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ABSTRACT. This study aims to investigate the effects of both the microstructure and 
void on the high-cycle fatigue behavior of metallic  materials. To deal with  this  matter,  
finite element analyses of polycrystalline aggregates are carried out, for different 
configurations of  crystalline orientations, in order to estimate the mechanical state, at 
the grain scale, in the vicinity of a small elliptical hole. Fatigue criteria are then 
applied to predict the average fatigue limit in fully reversed tension, for different defect 
sizes and ellipse aspect ratios. The constitutive models and the fatigue criteria are 
calibrated using experimental data obtained from specimens made of 316L austenitic 
steel. The predictions are then confronted to experimental trends. 
 
 
INTRODUCTION   
 
The high-cycle fatigue strength of metallic material, in addition to being strongly 
influenced by the microstructure, may be significantly affected by the presence of 
defects and it is thus important to be able to quantify their detrimental effect. Murakami 

and Endo have shown that the defect size area , expressed by the square root of the 
area of the defect projected in the direction of the maximum principal stress, is a crucial 

parameter to determine the fatigue strength [1]. The authors even considered area  as 
a sufficient geometrical parameter to estimate the fatigue limit. However, Billaudeau et 
al. have shown from fatigue tests carried out on specimens made of low carbon steel 
(C36) and containing an artificial notch that the fatigue limit is affected not only by the 

size of the defect area  but also by its morphology [2]. More precisely, the authors 

have highlight that, for a given defect size area , an increase in the stress 

concentration factor tK : 

- induces a significant decrease in the fatigue strength in the case where  2;1tK , 

- leads to a slight increase in the fatigue limit in the case where  4;2tK . 



 

The objective is to analyze this issue from a numerical point of view, in the continuation 
of previous works [3,4]. More precisely, finite element analyses of two-dimensional 
polycrystalline aggregates, loaded in fully reversed tension, are conducted in order to 
estimate the mechanical state, at the grain scale, in microstructures containing a small 
elliptical hole. Two fatigue criteria are then calibrated thanks to the results of the FEA 
and experimental data obtained from fatigue tests conducted on specimens, made of 
316L austenitic steel, with and without a hemispherical notch [3]. The predictions of 
these criteria are then determined for different defect sizes and ellipse aspect ratios and 
are compared to the experimental trends. 
 
 
POLYCRYSTALLINE AGGREGATE MODEL 
 
Finite element model of the polycrystalline aggregates 
The geometry of the polycrystal is defined by a partition of a two-dimensional square-
shaped domain into convex polygonal subdomains obtained with a Voronoi 
decomposition. Due to the dimension chosen for the polycrystal (see Fig. 1), 3265 seeds 
are used in the Voronoi tessellation so that the mean grain size in the numerical model 
corresponds to the mean grain size of the material tested [3]. The geometry of the 
polycrystal is then regularized by deleting small geometric entities (edges and arcs of 
ellipses) to prevent unreasonable mesh refinement. The microstructure obtained 
following the regularization process is illustrated in Fig. 1.  

 

 
 
Figure 1. Shape and dimensions of the polycrystalline aggregate and the homogeneous 

matrix used in the finite element analysis. 
 

In addition to the polycrystal, an elasto-plastic homogeneous matrix is modeled in 
order to avoid applying the boundary conditions directly on the edges of the 
microstructure. The polycrystal is subjected to three loading cycles in fully reversed 
uniaxial tension along the y-direction thanks to a homogeneous stress field applied on 
the upper and lower edges of the matrix. 



 

The defect considered in this study is an elliptical hole characterized by its length a2  
in the x-direction and its length b2  in the y-direction. Three defect sizes a2  (95 µm, 
365 µm and 510 µm) and three ratios ab (0.5, 1.0 and 1.5) are studied. 

The orientation of the crystal coordinate system of each grain, with respect to the 
reference frame of the polycrystal, is characterized by three angles called Euler angles. 
Ten orientation sets, made up of 3265 triplets of Euler angles selected to be 
representative of the texture of the material tested [3], are used. Consequently, the 
response of 10 different realizations of microstructure is investigated per defect size. 

The mesh generator Gmsh [5] is used to discretize the geometries with three-node 
triangular elements. Each grain is discretized in average with 14 elements and a 
generalized plane strain hypothesis is adopted. 
 
Constitutive model of the single crystal 
Due to the face-centered cubic lattice of the austenitic crystals, the elastic behavior is 
described by a linear cubic elasticity model characterized by three material parameters 

1111C , 1122C  and 1212C  defined in the crystal coordinate system. The values of these 

parameters, calibrated for a Fe–18Cr–14Ni steel by Teklu et al. [6], are given in Table 
1. The constitutive model used to describe the single crystal viscoplastic behavior of the 
crystals comes from the work of Méric et al. [7]. In this model, the plastic slip, which 

occurs along the close-packed lattice planes  111  in the close-packed directions  101 , 

is described for each slip system s  with the following flow rule: 
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where s  is the resolved shear stress acting on the slip system s , 0r  is the initial critical 

shear stress, s  and sr  are respectively the kinematic and isotropic hardening variables 

associated to the slip system s , K  and n  are the parameters controlling the viscosity. 
The resolved shear stress s  acting on the slip system s , characterized by a unit vector 

normal to the slip plane sn  and a unit vector collinear to the slip direction sl , can be 

computed from the stress tensor   as follows:  
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Non-linear hardening rules are used to describe the isotropic hardening variable sr  and 

the kinematic hardening variable s : 
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The material parameters of the single crystal viscoplaticity model have been calibrated 
from low-cycle fatigue tests conducted in several loading conditions: tension, torsion 
and combined out-of-phase tension and torsion [4]. These parameters are summarized in 
Table 1. 
 

Table 1. Material parameters of the single crystal constitutive model for a 316L steel 
 

Cubic elasticity Viscosity Kinematic hardening 

1111C (GPa) 1122C (GPa) 1212C (GPa) K (MPa.s n1 ) n  c (MPa) d  

198 125 122 10 10 2.04 510  3.63 310  

 

Isotropic hardening 

0r (MPa) Q (MPa) b  0h  1h  2h  3h  4h  5h  

87.0 1.06 4.88 1 1 0.438 77.2 4.31 2.41 

 
Constitutive model of the homogeneous matrix 
The elastic behavior of the homogeneous matrix is described by a linear isotropic 
elasticity model characterized by the Young’s modulus E  and the Poisson’s ratio  . 
The rate-independent plasticity model is defined by a von Mises yield function:  
 

      RXXf ydddd
  :
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with y ,  , X  and R corresponding respectively to the initial yield stress, the stress 

tensor, the backstress tensor and the isotropic hardening variable. The superscript d  

indicates the deviatoric part of a given tensor. The non-linear functions describing the 
rates of the isotropic hardening variable R and of the backstress tensor are defined by 
Eqs 6 and 7. 
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In Eqs 6 and 7, p  and 
p  denotes respectively the equivalent plastic strain and the 

plastic strain tensor and Q , B , C  and   are material parameters. The set of 



 

parameters of this elasto-plastic constitutive model have been calibrated for a 316L steel 
[4] and are given in Table 2. 
 

Table 2. Material parameters of the macroscopic constitutive model for a 316L steel 
 

Isotropic elasticity Yield stress Isotropic hardening Kinematic hardening 

E (GPa)   y (MPa) Q (MPa) B  C (MPa)   

194 0.284 129 142 6.88 7.05 510  3.08 310  

 
 
FATIGUE CRITERIA 
 
Definition of the fatigue criteria 
The determination of the fatigue strength requires specific fatigue criteria to accurately 
estimate the detrimental effect of a small notch. In order to address this issue, two 
multiaxial fatigue criteria, previously discussed, are considered in the present work: 
- a probabilistic fatigue criterion based on a distribution of the crack initiation threshold, 
- a deterministic criterion relying on a fatigue damage process zone. 
Three mechanical quantities, computed from the mesoscopic stress tensors (i.e. the 
stress tensor averaged per grain) obtained during the last loading cycle of the FEA, are 
used in the definition of these fatigue criteria:  the amplitude of the shear stress  na , 

the amplitude of the normal stress  nan,  and the mean normal stress  nmn, , each 

acting on the slip plane of unit normal vector n  (see Ref. [3] for the definitions of these 

quantities). 
 
Probabilistic fatigue criterion 
The probabilistic criterion, presented in [3], is based on the hypothesis that a fatigue 
crack initiates on the slip plane of unit normal vector n  if the amplitude of the shear 

stress  na  acting on this plane exceeds a threshold  nth
a . Assuming that this 

threshold is a Weibull distributed random variable, the probability  nPFn  that a fatigue 

crack initiation occurs on the slip plane is: 
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where  n0  and m  are respectively the scale and the shape parameters of the Weibull 

distribution. In order to account for the effect of the normal stress on the fatigue 
strength, the scale parameter  n0  depends on the mean and the alternating part of the 

normal stress (respectively mn,  and an, ) as follows: 
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The failure probability of a grain FgP  is then assumed to correspond to the maximum 

value, among the set of four slip planes  , of the failure probability  nPFn : 
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The weakest-link hypothesis, which means that the polycrystal fails when the weakest 
grain fails, is used in order to define the failure probability of a polycrystal FaP  

containing gN  grains:  
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Deterministic fatigue criterion 
The deterministic criterion discussed in this section has been presented in a previous 
study [4]. Summarily, this criterion relies on the assumption that the fatigue crack 
initiation occurs if an equivalent stress eq  averaged over a given grain set PZG  

exceeds a threshold  : 

 

    
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with  gf  corresponding to the volume fraction of the grain g . The equivalent stress eq  

is defined for each grain as the maximum value, among the set of four slip planes  , of 
a linear combination of  na ,  nan,  and  nmn,  : 

 
      nnn mnana

n
eq ,,max  


    (13) 

 
The grain set PZG , which can be seen as a fatigue damage process zone, is build in two 

steps. First, the grain with the highest value of equivalent stress eq , is determined. This 

critical grain constitutes the first element of the set PZG . Then, the grains included in 

the first nN  neighborhoods are added to the set PZG . A grain g  is considered in the 

neighborhood n  if at least one of its nodes is on the boundary of one of the grains in the 
neighborhood 1n . 
 



 

Calibration and predictions of the fatigue criteria 
The calibration of four parameters is required for each criterion: 
- a  and   which describe the detrimental effect of  nan,  on the fatigue strength, 

- b  and   which characterize the sensitivity of the fatigue limit to  nmn, , 

- '0  and   which are related to the fatigue limit in terms of  na , 

- m  and nN  which allow to weight the effect of a notch on the fatigue strength. 

The results from the FEA of microstructures loaded at the average fatigue limit level, in 
different loading conditions, are required to calibrate these parameters. The loading 
conditions, applied on the unnotched polycrystal and selected to obtain various 
distributions of the local stress states, are the fully reversed uniaxial tension, the fully 
reversed shear and the uniaxial tension with a loading ratio 1.0R . In the case of the 
probabilistic (resp. deterministic) criterion, the parameters m  (resp. nN ) is imposed 

and the remaining parameters are calibrated such that the failure probability of the 
polycrystal FaP  (resp. the weighted equivalent stress weq, ) is, in average on the 10 

different realizations of microstructures, equal to 0.5 (resp.  ) for each of the three 

loading conditions. The values of m  and nN  are chosen so that the fatigue limits 

predicted in fully reversed uniaxial tension, in the case where 0.1ab  and for the 

three defect sizes a2 , are as much as possible in accordance with those determined 
experimentally. 

The fatigue criteria are then used to predict the average fatigue limits for the other 
geometries of elliptical hole studied. For a given ratio ab  and defect size a2 , the 

average fatigue limit is predicted by determining the macroscopic stress amplitudes 

ayy,  which have to be applied to the matrix such as, in average on the 10 realizations: 

- FaP  is equal to 50% in the case of  the probabilistic criterion, 

- weq,  is equal to   in the case of  the deterministic criterion. 

The predictions obtained for each criterion are presented, along with the experimental 
data, in a diagram " ayy, - a2 " (see Fig. 2). It can be observed that both criteria 

satisfactorily predict the detrimental effect of a circular hole on the fatigue limit in fully 
reversed tension. Indeed, the maximum differences observed do not exceed 6% in the 
case of the probabilistic criterion and 10% in the case of the deterministic criterion. 
Moreover, the ellipse aspect ratio ab  does not affect significantly the predictions of 

the fatigue criteria, at least for the considered ranges of defect sizes a2  and ratio ab , 

especially in the case of the probabilistic criterion where the difference does not exceed 
5%. Nevertheless, it appears that an increase in the aspect ratio ab , i.e. an increase in 

the radius of curvature ab2  in the critical regions of the ellipse, leads to a decrease 

of the average fatigue limit. These results are in accordance with the experimental 
trends observed by Billaudeau et al. [2] in the case of notches with stress concentration 
factors ranging from 2 to 4. 

 



 

 
 

Figure 2. Fatigue limits determined experimentally and predicted by the criteria as a 
function of defect size a2  for different ellipse aspect ratio ab . 

 
 
CONCLUSIONS 
 
The mechanical state at the grain scale, in polycrystals containing a elliptical hole and 
loaded in fully reversed tension,  has been obtained thanks to FEA. The predictions 
provided by two multiaxial fatigue criteria have been compared to the experimental 
fatigue limits in the case of a circular hole. A good agreement has been generally 
observed for the considered defect sizes. Moreover, both criteria predict that a decrease 
in the aspect ratio of the ellipse ab  leads to a slight increase in the average fatigue 

limit in fully reversed tension. These predictions are consistent with the experimental 
trends discussed by Billaudeau et al. in the case of a low-carbon steel, for the range of 
stress concentration factor studied. 
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