasing functions.

Lemma 3. Let j > i and let us assume that σ = card({k : mk = l, k ∈ ~i, j − 1�}) −
card({k : mk = r, k ∈ ~i, j − 1�}) ≥ 0, then ∀p ∈ N, mi, j(p) ≤ lσ(p).

Proof. Let f = f1 ◦ f2 ◦ · · · ◦ fs where fk = l or r for all 1 ≤ k ≤ s. Let T : f 7→ f ′ with
f ′ = f1 ◦ · · · ◦ fk ◦ fk+3 ◦ · · · ◦ fs so that fk+1 ◦ fk+2 = r ◦ l or l ◦ r, i.e. T simply consists
of removing the first occurrence of r ◦ l or l ◦ r. Then, fk+1 ◦ fk+2 ◦ fk+3 ◦ · · · ◦ fs(x) ≤
fk+3◦· · ·◦ fs(x) thanks to Proposition 4, and f1◦· · ·◦ fs(x) ≤ f1◦· · ·◦ fk ◦ fk+3◦· · ·◦ fs(x)
thanks to Proposition 5, so that

f (x) ≤ T ( f )(x). (6)

Let T ∗ : f 7→ f ∗ with f ∗ being the result of the recursive application of T on f until only
ls remain (remember that σ ≥ 0). By Equation 6, f (p) ≤ T ∗( f )(p). As T ∗(mi, j) = lσ,
finally mi, j(p) ≤ lσ(p).

Proof. Let us now prove Theorem 5. Let σ ≥ ∆l and p ∈ Iid. Since ∆l > 0, σ > 0.
Thus, thanks to Lemma 3, fi, j(x) ≤ lσ(x) ≤ l∆l (x)( because l(x) ≤ x and σ ≥ ∆l) ≤
d0(1 − ε) thanks to Lemma 2. Thus, by definition of Iid, we have fi, j(p) < Iid



12 O. Beaumont, T. Castanet, N. Hanusse, and C. Travers

The following lemma provides a lower bound on the probability of the event σ ≥ ∆l,
that will be later use to upper bound the expectation of M.

Lemma 4. If j − i = 2
⌈

4
π
∆l

2
⌉
, then P(σ ≥ ∆l) ≥ 1

4 .

Proof. Let Φ = j − i = 2
⌈

4
π
∆l

2
⌉

the number of jumps between mi and m j−1, and let
Λ = card({k : mk = l, k ∈ ~i, j − 1�}), the number of decreasing jumps (l) between i and
j − 1. Then, σ ≥ ∆l ⇔ 2Λ −Φ ≥ ∆l ⇔ Λ ≥ ∆l+Φ

2 so that

P(σ ≥ ∆l) = P

(
Λ ≥

∆l +Φ

2

)
=

Φ∑
k=

⌈
∆l+Φ

2

⌉
(
Φ

k

)
×

1
2Φ

because P(Λ = k) =

(
Φ

k

)
×

1
2Φ

=
1

2Φ


Φ∑

k= Φ
2 +1

(
Φ

k

)
−

⌈
∆l+Φ

2

⌉
−1∑

k= Φ
2 +1

(
Φ

k

) because
⌈
∆l +Φ

2

⌉
>
Φ

2
+ 1

Moreover, as Φ is even,
∑Φ

k=0

(
Φ
k

)
= 2Φ = 2 ×

∑Φ
k= Φ

2 +1

(
Φ
k

)
+

(
Φ
Φ
2

)
so that

P(σ ≥ ∆l) =
1

2Φ


2Φ −

(
Φ
Φ
2

)
2

−

⌈
∆l+Φ

2

⌉
−1∑

k= Φ
2 +1

(
Φ

k

)
=

1
2
−

(
Φ
Φ
2

)
2Φ+1 −

1
2Φ

⌈
∆l+Φ

2

⌉
−1∑

k= Φ
2

(
Φ

k

)
+

(
Φ
Φ
2

)
2Φ
≥

1
2
−

1
2Φ

⌈
∆l+Φ

2

⌉
−1∑

k= Φ
2

(
Φ

k

)

There are
⌈
∆l+Φ

2

⌉
− Φ

2 elements in the remaining sum. Note that
⌈
∆l+Φ

2

⌉
≤

∆l+Φ
2 + 1 ⇒⌈

∆l+Φ
2

⌉
− Φ

2 ≤
∆l
2 + 1 and that each element of the sum is smaller than the first one since(

Φ
Φ
2

)
≥

(
Φ

Φ
2 +n

)
. Therefore,

P(σ ≥ ∆l) ≥
1
2
−

1
2Φ
×

(
∆l

2
+ 1

)
×

(
Φ
Φ
2

)

≥
1
2
−

1
2Φ
×

(
∆l

2
+ 1

)  2Φ√
Φ
2 × π


≥

1
2

1 − ∆l
√

2
√
Φπ

 +

 √2
√
Φπ


≥

1
2

1 − √
π

8
×

√
2
π

 +

 √2
√
Φπ

 because Φ ≥
8
π
∆l

2 ⇒

√
π

8
≥

∆l
√
Φ

≥
1
4

+

 √2
√
Φπ

 ≥ 1
4

because Φ > 0.

Proof. We can now prove the main result of this section, i.e. Theorem 4. As for the
proof of Theorem 3, let us split the sequence of Bob movements in phases of length Φ
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and let us denote by j the index of the phase containing jumps m( j−1)Φ through m jΦ−1.
Let us consider following events (i) S j: there is at least one i ∈ ~( j − 1)Φ; jΦ� such
that dest(ti) < Iid and (ii) S′′j : either dest(t( j−1)Φ) < Iid, or dest(t jΦ) < Iid. These events
can in turn be used to define the following random variables (i) X j = 1 if S j is true, 0
otherwise (ii) X′′j = 1 if S′′j is true, 0 otherwise (iii) Y = j if X j = 1 and Xk = 0 for
every k < j and (iv) Y ′′ = j if X′′j = 1 and X′′k = 0 for every k < j. Thus Y denotes the
index of the first phase during which Bob gets out of Iid.

If S′′j is true, then S j also holds true. Thus, in a similar way as for Theorem 3,
Y ′′ = j⇒ X′′j = 1⇒ X j = 1⇒ Y ≤ j and thus E[Y] ≤ E[Y ′′]. Moreover, by Theorem 5

and Lemma 4, if Φ =
⌈

4
π
∆l

2
⌉
× 2, then P(S′′j ) ≥ 1

4 . Note that Y ′′ follows a geometric
distribution with parameter P(S′′j ), so that E[Y] ≤ E[Y ′′] ≤ 4. Since Y denotes the
index of the first phase during which Bob gets out of Iid, then M′ ∈ ~(Y − 1)Φ; YΦ�. In
particular, since M′ ≤ YΦ, E[M′] ≤ Φ×4. By Proposition 1, we get E[M] ≤

⌈
4
π
∆l

2
⌉
×8.

Conclusion In the 1D case, we prove that E[M] is smaller than both ∆l × 2∆l and⌈
4
π
∆l

2
⌉
× 8, where ∆l =

⌈
log(1−ε)−log(1+ε)

log(1− ε
2 )

⌉
. Actually, the choice of the best upper bound

depends on values of ε. We can also observe that limε→1 ∆l = ∞, meaning that there is
no upper bound on M when ε is close to 1. This is not surprising, since a value of 1 for
ε would make the left bound of Iid become 0 andAlc could perform an infinite number
of decreasing jumps before the first message of Aid if d0 is large enough. Experiments
depicted in Section 6 indeed show that M can become large when ε gets close to one.

3.2 Case when both players move

In this section, we consider that players alternatively move (under the same stochastic
movement model) on the integer line Z. Note that we concentrate here on a single pair
of players Alice and Bob but the results apply to any pair of players and therefore can
be extended to any number of players.

If t is even, Alice moves pactA(t) = pactA(t + 1) =

pactA(t − 1) + 1 with probability 1
2

pactA(t − 1) − 1 with probability 1
2

and if t is odd, Bob moves pactB(t) = pactB(t+1) =

pactB(t − 1) + 1 with probability 1
2

pactB(t − 1) − 1 with probability 1
2

The equality between position and distance (pestB(t) = dest(t)) is no longer valid so that
Proposition 2 does not hold and we rely on Definition 1. The definition of interval Iid

remains unchanged, and messages are exchanged at t such that dact(t) < Iid (and not
pactB). Theorem 6 is an extension of Theorem 3 in the case where both players move.

Theorem 6. Let ∆l be defined as previously. If ε ∈ ]0; 1[ , then with two players follow-
ing a random walk on Z, E[M] ≤ ∆l × 4∆l

Proof. Assume, without loss of generality that Bob remains to the right of Alice, that
is, pactB > pactA. After the (i+1)-th round trip of messages inAlc, i.e. at instant ti+1, one
of the four following events takes place (i) Bl: at instant ti+1, player Bob gets out of IlcB

by getting closer to Alice; (ii) Br: at instant ti+1, player Bob gets out of IlcB by getting
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farther from Alice; (iii)Al: at instant ti+1, player Alice gets out of IlcA by getting farther
from Bob ; (iv)Ar: at instant ti+1, player Alice gets out of IlcA by getting closer to Bob.

As players move alternately, these events are disjoint. Additionally, all four events
have the same probability, as both players start at the center of their interval at instant
ti. Thus, P(Bl) = P(Br) = P(Al) = P(Ar) = 1

4 .
Let us consider for instance the situation whereBl is true, i.e. pestB(ti+1) = pestB(ti)−⌈

dest(ti) × ε
2

⌉
. At the instant when Bob gets out of IlcB(ti), Alice is still inside of IlcA(ti)

and since this interval is centered on pestA(ti), then P(pestA(ti+1) ≥ pestA(ti)|Bl) ≥ 1
2 .

Moreover, pestA(ti+1) ≥ pestA(ti) ⇒ pestB(ti+1) − pestA(ti+1) ≤ pestB(ti) − pestA(ti) −⌈
dest(ti) ε2

⌉
by definition ofBl. Therefore, we have that dest(ti+1) ≤ dest(ti)−

⌈
dest(ti) ε2

⌉
be-

cause Bob is on the right side of Alice. Finally, we get dest(ti+1) ≤ dest(ti)
(
1 − ε

2

)
. Thus,

P
(
dest(ti+1) ≤ dest(ti)

(
1 − ε

2

)
|Bl

)
≥ 1

2 and by a comparable reasoning on player Alice,

we get P
(
dest(ti+1) ≤ dest(ti)

(
1 − ε

2

)
|Ar

)
≥ 1

2 . Thus, using the law of total probability,

we get P
(
dest(ti+1) ≤ dest(ti)

(
1 − ε

2

))
≥ 1

2 ×P(Bl)+ 1
2 ×P(Ar)+0×P(Br)+0×P(Al) ≥ 1

4

Repeating this operation ∆l times, we get P
(
dest(ti+∆l ) ≤ dest(ti)

(
1 − ε

2

)∆l
)
≥ 1

4∆l
. and

similarly to Lemma 2, we get dest(ti) ∈ Iid ⇒ dest(ti) ≤ d0(1 + ε) ⇒ dest(ti)
(
1 − ε

2

)∆l
≤

d0(1 + ε)
(
1 − ε

2

)∆l
and since ∆l ≥

log(1−ε)−log(1+ε)
log(1− ε

2 ) then dest(ti) ∈ Iid ⇒ dest(ti)
(
1 − ε

2

)∆l
≤

d0(1 − ε)⇒ dest(ti)
(
1 − ε

2

)∆l
< Iid.

Hence, ∀i, dest(ti) ∈ Iid ⇒ P
(
dest(ti+∆l ) < Iid

)
≥

1
4∆l

(7)

To prove Theorem 6, we rely on the same techniques as for Theorem 3 and Theorem 4,
by splitting the sequence of jumps into phases of length ∆l, and by denoting by j the
index of the phase containing jumps m( j−1)Φ through m jΦ−1. Let us consider the event
S j: there is at least one i ∈ ~( j − 1)∆l; j∆l� such that dest(ti) < Iid and the random
variables (i) X j = 1 ifS j is true, 0 otherwise, (ii) Y = j if X j = 1 and Xk = 0 for all k < j.
By Equation 7, if dest(t( j−1)∆l ) ∈ Iid, then P

(
dest(t j∆l ) < Iid

)
≥ 1

4∆l
so that P(S j) ≥ 1

4∆l
and

E[Y] ≤ 4∆l . Since Y denotes the index of the first phase during which Bob gets out of
Iid, then M′ ∈ ~(Y − 1)∆l; Y∆l� and in particular, M′ ≤ Y∆l, so E[M′] ≤ ∆l × 4∆l . By
Proposition 1, we finally obtain E[M] ≤ ∆l×4∆l , what achieves the proof of Theorem 6.

4 Higher Dimensions

As seen in Section 1.2, in a d-D space space, the movement of a player consists in
following a random walk on a d-D grid. If at instant t, a player is at position p =

(p1, p2, . . . , pd), then they have 2d neighbors: (p1 − 1, p2, . . . , pd), (p1 + 1, p2, . . . , pd),
(p1, p2−1, . . . , pd), . . . , (p1, p2, . . . , pd−1), (p1, p2, . . . , pd +1). The movement consists,
at each integer instant, to chose one of those neighbors, each with probability 1

2d .
In 2D, for example, this means that, at each instant, a moving player adds one of the

following to his/her position: (−1, 0), (1, 0), (0,−1), or (0, 1).
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The used distance is the L1 distance (Manhattan distance). Thus, by definition of
Alc and Equation 3, we get that for a player X, IlcX is the L1-ball of radius dest

(
1 − ε

2

)
.

The interval Iid remains unchanged, as it deals with distances.
Let us call d the number of dimensions, supposed less than or equal to three. Let us

prove that in a d-D space, we have a similar bound than in the 1D case.

Theorem 7. In a d-D Euclidian space (d ≤ 3), with ∆r =

⌈
log(1+ε)−log(1−ε)

log(1+ ε
2 )

⌉
, and with

two players moving, we have E[M] ≤ ∆r ×
(
2d+1

)∆r

As players take turns in moving, they cannot simultaneously go out of their IlcX .
Thus, let us assume that Bob is the player that triggers the (i + 1)-th message, by getting
out the first of IlcB at instant ti+1.

Lemma 5. With Alc, the (i + 1)-th message is sent when Bob is on the border of the
L1-sphere of center pestB(ti), and of radius

⌈
ε
2 dest(ti)

⌉
.

Proof. With Alc, the (i + 1)-th message is sent when Bob gets out of Ilc, which has a
radius of ε

2 dest(ti), but as movement is on integer positions, the first positions outside of
Ilc are all on the sphere of center pestB(ti), and of radius

⌈
ε
2 dest(ti)

⌉
.

This ball has 2d faces of dimension (d − 1). We may draw cones over each of these
faces, with pestB(ti) as the apex: all points of the space will be in only one of the cones,
except for points on the borders (see Figure 2 for a two-dimensional example, where
the borders of the cones are the dashed lines). Let us call R the face that is included in
the cone (or one of the cones) opposing the one containing pestA(ti).

Lemma 6. If pestB(ti) , pestA(ti), P
(
d(pestA(ti), pestB(ti+1)) ≥

⌈
dest(ti)

(
1 + ε

2

)⌉)
≥ 1

2d

Proof. All points of R are at distance
⌈
dest(ti)

(
1 + ε

2

)⌉
of pestA(ti) (for this, consider one

of the endpoints of the face, like α on Figure 2, for which all coordinates are the same
as for pestB(ti), except one, where the absolute value is larger by

⌈
ε
2 dest(ti)

⌉
). Finally, as

the random walk is symmetric, and by Lemma 5, we have a probability of at least 1
2d

that Bob sends the (i + 1)-th message by going on face R.

In Lemma 6, the movement of Alice is not taken into account. Let us call Π the
hyperplane parallel to R and containing pestA(ti) (see Figure 3 for a two-dimensional
example).

Remark 1. As Π contains pestA(ti), the center of IlcA, Π divides IlcA into two halves of
the same size.

Lemma 7. At least half of the points p of IlcA satisfy :

d(p, pestB(ti+1)) ≥ d(pestA(ti), pestB(ti+1)).
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pestA(ti)

pestB(ti)

β

α

⌈
ε
2 dest(ti)

⌉
cone

containing
pestA(ti)

cone
opposing
the one

containing
pestA(ti)

Fig. 2: Two-dimensional example: one of the outer bounds of I+
lc is always sufficiently

far away from pestA(ti)

Proof. By definition of the L1-norm, and because Π is parallel to R, if we draw, on Π , a
polygon connecting d points that are the projections of pestB(ti+1) parallel to the d axes
(γ and δ on Figure 3), then all points of Π inside this polygon (including the borders)
are all at the same distance to pestB(ti+1).

Also, by definition of R, pestA(ti) is inside the polygon. Thus, all points of the poly-
gon are at a distance to pestB(ti+1) equal to d(pestA(ti), pestB(ti+1)).

If we draw the L1-ball of center pestB(ti+1) and of radius d(pestA(ti), pestB(ti+1)), then
the polygon is one of the faces of the ball. By Remark 1, we have that at least half of the
points from IlcA are outside this ball, with a distance to pestB(ti+1) higher than the radius
of the ball.

Lemma 8. As long as pestB(ti) , pestA(ti), P
(
dest(ti+1) ≥

⌈
dest(ti)

(
1 + ε

2

)⌉)
≥ 1

2d+1

Proof. As Alice does not get out of IlcA, we know that pestA(ti+1) ∈ IlcA. By Lemma 7,
and by symmetry of the random movement, d(pestA(ti+1), pestB(ti+1)) ≥ d(pestA(ti), pestB(ti+1))
with probability 1

2 . Thus, the result is the same as for Lemma 6, but with half as much
probability.

As we consider increasing jumps, we have to adapt Lemma 2 as follows.

Lemma 9. For all x ∈ Iid, r∆r (x) ≥ d0(1 + ε).

Proof. x ∈ Iid ⇒ x ≥ d0(1 − ε) ⇒ r∆r (x) ≥ r∆r (d0(1 − ε)) since r is increasing,
implying that r∆r (x) ≥ d0(1 − ε)

(
1 + ε

2

)∆r
since ∀x, r(x) ≥ x

(
1 + ε

2

)
. Moreover, since,

∆r ≥
log(1+ε)−log(1−ε)

log(1+ ε
2 ) , then (1 − ε)

(
1 + ε

2

)∆l
≥ (1 + ε) and x ∈ Iid ⇒ r∆r (x) ≥ d0(1 + ε)
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R

Π

×pestA(ti)

×
pestB(ti)

×
pestB(ti+1)

γ

δ

Fig. 3: Two-dimensional example: when Bob gets on R, half of the possible positions
of Alice are further away.

We are now ready to prove Theorem 7:

Proof. This proof is very similar to Theorem 3. By Lemma 8, we know that the proba-
bility of having a r-jump (as defined in Equation 4) at an instant ti, is at least 1

2d+1 .
With phases of length Φ and j the index of the phase containing jumps from m( j−1)Φ

to m jΦ−1, we have (i) S j: there is at least one i ∈ ~( j − 1)Φ; jΦ� such that dest(ti) < Iid

(ii) S′j: the phase j is composed only of r-jumps. (iii) X j = 1 if S j is true, 0 otherwise
(iv) X′j = 1 if S′j is true, 0 otherwise (v) Y = j if X j = 1 and Xk = 0 for every k < j and
(vi) Y ′ = j if X′j = 1 and X′k = 0 for every k < j. Thus, Y denotes the index of the first
phase during which Bob gets out of Iid.

If S′j is true, then dest(t jΦ) = rΦ(dest(t( j−1)Φ)). Thus, if Φ = ∆r, by Lemma 9, S′j ⇒
S j, so that X′j = 1⇒ X j = 1.

Therefore Y ′ = j⇒ X′j = 1⇒ X j = 1⇒ Y ≤ j and finally E[Y] ≤ E[Y ′] (8)

Moreover, we know that Y ′ follows a geometric distribution with parameter P(S′j) ≥
1

(2d+1)Φ
(because each jump has at least probability 1

2d+1 of being increasing), and E[Y ′] ≤(
2d+1

)Φ
. Thus, for Φ = ∆r, by Equation 8, we have E[Y] ≤

(
2d+1

)Φ
. Since Y denotes

the index of the first phase during which Bob gets out of Iid, M′ ∈ ~(Y − 1)Φ; YΦ�.
In particular, M′ ≤ YΦ and E[M′] ≤ Φ ×

(
2d+1

)Φ
. Finally, Proposition 1 proves that

E[M] ≤ Φ ×
(
2d+1

)Φ
.
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Remark 2. If only one player moves, then E[M] ≤ ∆r ×
(
2d

)∆r

Proof. The proof is the same as for Theorem 7, noticing that d(pestA(ti), pestB(ti+1)) =

dest(ti+1).

5 Continuous Movement, Discrete Time

In this section, we present bounds on M for a different definition of random movement.
A moving player uniformly selects, at each instant, a “speed” in [0; 1], and a direction,
and moves with that speed for one time unit.

Here, in order to represent the fact that messages can only be sent on discrete values
of the clock, messages can be sent only on integer values of time. That is, movements
will always finish before the dispatch of a message. For example, if Bob moves from
position 2.6 to 1.96 and the bound of Ilc is 2.17, then the next message will contain
position 1.96. This is exactly what happens with Algorithm 1.

5.1 1D Case

As we have seen on page 4, in one dimension, the movement simply consists in adding
to the position a random number following a uniform distribution on [−1, 1].

The problem is that when player X gets out of IlcX(ti), then the next position may
take several values: for example, if X got out by the left, then pestX(ti) may take any
value smaller than the left bound of IlcX(ti) and greater to this bound minus one (the
biggest movement he may have done at the last instant before getting out).

Nevertheless, Theorem 6 still holds true in this setting:

Theorem 8. If ε ∈ ]0; 1[ , then with two players following a continuous random move-
ment on R, E[M] ≤ ∆l × 4∆l

To see this, we will again call mi the transformation between dest(ti) and dest(ti+1).
This time we will say:

mi ∈

L if dest(ti+1) ≤ dest(ti)
(
1 − ε

2

)
R if dest(ti+1) ≥ dest(ti)

(
1 + ε

2

) (9)

By definition ofAlc, mi has to be in either L or R, and the probability is actually 1
2 for

both cases.
Using this, we have a result comparable to Lemma 2:

Lemma 10. For all x ∈ Iid, if j − i ≥ ∆l, and all mk ∈ L for k ∈ ~i, j − 1� then
m j−1 ◦ m j−2 ◦ · · · ◦ mi(x) ≤ d0(1 − ε).

Proof. Let us call m∆l
i = m j−1 ◦ m j−2 ◦ · · · ◦ mi.

Let us assume that mk ∈ L . All the mk are increasing, as mk is necessary of the form
x 7→ x

(
1 − ε

2

)
− ak, with ak ∈ [0, 1]. Thus, we have x ∈ Iid ⇒ x ≤ d0(1 + ε)⇒ m∆l

i (x) ≤

m∆l
i (d0(1 + ε)), what implies that m∆l

i (x) ≤ d0(1 + ε)
(
1 − ε

2

)∆l
, since ∀k ∈ ~i, j − 1� and

∀x, mk(x) ≤ x
(
1 − ε

2

)
. Moreover, since, ∆l ≥

log(1−ε)−log(1+ε)
log(1− ε

2 ) and log
(
1 − ε

2

)
< 0, then

(1 + ε)
(
1 − ε

2

)∆l
≤ (1 − ε) and x ∈ Iid ⇒ m∆l

i (x) ≤ d0(1 − ε)
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The proof of Theorem 8 is then a direct translation of the proof of Theorem 6.

5.2 2D Case

As we have seen on page 4, in two dimensions, the movement consists in choosing an
angle θ between 0 and 2π, and moving a distance ρ between 0 and 1 in that direction.
Thus, at each instant k, a moving player X chooses θk and ρk following continuous
distributions respectively on [0, 2π] and [0, 1], so that pactX(k + 1) = pactX(k) + (ρk, θk),
where (ρk, θk) is the vector with polar coordinates ρk and θk.

With this sort of continuous movement, it is more suited to use the euclidean dis-
tance. Thus, IlcB will become a circle.

Our result is as follows:

Theorem 9. With Γ = 2 log(1+ε)−log(1−ε)

log
(
1+ ε

√
2
+ ε2

4

) , with two players following a random continu-

ous movement in two dimensions as previously defined, and implementingAlc we have:
E[M] ≤ Γ × 8Γ.

First, we will thrive to prove an intermediate result, considering only increasing

jumps. Let us call ρ : x 7→ x
√(

1 + ε2

4 + ε
√

2

)
.

Lemma 11. With two players moving, P
(
dest(ti+1) ≥ ρ

(
dest(ti)

))
≥ 1

8

This time again, we will call Bob the player who gets out the first of his set of
authorized positions withAlc, meaning that Bob is the player to initiate communication
at instant ti+1.

In this setting, as the distance we use is the euclidian distance, IlcB(ti) takes the form
of a circle of center pestB(ti) and of radius ε

2 dest. In order to identify an increasing jump,
we will look at the annulus of inner circle IlcB(ti), and with an outer circle of radius
ε
2 dest + 1. We will call R the portion of this annulus on the opposite side of pestA(ti),
(represented as a red hatched zone on Figure 4), that deviates not more than π

4 from
the straight line between pestA(ti) and pestB(ti). More formally, with t the intersection
between IlcB and the line (pestA(ti)pestB(ti)), on the opposite side of pestA(ti), then R ={
s, ̂spestB(ti)t ∈

[
− π4 ,

π
4

]
and d(s, pestB(ti)) ∈

[
ε
2 dest(ti), ε2 dest(ti) + 1

]}
.

Lemma 12. In two dimensions, P(pestB(ti+1) ∈ R) = 1
4 .

Proof. As a player does not move more than one distance unit per turn, the first turn
where player Bob is outside of IlcB(ti), they will be in the annulus. Thus pestB(ti+1) is
inside the annulus.

Without loss of generality, let us consider only the movement between Bob’s initial
position (pactB(0), actually equal to pestB(0)) and the position at time of the first message
(pactB(t1), actually equal to pestB(t1)). Let us call T = (p0, p1, . . . , pt1 ) the trajectory
taken by player Bob to get on pestB(t1), with pt the position Bob had at instant t, where
t ∈ ~0, t1�. We have p0 = pactB(0), p1 = pactB(1), etc., and pt1 = pestB(t1).

See Figure 5 for a representation of the values.
Let us consider following random variables:
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×

pestA(ti)

×
pestB(ti)

dest(ti)

t

π
4

R

α

β

ε
2 dest(ti)

1

Fig. 4: Representation of the points corresponding to an increasing jump

R

p0

p1

p2

p3

pt1

Rmin

Rmin + 1

Fig. 5: Representation of the values used in proof of Lemma 12
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– R, taking the value of d(p0, pti ).
– Θ, taking the value of the angle between the dashed line of Figure 5 and the position

pti .

Let us consider following event:

– Tk: the trajectory T is of length k.

As the random walk consists in randomly picking an angle θt and a distance ρt at
every instant t, we have that pt1 = p0 + (ρ0, θ0) + (ρ1, θ1) + · · · + (ρt1−1, θt1−1), where
(ρt, θt) is the vector of radius ρt and angle θt in polar coordinates.

Let us consider that Tk is true. Because the θt all follow a uniform distribution, the
probability that pt1 = p0 + (ρ0, θ0) + (ρ1, θ1) + · · · + (ρt1−1, θt1−1) is “the same” as the
probability that pt1 = p0 + (ρ0, θ0 +γ)+ (ρ1, θ1 +γ)+ · · ·+ (ρt1−1, θt1−1 +γ). More exactly,
P(a ≤ Θ ≤ b) = P(a + γ ≤ Θ ≤ b + γ) for all γ (regardless of the value of R).

Additionally,
∫ 2π

0 fΘ(x)dx = 1, leading to the fact that
∫ π

4

− π
4

fΘ(x)dx = 1
4 .

We also have
∫ Rmin+1

Rmin
fR(x)dx = 1. Thus,

∫ Rmin+1
Rmin

∫ π
4

− π
4

fΘ,R(x, y)dxdy = 1
4 .

Moreover, we have
∫ Rmin+1

Rmin

∫ π
4

− π
4

fΘ,R(x, y)dxdy = P(pestB(t1) ∈ R). As we supposed

that Tk is true, we have that P(pestB(t1) ∈ R | t1 = k) = 1
4

By the law of total probability, we have that
∑+∞

0

(
P
(
pestB(t1) ∈ R | t1 = k

)
× P(ti =

k)
)

= P(pestB(t1)) ∈ R) = 1
4 .

This remains true if we replace instants 0, 1, 2, . . . , t1 by ti, ti + 1, ti + 2, . . . , ti+1,
proving this lemma.

Lemma 13. With two players moving in two dimensions,

P
(
dest(ti+1) ≥ ρ

(
dest(ti)

)
| pestB(ti+1) ∈ R

)
≥

1
2

.

Proof. Let us assume pestB(ti+1) ∈ R.
The two points of R that are closest to pestA(ti) are the rightmost and leftmost points

that are both on R and the border of IlcB(ti) (α and β on Figure 4). Thus, if we call d′

the distance between pestA(ti) and α, we have d(pestA(ti), pestB(ti+1)) ≥ d′.
As can be seen on Figure 6, the value of d′ can be resolved by the law of cosines,

relatively to the value of dest(ti):

d′ =

√
dest(ti)2 +

ε2

4
dest(ti)2 − dest(ti)2ε cos

(
3π
4

)
= dest(ti)

√(
1 +

ε2

4
+

ε
√

2

)
This corresponds to ρ.

Thus, P(d(pestA(ti), pestB(ti+1)) ≥ ρ(dest(ti))|pestB(ti+1) ∈ R) = 1.
We may then notice that, as player Alice remains inside IlcA(ti), the probability that

pestA(ti+1) is further away from pestB(ti+1) than pestA(ti) is at least one half. This gives us
the final result.

Proof. The proof of Lemma 11 is now immediate with Lemma 12, Lemma 13, and the
law of total probability.
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×

pestA(ti)

×
pestB(ti)

dest(ti)

3π
4

π
4 ε

2 dest(ti)

d′

α

β

Fig. 6: Representation of the different values used to measure an increasing jump

Lemma 14. With Γ =
log(1+ε)−log(1−ε)

log
(√

1+ ε2
4 + ε

√
2

) , for all x ∈ Iid, ρΓ(x) ≥ d0(1 + ε).

Proof. x ∈ Iid ⇒ x ≥ d0(1 − ε) ⇒ ρΓ(x) ≥ ρΓ(d0(1 − ε)) since ρ is increasing, so that

ρΓ(x) ≥ d0(1 − ε)
(√(

1 + ε2

4 + ε
√

2

))Γ
. Moreover, by definition of Γ, by applying the

right exponential, (1 − ε)
(√(

1 + ε2

4 + ε
√

2

))Γ
≥ (1 + ε), so that finally x ∈ Iid ⇒

ρΓ(x) ≥ d0(1 + ε).

Proof. We may now prove Theorem 9, with the same reasoning as Theorems 3, 4 and
7.

By Lemma 11, we know that the probability of having a jump that increases distance
more than ρ at an instant ti, is at least 1

8 .
With phases of length Φ, and

1. S j: there is at least one i ∈ ~( j − 1)Φ; jΦ� such that dest(ti) < Iid

2. S′j: the phase j is composed only of jumps increasing more than ρ.
3. X j = 1 if S j is true, 0 otherwise
4. X′j = 1 if S′j is true, 0 otherwise
5. Y = j if X j = 1 and Xk = 0 for every k < j and
6. Y ′ = j if X′j = 1 and X′k = 0 for every k < j. Thus, Y denotes the index of the first

phase during which Bob gets out of Iid.
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We know that Y ′ follows a geometric distribution with parameter P(S′j) ≥
1

8Φ (be-
cause each jump has at least probability 1

8 of being increasing), and E[Y ′] ≤ 8Φ. Thus,
for Φ = Γ, and by Lemma 14, we have E[Y] ≤ 8Γ. Since Y denotes the index of the first
phase during which Bob gets out of Iid, M′ ∈ ~(Y − 1)Γ; YΓ�. In particular, M′ ≤ YΓ
and E[M′] ≤ Γ × 8Γ. Finally, Proposition 1 proves that E[M] ≤ Γ × 28Γ.

5.3 3D Case

Theorem 10. With Γ = 2 log(1+ε)−log(1−ε)

log
(
1+ ε

√
2
+ ε2

4

) , with two players following a random contin-

uous movement in 3D and implementingAlc, we have
E[M] ≤ Γ × 14Γ.

The reasoning is very similar to the two dimension case, the main difference being
that IlcB is now a sphere. Thus, R is now a portion of a spherical shell (instead of an an-
nulus). The same definition ofR as in the 2D case is still valid: with t the intersection be-
tween IlcB and the line (pestA(ti)pestB(ti)), on the opposite side of pestA(ti), then we have
the definition R =

{
s, ̂spestB(ti)t ∈

[
− π4 ,

π
4

]
and d(s, pestB(ti) ∈

[
ε
2 dest(ti), ε2 dest(ti) + 1

]}
.

It can also be seen as the previous R from Figure 4, but rotated with respect to the line
(pestA(ti)pestB(ti)).

Lemma 15. In the 3D case, P
(
pestB(ti+1) ∈ R

)
= 2−

√
2

4 .

Proof. As a player does not move more than one distance unit per turn, the first turn
when player Bob gets outside of IlcB(ti), they will be in the spherical shell of inner
sphere IlcB(ti), and with the outer sphere of same center, but with a radius longer of one
distance unit ( ε2 dest(ti) + 1).

Let us use the spherical coordinates, centered on pestB(ti), and with the z axis point-
ing towards t. The solid angle covered by R is the surface, on the unit sphere, of the

zone where the colatitude is smaller than π
4 :

∫ π
4

0

∫ 2π
0 sin(φ)dθdφ = 2π

(
1 −

√
2

2

)
.

As the whole space is represented by 4π, this means that R takes
(

1
2 −

√
2

4

)
≈ 15%

of the spherical shell.
As movement is symmetric with respect to the center of the spherical shell, we have

probability
(

1
2 −

√
2

4

)
that pestB(ti+1) ∈ R.

Lemma 16. With two players moving in 3D, P
(
dest(ti+1) ≥ ρ

(
dest(ti)

)
| pestB(ti+1) ∈ R

)
≥

1
2 .

Proof. On all planes containing the line (pestA(ti)pestB(ti)), the points of R closest to
pestA(ti) follow the construction of α and β on Figure 6. Thus, as in the proof of Lemma
13, P

(
d
(
pestA(ti), pestB(ti+1)

)
≥ ρ

(
dest(ti)

)
| pestB(ti+1) ∈ R

)
= 1.

For any point x outside IlcA(ti), more than half of the points y inside IlcA(ti) satisfy
d(x, y) ≥ d(x, pestA(ti)). Thus, as pestA(ti+1) remains inside IlcA(ti), and pestB(ti+1) ∈ R ⇒
pestB(ti+1) < IlcA(ti), we get our result.
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Proof. To prove Theorem 10, we first use Lemma 15 and Lemma 16: P
(
dest(ti+1) ≥

ρ
(
dest(ti)

))
≥ 2−

√
2

8 . Thus, with phases of length Γ, the probability for a phase to contain

only increasing jumps is
(

8
2−
√

2

)Γ
≈ 14Γ. Finally, E[M] ≤ Γ × 14Γ.

6 Experiments

In order to analyze in practice the performance of Alc, we propose simulation results.
More precisely, we execute both Alc and Aid with the same set of random movements
(of one or two players) and we display M, the number of message exchanges induced by
Alc at the time the first message is induced byAid. We perform simulations for different
values of the initial distance (d0) and maximum error (ε) and for each set of parameters.
Everywhere, we repeat the experiments 500 times to account for the stochastic nature
of the movements. In all the plots, the blue lines indicate the average value, while the
orange bars indicate the median values and the boxes indicate Q1, the first quartile
and Q3, the third quartile. The lower whisker takes the values of the lowest reference
point that is in the range [Q1 − 1.5 × IQR; Q1], where IQR = Q3 − Q1. Similarly, the
upper whisker shows the highest reference point in the [Q3; Q3 + 1.5 × IQR] range.
The results corresponding to the theoretical framework considered in Section 3 and
Section 4 are presented in Section 6.1, while we present in Section 6.2 simulation results
based on actual traces of games of Heroes of Newerth [1]. In particular, we use these
traces to compare the behavior of Alc with the behavior of solutions that are currently
implemented in online games and that are based on fixed frequency messages.

6.1 Synthetic Traces

(a) ε = 0.1 (b) ε = 0.5

Fig. 7: One player moving, random walk, 1D: M depending on initial distance
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(a) ε = 0.1 (b) ε = 0.5

Fig. 8: One player moving, random walk, 1D: messages per time unit

Fig. 9: One player moving, random walk, 1D: value of M depending on ε, for d0 = 400

The first set of simulations correspond to the setting of Section 3.1. In the 1D case,
when only one player moves, the evolution of M with the initial distance is depicted
in Figure 7a (ε = 0.1) and Figure 7b (ε = 0.5). As expected, we can observe that
M remains bounded and does not depend much on the initial distance (except when the
distance is very small with respect to movement amplitudes). Even though constants are
smaller than those proved in Theorem 3 and Theorem 4, the results are as expected by
the theoretical analysis. Figure 8a and Figure 8b depict the actual number of messages
sent when usingAlc, as a function of the initial distance for ε = 0.1 and ε = 0.5. We can
observe that the number of messages generated byAlc quadratically decreases with the
distance between the players (slope -2 in log-log scale), which is a desirable property,
since maintaining an approximate distance should be less expensive when player avatars
are distant. We also plot the evolution of M with the given maximal tolerated error, ε in
Figure 9. We can observe that M increases when ε gets close to 1, what suggests that
the dependance on ε in our theoretical bounds is unavoidable.
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We performed the same set of experiments when both players move in a 1D-space,
2D-space, or 3D-space, and obtained very similar results, which are not included here
for the sake of conciseness, but can be found below.

(a) ε = 0.1 (b) ε = 0.5

Fig. 10: Two players moving, random walk, 1D: M depending on initial distance

(a) ε = 0.1 (b) ε = 0.5

Fig. 11: Two players moving, random walk, 1D: messages per time unit withAlc

When both players move, as can be seen on figures 10, 11, and 12, curves show
similar behavior as when only one player moves.

Figures 13, 14, and 15 show results for two players moving in a 2D-space. In this
case too, M remains bounded when the initial distance changes (from approximately
4 times more messages in 1D to approximately 6 times more messages in 2D). We
also observe that the actual number of messages quadratically decreases with the initial
distance, as in the 1D case.
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Fig. 12: Two players moving, random walk, 1D: M depending on ε, for d0 = 400

(a) ε = 0.1 (b) ε = 0.5

Fig. 13: Two players moving, random walk, 2D: M depending on initial distance

In the 3D case, E[M] still does not depend on the initial distance, as can be seen
on Figure 16a and Figure 16b. Surprisingly, its value appears no longer to depend on ε,
Figure 18 happens to no longer grow when ε is close to 1. This may hint that it would
be possible to get upper bounds on M that do not depend on ε ; but as ε is already a
constant, the theoretical benefit would be small.

This qualitative analysis is exactly the same when considering continuous move-
ment instead of a random walk, as can be seen on figures 20 through 22 (Appendix
A): M has an upper bound, and depends on ε, except maybe for the 3D case, and the
number of messages generated byAlc decreases quadratically with the distance.

6.2 Actual Traces

Comparison of Alc with fixed frequency strategies. In order to assess the perfor-
mance of Alc, we finally compare it to the fixed frequency strategy that is used in
practice in actual games [2], and denoted byA f f . This algorithm does not take a maxi-
mal error as parameter, but a fixed wait time w between message exchange of any pair
of players. The traces provided in [8] contain time-stamped information on 98 games
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(a) ε = 0.1 (b) ε = 0.5

Fig. 14: Two players moving, random walk, 2D: messages per time unit withAlc

Fig. 15: Two players moving, random walk, 2D: M depending on ε, for d0 = 400

of Heroes of Newerth [1] and were used in [9] with the purpose of building mobility
models. They contain the evolution of positions of 10 players in each trace. Therefore,
a wait time of w induces 9∗10

w messages at each time step (on average). Even if a smaller
w makes information more accurate, A f f comes without guarantee on maximal error
violations, contrarily to Alc. To evaluate the performance of A f f in terms of accuracy,
we simulated its behavior for several values of ε and w. We counted the number of
violations per time unit, that is, the number of distance estimates among the players
that violate Equation 2. As there are ten players, and each one has an estimate for all
nine others, the number of violations has a maximum of 90 for one time unit. Figure
19 depicts the number of violations for different values of ε and w. We observe that the
number of violations increases very quickly with w.

In order to perform a fair comparison betweenAlc andA f f , we used the following
protocol. First, we ran Alc for several values of ε, and we measured the resulting av-
erage number of messages per time unit. Then, we plugged obtained value as w time
in A f f , so that we can compare both algorithms in terms of accuracy (to estimate ap-
proximated distance) while they use exactly the same average message frequency. The
average proportion of violations is shown in bold font in Table 1, along with the optimal
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(a) ε = 0.1 (b) ε = 0.5

Fig. 16: Two players moving, random walk, 3D: M depending on initial distance

(a) for ε = 0.1 (b) ε = 0.5

Fig. 17: Two players moving, random walk, 3D: messages per time unit withAlc

number of messages, that is, Aid, for different values of ε. We can observe that Alc is
far better thanA f f for satisfying Equation 2. For instance, it sends only 10.44 messages
per time unit for ε = 0.1. With A f f , the only way to ensure Equation 2 is by having
w = 1. This would lead to 90 messages per time unit with w = 1, that is, about ten times
more thanAlc.

Influence of better prediction strategies. As mentioned in Section 1.1, Dead-
reckoning is a popular method for reducing the error on positions of elements of an
online game. This is why we wanted to see if adding Dead-reckoning adds to the ben-
efits of our algorithm. To do this, we rely on a position prediction algorithm, which is
based on the speed. Speed is calculated based on the two last known positions, and is
used to extrapolate the previous known position. The results of the same experiment
as above, with this prediction algorithm, are shown on Table 1, within parenthesis. We
can observe that the number of message exchanged inAlc decreases more significantly
than Aid. Moreover, Dead-reckoning seems to be more beneficial to Alc than to A f f ,
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Fig. 18: Two players moving, random walk, 3D: M depending on ε, for d0 = 400
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Fig. 19: Number of violations with A f f , depending on time to wait between two mes-
sages, with ε = 0.1 (red), ε = 0.5 (black), and ε = 0.9 (blue), on log-log scale

as the decrease in message number is not compensated for in terms of violations by the
improved prediction precision.

7 Conclusion and future work

In this paper, we propose a distributed algorithm Alc, for each player to estimate the
distance separating them from each other player, with a relative condition on the error.
This type of property is very desirable in DVE such as online games. We prove that (in
a restricted setting), this algorithm is optimal in terms of number of message exchanges
up a to a constant factor. We also show through simulations, based on actual game
traces, that Alc enables to perform significantly less communications than the fixed
frequency algorithm which is commonly used in distributed games, while provided a
performance guaranty.

This work opens several perspectives. The first one is to extend the theoretical re-
sults proved in this paper, either by improving the constants or by increasing the scope
of the results and to consider more sophisticated prediction algorithms. Another longer
term perspective is to extend the set of properties that can be maintained in DVEs at
the price of re-computations and a (constant) increase in exchanged messages. It was
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Table 1: Comparison betweenAlc andA f f , without Dead-reckoning and (with Dead-
reckoning)

Aid Alc A f f

ε msg/turn messages per turn violations w msg/turn violations
0.1 3.26 (2.23) 10.44 (4.71) 0.0 9 (19) 10.00 (4.73) 2.9% (5.13%)
0.2 1.49 (1.24) 5.41 (3.02) 0.0 17 (30) 5.30 (3.00) 2.74% (4.66%)
0.3 0.91 (0.84) 3.60 (2.26) 0.0 25 (40) 3.60 (2.25) 2.6% (4.26%)
0.4 0.63 (0.62) 2.65 (1.81) 0.0 34 (50) 2.65 (1.80) 2.53% (3.88%)
0.5 0.46 (0.46) 2.07 (1.50) 0.0 43 (60) 2.09 (1.50) 2.42% (3.51%)

known in the literature that maintaining the positions was possible with no increase in
the number of messages and the present paper shows that a constant increase is enough
to maintain relative distances. Extending the class of such properties is highly desirable,
both in theory and practice.
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A Figures for Continuous Movement



34 O. Beaumont, T. Castanet, N. Hanusse, and C. Travers

(a) M depending on initial distance, for ε =

0.1
(b) M depending on initial distance, for ε =

0.5

(c) Messages per time unit with Alc, for ε =

0.1
(d) Messages per time unit with Alc, for ε =

0.5

(e) M depending on ε, for d0 = 400

Fig. 20: Values in the 1D case when both players follow a continuous movement
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(a) M depending on initial distance, for ε =

0.1
(b) M depending on initial distance, for ε =

0.5

(c) Messages per time unit with Alc, for ε =

0.1
(d) Messages per time unit with Alc, for ε =

0.5

(e) M depending on ε, for d0 = 400

Fig. 21: Values in the 2D case when both players follow a continuous movement
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(a) M depending on initial distance, for ε =

0.1
(b) M depending on initial distance, for ε =

0.5

(c) Messages per time unit with Alc, for ε =

0.1
(d) Messages per time unit with Alc, for ε =

0.5

(e) M depending on ε, for d0 = 400

Fig. 22: Values in the 3D case when both players follow a continuous movement
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