
HAL Id: hal-02486126
https://hal.science/hal-02486126v1

Submitted on 20 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ontologies in engineering: the OntoDB/OntoQL
platform

Yamine Aït-Ameur, Mickael Baron, Ladjel Bellatreche, Stéphane Jean, Eric
Sardet

To cite this version:
Yamine Aït-Ameur, Mickael Baron, Ladjel Bellatreche, Stéphane Jean, Eric Sardet. Ontologies in engi-
neering: the OntoDB/OntoQL platform. Soft Computing, 2017, 21 (2), pp.369-389. �10.1007/s00500-
015-1633-5�. �hal-02486126�

https://hal.science/hal-02486126v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24851

To cite this version: Ait Ameur, Yamine and Baron, Mickael and

Bellatreche, Ladjel and Jean, Stéphane and Sardet, Eric Ontologies in

engineering: the OntoDB/OntoQL platform. (2017) Soft Computing, 21 (2).

369-389. ISSN 1432-7643

Official URL

DOI : http://dx.doi.org/10.1007/s00500-015-1633-5

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Ontologies in engineering: The OntoDB/OntoQL platform

Yamine Ait-Ameur · Mickaël Baron · Ladjel Bellatreche · Stéphane

Jean · Eric Sardet

Abstract Ontologies have been increasingly used over

the past few decades in a wide range of application do-

mains spanning both academic and industrial commu-
nities. As ontologies are the cornerstone of the Seman-
tic Web, the technologies developed in this context, in-
cluding ontology languages, specialized databases and
query languages, have become widely used. However,
the expressiveness of the proposed ontology languages
does not always cover the needs of specific domains.
For instance, engineering is a domain for which the
LIAS laboratory has proposed dedicated solutions with
a worldwide recognition. The underlying assumptions
made in the context of the Semantic Web, an open
and distributed environment, do not apply to the con-
trolled environments of our projects where the correct-
ness and completeness of modeling can be guaranteed
to a certain degree. As a consequence, we have devel-
oped over the last decades a specialized standard on-

tology language named PLIB associated with the On-
toDB/OntoQL platform to manage ontological engi-
neering data within a database. The goal of this paper
is threefold: (i) to share our experience in manipulat-
ing ontologies in the engineering domain by describ-

ing their specificities and constraints, (ii) to define a
comprehensive classification of ontologies with respect

to three main research communities: Artificial Intelli-

Yamine Ait-Ameur
IRIT/ ENSHEEIHT, Toulouse, France
E-mail: yamine@enseeiht.fr

Mickal Baron, Ladjel Bellatreche, Stéphane Jean
LIAS/ISAE-ENSMA - University of Poitiers
1, Avenue Clement Ader, 86960 Futuroscope Cedex, France
E-mail: {baron,bellatreche,jean}@ensma.fr

Eric Sardet
CRITT Informatique
Futuroscope Cedex, France
E-mail: {sardet}@critt-informatique.fr

gence, Databases and Natural Language Processing and

(iii) to present a persistent solution, called OntoDB,

for managing extremely large semantic data sets asso-
ciated with an ontological query language, called On-
toQL. These objectives are illustrated by several ex-
amples that show the effectiveness and interest of our
propositions in several industrial projects in different
domains including vehicle manufacturing and CO2 stor-
age.

1 Introduction

The notion of ontology has initially been defined by
Gruber as an explicit specification of a conceptualiza-
tion (Gruber, 1993). An ontology is composed of a
set of shared classes, properties and relationships with

reasoning mechanisms. It has the ability to represent
formally real-world knowledge in a shared way. These
favorable characteristics of ontologies have led aca-

demicians and industrials coming from various com-
munities to adopt them: Artificial Intelligence (Ma-

tuszek et al, 2006), Natural Language Processing (Es-
tival et al, 2004), Databases/Data Warehouses (Sugu-
maran and Storey, 2006; Noy, 2004), Information Re-

trieval (Graupmann et al, 2005), etc. Some researchers

have even pushed the idea of having a universal ontol-

ogy1.

The construction of ontologies is time consuming.

As a consequence, several research efforts have been
conducted to tackle this problem. These studies may

be classified into three main categories: (i) manual con-
struction as is the case of the Cyc Ontology (Matuszek
et al, 2006), (ii) community-based construction such as

1 Entity Relationship Conference 2011 Panel on New Di-
rections for Conceptual Modeling.

Freebase2 where volunteers are invited to contribute to
the ontology definition and (iii) automatic construction

in which the ontology is automatically extracted from
the Web such as YAGO (Suchanek et al, 2008) and DB-

pedia (Mendes et al, 2012) or from relational databases

(Sequeda et al, 2011). These ontologies can be defined
for specific domains, including biology (Apweiler et al,
2004) and engineering (IEC61360-4, 1999), but can also

be defined for general-purpose applications. The SUMO
ontology (Niles and Pease, 2001) and the OWL-FC on-

tology (Maio et al, 2012) are examples of such upper-
level ontologies.

Despite this wide and diverse usage of ontologies,

most of them are defined with the same technologies

defined in the context of the Semantic Web. These
technologies include the RDF-Schema (Brickley and

Guha, 2004) and OWL (Bechhofer et al, 2004) lan-

guages to define ontologies, specialized databases such

as Jena (Wilkinson, 2006) to manage a large amount
of Semantic Web data and the SPARQL language
(Prud’hommeaux and Seaborne, 2008) to query them.

Admittedly, these technologies are well adapted in the
context of the Semantic Web, but may not cover the
majority of domains and applications. This observa-
tion is based on our experience in the engineering do-
main for data integration applications. In this partic-
ular setting, we have identified two major drawbacks
of Semantic Web technologies concerning the expres-
siveness of Semantic Web languages and their under-
lying assumptions. Indeed, data integration projects in
the engineering domain require a precise definition of

technical information characterizing components (e.g.,
units of measurement) and an explicit representation of
the modeling context of each defined concept (e.g., the
point of view taken to characterize a component). More-
over, as the Semantic Web is an open and distributed

environment, the corresponding ontology languages ad-
here to the open world assumption, which means that

any statement that is not known can be true, and do
not make the unique name assumption, i.e., that if two
objects have different identifiers, they are different. As

pointed out in (de Bruijn et al, 2005), these assumptions
can be misleading for engineers who are used to define
constraints for checking the validity of the defined com-

ponents and not to infer additional knowledge. If these
assumptions are natural in the Semantic Web, they are
less plausible in controlled environments where stan-
dard ontologies exist and where engineers adhere to a
protocol which ensures a certain degree of correctness

and completeness of modeling.
As existing ontology technologies were not adapted

to our industrial projects in engineering, we have de-

2 http://www.freebase.com

signed over the past two decades a set of technologies
to represent and manage ontologies in the engineering

domains. These technologies are based on the standard
PLIB language (officially ISO 13584) to define ontolo-

gies (Pierra, 2003). The design of this language was

initiated in the early 90’s to develop an approach with
standard models for the automatic exchange and inte-
gration of engineering component databases. This on-

tology language is equipped with a specialized database
called OntoDB to store engineering data and their asso-

ciated ontologies (Dehainsala et al, 2007). As the SQL
language was not sufficient to query such a database,
the OntoQL exploitation language was designed (Jean

et al, 2006). This language follows the design logic of

SQL by proposing sub-languages to define, manipulate
and query both the data and the ontologies that de-

scribe them. The goal of this paper is to present this

set of technologies and to describe several projects with

large companies in various domains such as the automo-
tive and petroleum industries where these technologies
have been successfully put into practice on real-case

settings.

This paper is structured as follows. Section 2
presents our point of view on the notion of ontology.
As this notion has been used by different communities,
all ontologies are not alike. Consequently, we propose a
taxonomy of ontologies and present the onion model we
use to design ontologies. In Section 3 we present the par-
ticularities of the engineering domain that have led us
to design the PLIB language. This language is presented
in Section 4 after showing the limitations of Seman-
tic Web languages to fulfil the requirements previously
identified for the engineering domain. As a large quan-
tity of data can be described by ontologies, Section 5
reviews the persistent solutions that have been devel-
oped for storing ontologies and Section 6 details the On-

toDB database that we have designed. This database is
equipped with the OntoQL exploitation language de-
scribed in Section 7. These technologies have been used

in many industrial projects. Section 8 presents several
use cases. Finally, Section 9 concludes and introduces

future work.

2 A layered view of an ontology

From our point of view, an ontology is a formal and
consensual dictionary of categories and properties of
entities of a domain and the relationships that hold

among them (Jean et al, 2007b). This definition high-

lights three main characteristics of an ontology.

1. Formal. An ontology describes a domain by defin-
ing a set of classes and properties using a formal lan-

guage. This ontology language can be used to check
the consistency of an ontology and to perform au-

tomatic reasoning on the ontology-defined concepts
and instances.

2. Consensual. An ontology is agreed and shared by

a community. Thus, contrary to a conceptual model,
an ontology is not designed for a particular applica-

tion. It describes the knowledge of a domain to fulfil

the needs of the members of a community.
3. Universal identification. Each concept of an on-

tology has a universal identifier. Using this identi-
fier, an ontology concept and the semantics it rep-
resents can be referenced from any environment.

All ontologies are not alike (Cullot et al, 2003;
Pierra, 2003). On the one hand, Linguistic Ontologies

(LO) represent the meaning of the words used in a par-
ticular universe of discourse, in a particular language.
On the other hand, Conceptual Ontologies (CO) repre-
sent the categories and properties of objects available
in some part of the world. The two following types of
concepts exist in a CO (Gruber, 1993).

– Primitive concepts are those concepts ”for which
we are not able to give a complete axiomatic def-

inition”; we must rely on a textual documentation
and on a background of knowledge shared with the
reader.

– Defined concepts are those concepts ”for which the
ontology provides a complete axiomatic definition
by means of necessary and sufficient conditions ex-
pressed in terms of other concepts”.

We call Canonical Conceptual Ontologies (CCO),
the ontologies that only include primitive concepts.
They define a canonical vocabulary in which each in-
formation in the target domain is captured in a unique

way. And we call Non Canonical Conceptual Ontologies

(NCCO) the ontologies that also include defined con-
cepts. They introduce new reasoning capabilities and
equivalence operators that can be used to define map-

pings between different ontologies.
The three categories of ontologies introduced previ-

ously suggest a layered view of ontologies (see Figure 1),
we called the onion model of domain ontologies (Jean
et al, 2007b). In this view, a kernel CCO provides a

formal foundation to represent and exchange efficiently
the knowledge of a domain. A NCCO layer extends the

canonical vocabulary with concepts equivalence to en-
compass all concepts broadly used in the domain. The

NCCO concepts can be defined with different operators

such as class expressions defined in description logic.
Finally, a LO layer adds the natural language repre-
sentation of the CCO and NCCO concepts for person-

system and person-person communication.

The onion model is illustrated in Figure 2 with

a toy ontology in the mechanics domain. The CCO

part of this ontology is composed of the Prod-
uct, Rolling Bearing, Roller Bearing and Row of Balls

classes and properties such as mass or width. Based

on this CCO, two NCCO classes and one NCCO prop-
erty are defined. For instance, the 2 Rows Ball Bearing

class is defined as the ball bearings that use two rows of

balls. The formal definition of this class is given using a
syntax borrowed from description logic. The life length

NCCO property is defined as a function of different
properties. Finally, the LO part of this ontology con-
sists of the linguistic description of these classes and

properties. For instance, the Rolling Bearing class is

described with two English names and a French name.
In the next section, we detail the specific requirements

for representing ontologies in the engineering domain.

LO

CCO

NCCO

Class expression:

Description Logic

Property expression:

Derivation functions

Property

expression:

F-Logic

Others

 …

Operators to define NCCO concepts from CCO or NCCO concepts

Operators to define LO concepts from CCO or NCCO concepts

Fig. 1 The onion model of domain ontology

3 Ontologies in engineering

The engineering domain includes different fields such as
aeronautics, transport, mechanics or energy. In most of

these engineering fields, products to be designed are es-
sentially assemblies of components. An important part

of the engineering knowledge concerns the used compo-

nents. It includes the criteria used to select a compo-
nent, the conditions of component usage, the behaviour
of components and the pertinent component represen-

tation for each specific discipline (Paasiala et al, 1993).

Uses

[1-2]

width

n, Frad, Fax

life_lengh

Rolling_Bearing

Ball_Bearing

mass

Roller_BearingRow_of

_Balls

1_Row_Ball_Bearing 2_Rows_Ball_Bearing

Product used_in

[0-1]

EN =“Rolling Bearing”,

“Rolling-element Bearing

FR = “Roulement”

CCO Class

CCO Property

Inheritance

LO description

NCCO Property

NCCO Class

Fig. 2 Example of the onion model

The example presented in the next section illustrates

the specificities of this domain.

3.1 Motivating example

Characteristics

• d: internal diameter
• D: external diameter
• B: width
• Nmin: …
• Nmax: …

Conditions of use

• n: rotation speed
• Frad: radial load
• Fax: axial load

Behavior

• L 10h: life length

depends on

Fig. 3 Nature of properties of a component

A rolling bearing (or rolling-element bearing) is a
mechanical component used to connect and to transmit
load between two cylindrical shapes having the same
axis but different diameters and rotational movements.

The main properties of a rolling bearing are presented
in Figure 3. Characteristic properties include width, in-
ternal and external diameters. These properties can

have different values depending on the units of mea-

sure used. This scale should be explicitly represented.

Requirement 1 (Units of measure)

An ontology in engineering should explicitly define

the units of measure of values and more generally

it should describe all the technical information of a

component.

The behaviour of a component is also characterized

by properties. For example, the property life length cor-
responds to the length of the time period during which

the bearing will behave correctly. The value of this
property depends on the number of revolutions done

by the bearing, and of the load it must support. Math-
ematically, the bearing life-length is a function of the

velocity (i.e., rotational speed), the radical load and the

axial load.

Requirement 2 (Context of values)

When a value of a property depends on a context

of evaluation, this evaluation context should be ex-

plicitly defined.

Figure 3 presents a 2D representation of a ball bear-

ing. But other points of view of this component are used
in engineering such as 3D representation or schematic

representation (see Figure 4). Each point of view de-
scribes a ball bearing with different characteristics.

Requirement 3 (Point of view)

If several perspectives are needed to describe a com-

ponent, these perspectives should be explicitly de-

fined in an ontology and the same real-world compo-

nent should be described according to these different

perspectives.

Ball bearing

2D - Representation

Schematic representationCalculus

Simplified 3D representation

. . .
Fig. 4 Different points of view on the same component

From our experience acquired from designing on-
tologies in engineering (described in Section 8), it is

not difficult to reach a consensus among several com-
ponents suppliers on all the major properties of a rolling

bearing. But it is impossible to reach a consensus on the
properties that should be represented in the database of

each supplier. Thus, a class should describe all its ma-
jor properties. Concerning the properties, as different
types of rolling bearings exist such as ball bearings or
roller bearings, the diameter property should be defined

at the level of circular bearing where it is meaningful.

Requirement 4 (Context of concepts)

The modeling context in which each class or prop-

erty is defined should be made explicit and mini-

mized. Each class should define all its major proper-

ties, at least in some broad context of a community.

Each property should be defined in the context of a

class: its domain of application.

Suppliers of components often need to extend a

shared ontology with classes and properties that are

not consensual.

Requirement 5 (Locality of interpretation)

Importation of resources from one ontology into an-

other one should be possible while controlling the

impact of the former over the interpretation of the

latter.

In addition to these five main ontology modeling
requirements, the engineering domain often relies on a
set of assumptions described in the next section.

3.2 Underlying Assumptions

Open and Close World Assumptions. Under the
Close World Assumption (CWA), any statement that
is not known to be true is false. On the contrary, un-
der theOpen World Assumption (OWA), any statement
that is not known can be true. These assumptions play

an important role for constraints. Under the CWA, the
constraints are checked; under the OWA they are used
for inference. In the engineering domain, a lot of con-

straints are defined to describe precisely the behaviour
of a component. Engineers that define these constraints

expect that they will be used to check the validity of the
registered components. Moreover, the CWA is adapted
in the engineering context where a number of reference
ontologies are already standardized or are in the stan-
dardization process either within IEC or within ISO

(Pierra, 2003). These standards are rather stable and
the knowledge can be considered complete. In this con-
trolled domain, it is often possible to guarantee a cer-

tain degree of correctness of modeling. On the contrary,
the OWA is often made in the Semantic Web as cor-
rect and complete modeling cannot be guaranteed on

the Web. Moreover, an ontology can be intentionally

under-specified expecting that others will reuse and ex-

tend it. Thus the OWA is adapted in an open context
like the Web. Several studies have reported the need
to use the CWA in controlled sections of the Semantic

Web (de Bruijn et al, 2005; Knorr et al, 2011).
Unique Name Assumption. Under the Unique

Name Assumption (UNA), if two objects have differ-
ent identifiers, they are different. This assumption is

often made in combination with the CWA in complete

and controlled domain. Contrariwise, the UNA is often

not made in domains where the OWA is assumed. In-
deed, without the UNA assumption, if two instances (or

classes, or properties) have different identifiers, we may

still derive by inference that they must be the same.
From our experience, the UNA is more adapted to many
engineering problems that use ontologies as solutions

(Pierra, 2003). On the Web, the UNA is often consid-
ered less plausible.

Typing Assumption. Under the OWA, classifica-

tion of instances is one of the key reasoning capability.
For example, an instance having a value for a property p

can be classified in the domain of p. Thus, a Weak Typ-

ing Assumption (WTA) is often made in the Semantic

Web: (1) an instance may belong to any number of non
connected ontology classes, (2) a property can be de-
fined without a domain and (3) an instance can define a

value for any property of the ontology. Under the WTA,
a diverse set of data, ranging from structured data to
unstructured data, can all be represented (Duan et al,
2011). But the cost of this flexibility is that the efficient
management of such data is difficult (Aluç et al, 2014).

Instances in engineering domains are often compo-
nents which are fairly structured data (relational-like).

In such domain, a Strong Typing Assumption (STA)
can be made: (1) each instance belongs to exactly one
class called its basis class that is the minimum for the

subsumption order of all the belonging classes of this
instance, (2) each property is defined in the context of
a class that defines its domain of application, and is as-

sociated with a range, and (3) only properties that are
applicable in the context a class are used for describing
its instances. This assumption can be used to define an
efficient storage layout of engineering data as we will
see in Section 6.

We have seen in this section that the engineering do-
main has specific requirements and assumptions. This

observation has led us to define and use a specific on-
tology language.

4 Ontology languages

Several ontology languages have been defined in the
last decade. The most well-known ontology languages
are RDF-Schema (Brickley and Guha, 2004) and OWL

(Bechhofer et al, 2004). These languages have been de-
fined in the context of the Semantic Web and thus they
make the OWA assumption and do not make the UNA

assumption. We first present these two languages. Then
we present the OWL-Flight language, which was de-
fined mainly to eliminate some of the pitfalls in con-
ceptual modeling with OWL induced by these assump-

tions. As these languages do not fulfil the five require-
ments introduced in the previous section, we finally

present the PLIB ontology language specifically defined
for the engineering domain.

4.1 RDF-Schema

RDF-Schema or RDFS is based on RDF. RDF is used
to defined assertions as a set of triples (subject, predi-
cate, object). The subject is a URI that denotes a re-

source. The predicate is a property that characterizes

the resource. The object is the value of the property, a
literal value or a URI of another resource.

RDF defines few built-in predicates, mainly the typ-

ing relationship (rdf:type) and the property constructor

(rdf:Property). Thus, it is not considered as an ontol-
ogy language. RDFS extends RDF with a set of built-in
predicates to define an ontology. The main predicates
of RDFS are the following.

– Class definition. rdfs:Class and rdfs:subClassOf
define a hierarchy of classes. Names and descrip-

tions can be assigned to classes using rdfs:label and
rdfs:comment.

– Property definition. rdfs:domain and rdfs:range

define the domain and range of an RDF property. A
hierarchy of properties can be defined using rdfs:sub-
PropertyOf. As classes, properties can be described
using rdfs:label and rdfs:comment.

– Datatype definition. rdfs:Datatype defines data-
types of an RDF property. The value of a property
can be an instance of a class or a literal (rdfs:Lite-

ral). A literal can be typed using a set of allowed
XML datatypes.

– Instance definition. Instances are defined in RDF

with two kind of triples: (i, rdf:type, C) states that
i is an instance of C and (i, p, v) defines v as the

value of i for the p property.

RDFS defines few restrictions on the usage of these

constructors. In particular, it does not separate the dif-
ferent levels of abstraction: instances, ontologies and
ontology language. As a consequence, an instance can
be a class and thus it can have instances. Likewise, a
property can be a class and thus it can be the domain
of another property.

RDFS does not provide non canonical constructs
and thus it is oriented toward the definition of CCO
ontologies. But as we have seen, it does not have specific
constructors to fulfil the modeling requirements of the

engineering domain identified in the previous section.

4.2 OWL

OWL extends the expressive power of RDFS. Three

versions of this language have been defined : OWL Lite,

OWL DL and OWL Full with an increasing expressive
power (OWL Lite ⊂ OWL DL ⊂ OWL Full). OWL Lite

and OWL DL ensure the decidability of reasoning but
they are not compatible with RDFS since they restrict
the usage of RDFS constructors. In contrast, OWL Full

is compatible with RDFS but is not decidable. OWL DL
extends RDFS with the following main constructors.

– Ontology definition. owl:Ontology defines an on-

tology as a set of classes and properties in a names-

pace. This ontology could be described by many
characteristics such as its version (owl:versionInfo)

or its compatibility with other ontologies.
– Class definition. owl:Class is the OWL class con-

structor corresponding to rdfs:Class. The owl:equi-

valentClass class axiom states that two classes have
the same instances. On the contrary, two classes
that do not share any instances could be defined
as disjoints (owl:disjointWith). In addition to the
usual class constructor, OWL includes NCCO class
constructors. The owl:unionOf, owl:intersectionOf,
owl:complementOf boolean operators define respec-
tively a class as a union, intersection or comple-
ment of other classes. The owl:allValuesFrom (re-
spectively, owl:someValuesFrom) restriction defines
a class as all instances for which all values (respec-
tively, at least one value) of a given property are
members of a given class. owl:hasValue defines a
class as all instances that have a given value for a
given property. Finally, owl:oneOf defines a class by
enumerating its instances.

– Property definition. Two types of properties ex-
ist: owl:ObjectProperty and owl:DatatypeProperty.
They specialize the rdf:Property to distinguish prop-
erties whose range is a class from properties whose
range is a datatype. The owl:equivalentProperty
property axiom states that two properties have the
same values. OWL introduces property character-

istics. A property can be defined as symmetric

(owl:SymmetricProperty), transitive (owl:Transiti-

veProperty), injective (owl:InverseFunctionalPro-
perty), as a function (owl:FunctionalProperty) or
as the inverse of an other property (owl:inverse-

Of). Finally, cardinality of a property can be spec-
ified using owl:minCardinality, owl:cardinality and
owl:maxCardinality.

– Instance definition. An instance is defined with a
set of RDF triples. The owl:sameAs (resp. owl:diffe-
rentFrom) can be used to assert the equality (resp.

inequality) of two instances.

Contrary to OWL Full which is fully compati-
ble with RDFS, OWL DL imposes constraints on

RDFS constructors to ensure decidability of reason-
ing (e.g., a constructor cannot be applied to an-

other constructor). The last version of OWL, OWL

Lite, imposes more restrictions than OWL DL to
simplify the reasoning process. It forbids the us-
age of owl:unionOf, owl:complementOf, owl:oneOf and

owl:hasValue. Moreover, owl:minCardinality, owl:cardi-
nality and owl:maxCardinality could only be used with

the 0 or 1 values.

Thus, OWL extends RDFS with mainly non canon-
ical constructors to enhance the reasoning possibilities.
But it does not introduce constructors to fulfil our re-
quirements and it does not make the assumptions often

made in the engineering domain.

4.3 OWL Flight

OWL Flight (de Bruijn et al, 2005) was designed to
overcome some pitfalls in the OWL language for model-
ing specific domains. These pitfalls are mainly the result
of the assumptions made in OWL: the OWA without

the UNA (see Section 3). As a consequence of these
assumptions, the semantics of OWL may seem coun-
terintuitive for database and software engineers who
are used to the CWA and UNA assumptions. For ex-
ample, if a 2 Rows Ball Bearing has more than two
Row Of Balls, instead of raising an error, this knowl-
edge can be used to infer an equality between the
Row Of Balls.

As a consequence, OWL Flight is a variant of OWL

based on Logic Programming that extends it with car-
dinality and value constraints, meta-modeling and pow-
erful datatype support. Compared to OWL DL the con-

structors not included are enumerated classes, individ-

ual (in)equality assertions, complements and property

restrictions in complete class definitions. Contrary to
OWL DL, OWL Flight adopts the UNA and constraints
are interpreted under the CWA i.e, they are used to

check the data instead of being used to infer additional

knowledge.

The PLIB ontology language presented in the next

section was designed in the same spirit as OWL Flight.
This language adopts the CWA and UNA which are

more intuitive for engineers who work in domains such
as mechanics or aeronautics. Moreover, this language
adds important features (e.g., units of measure or points
of view) which are missing in OWL for modeling pre-

cisely such domains.

4.4 PLIB

The PLIB ontology language (Pierra, 2003) is an inter-
national standard (ISO 13584) originally defined for ex-

changing and integrating automatically electronic cata-
logues of industrial components. Primitive concepts of a

technical domain being rather broad and complex, the

aim of this ontology model is to define precisely such
concepts. PLIB can be used to define ontologies using
the main following constructors.

– Class definition. PLIB classes are defined using
the item class constructor. Classes as other ontol-

ogy elements are identified by a universal identi-

fier named BSU (Basic Semantic Unit). They are
described by a textual description (name, synony-

mous names, definition, note, remark) that may be

given in different natural languages. This descrip-

tion can be completed with documents. PLIB classes
can be organized into a hierarchy using two opera-
tors: is a and case of. is a is the usual simple inher-

itance operator; case of is a multiple subsumption
relationship that does not imply inheritance of prop-
erties: the subsuming class should explicitly import
the useful properties. This last operator is particu-
larly useful for semantic integration (requirement 5).
It could also be used to introduce multiple inheri-
tance relationships in a PLIB ontology. In addition

to definition classes, PLIB has two other types of
classes: representation and view classes. Represen-
tation classes represent the additional properties

that result from a particular point of view (require-
ment 3). A representation class must be associated
with a definition class. Each instance of a repre-

sentation class is a view of an instance of a def-
inition class. This relationship is called is-view-of.
View classes represent the point of view correspond-
ing to each representation class: each representation

class shall reference a view class as its modeling con-
text.

– Property definition. The main property construc-

tor of PLIB is non dependent pdet. As classes, prop-
erties are identified by a BSU and characterized by
textual and/or graphical descriptions. Each PLIB

property must be associated to a class that rep-
resents its domain with the scope constructor (re-
quirement 4). PLIB has another property construc-
tor named dependent P DET for defining proper-

ties that depend upon a context parameter defined

by the condition DET constructor (requirement 2).
For example, the length of an axis depends upon its
temperature. This context can also be defined as a

function.

– Datatype definition. Primitive datatypes such
are integer or string are available in PLIB. They can

be associated with a unit of measure or a currency
(requirement 1). Technical datatypes are available

such as level type used to qualify a numeric value.

A class can also be used as a datatype with the
class instance type constructor. Finally, PLIB sup-

ports collections and enumerated datatype.

– Instance definition. A PLIB instance is defined
by a basis class and a set of property values. Thus,

PLIB does not support multi-instanciation (i.e.,
that an instance belongs to different classes not
linked by subsumption relationships). Instead, PLIB

supports the instance aggregate mechanism: an in-

stance may also be associated with any number of
discipline-specific classes that represent points of

view of a particular basis class.

Table 1 summarizes our comparison of the studied
ontology languages. As this table illustrates, RDFS fo-

cuses on defining CCOs with the assumptions of the Se-
mantic Web domain. OWL extends this language with
NCCO constructors borrowed from Description Logics.

OWL-Flight is a variant of OWL that interprets con-
straints under the CWA. Finally, the PLIB ontology
language focuses on defining precisely ontologies in the
engineering domain by providing specific constructors
for this domain. As we will see in Section 8, PLIB has
been used to define several standard ontologies in this
domain. With the development of these ontologies, a
large quantity of data described by ontologies has been
produced. In the next section, we describe the persistent
solutions that have been developed in the last decade

to manage such a large volume of ontological data.

5 Persistent solutions for ontologies

With the availability of standard ontology languages,
several large ontologies have been designed. One can

cite YAGO (Suchanek et al, 2008) and DBPedia (Men-
des et al, 2012) in the Semantic Web and standard on-

tologies for Electronic Components (IEC 61360-4) or
Laboratory Measuring Instruments (ISO 13584-501) in
the engineering domain. As a consequence, the need

to manage efficiently ontologies and their instances has
appeared. Several research efforts have been proposed

in the last decade to address this challenge. Two main
approaches have been followed. The first one consists in

natively representing the graph structure of RDF data

(e.g., gStore (Zou et al, 2011)). The second approach,
on which we focus in our work, uses relational database
management systems (RDBMSs) to store RDF data.

We call Ontology-Based Databases (OBDBs) these spe-

cialized databases. Examples of such systems are Oracle

Spatial and Graph (Das et al, 2004), OntoDB (Dehain-

sala et al, 2007), Jena SDB (Wilkinson, 2006), Sesame
(Broekstra et al, 2002), DLDB (Pan and Heflin, 2003),

3store (Harris and Gibbins, 2003), RStar (Ma et al,

2004), SW-Store (Abadi et al, 2007) or OntoMS (Park
et al, 2007). Systems such as RDF-3X (Neumann and
Weikum, 2008) or TripleBit (Yuan et al, 2013) can be

considered hybrid approaches as they use native storage
structures which are not graphs. Despite being studied

for more than a decade, the efficient management of

ontologies and their instances is still an active research
topic (Aluç et al, 2014). In this section, we present the
diversity of OBDBs using two orthogonal criteria: the

storage layout and architecture used by OBDBs.

5.1 Storage layouts

Three main storage layouts are used for representing
ontologies and/or instances in an RDBMS (Sakr and
Al-Naymat, 2009): the vertical, binary and horizontal
storage layouts. These storage layouts are detailed be-
low and illustrated on a subset of our example of ontol-

ogy (Figure 5).

Triples

subject predicate object

ID1 type Ball_Bearing

ID1 mass 7,8

ID1 width 6,9

ID1 used_in ID2

ID2 type Product

ID2 desc Bicycle

Type

subject object

ID1 Ball_Bearing

ID2 Product

Desc

subject object

ID2 Bicycle

Ball_Bearing

subject mass width used_in

ID1 7,8 6,9 ID2

Product

subject desc

ID2 Bicycle

(a) Vertical Storage Layout (b) Binary Storage Layout

(c) Horizontal Storage Layout

Used_In

subject object

ID1 ID2

Mass

subject object

ID1 7,8

Width

subject object

ID1 6,9

Fig. 5 Example of the used storage layouts

The vertical storage layout. This storage layout is a

direct translation of the RDF data model. It consists of
a single triples table with three columns (subject, predi-

cate, object) (Harris and Gibbins, 2003). Since URIs are
long strings, additional tables may be used to store only

integer identifiers in the triples table. Three B+tree in-
dexes are usually used (Abadi et al, 2007; Sidirourgos
et al, 2008): one clustered on (subject, property, object)
and two unclustered on (property, object, subject) and

(object, subject, property). As this storage layout is a

RDFS OWL OWL Flight PLIB

Universal identifier URI URI URI BSU
Subsumption subClassOf subClassOf subClassOf is a

SubPropertyOf SubPropertyOf SubPropertyOf case of
NCCO constructors - Restriction Restriction Derivation function

- Boolean operators Boolean operators
Linguistic information label/comment label/comment label/comment name/synonym/definition

(multilingual) (multilingual) (multilingual) note/remark (multilingual)
Technical information - - - specific datatypes (units, level type)

- - - point of view (is-view-of)
- - - evaluation context

Assumptions OWA OWA Local CWA/UNA CWA/UNA
WTA WTA WTA STA

Table 1 Comparison of the main ontology languages

direct translation of the RDF data model, RDF queries
can be directly and easily translated into SQL queries.

But these queries often require a lot of self-join op-

erations on the triples table. RDF3X (Neumann and
Weikum, 2008) and Hexastore (Weiss et al, 2008) have
shown that this approach can still be employed with
good performance if the triples table is replaced by a
set of indexes.

The binary storage layout. This storage layout con-
sists in decomposing the triples table into a set of 2-
columns tables (subject, object), one for each predicate
(Abadi et al, 2007). In some implementations, the in-
heritance of classes and class membership are repre-
sented in a different way (e.g., by using the table in-
heritance mechanism of PostgreSQL (Broekstra et al,
2002)). Two indexes are usually used: a clustered B+
tree index on subject to locate them quickly and an un-
clustered B+ tree index on object. Abadi et al. have

shown that this approach can be very efficient if it is
implemented on a column-store DBMS (Abadi et al,
2007). By using different benchmarks, the performance

of this storage layout has been analysed in several stud-
ies (Schmidt et al, 2009; Sidirourgos et al, 2008; Dehain-
sala et al, 2007). Two drawbacks have been identified:
(1) when queries involve many properties, this storage

layout requires many joins (Dehainsala et al, 2007) and

(2) when properties do not appear as bound variables
in queries, this storage layout requires a lot of union

clauses and joins (Sidirourgos et al, 2008; Weiss et al,
2008).

The horizontal storage layout. This storage layout
consists in denormalizing the triples table by storing
them in a representation more similar to traditional

relational schemas (Wilkinson, 2006; Dehainsala et al,
2007). This relational representation can be obtained
either by grouping the properties that are defined to-

gether (Wilkinson, 2006) or by making some typing
assumptions (Dehainsala et al, 2007). In the latter

case, a table C(p1, . . . , pn) is created for each class C
where p1, . . . , pn are the set of single-valued proper-

ties used by at least one instance of the class. Multi-

valued properties are represented by two-column tables

as in the binary representation or by using the array
datatype available in relational-object DBMSs. Since
all instances do not necessarily have a value for all prop-

erties of the table, this representation can be sparse
which can impose performance overhead. Moreover, as
the binary storage layout, this storage layout does not

scale well when properties do not appear as bound vari-
ables in queries.

As we can see and as several benchmarking studies
have shown (Schmidt et al, 2009), each storage layout
is suitable for a different type of queries and there is
not a storage layout that gives the best performance
for all query workloads. As a consequence, Aluç et al.
have recently raised the challenge to define a workload-
aware storage layout for managing ontologies and their
instances (Aluç et al, 2014).

5.2 Architecture

Three main architectures called type I, type II and type

III architectures are used by OBDBs. The type I and II
architectures are illustrated in Figure 6 and an example
of type III architecture is presented in Figure 7:

– type I architecture: as in traditional databases, this
architecture uses two parts: the data part and the

system catalog. The data part stores the ontology
instances and the ontology schema (classes, prop-
erties, etc.). Thus, this architecture implies that

the same storage layout is used for ontologies and

their instances. Oracle Graph and 3store use this
architecture and store ontologies and instances in
a triples table (with specific indexes for Oracle

Graph);

meta_table

ID name

Id3 triples … …

��������	�	
��

	�	

Triples

subj pred obj

Id1 type Ball_Bearing

Id2 type Product

�

�

Type I architecture

meta_table

ID name

Id5 class … …

Id6 triples

	�	

�

�����
��� �

Class

ID name

Id3 Ball_Bearing

Id4 Product

Type II architecture

��������	�	
��

Triples

subj pred obj

Id1 type Ball_Bearing

Id2 type Product

Fig. 6 Type I and type II architectures of OBDBs

– type II architecture: in this architecture, ontologies
and their instances are stored in two different sche-
mas. Thus, this architecture decomposes the data-
base in three parts: the system catalog, the ontology
part and the data part. RStar (Ma et al, 2004) or
Sesame DB (Broekstra et al, 2002) are examples
of OBDBs that use this architecture. In this archi-
tecture the used ontology language is hard encoded
by the schema defined in the ontology part. Thus,
this architecture is not adapted if the used ontology
language changes regularly or if constructors from
other ontology languages need to be used;

– type III architecture: this architecture has been pro-
posed in OntoDB (Dehainsala et al, 2007) to be able
to extend the used ontology language in the OBDB
and to support different ontology languages in the
same database. This need is fulfilled by propos-
ing an architecture similar to the MOF architec-
ture (OMG, 2002) defined for managing different
metamodels. Thus this architecture is composed of 4
parts: the system catalog, the ontology part, the data
part and themetaschema part. This latter part plays
the same role for ontologies than the one played by
the system catalog for the data. This part is used to
store the used ontology language so that it can be
extended. More details are given in the next section.

6 The OntoDB ontology-based database

The OntoDB architecture has been initially designed
for storing PLIB ontologies and their instances. As the
PLIB ontology language regularly evolves and because
several other ontology languages exist, the first objec-
tive of this architecture was to support evolutions of the
used ontology language. As we have seen in Section 3,
instances in engineering domains are fairly structured
and respect the strong typing assumption. Thus, the
second objective of this architecture was to design an

efficient storage layout for such data. As we have seen
in the previous section, other solutions to store ontolo-
gies do not fulfil these objectives. As a consequence,
we have designed the OntoDB architecture presented
in the next section.

6.1 The OntoDB architecture

OntoDB is implemented on top of the PostgreSQL DB-
MS. It has a four-parts architecture depicted in Fig-
ure 7.

Class

rid name

1111 Ball_Bearing

Property

rid name

1121 width … …

Entity

ID name

11 class … …

Attribute

ID name

12 name … …

E1111

rid P1121 …

111 10 …

E1112

rid P1122 P1123 …

112 10 578 …

Meta_table

ID name

1 E1111 … …

Meta_column

ID name

2 P1121 …

Metaschema part

Ontology part

System catalog

Data part

(1)

(2)(3)

(4)

Fig. 7 Example of type III architecture: OntoDB

1. The system catalog (1) is a traditional part of
any DBMS. It contains system tables used to man-

age all the data contained in the database. In On-
toDB, it contains specifically the description of all
the tables and columns defined in the three other
parts of this architecture.

2. The data part (2) stores the ontology instances.
An instance belongs to an ontology class and is de-
scribed by a set of property values.

3. The ontology part (3) stores the ontologies that

define the concepts of the domain covered by the
database. OntoDB initially supports the PLIB on-

tology language.

4. The metaschema part (4) stores the ontol-
ogy language used. For the ontology part, the

metaschema part plays the same role as the one

played by the system catalog in traditional DBMSs.
It can be in particular used to extend the ontology
part and thus to modify the used ontology language.

In the following we detail the three main parts of

OntoDB.

6.2 The data part

The data part uses the horizontal storage layout. In this

storage layout, a table is associated to each concrete

class. Each one of these tables has a column named
rid to identify class instances. In addition, this table

has one column for each property used by at least one
instance of this class. To define the link between an

instance and its belonging class, the name of a table

(resp. of a column) is the concatenation of ”E” (resp.
”P”) with the identifier of the corresponding class (resp.

property).
Since properties are represented by columns, each

PLIB datatype has a specific representation in Post-

greSQL:

– primitive datatypes have equivalent datatypes in

PostgreSQL (e.g, the PLIB int type is coded as
INT8 in PotgreSQL);

– the reference type (class instance type) is used to

link two instances. Because of the polymorphism,
two columns are used to represent this dataype. The
name of the first one is suffixed by rid and provides
the identifier of the referenced instance. The second
one, suffixed by tablename stores the name of the
table in which the referenced instance is stored;

– the collection datatype (aggregate type) is repre-

sented by the ARRAY type of PostgreSQL. The
properties whose values are collections of instances
are represented by two columns of type ARRAY.

The first one, suffixed by rids, stores the identifiers
of the referenced instances. The second one, suffixed
by tablenames, stores the names of the tables in
which these instances are stored.

An example of the data part of OntoDB for our ex-

ample of ontology is depicted in Figure 8. Three tables
are created for the three classes Product, Ball Bearing
and Row Of Balls. The name of a table is defined as the
identifier of a class prefixed with E. For example, since
the identifier of Product is 1111, the name of the corre-
sponding table is E1111. Each table has a column rid
and columns for the used properties. Properties such

as width, name or length are represented by a single
column whose name is the identifier of the property
prefixed with P. The used in property corresponds to

an association between the Ball Bearing and Product
classes. It is represented by two columns P1124 rid to
store the identifier of the corresponding product and
P1124 tablename to know the table in which this in-

stance is stored (a sub-class of Product could be used).

The same representation is used for the uses property.
The only difference is that this property has a collection

dataype and thus the ARRAY datatype of PostgreSQL
is used.

E1113 (Ball_Bearing)

rid
P1123

(width)

P1124_rid

(used_in)

P1124_table

name (used_in)

P1125_rids

(uses)

P1125_tables

names (uses)

4 10 1 E1111 [2 ,3] [E1112, E1112]

E1111 (Product)

rid P1121 (name)

1 Bicycle

E1112 (Row_Of_Balls)

rid P1122 (length)

2 11

3 14

Fig. 8 Example of the data part of OntoDB

6.3 The ontology part

The ontology part is initially defined to store PLIB

ontologies. The PLIB language is defined in the EX-
PRESS formalism (Schenk and Wilson, 1994), which
is similar to the UML language. It defines an object-

oriented model by a set of entities with inheritance

relationships and attributes. The model of the PLIB

language is composed of hundred of entities and at-
tributes. Thus, instead of manually defining the stor-
age layout for this part, a program takes as input the
object-oriented representation of the PLIB language in
EXPRESS and generates the set of tables of this part
by applying a set of rules.

Each entity of the PLIB language is translated into
a table. The name of this table is the one of the cor-
responding entity suffixed by e. If an entity inherits
from another entity, its table inherits from the table
corresponding to the other entity thanks to the table
inheritance mechanism available in PostgreSQL.

The associations one-to-many or many-to-many are
represented by association tables. For an entity A linked
to an entity B by an association named a2b, an asso-
ciation table named A 2 a2b is created. This table has
the five following columns:

– rid identifies the association;
– rid s and tablename s contain respectively the iden-

tifier of an instance of the A entity and the table in

which this instance is stored (it can be a sub-entity
of A);

– rid d and tablename d play the same role as rid s

and tablename s for the entity B.

Moreover, to optimize the access to an association,
the table A e has a column a2b that is a foreign key

(association one-to-many) or a collection of foreign keys
(association many-to-many) pointing to the primary
key of the association table.

Example. Figure 9 presents a simplified ontology
language and the corresponding tables in the ontology
part of OntoDB. The ontology language is composed
of three entities. The Class and Property entity has an

attribute name. Class and Property is the super-entity

of the entities Class and Property which represent re-
spectively ontology classes and properties. These two

entities are linked by the scope association that repre-
sents the domain of a property. Each entity is translated

into a table in the ontology part of OntoDB (suffixed by
e). Each one of these tables has a column named rid to
identify the corresponding ontology elements. The hi-

erarchy of tables is conformed to the hierarchy of enti-

ties: the tables Class e and Property e inherit from the
Class and Property e table. Finally, the scope associa-

tion is represented by the Property 2 scope association
table. This table makes the link between a property
and a class. The scope column of the Property e table

is used to join this table with the association table.

Class_and_Property

PropertyClass
scope

STRING name

Class_e

rid name

1 Ball_Bearing

Class_and_Property_e

rid name

Property_e

rid name scope

10 width 100

Property_2_scope

rid rid_s tablename_s rid_d tablename_d

100 10 Property 1 Class

Storage layout of the ontology part

Ontology language

label

label

Entity

Primitive Datatype

Inheritance

Association

Fig. 9 Example of the ontology part of OntoDB

6.4 The metaschema part

In a database, the system catalog is used to record the
tables and columns of the data part. Thanks to this

part, a SQL query can be checked and the data part
can be extended with new tables and columns. The
same idea is applied on the ontology part in OntoDB.

As a consequence, OntoDB has a new part called the
metaschema. This part stores the ontology language

used to define the ontologies. The query language of
OntoDB (presented in the next section) leverages it to
extend dynamically the ontology language used.

The tables of this part correspond to the formal-
ism used to define the ontology language. In the case of

OntoDB, these tables correspond to the EXPRESS lan-
guage. These tables are automatically generated from

the model of the EXPRESS language. The rows of these
tables correspond to the constructors of the ontology

language used (e.g., class, property, etc.).

An extract of the metaschema part of OntoDB for
the simplified ontology language presented in Figure 9 is

depicted in Figure 10. The tables Entity and Attribute
store the corresponding elements of the ontology lan-
guage.

Attribute

rid name scope range

11 name 1 String

12 scope 3 2

Entity

rid name super

1 Class_and_Property NULL

2 Class 1

3 Property 1

Fig. 10 Example of the metaschema part of OntoDB

6.5 Performance evaluation of OntoDB

We have presented in (Dehainsala et al, 2007) a series
of performance experiments to compare the storage lay-
out proposed by OntoDB with the vertical and binary
storage layouts used by other OBDBs (see Section 5).
As our work targets a specific application domain (en-
gineering), we have developed a benchmark based on
the IEC ontology (IEC61360-4, 1999), which reflects
the needs of this domain. The results of these exper-

iments show that OntoDB outperforms other storage
layouts for queries in which the user specifies the class
to be queried. Moreover, the difference of performance
between OntoDB and the vertical and binary storage
layouts increases with the number of properties used in
the query. The only case where the performance of On-

toDB is worse than other storage layouts is for queries
in which the class to be queried is not specified and
which only use a small number of properties. The in-
terested reader can refer to (Dehainsala et al, 2006) for

a complete description of these experiments.

In this section, we have presented the OntoDB ar-
chitecture that we have designed for storing ontologies

and their instances. The SQL language could be used to
write queries on OntoDB. However, one needs to have a

deep knowledge of the storage layout used by OntoDB

to write such queries. As a consequence, we have defined
a specific language named OntoQL to query ontologies

and their instances.

7 The OntoQL exploitation language

In the last decade, a lot of Semantic Web query lan-
guages have been defined. The interested reader can

refer to (Bailey et al, 2005) for a survey. SPARQL
(Prud’hommeaux and Seaborne, 2008) is currently the

most well known query language. SPARQL is a graph-
matching query language. A SPARQL query consists of

a pattern that is matched against a data source. This

pattern is composed of a set of triple patterns, which
are triples with variables. This language has been de-

fined to query RDF data. As a consequence, it considers

both ontologies and instances as triples. To take into ac-
count the semantics of RDFS or OWL ontologies, the

pattern matching is defined using semantic entailment
relations.

Contrary to Semantic Web query languages, our aim

was to define a language (1) independent of a given

ontology language (2) that exploits the different layer

of an ontology (canonical, non canonical and linguis-

tic layers) and (3) which is compatible with the SQL

language. This section presents the resulting language

called OntoQL. First, we formally define the data model
targeted by this language.

7.1 Data Model

The data model addressed by OntoQL is composed of
two main parts: the ontology and the content part.

7.1.1 The ontology part

The ontology part stores ontologies as instances

of an ontology language. This ontology lan-
guage is not hard-encoded in OntoQL. It is
composed of a set of entities and attributes.

Formally, this part is defined by a 8-tuple:
< E,OC,A, SuperEntities, TypeOf,AttDomain,

AttRange, V al >.

– E is a set of entities representing the ontology lan-

guage. It includes predefined entities such as the
constructor of classes C and properties P as well
as user-defined entities.

– OC is the set of ontology elements (classes, proper-
ties . . .). They have a unique identifier.

– A is the set of attributes describing each ontology
element. For example, classes are described with
names, which can be defined in different natural lan-

guages.
– SuperEntities : E → 2E3 is a partial function that

defines the super-entities of an entity.

– TypeOf : OC → E defines the type of an ontology
element. For example Ball Bearing is an instance of

the C entity.

3 We use the symbol 2E to denote the power set of E.

– AttributeDomain,AttributeRange : A → E define
respectively the domain and range of each attribute.

– V al : OC × A → OC defines the value that an
ontology element has for a given attribute.

This data model is equipped with atomic types (Int,

String, Boolean) and with two parameterized types
Set[T] and Tuple. Set[T] defines collections of elements

of type T and {o1, . . . , on} is an object of this type (the

oi’s are objects of type T). The Tuple[< (A1, T1), . . . ,
(An, Tn) >] parameterized type creates relationships

between objects. It is constructed by providing a set of

attribute names (Ai) and attribute types (Ti). Tuple[<

(A1, T1), . . . , (An, Tn) >] denotes a type tuple defined
with Ai attribute names and Ti attribute types. < A1 :
o1, . . . , An : on > is an object of this type (the oi’s are

objects of type Ti). The Tuple type is equipped with
the Get Ai value functions to retrieve the value of a

Tuple object o for the attribute Ai. The application of
this function can be abbreviated using the dot-notation
(o.Ai)

From the study made in Section 4, we can see that
ontology languages share common constructors to de-
fine CCOs. An ontology has a namespace. It is com-

posed of classes and properties. Classes are organized
in a hierarchy using subsumption relationships. They
are associated to properties whose range may be a class
or a datatype. Classes and properties can be referenced
using an identifier independent of the underlying sys-
tem (e.g., a URI or a BSU). They are described by
names and definitions that may be defined in differ-
ent natural languages. As a consequence, we define a
set of predefined entities and attributes. Thus, E pro-
vides the predefined entities C and P . Instances of C

and P are respectively the ontology classes and proper-
ties. The entity C defines the attribute SuperClasses :
C → SET [C] and the entity P defines the attributes

PropDomain : P → C and PropRange : P → C. The

description of these attributes is similar to the defini-
tions given for SuperEntities, AttributeDomain and
AttributeRange replacing entities by classes and at-

tributes by properties. Moreover, a global super class

Root is predefined. This core ontology language can
then be extended with user-defined entities and at-
tributes.

7.1.2 The content part

The content part stores instances of ontology classes. It

is formalized by a 5-tuple < EXTENT, I, TypeOf,

SchemaProp, V al >.

– EXTENT is a set of extensional definitions of on-
tology classes.

– I is the set of ontology instances. Each instance has
an identifier.

– TypeOf : I → EXTENT defines the type of each
instance.

– SchemaProp : EXTENT → 2P defines the prop-

erties used to describe the instances of a class.
– V al : I×P → I gives the value that has an instance

for a given property. This property must be used in

the extensional definition of the belonging class of
the instance.

7.1.3 Relationship between each part

The relationship between the ontology and content

parts is defined by the partial function Nomination :
C → EXTENT . It associates a definition by intension

of a class with its definition by extension. Classes with-
out extensional definition are said to be abstract. The
set of properties used in an extensional definition of a

class must be a subset of the properties defined in the
intensional definition of a class (propDomain−1(c) ⊇
SchemaProp(nomination(c))).

7.2 The OntoQL Query Algebra

Since our data model uses extensively object-oriented
features, the OntoQL algebra, named OntoAlgebra, is
based on the ENCORE algebra (Shaw and Zdonik,
1990). The signatures of the OntoQL algebra opera-
tors belong to (E ∪ C) × 2OC∪I → (E ∪ C) × 2OC∪I .
The main operators of this algebra are OntoImage, On-

toProject, OntoSelect and OntoOJoin. For the sake of
clarity, only these operators are presented and they are
restricted to the signature: C × 2I → C × 2I . However,

the complete definition of this algebra can be found in
(Jean et al, 2007a).
- OntoImage. The OntoImage operator applies a func-

tion to a collection of instances. Its signature is
C×2I ×Function → C×2I . Function contains all the

properties in P and all the properties that can be de-
fined by composing properties of P (path expressions).

Differently from the object-oriented data model, one

or more of the properties occurring in the function pa-
rameter may not be valued in the extensional definition
of a class. Thus, the domain of the V al function needs

to be extended with the properties that are defined on
the intensional definition of a class but not used in its

extensional definition. This extension is called OntoV al

and is defined by:

OntoV al(i, p) = V al(i, p)

if p ∈ SchemaProp(TypeOf(i)) else, UNKNOWN

UNKNOWN is a special instance like NULL

is a special value for SQL. To preserve composi-

tion, OntoV al applied to a property whose value is
UNKNOWN returns UNKNOWN . With this defi-

nition of OntoV al, OntoImage is defined by:

OntoImage(T, {i1, . . . , in}, f) =

(PropRange(f), {OntoV al(i1, f), . . . , OntoV al(in, f)})

- OntoProject. The OntoProject operator extends

OntoImage to apply more than one function to an in-
stance. The result type is a Tuple defined by:

OntoProject(T, It, {(A1, f1), . . . (An, fn)}) = (Tuple[<

(A1, propRange(f1)), . . . , (An, propRange(fn)) >], {<

A1 : OntoV al(i, f1), . . . , An : OntoV al(i, fn) > |i ∈ It})

- OntoSelect. It creates a collection of instances sat-
isfying a selection predicate. Its signature is C × 2I ×
Predicate → C × 2I and it is defined by:

OntoSelect(T, It, pred) = (T, {i | i ∈ It ∧ pred(i)})

If the predicate pred contains a function, then OntoV al

is used.

- OntoOJoin. It creates relationships between in-
stances of two collections. It is defined by:

OntoOJoin(T, It, R, Ir, A1, A2, pred) =

(Tuple[< (A1, T), (A2, R) >],

{< A1 : t, A2 : r > |t ∈ It ∧ r ∈ Ir ∧ pred(t, r)})

- Operator *. This operator is used to distinguish
queries on instances of a single class C and queries on
C and all its sub-classes denoted C∗. ext : C → 2I

returns the instances of a class and ext∗ : C → 2I

returns the instances of a class and of its sub-classes. If
c is a class and c1, . . . cn are the direct sub-classes of c,
ext and ext∗ are derived recursively4 by:

ext(c) = TypeOf−1(Nomination(c))

ext∗(c) = ext(c) ∪ ext∗(c1) ∪ . . . ∪ ext∗(cn)

With the ext and ext∗ functions, the ∗ operator is de-
fined by ∗ : C → C × 2I where∗(T) = (T, ext∗(T)).

This algebra represents the semantics of the On-
toQL query language. The same approach has been
followed to define the semantics of the definition and

manipulation language of OntoQL. These different sub-
languages of OntoQL are presented in the next section.

4 To simplify notation, we extend all functions f by f(∅) = ∅

7.3 The OntoQL Language

The OntoQL language can be used to define and query

ontologies and their instances. We first describe the sub-

languages defined to manipulate the instances.

7.3.1 The Data Definition (DDL), Manipulation
(DML) and Query (DQL) Languages of OntoQL

The DDL of OntoQL is used to create, alter and drop
ontology elements (classes, properties . . .) as well as

their attributes values (name, definition . . .). For ex-

ample, the following statement creates the Ball Bearing
class as a sub-class of Rolling Bearing with a name and

a definition defined in different natural languages. The

properties width, mass and used in are defined in the

same time. As the ontology language used by OntoQL is
not hard encoded in its grammar, the # prefix identifies

entities and attributes of the used ontology language.

CREATE #CLASS Ball_Bearing EXTENDS Rolling_Bearing (

DESCRIPTOR(#name[fr] = ’Roulement à billes’,

#definition[fr] = ’un type de roulement ...’,

#definition[en] = ’a type of rolling ...’)

PROPERTIES(width Real, mass Real, used_in REF(Product)))

Once a class has been defined by intension, an extent
can be attached to this class by the following statement:

CREATE EXTENT OF Ball_Bearing (width, mass)

The extent of a class is composed of a subset of the
properties defined on the intensional definition of this
class. In this example, the properties width and mass
are the only properties used to describe the instances
of the Ball Bearing class.

Once an extent of a class has been defined, the DML

of OntoQL can be used to insert, update and delete in-
stances. The syntax of this language is similar to the one

of the DML of SQL as the following statement shows.

INSERT INTO Ball_Bearing (width, mass) VALUES (6.9, 7.8)

The query language of OntoQL keeps a syntax close

to SQL (SELECT-FROM-WHERE). Moreover, OntoQL sup-
ports the following features, all expressed by a compo-

sition of OntoAlgebra operators.

– Path expressions. Associations may be traversed us-
ing the dot notation.

– Polymorphic query. Queries on direct instances of a
class are distinguished from queries on all instances

of a class with the keyword ONLY.
– Dependent collection. A collection can be traversed

using an iterator introduced in the FROM clause.
– Nested queries. Queries can be nested in the SELECT,

FROM and WHERE clauses.

– Aggregate functions. OntoQL provides aggregate
functions count, sum, avg, min and max.

– Quantification. Existential (ANY, SOME) and univer-
sal (ALL) quantification can be expressed.

– Set operators. Union, Intersection and Except op-

erators are provided.

Let us give some examples of queries to illustrate the
particularities of this language. The semantics of On-

toQL has been defined to search values of an instance

for each property defined on its belonging class. When
a property is not used in the extent of this class, the

NULL value is returned. The following query retrieves
the width, mass and description of the products in
which ball bearings are used (path expression).

SELECT width, mass, used_in.desc FROM Ball_Bearing

As the used in property is not used in the extent
of the Ball Bearing class, the column corresponding to
this property is filled with the NULL value for each re-
sulting row.

Another particularity of ontologies is that classes
and properties have a namespace. The USING NAMESPA-

CE clause of an OntoQL statement specifies the
namespace in which classes and properties must be
searched. Several namespaces can be specified in the
USING NAMESPACE clause if one wants to query ele-
ments defined in different ontologies. The following

query specifies that the Roller Bearing class and the
mass property should be searched in the namespace
http://www.lias-lab.fr.

SELECT mass FROM Roller_Bearing

USING NAMESPACE ’http://www.lias-lab.fr’

If the USING NAMESPACE clause is not specified and if
there is no default namespace, the query is interpreted
as an SQL statement. Thus, the OntoQL language is

compatible with SQL.

The next example illustrates a third particularity of

ontologies: classes and properties have a textual defini-
tion that may be given in different natural languages

(linguistic layer of an ontology). This particularity is
used in OntoQL to express queries in different natural

languages. The next query is written in English (a.)

and in French (b.).

a.SELECT width, mass <=> b.SELECT longueur, masse

FROM "Ball Bearing" FROM "Roulement à billes"

The query a. must be executed when the default

language of OntoQL is set to English while the query
b. requires the French default value.

7.3.2 The Ontology Definition (ODL), Manipulation
(OML) and Query (OQL) Languages of OntoQL

Ontologies and the used ontology language can be man-

aged with the ODL, OML and OQL of OntoQL. These
languages have a syntax close to the ones of the DDL,

DML and DQL. For example, the next statement, adds
the AllValuesFrom constructor from OWL to the used

ontology language of OntoQL.

CREATE ENTITY #OWLRestrictionAllValuesFrom UNDER #Class (

#onProperty REF(#Property),

#allValuesFrom REF(#Class))

This statement adds the OWLRestrictionAllValues-

From entity to the core ontology language as a sub-
entity of Class. This entity is created with two

attributes onProperty and allValuesFrom. onPro-

perty points to a property (REF(#Property)) and
allValuesFrom points to a class (REF(#Class)).

An OWLAllValuesFrom class can then be created
with the OML:

INSERT INTO #OWLRestrictionAllValuesFrom

(#name[en], #onProperty, #allValuesFrom)

VALUES (’Row_Ball_Bearing’, ’uses’, ’Row_of_Balls’)

This example creates the Row Ball Bearing class as
being the set of instances that only use Row of Balls.

Finally the OQL is used to search ontology ele-

ments stored in the OBDB. For example, the next query
searches the OWLAllValuesFrom classes defined on the
uses property with the class in which the values of this
property must be taken.

SELECT #name[en], #allValuesFrom.#name[en]

FROM #OWLRestrictionAllValuesFrom

WHERE #onProperty.#name[en] = ’uses’

7.3.3 Querying both the ontologies and instances in

OntoQL

By combining the DQL and OQL of OntoQL, ontologies
and instances can be queried simultaneously.

From ontology to instances. Starting from classes re-
trieved by a query on ontologies (OQL), the instances

of these classes can then be filtered (DQL). This type

of queries is possible thanks to dynamic iterators. To
query instances, an iterator i on the instances of a class
C can be introduced using the C AS i construct. On-
toQL extends this mechanism with iterators on the in-

stances of a class identified at run-time, which are called
dynamic iterators. For example, the following query re-
trieves the instances of all classes whose names start

with Ball.

SELECT i.oid FROM #class AS C, C AS i

WHERE C.#name[en] like ’Ball%’

From instances to Ontology. Starting from instances

retrieved by a DQL query, the description of the belong-

ing classes of these instances can be retrieved (OQL).
OntoQL proposes the typeOf operator to retrieve the

basis class of an instance i.e., the minorant class for

the subsumption relationship of the classes it belongs
to. For example, the following query retrieves the En-

glish name of the basis class of each Rolling Bearing

instances.

SELECT typeOf(b).#name[en] FROM Rolling_Bearing AS b

7.4 OntoQL Query Processing

As OntoQL is implemented on top of OntoDB, an On-
toQL query is translated into SQL. This process follows

five main steps.

1. OntoAlgebra query plan generation. The On-
toQL query is parsed and turned into an expression
tree involving operators of its algebra in its nodes.

2. OntoAlgebra query plan optimization. We
have identified optimization situations to reduce the

OntoAlgebra query plan. These optimizations tech-
niques are detailed in (Jean et al, 2006).

3. OntoAlgebra query plan translation into rela-

tional algebra trees. This translation is achieved
by applying a set of rules described below.

4. Relational algebra trees optimization. This
step consists in using the different algebraic laws
that hold for the relational algebra to turn the re-
lational trees into equivalent trees that may be ex-
ecuted more efficiently by the underlying DBMS.

5. Relational algebra tree translation into SQL.

The optimized relational trees are translated into
SQL queries according to the underlying DBMS and

executed to get the OntoQL query result.

The translation between OntoQL and SQL query

plan is an important step. To illustrate the set of rules

defined, table 2 presents a translation rule of an On-
toAlgebra expression to a relational algebra expression.

The interested reader can refer to (Jean, 2007) for the
definition of the complete set of rules. In these rules, π
represents the projection operator of the relational alge-
bra. C is a class and p1, . . . , pn are the properties defined

on this class. Among these properties only p1, . . . , pu
are used to describe their instances. The datatype of
p1 is a collection of references and the one of p2 is a
single-valued reference. Others properties have primi-
tive datatypes.

Rule 1 computes the direct instances of the class
C with their values for all the applicable properties

OntoAlgebra Relational Algebra

OntoProject (C, ext(C), πPp1 rids,Pp2 rid,Pp3,...,Ppu,

{(p1, p1), . . . , (pn, pn)} NULL→Ppu+1,...,NULL→Ppn(EC)

Table 2 Example of a translation rule

on this class. The OntoProject operator of OntoAl-
gebra is translated into a projection of the correspond-

ing columns (prefixed by P) on the corresponding ta-
ble (prefixed by E). The projections of properties that

are not used to describe instances are translated into

projections of the NULL values as defined in the On-
toAlgebra semantics. The resulting column is renamed

(symbol →) according to the OntoDB naming conven-

tion so that other operators can reference it as a used
property.

If the identifiers of width,mass and Ball Bearing are
respectively 1, 2 and 3, an example of the application
of the previous rule is:

SELECT width, mass, used_in => SELECT P1, P2, NULL

FROM Ball_Bearing FROM E3

In this section, we have presented the OntoQL query
language. This language has three main characteristics
that distinguish it from other proposed languages: (1)

the OntoQL language is independent of a given ontol-
ogy language. Indeed, it is based on a core ontology
language, which contains the constructors shared by
different ontology languages and this core ontology lan-
guage can be extended by the OntoQL language itself,
(2) the OntoQL language exploits the linguistic infor-
mation that may be associated to a conceptual ontol-

ogy allowing users to express queries in different nat-
ural languages and (3) the OntoQL language is com-
patible with SQL. In the next section we present dif-

ferent applications of the OntoDB/OntoQL platform.
This platform is available as open source softwares at
http://www.lias-lab.fr/forge/projects/ontodb.

8 Applications

8.1 Standard Ontologies in Engineering

The PLIB ontology language has been used to develop

a number of standard ontologies in different fields of the

engineering domain such as:

– Electronic Components (IEC 61360-4);

– Process Instruments (IEC 61360-4);

– Mechanical Fasteners (ISO 13584-511);
– Measure Instruments (ISO 13584-501);

– Cutting Tools (ISO 13399);
– Bearings (ISO 23768);

– Technical Product Documentation (ISO/TC 10

NWI);

– Optics and Photonics (ISO 23584).

To show the size and the complexity of these ontolo-

gies, we detail some examples.

The Mechanical Fasteners ontology (ISO 13584-
511) represents fasteners with their properties and do-

mains of values as they are described in the various ISO

mechanical fastener standards. These fasteners include
bolts, screws, nuts, rivets, pins and washers. This ontol-

ogy is composed of approximatively 250 classes and 410

properties. The definitions of these classes are given in
French and in English. Several man-years were required

for its definition.

The Cutting Tools ontology (ISO 13399) defines the
terms, properties, and definitions for those portions of
a cutting tool that remove material from a workpiece.

Cutting items include replaceable inserts, brazed tips,
and the cutting portions of solid cutting tools. This on-
tology is composed of approximatively 500 classes and
360 properties. As for the mechanical fasteners ontol-
ogy, the definitions of these classes are given in French
and in English and several man-years were required for
its definition.

The PLIB language has also been used in the eCl@ss
classification (http://www.eclass.de/). eCl@ss is a
product classification and description standard for in-
formation exchange between customers and their sup-
pliers. It describes products such as cable, wire, accu-
mulator or battery and services such as process con-
trol system or electrical measurement. This classifica-

tion is composed of approximatively 33 000 classes and
described in 15 natural languages.

These example shows the interest of the PLIB on-
tology language. Next section describes our approach

based on the OntoDB/OntoQL platform to integrate
heterogenous data.

8.2 Integration a priori and a posteriori

Integrating heterogeneous, autonomous and distributed
data sources is one of the favourite application domains

of ontologies (Noy, 2004). They contribute on reducing

syntactic and semantic heterogeneities that may exist

between sources. Due to the increasing number of data
sources, automatic integration processes become a ne-

cessity for companies. We have proposed data integra-
tion solutions for French companies such as Renault
S.A. (French multinational vehicle manufacturer estab-
lished in 1899) which needed to integrate their suppliers
data sources. To perform this integration, we claim the

following: if we want to avoid human intervention at in-
tegration time, mappings between sources shall be done

a priori during the data sources design. This means
that some formal shared ontology must exist, and each

data source shall embed some ontological data that ref-

erence explicitly this shared ontology. Some integration
systems funded by industrials and academic institutions
such as the Piscel2 project funded by France Telecom

for integrating Web Services (Reynaud and Giraldo,
2003) and the COIN project supported by ARPA and

USAF/Rome Laboratory for exchanging financial data
(Bressan et al, 2000), worked under the same assump-
tion. Their main limitation is that once the shared on-

tology is defined, each source shall only use the com-

mon vocabulary. The shared ontology is in fact the in-
tegrated schema and each source has little schematic

autonomy.

To overcome this limitation, we offer more schematic

autonomy to data sources participating in the data inte-
gration process. To achieve this goal, three assumptions
are required.

1. Each data source participating in the integration
process shall contain its own ontology. This assump-
tion refers to the need of an ontology-based database
(see Section 5).

2. Each data source references a shared ontology as
much as possible. As much as possible means that:
(1) each class of a local ontology references explic-
itly (or implicitly through its parent class) its low-
est subsuming class in the shared ontology, and (2)
only properties that do not exist in the shared on-
tology may be defined in a local ontology; otherwise
it should be imported through the case-of relation-
ship. This requirement is called smallest subsuming
class reference requirement.

3. Local ontologies may extend the shared ontology as
needed by adding new concepts and properties.

Based on these assumptions, three integration scenarios
have been proposed for Renault S.A called: Fragment-
Onto, ExtendOnto and ProjOnto. These scenarios are
described as follows.

FragmentOnto: in this scenario, we assume that the
shared ontology is complete enough to cover the needs
of all data sources. This scenario is feasible for au-

thoritative parties that can force their suppliers to use

the shared ontology. The source autonomy consists in

(1) selecting the relevant subset of the shared ontol-
ogy (classes and properties), and (2) designing the local

database schema. This approach has been presented in
(Bellatreche et al, 2004). It is not well suited for inte-
grating autonomous data sources.

ExtendOnto: in this scenario, the shared ontology

is extended by each local specialization. The local in-

stances are then integrated within the integrated sys-

tem without any change.

ProjOnto: in this scenario, the shared ontology is
not modified. Each data source instance is projected
onto the applicable properties of its smallest subsuming

class in the shared ontology, and is then added to the
population of this class in the shared ontology. These
scenarios are well described in the PhD thesis of Dung

Nguyen Xuan (Nguyen-Xuan, 2006) and in (Bellatreche
et al, 2004).

8.3 Engineering model annotation: the e-Wok Hub

Project

The goal of the e-Wok Hub project was to help geol-

ogists in carrying out petroleum prospection projects.

The petroleum exploration activities is based on the
representation of underground reservoirs. These rep-
resentations use complex and well founded geological
models like stratigraphic, structural, datation, geologi-
cal models, etc. Such an activity leads to a set of com-
plex and heterogeneous models that use a huge amount
of data produced either by measurement campaigns or
by the corresponding computation models. By hetero-
geneity, we mean both heterogeneous models in terms of
semantics and heterogeneous interpretations since two
geologists can give different conclusions when interpret-
ing the models and their corresponding data. Moreover,
when working on such projects, engineers and geologists
use a large panoply of resources such as scientific arti-
cles, reports of past projects, softwares, data files, etc.

The platform developed in the context of this
project integrates these heterogeneous resources in a
global architecture where ontologies play a central role
for data integration, exchange and querying. In the con-
text of this project, the OntoDB database served as a

repository and the OntoQL language was used to query
the integrated data.

For example, in the case of the CO2 capture and
storage, engineers and geologists rely on various engi-
neering models. They have to deal with several inter-

pretation difficulties due to the heterogeneity of these
models. To ease this process, we have proposed to an-

notate these models with concepts of ontologies (Mas-
tella et al, 2009). As the notions of annotations and
engineering models were not available in OntoDB, the

OntoQL language was used to introduce these notions.
First, elements of the engineering models were created
with the CREATE ENTITY statement of OntoQL. Then,

an association table was defined to annotate the en-
gineering models by a class of an ontology. Once this

extension was done, OntoQL was used to query the en-
gineering models departing from the ontology concepts.

Moreover, the design of the corresponding ontologies in-
volved several ontologies issued from different domains

(stratigraphy, datation, sturcural, etc.) that needed to
be integrated in a single ontology without impacting

their use in different areas. For this purpose, an a pos-

teriori case of relationship has been used to map the
different developed ontologies.

This section has shown the interest of the develop-

ment presented in this paper on several examples of

industrial projects. Other successful applications of the
PLIB language with its associated technologies include

projects with companies such as Toshiba Corporation,
Philips, Siemens, Zeiss or Sandvick.

9 Conclusion

In this paper, we have highlighted the benefits of

ontologies in the engineering domain. A deep analy-
sis of the use of ontologies by research communities
has brought new insights to the classification of on-
tologies in three main categories: canonical ontologies,
non-canonical ontologies and linguistic ontologies. The
canonical ontologies described by formalisms such as
PLIB have been largely used in the engineering do-

main. Compared to Semantic Web languages such as
RDFS or OWL, PLIB adheres to the closed-world and
unique name assumptions, which are adapted to the
controlled environment that we found in industrial en-
gineering settings. This language also proceeds to rep-
resent the modeling context of the concepts defined in
the ontology. This characteristic is important for data
integration as an implicit modeling context is the main
cause of semantic data heterogeneity (Bressan et al,
2000). This modeling context is expressed by the rep-

resentation of:

– the context of each class by its set of properties and
of each property by its domain of definition;

– the different point of views of the same classes (view-
of operator);

– the local interpretation of an ontology by the case-of

importation mechanism;
– the context of evaluation of a property when it de-

pends upon different parameters;
– the unit and scaling of values.

The PLIB formalism has been largely used to de-
fine several standard ontologies in different fields of the
engineering domain. The increasing quantity of seman-

tic instances pushes us to propose a persistent solution
for them: the OntoDB architecture. The originality of

this architecture compared to those defined for RDFS
and OWL is twofold: (i) OntoDB leverages the strong

typing assumption made in PLIB to propose an efficient

storage layout for engineering data and (ii) OntoDB in-

cludes the metaschema part which has been extensively
used to extend the used ontology language (e.g., to store

and annotate engineering models with ontologies in the

e-Wok Hub project).

The OntoDB database is equipped with the OntoQL
language that can be used to define, manipulate and
query ontologies and their instances. Instead of defin-

ing a language specifically for PLIB, OntoQL is based
on a core ontology language composed of the main con-

structors of several ontology languages. And, this core
ontology language can be extended with the OntoQL

language itself. Another particularity of this language

is that it is compatible with the SQL language: a state-
ment without a namespace definition is considered as
a SQL statement. Moreover, the syntax and semantics

of OntoQL to query ontologies and their instances are
close to the SQL language. Finally, OntoQL exploits the
different layers of an ontology, and in particular benefits
from the linguistic layer allowing users to write queries
in different natural languages. The PLIB language and
the OntoDB/OntoQL platform have been used in sev-
eral industrial projects with companies such as Renault,
the French Institute of Petroleum, Toshiba and Philips
in various projects related to the problem of data inte-
gration.

The developments of the OntoDB/OntoQL plat-
form5 are continually evolving to satisfy the needs of
our partners and of the addressed research issues. These
evolutions concern several facets of our platform: (i)

database extension such as the support of multiple on-
tology languages, engineering models, semantic web ser-
vices and functional dependencies, (ii) query language

extension with user preferences and behaviour seman-

tics, (iii) database optimization with the selection of
optimization structures such as materialized views and
indexes, (iv) personalization with query recommenda-

tion and relaxation techniques.

Currently, we are also working on probabilistic and

fuzzy models for representing uncertainly in ontologies
as done in (Huang et al, 2014).

Acknowledgements This work has been initiated under the
supervision of the late Professor Guy PIERRA. He has been
the initiator of the OntoDB project. We are grateful for his
work and his investment. We learned a lot from his experi-
ence and advices. The authors would also like to thank the
persons who have contributed to the development of the On-
toDB/OntoQL platform and in particular Hondjack Dehain-
sala for the development of OntoDB during his PhD thesis
and Dung Xuan Nguyen for his PhD thesis on data integra-
tion.

5 http://www.lias-lab.fr/forge/projects/ontodb

References

Abadi DJ, Marcus A, Madden SR, Hollenbach K (2007) Scal-
able Semantic Web Data Management Using Vertical Par-
titioning. In: Proceedings of the 33rd International Confer-
ence on Very Large Data Bases (VLDB’07), pp 411–422

Aluç G, Özsu T, Daudjee K (2014) Workload Matters: Why
RDF Databases Need a New Design. PVLDB 7(10):837–
840

Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann
B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M,
Martin MJ, Natale DA, ODonovan C, Redaschi N, Yeh
LS (2004) Uniprot: the Universal Protein knowledgebase.
Nucleic Acids Research 32:D115–D119

Bailey J, Bry F, Furche T, Schaffert S (2005) Web and Se-
mantic Web Query Languages: A Survey. In: Reasoning
Web, pp 35–133

Bechhofer S, van Harmelen F, Hendler J, Horrocks I, McGuin-
ness DL, Patel-Schneider PF, Stein LA (2004) OWL Web
Ontology Language Reference. World Wide Web Consor-
tium, URL http://www.w3.org/TR/owl-ref

Bellatreche L, Pierra G, Xuan DN, Hondjack D, Ait-Ameur Y
(2004) An a Priori Approach for Automatic Integration of
Heterogeneous and Autonomous Databases. In: Proceed-
ings of the 15th International Conference on Database and
Expert Systems Applications (DEXA’04), pp 475–485

Bressan S, Goh CH, Levina N, Madnick SE, Shah A, Siegel M
(2000) Context Knowledge Representation and Reasoning
in the Context Interchange System. Applied Intelligence
13(2):165–180

Brickley D, Guha R (2004) RDF Vocabulary Description Lan-
guage 1.0: RDF Schema. World Wide Web Consortium,
URL http://www.w3.org/TR/rdf-schema/

Broekstra J, Kampman A, van Harmelen F (2002) Sesame: A
Generic Architecture for Storing and Querying RDF and
RDF Schema. In: Proceedings of the First International
Semantic Web Conference (ISWC’02), pp 54–68

de Bruijn J, Lara R, Polleres A, Fensel D (2005) OWL DL vs.
OWL Flight: Conceptual Modeling and Reasoning for the
Semantic Web. In: Proceedings of the 14th International
Conference on World Wide Web (WWW’05), pp 623–632

Cullot N, Parent C, Spaccapietra S, Vangenot C (2003) On-
tologies : A contribution to the DL/DB debate. In: Pro-
ceedings of the first International Workshop on Semantic
Web and Database (SWDB’03), pp 109–129

Das S, Chong EI, Eadon G, Srinivasan J (2004) Support-
ing Ontology-Based Semantic matching in RDBMS. In:
Proceedings of the 13th International Conference on Very
Large Data Bases (VLDB’04), pp 1054–1065

Dehainsala H, Pierra G, Bellatreche L (2006) Managing
Instance Data in Ontology-based Databases. Tech. rep.,
LISI/ENSMA, URL http://www.lisi.ensma.fr/ftp/pub/

documents/reports/2006/2006-LISI-003-DEHAINSALA.pdf

Dehainsala H, Pierra G, Bellatreche L (2007) OntoDB:
An Ontology-Based Database for Data Intensive Applica-
tions. In: Proceedings of the 12th International Conference
on Database Systems for Advanced Applications (DAS-
FAA’07), pp 497–508

Duan S, Kementsietsidis A, Srinivas K, Udrea O (2011) Ap-
ples and oranges: a comparison of RDF benchmarks and
real RDF datasets. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIG-
MOD’11), pp 145–156

Estival D, Nowak C, Zschorn A (2004) Towards Ontology-
Based Natural Language Processing. In: Proceedings of the
4th Workshop on NLP and XML (NLPXML’04), pp 59–66

Graupmann J, Schenkel R, Weikum G (2005) The Sphere-
Search Engine for Unified Ranked Retrieval of Heteroge-
neous XML and Web Documents. In: Proceedings of the
31st International Conference on Very Large Data Bases
(VLDB’05), pp 529–540

Gruber TR (1993) A Translation Approach to Portable On-
tology Specifications. Knowledge Acquisition 5(2):199–220

Harris S, Gibbins N (2003) 3store: Efficient Bulk RDF Stor-
age. In: Proceedings of the 1st International Workshop on
Practical and Scalable Semantic Systems (PSSS’03), pp 1–
15

Huang HD, Lee CS, Wang MH, Kao HY (2014) IT2FS-based
ontology with soft-computing mechanism for malware be-
havior analysis. Soft Computing 18(2):267–284

IEC61360-4 (1999) Standard data element types with associ-
ated classification scheme for electric components - Part 4
: IEC reference collection of standard data element types,
component classes and terms. Tech. rep., International
Standards Organization

Jean S (2007) OntoQL, un langage d’exploitation des bases
de données à base ontologique. PhD thesis, LISI/ENSMA
and University of Poitiers

Jean S, Aı̈t-Ameur Y, Pierra G (2006) Querying Ontol-
ogy Based Database Using OntoQL (an Ontology Query
Language). In: Proceedings of On the Move to Meaning-
ful Internet Systems 2006: CoopIS, DOA, GADA, and
ODBASE, OTM Confederated International Conferences
(ODBASE’06), pp 704–721

Jean S, Aı̈t-Ameur Y, Pierra G (2007a) An Object-Oriented
Based Algebra for Ontologies and their Instances. In: Pro-
ceedings of the 11th East European Conference in Ad-
vances in Databases and Information Systems (ADBIS’07),
pp 141–156

Jean S, Pierra G, Ameur YA (2007b) Domain Ontologies:
A Database-Oriented Analysis. In: Web Information Sys-
tems and Technologies, International Conferences, WE-
BIST 2005 and WEBIST 2006. Revised Selected Papers,
pp 238–254

Knorr M, Alferes JJ, Hitzler P (2011) Local Closed
World Reasoning with Description Logics under the Well-
Founded Semantics. Artificial Intelligence 175(9-10):1528–
1554

Ma L, Su Z, Pan Y, Zhang L, Liu T (2004) RStar: an
RDF Storage and Query System for Enterprise Resource
Management. In: Proceedings of the 30th International
Conference on Information and Knowledge Management
(CIKM’04), pp 484–491

Maio CD, Fenza G, Furno D, Loia V, Senatore S (2012) OWL-
FC: an upper ontology for semantic modeling of Fuzzy
Control. Soft Computing 16(7):1153–1164

Mastella LS, Aı̈t-Ameur Y, Jean S, Perrin M, Rainaud JF
(2009) Semantic exploitation of persistent metadata in en-
gineering models: application to geological models. In: Pro-
ceedings of the IEEE International Conference on Research
Challenges in Information Science (RCIS 2009), pp 147–
156

Matuszek C, Cabral J, Witbrock M, Deoliveira J (2006) An
Introduction to the Syntax and Content of Cyc. In: Pro-
ceedings of the 2006 AAAI Spring Symposium on Formal-
izing and Compiling Background Knowledge and Its Ap-
plications to Knowledge Representation and Question An-
swering, pp 44–49

Mendes PN, Jakob M, Bizer C (2012) DBpedia: A Multilin-
gual Cross-domain Knowledge Base. In: Proceedings of the
8th International Conference on Language Resources and
Evaluation (LREC’12), pp 1813–1817

Neumann T, Weikum G (2008) RDF-3X: a RISC-style engine
for RDF. PVLDB 1(1):647–659

Nguyen-Xuan D (2006) Intégration de base de données
hétérogènes par articulation a priori d’ontologies : applica-
tion aux catalogues de composants industriels. PhD thesis,
LISI/ENSMA and University of Poitiers

Niles I, Pease A (2001) Towards a Standard Upper Ontol-
ogy. In: Proceedings of the 2nd International Conference
on Formal Ontology in Information Systems (FOIS-2001),
pp 2–9

Noy NF (2004) Semantic Integration: A Survey Of Ontology-
Based Approaches. SIGMOD Record 33(4):65–70

OMG (2002) Meta Object Facility (MOF), Specification v1.4,
OMG Document formal/02-04-03

Paasiala P, Aaltonen A, Riitahuhta A (1993) Automatic
Component Selection. In: Proceedings of the 9th CIM-
Europe annual conference on Realising CIM’s industrial
potential, pp 303–312

Pan Z, Heflin J (2003) DLDB: Extending Relational
Databases to Support Semantic Web Queries. In: Proceed-
ings of the 1st International Workshop on Practical and
Scalable Semantic Systems (PSSS’03), pp 109–113

Park MJ, Lee JH, Lee CH, Lin J, Serres O, Chung CW
(2007) An Efficient and Scalable Management of Ontol-
ogy. In: Proceedings of the 12th International Conference
on Database Systems for Advanced Applications (DAS-
FAA’07), pp 975–980

Pierra G (2003) Context-Explication in Conceptual Ontolo-
gies: The PLIB Approach. In: Proceedings of the 10th ISPE
International Conference on Concurrent Engineering (CE
2003), pp 243–254

Prud’hommeaux E, Seaborne A (2008) SPARQL Query Lan-
guage for RDF. W3C Recommendation 15 January 2008
http://www.w3.org/TR/rdf-sparql-query/

Reynaud C, Giraldo G (2003) An Application of the Media-
tor Approach to Services over the Web. In: Special track
Data Integration in Engineering, Concurrent Engineering
(CE’2003), pp 209–216

Sakr S, Al-Naymat G (2009) Relational Processing of RDF
Queries: A Survey. SIGMOD Record 38(4):23–28

Schenk D, Wilson P (1994) Information Modelling The EX-
PRESS Way. Oxford University Press

Schmidt M, Hornung T, Lausen G, Pinkel C (2009)

SP2Bench: A SPARQL Performance Benchmark. In: Pro-
ceedings of the 25th International Conference on Data En-
gineering (ICDE’09), pp 222–233

Sequeda J, Tirmizi SH, Corcho Ó, Miranker DP (2011) Sur-
vey of Directly Mapping SQL Databases to the Semantic
Web. Knowledge Engineering Review 26(4):445–486

Shaw GM, Zdonik SB (1990) A Query Algebra for Object-
Oriented Databases. In: Proceedings of the 6th Interna-
tional Conference on Data Engineering, pp 154–162

Sidirourgos L, Goncalves R, Kersten ML, Nes N, Manegold S
(2008) Column-Store Support for RDF Data Management:
not all swans are white. PVLDB 1(2):1553–1563

Suchanek FM, Kasneci G, Weikum G (2008) YAGO: A Large
Ontology from Wikipedia and WordNet. Journal Web Se-
mantics 6(3):203–217

Sugumaran V, Storey VC (2006) The role of domain on-
tologies in database design: An ontology management and
conceptual modeling environment. ACM Transactions on
Database Systems (TODS) 31(3):1064–1094

Weiss C, Karras P, Bernstein A (2008) Hexastore: Sextuple
Indexing for Semantic Web Data Management. PVLDB
1(1):1008–1019

Wilkinson K (2006) Jena Property Table Implementation. In:
Proceedings of the 2nd International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS’06), pp
35–46

Yuan P, Liu P, Wu B, Jin H, ZhangW, Liu L (2013) TripleBit:
a Fast and Compact System for Large Scale RDF Data.
PVLDB 6(7):517–528

Zou L, Mo J, Chen L, Özsu MT, Zhao D (2011) gStore: An-
swering SPARQL Queries via Subgraph Matching. PVLDB
4(8):482–493

