Yamine Ait-Ameur
email: yamine@enseeiht.fr

Mickal Baron
email: baron@ensma.fr

Ladjel Bellatreche
email: bellatreche@ensma.fr

Stéphane Jean
email: jean@ensma.fr

Eric Sardet

the work of Toulouse researchers and makes it freely available over the web where possible

gence, Databases and Natural Language Processing and (iii) to present a persistent solution, called OntoDB, for managing extremely large semantic data sets associated with an ontological query language, called On-toQL. These objectives are illustrated by several examples that show the effectiveness and interest of our propositions in several industrial projects in different domains including vehicle manufacturing and CO2 storage.

Ontologies in engineering: The OntoDB/OntoQL platform Yamine Ait-Ameur • Mickaël Baron • Ladjel Bellatreche • Stéphane Jean • Eric Sardet Abstract Ontologies have been increasingly used over the past few decades in a wide range of application domains spanning both academic and industrial communities. As ontologies are the cornerstone of the Semantic Web, the technologies developed in this context, including ontology languages, specialized databases and query languages, have become widely used. However, the expressiveness of the proposed ontology languages does not always cover the needs of specific domains. For instance, engineering is a domain for which the LIAS laboratory has proposed dedicated solutions with a worldwide recognition. The underlying assumptions made in the context of the Semantic Web, an open and distributed environment, do not apply to the controlled environments of our projects where the correctness and completeness of modeling can be guaranteed to a certain degree. As a consequence, we have developed over the last decades a specialized standard ontology language named PLIB associated with the On-toDB/OntoQL platform to manage ontological engineering data within a database. The goal of this paper is threefold: (i) to share our experience in manipulating ontologies in the engineering domain by describing their specificities and constraints, (ii) to define a comprehensive classification of ontologies with respect to three main research communities: Artificial Intelli-

Introduction

The notion of ontology has initially been defined by Gruber as an explicit specification of a conceptualization [START_REF] Gruber | A Translation Approach to Portable Ontology Specifications[END_REF]). An ontology is composed of a set of shared classes, properties and relationships with reasoning mechanisms. It has the ability to represent formally real-world knowledge in a shared way. These favorable characteristics of ontologies have led academicians and industrials coming from various communities to adopt them: Artificial Intelligence [START_REF] Matuszek | An Introduction to the Syntax and Content of Cyc[END_REF], Natural Language Processing [START_REF] Estival | Towards Ontology-Based Natural Language Processing[END_REF], Databases/Data Warehouses [START_REF] Sugumaran | The role of domain ontologies in database design: An ontology management and conceptual modeling environment[END_REF][START_REF] Noy | Semantic Integration: A Survey Of Ontology-Based Approaches[END_REF], Information Retrieval [START_REF] Graupmann | The Sphere-Search Engine for Unified Ranked Retrieval of Heterogeneous XML and Web Documents[END_REF], etc. Some researchers have even pushed the idea of having a universal ontology1 .

The construction of ontologies is time consuming. As a consequence, several research efforts have been conducted to tackle this problem. These studies may be classified into three main categories: (i) manual construction as is the case of the Cyc Ontology [START_REF] Matuszek | An Introduction to the Syntax and Content of Cyc[END_REF], (ii) community-based construction such as Freebase2 where volunteers are invited to contribute to the ontology definition and (iii) automatic construction in which the ontology is automatically extracted from the Web such as YAGO [START_REF] Suchanek | YAGO: A Large Ontology from Wikipedia and WordNet[END_REF] and DBpedia [START_REF] Mendes | DBpedia: A Multilingual Cross-domain Knowledge Base[END_REF] or from relational databases [START_REF] Sequeda | Survey of Directly Mapping SQL Databases to the Semantic Web[END_REF]. These ontologies can be defined for specific domains, including biology [START_REF] Apweiler | Uniprot: the Universal Protein knowledgebase[END_REF] and engineering (IEC61360-4, 1999), but can also be defined for general-purpose applications. The SUMO ontology [START_REF] Niles | Towards a Standard Upper Ontology[END_REF] and the OWL-FC ontology [START_REF] Maio | OWL-FC: an upper ontology for semantic modeling of Fuzzy Control[END_REF] are examples of such upperlevel ontologies.

Despite this wide and diverse usage of ontologies, most of them are defined with the same technologies defined in the context of the Semantic Web. These technologies include the RDF-Schema [START_REF] Brickley | RDF Vocabulary Description Language 1.0: RDF Schema[END_REF] and OWL [START_REF] Bechhofer | OWL Web Ontology Language Reference[END_REF] languages to define ontologies, specialized databases such as Jena [START_REF] Wilkinson | Jena Property Table Implementation[END_REF] to manage a large amount of Semantic Web data and the SPARQL language [START_REF] Prud'hommeaux | SPARQL Query Language for RDF[END_REF] to query them. Admittedly, these technologies are well adapted in the context of the Semantic Web, but may not cover the majority of domains and applications. This observation is based on our experience in the engineering domain for data integration applications. In this particular setting, we have identified two major drawbacks of Semantic Web technologies concerning the expressiveness of Semantic Web languages and their underlying assumptions. Indeed, data integration projects in the engineering domain require a precise definition of technical information characterizing components (e.g., units of measurement) and an explicit representation of the modeling context of each defined concept (e.g., the point of view taken to characterize a component). Moreover, as the Semantic Web is an open and distributed environment, the corresponding ontology languages adhere to the open world assumption, which means that any statement that is not known can be true, and do not make the unique name assumption, i.e., that if two objects have different identifiers, they are different. As pointed out in [START_REF] De Bruijn | OWL DL vs. OWL Flight: Conceptual Modeling and Reasoning for the Semantic Web[END_REF], these assumptions can be misleading for engineers who are used to define constraints for checking the validity of the defined components and not to infer additional knowledge. If these assumptions are natural in the Semantic Web, they are less plausible in controlled environments where standard ontologies exist and where engineers adhere to a protocol which ensures a certain degree of correctness and completeness of modeling.

As existing ontology technologies were not adapted to our industrial projects in engineering, we have de-signed over the past two decades a set of technologies to represent and manage ontologies in the engineering domains. These technologies are based on the standard PLIB language (officially ISO 13584) to define ontologies [START_REF] Pierra | Context-Explication in Conceptual Ontologies: The PLIB Approach[END_REF]. The design of this language was initiated in the early 90's to develop an approach with standard models for the automatic exchange and integration of engineering component databases. This ontology language is equipped with a specialized database called OntoDB to store engineering data and their associated ontologies [START_REF] Dehainsala | OntoDB: An Ontology-Based Database for Data Intensive Applications[END_REF]. As the SQL language was not sufficient to query such a database, the OntoQL exploitation language was designed (Jean et al, 2006). This language follows the design logic of SQL by proposing sub-languages to define, manipulate and query both the data and the ontologies that describe them. The goal of this paper is to present this set of technologies and to describe several projects with large companies in various domains such as the automotive and petroleum industries where these technologies have been successfully put into practice on real-case settings.

This paper is structured as follows. Section 2 presents our point of view on the notion of ontology. As this notion has been used by different communities, all ontologies are not alike. Consequently, we propose a taxonomy of ontologies and present the onion model we use to design ontologies. In Section 3 we present the particularities of the engineering domain that have led us to design the PLIB language. This language is presented in Section 4 after showing the limitations of Semantic Web languages to fulfil the requirements previously identified for the engineering domain. As a large quantity of data can be described by ontologies, Section 5 reviews the persistent solutions that have been developed for storing ontologies and Section 6 details the On-toDB database that we have designed. This database is equipped with the OntoQL exploitation language described in Section 7. These technologies have been used in many industrial projects. Section 8 presents several use cases. Finally, Section 9 concludes and introduces future work.

A layered view of an ontology

From our point of view, an ontology is a formal and consensual dictionary of categories and properties of entities of a domain and the relationships that hold among them (Jean et al, 2007b). This definition highlights three main characteristics of an ontology.

1.

Formal. An ontology describes a domain by defining a set of classes and properties using a formal lan-guage. This ontology language can be used to check the consistency of an ontology and to perform automatic reasoning on the ontology-defined concepts and instances. 2. Consensual. An ontology is agreed and shared by a community. Thus, contrary to a conceptual model, an ontology is not designed for a particular application. It describes the knowledge of a domain to fulfil the needs of the members of a community. 3. Universal identification. Each concept of an ontology has a universal identifier. Using this identifier, an ontology concept and the semantics it represents can be referenced from any environment.

All ontologies are not alike [START_REF] Cullot | Ontologies : A contribution to the DL/DB debate[END_REF][START_REF] Pierra | Context-Explication in Conceptual Ontologies: The PLIB Approach[END_REF]. On the one hand, Linguistic Ontologies (LO) represent the meaning of the words used in a particular universe of discourse, in a particular language. On the other hand, Conceptual Ontologies (CO) represent the categories and properties of objects available in some part of the world. The two following types of concepts exist in a CO [START_REF] Gruber | A Translation Approach to Portable Ontology Specifications[END_REF].

-Primitive concepts are those concepts "for which we are not able to give a complete axiomatic definition"; we must rely on a textual documentation and on a background of knowledge shared with the reader. -Defined concepts are those concepts "for which the ontology provides a complete axiomatic definition by means of necessary and sufficient conditions expressed in terms of other concepts".

We call Canonical Conceptual Ontologies (CCO), the ontologies that only include primitive concepts. They define a canonical vocabulary in which each information in the target domain is captured in a unique way. And we call Non Canonical Conceptual Ontologies (NCCO) the ontologies that also include defined concepts. They introduce new reasoning capabilities and equivalence operators that can be used to define mappings between different ontologies.

The three categories of ontologies introduced previously suggest a layered view of ontologies (see Figure 1), we called the onion model of domain ontologies (Jean et al, 2007b). In this view, a kernel CCO provides a formal foundation to represent and exchange efficiently the knowledge of a domain. A NCCO layer extends the canonical vocabulary with concepts equivalence to encompass all concepts broadly used in the domain. The NCCO concepts can be defined with different operators such as class expressions defined in description logic. Finally, a LO layer adds the natural language representation of the CCO and NCCO concepts for personsystem and person-person communication.

The onion model is illustrated in Figure 2 with a toy ontology in the mechanics domain. The CCO part of this ontology is composed of the Product, Rolling Bearing, Roller Bearing and Row of Balls classes and properties such as mass or width. Based on this CCO, two NCCO classes and one NCCO property are defined. For instance, the 2 Rows Ball Bearing class is defined as the ball bearings that use two rows of balls. The formal definition of this class is given using a syntax borrowed from description logic. The life length NCCO property is defined as a function of different properties. Finally, the LO part of this ontology consists of the linguistic description of these classes and properties. For instance, the Rolling Bearing class is described with two English names and a French name. In the next section, we detail the specific requirements for representing ontologies in the engineering domain.

LO

Ontologies in engineering

The engineering domain includes different fields such as aeronautics, transport, mechanics or energy. In most of these engineering fields, products to be designed are essentially assemblies of components. An important part of the engineering knowledge concerns the used components. It includes the criteria used to select a component, the conditions of component usage, the behaviour of components and the pertinent component representation for each specific discipline [START_REF] Paasiala | Automatic Component Selection[END_REF]. Fig. 2 Example of the onion model

The example presented in the next section illustrates the specificities of this domain. The behaviour of a component is also characterized by properties. For example, the property life length corresponds to the length of the time period during which the bearing will behave correctly. The value of this property depends on the number of revolutions done by the bearing, and of the load it must support. Mathematically, the bearing life-length is a function of the velocity (i.e., rotational speed), the radical load and the axial load.

Motivating example

Characteristics

Requirement 2 (Context of values)

When a value of a property depends on a context of evaluation, this evaluation context should be explicitly defined. If several perspectives are needed to describe a component, these perspectives should be explicitly defined in an ontology and the same real-world component should be described according to these different perspectives. From our experience acquired from designing ontologies in engineering (described in Section 8), it is not difficult to reach a consensus among several components suppliers on all the major properties of a rolling bearing. But it is impossible to reach a consensus on the properties that should be represented in the database of each supplier. Thus, a class should describe all its major properties. Concerning the properties, as different types of rolling bearings exist such as ball bearings or roller bearings, the diameter property should be defined at the level of circular bearing where it is meaningful.

Ball bearing

Requirement 4 (Context of concepts)

The modeling context in which each class or property is defined should be made explicit and minimized. Each class should define all its major properties, at least in some broad context of a community. Each property should be defined in the context of a class: its domain of application.

Suppliers of components often need to extend a shared ontology with classes and properties that are not consensual. Requirement 5 (Locality of interpretation)

Importation of resources from one ontology into another one should be possible while controlling the impact of the former over the interpretation of the latter.

In addition to these five main ontology modeling requirements, the engineering domain often relies on a set of assumptions described in the next section.

Underlying Assumptions

Open and Close World Assumptions. Under the Close World Assumption (CWA), any statement that is not known to be true is false. On the contrary, under the Open World Assumption (OWA), any statement that is not known can be true. These assumptions play an important role for constraints. Under the CWA, the constraints are checked; under the OWA they are used for inference. In the engineering domain, a lot of constraints are defined to describe precisely the behaviour of a component. Engineers that define these constraints expect that they will be used to check the validity of the registered components. Moreover, the CWA is adapted in the engineering context where a number of reference ontologies are already standardized or are in the standardization process either within IEC or within ISO [START_REF] Pierra | Context-Explication in Conceptual Ontologies: The PLIB Approach[END_REF]. These standards are rather stable and the knowledge can be considered complete. In this controlled domain, it is often possible to guarantee a certain degree of correctness of modeling. On the contrary, the OWA is often made in the Semantic Web as correct and complete modeling cannot be guaranteed on the Web. Moreover, an ontology can be intentionally under-specified expecting that others will reuse and extend it. Thus the OWA is adapted in an open context like the Web. Several studies have reported the need to use the CWA in controlled sections of the Semantic Web [START_REF] De Bruijn | OWL DL vs. OWL Flight: Conceptual Modeling and Reasoning for the Semantic Web[END_REF][START_REF] Knorr | Local Closed World Reasoning with Description Logics under the Well-Founded Semantics[END_REF].

Unique Name Assumption. Under the Unique Name Assumption (UNA), if two objects have different identifiers, they are different. This assumption is often made in combination with the CWA in complete and controlled domain. Contrariwise, the UNA is often not made in domains where the OWA is assumed. Indeed, without the UNA assumption, if two instances (or classes, or properties) have different identifiers, we may still derive by inference that they must be the same. From our experience, the UNA is more adapted to many engineering problems that use ontologies as solutions [START_REF] Pierra | Context-Explication in Conceptual Ontologies: The PLIB Approach[END_REF]. On the Web, the UNA is often considered less plausible.

Typing Assumption. Under the OWA, classification of instances is one of the key reasoning capability. For example, an instance having a value for a property p can be classified in the domain of p. Thus, a Weak Typing Assumption (WTA) is often made in the Semantic Web: (1) an instance may belong to any number of non connected ontology classes, (2) a property can be defined without a domain and (3) an instance can define a value for any property of the ontology. Under the WTA, a diverse set of data, ranging from structured data to unstructured data, can all be represented [START_REF] Duan | Apples and oranges: a comparison of RDF benchmarks and real RDF datasets[END_REF]. But the cost of this flexibility is that the efficient management of such data is difficult [START_REF] Aluç | Workload Matters: Why RDF Databases Need a New Design[END_REF].

Instances in engineering domains are often components which are fairly structured data (relational-like). In such domain, a Strong Typing Assumption (STA) can be made: (1) each instance belongs to exactly one class called its basis class that is the minimum for the subsumption order of all the belonging classes of this instance, (2) each property is defined in the context of a class that defines its domain of application, and is associated with a range, and (3) only properties that are applicable in the context a class are used for describing its instances. This assumption can be used to define an efficient storage layout of engineering data as we will see in Section 6.

We have seen in this section that the engineering domain has specific requirements and assumptions. This observation has led us to define and use a specific ontology language.

4 Ontology languages Several ontology languages have been defined in the last decade. The most well-known ontology languages are RDF-Schema [START_REF] Brickley | RDF Vocabulary Description Language 1.0: RDF Schema[END_REF] and OWL [START_REF] Bechhofer | OWL Web Ontology Language Reference[END_REF]). These languages have been defined in the context of the Semantic Web and thus they make the OWA assumption and do not make the UNA assumption. We first present these two languages. Then we present the OWL-Flight language, which was defined mainly to eliminate some of the pitfalls in conceptual modeling with OWL induced by these assump-tions. As these languages do not fulfil the five requirements introduced in the previous section, we finally present the PLIB ontology language specifically defined for the engineering domain.

RDF-Schema

RDF-Schema or RDFS is based on RDF. RDF is used to defined assertions as a set of triples (subject, predicate, object). The subject is a URI that denotes a resource. The predicate is a property that characterizes the resource. The object is the value of the property, a literal value or a URI of another resource.

RDF defines few built-in predicates, mainly the typing relationship (rdf:type) and the property constructor (rdf:Property). Thus, it is not considered as an ontology language. RDFS extends RDF with a set of built-in predicates to define an ontology. The main predicates of RDFS are the following.

-Class definition. rdfs:Class and rdfs:subClassOf define a hierarchy of classes. Names and descriptions can be assigned to classes using rdfs:label and rdfs:comment. -Property definition. rdfs:domain and rdfs:range define the domain and range of an RDF property. A hierarchy of properties can be defined using rdfs:sub-PropertyOf. As classes, properties can be described using rdfs:label and rdfs:comment. -Datatype definition. rdfs:Datatype defines datatypes of an RDF property. The value of a property can be an instance of a class or a literal (rdfs:Literal). A literal can be typed using a set of allowed XML datatypes. -Instance definition. Instances are defined in RDF with two kind of triples: (i, rdf:type, C) states that i is an instance of C and (i, p, v) defines v as the value of i for the p property.

RDFS defines few restrictions on the usage of these constructors. In particular, it does not separate the different levels of abstraction: instances, ontologies and ontology language. As a consequence, an instance can be a class and thus it can have instances. Likewise, a property can be a class and thus it can be the domain of another property.

RDFS does not provide non canonical constructs and thus it is oriented toward the definition of CCO ontologies. But as we have seen, it does not have specific constructors to fulfil the modeling requirements of the engineering domain identified in the previous section.

OWL

OWL extends the expressive power of RDFS. Three versions of this language have been defined : OWL Lite, OWL DL and OWL Full with an increasing expressive power (OWL Lite ⊂ OWL DL ⊂ OWL Full). OWL Lite and OWL DL ensure the decidability of reasoning but they are not compatible with RDFS since they restrict the usage of RDFS constructors. In contrast, OWL Full is compatible with RDFS but is not decidable. OWL DL extends RDFS with the following main constructors.

-Ontology definition. owl:Ontology defines an ontology as a set of classes and properties in a namespace. This ontology could be described by many characteristics such as its version (owl:versionInfo) or its compatibility with other ontologies. -Class definition. owl:Class is the OWL class constructor corresponding to rdfs:Class. The owl:equi-valentClass class axiom states that two classes have the same instances. On the contrary, two classes that do not share any instances could be defined as disjoints (owl:disjointWith). In addition to the usual class constructor, OWL includes NCCO class constructors. The owl:unionOf, owl:intersectionOf, owl:complementOf boolean operators define respectively a class as a union, intersection or complement of other classes. The owl:allValuesFrom (respectively, owl:someValuesFrom) restriction defines a class as all instances for which all values (respectively, at least one value) of a given property are members of a given class. owl:hasValue defines a class as all instances that have a given value for a given property. Finally, owl:oneOf defines a class by enumerating its instances. -Property definition. Two types of properties exist: owl:ObjectProperty and owl:DatatypeProperty. They specialize the rdf:Property to distinguish properties whose range is a class from properties whose range is a datatype. The owl:equivalentProperty property axiom states that two properties have the same values. OWL introduces property characteristics. A property can be defined as symmetric (owl:SymmetricProperty), transitive (owl:Transiti-veProperty), injective (owl:InverseFunctionalProperty), as a function (owl:FunctionalProperty) or as the inverse of an other property (owl:inverse-Of). Finally, cardinality of a property can be specified using owl:minCardinality, owl:cardinality and owl:maxCardinality. -Instance definition. An instance is defined with a set of RDF triples. The owl:sameAs (resp. owl:diffe-rentFrom) can be used to assert the equality (resp. inequality) of two instances.

Contrary to OWL Full which is fully compatible with RDFS, OWL DL imposes constraints on RDFS constructors to ensure decidability of reasoning (e.g., a constructor cannot be applied to another constructor). The last version of OWL, OWL Lite, imposes more restrictions than OWL DL to simplify the reasoning process. It forbids the usage of owl:unionOf, owl:complementOf, owl:oneOf and owl:hasValue. Moreover, owl:minCardinality, owl:cardinality and owl:maxCardinality could only be used with the 0 or 1 values.

Thus, OWL extends RDFS with mainly non canonical constructors to enhance the reasoning possibilities. But it does not introduce constructors to fulfil our requirements and it does not make the assumptions often made in the engineering domain.

OWL Flight

OWL Flight (de Bruijn et al, 2005) was designed to overcome some pitfalls in the OWL language for modeling specific domains. These pitfalls are mainly the result of the assumptions made in OWL: the OWA without the UNA (see Section 3). As a consequence of these assumptions, the semantics of OWL may seem counterintuitive for database and software engineers who are used to the CWA and UNA assumptions. For example, if a 2 Rows Ball Bearing has more than two Row Of Balls, instead of raising an error, this knowledge can be used to infer an equality between the Row Of Balls.

As a consequence, OWL Flight is a variant of OWL based on Logic Programming that extends it with cardinality and value constraints, meta-modeling and powerful datatype support. Compared to OWL DL the constructors not included are enumerated classes, individual (in)equality assertions, complements and property restrictions in complete class definitions. Contrary to OWL DL, OWL Flight adopts the UNA and constraints are interpreted under the CWA i.e, they are used to check the data instead of being used to infer additional knowledge.

The PLIB ontology language presented in the next section was designed in the same spirit as OWL Flight. This language adopts the CWA and UNA which are more intuitive for engineers who work in domains such as mechanics or aeronautics. Moreover, this language adds important features (e.g., units of measure or points of view) which are missing in OWL for modeling precisely such domains.

PLIB

The PLIB ontology language [START_REF] Pierra | Context-Explication in Conceptual Ontologies: The PLIB Approach[END_REF] is an international standard (ISO 13584) originally defined for exchanging and integrating automatically electronic catalogues of industrial components. Primitive concepts of a technical domain being rather broad and complex, the aim of this ontology model is to define precisely such concepts. PLIB can be used to define ontologies using the main following constructors.

-Class definition. PLIB classes are defined using the item class constructor. Classes as other ontology elements are identified by a universal identifier named BSU (Basic Semantic Unit). They are described by a textual description (name, synonymous names, definition, note, remark) that may be given in different natural languages. This description can be completed with documents. PLIB classes can be organized into a hierarchy using two operators: is a and case of. is a is the usual simple inheritance operator; case of is a multiple subsumption relationship that does not imply inheritance of properties: the subsuming class should explicitly import the useful properties. This last operator is particularly useful for semantic integration (requirement 5). It could also be used to introduce multiple inheritance relationships in a PLIB ontology. For example, the length of an axis depends upon its temperature. This context can also be defined as a function.

-Datatype definition. Primitive datatypes such are integer or string are available in PLIB. They can be associated with a unit of measure or a currency (requirement 1). Technical datatypes are available such as level type used to qualify a numeric value.

A class can also be used as a datatype with the class instance type constructor. Finally, PLIB supports collections and enumerated datatype. -Instance definition. A PLIB instance is defined by a basis class and a set of property values. Thus, PLIB does not support multi-instanciation (i.e., that an instance belongs to different classes not linked by subsumption relationships). Instead, PLIB supports the instance aggregate mechanism: an instance may also be associated with any number of discipline-specific classes that represent points of view of a particular basis class.

Table 1 summarizes our comparison of the studied ontology languages. As this table illustrates, RDFS focuses on defining CCOs with the assumptions of the Semantic Web domain. OWL extends this language with NCCO constructors borrowed from Description Logics. OWL-Flight is a variant of OWL that interprets constraints under the CWA. Finally, the PLIB ontology language focuses on defining precisely ontologies in the engineering domain by providing specific constructors for this domain. As we will see in Section 8, PLIB has been used to define several standard ontologies in this domain. With the development of these ontologies, a large quantity of data described by ontologies has been produced. In the next section, we describe the persistent solutions that have been developed in the last decade to manage such a large volume of ontological data.

Persistent solutions for ontologies

With the availability of standard ontology languages, several large ontologies have been designed. One can cite YAGO [START_REF] Suchanek | YAGO: A Large Ontology from Wikipedia and WordNet[END_REF] and DBPedia (Mendes et al, 2012) in the Semantic Web and standard ontologies for Electronic Components (IEC 61360-4) or Laboratory Measuring Instruments (ISO 13584-501) in the engineering domain. As a consequence, the need to manage efficiently ontologies and their instances has appeared. Several research efforts have been proposed in the last decade to address this challenge. Two main approaches have been followed. The first one consists in natively representing the graph structure of RDF data (e.g., gStore [START_REF] Zou | gStore: Answering SPARQL Queries via Subgraph Matching[END_REF]). The second approach, on which we focus in our work, uses relational database management systems (RDBMSs) to store RDF data. We call Ontology-Based Databases (OBDBs) these spe-cialized databases. Examples of such systems are Oracle Spatial and Graph [START_REF] Das | Supporting Ontology-Based Semantic matching in RDBMS[END_REF], OntoDB [START_REF] Dehainsala | OntoDB: An Ontology-Based Database for Data Intensive Applications[END_REF], Jena SDB [START_REF] Wilkinson | Jena Property Table Implementation[END_REF], Sesame [START_REF] Broekstra | Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema[END_REF], DLDB [START_REF] Pan | DLDB: Extending Relational Databases to Support Semantic Web Queries[END_REF], 3store [START_REF] Harris | 3store: Efficient Bulk RDF Storage[END_REF], RStar [START_REF] Ma | RStar: an RDF Storage and Query System for Enterprise Resource Management[END_REF], SW-Store [START_REF] Abadi | Scalable Semantic Web Data Management Using Vertical Partitioning[END_REF] or OntoMS [START_REF] Park | An Efficient and Scalable Management of Ontology[END_REF]. Systems such as RDF-3X [START_REF] Neumann | RDF-3X: a RISC-style engine for RDF[END_REF] or TripleBit [START_REF] Yuan | TripleBit: a Fast and Compact System for Large Scale RDF Data[END_REF]) can be considered hybrid approaches as they use native storage structures which are not graphs. Despite being studied for more than a decade, the efficient management of ontologies and their instances is still an active research topic [START_REF] Aluç | Workload Matters: Why RDF Databases Need a New Design[END_REF]. In this section, we present the diversity of OBDBs using two orthogonal criteria: the storage layout and architecture used by OBDBs.

Storage layouts

Three main storage layouts are used for representing ontologies and/or instances in an RDBMS [START_REF] Sakr | Relational Processing of RDF Queries: A Survey[END_REF]: the vertical, binary and horizontal storage layouts. These storage layouts are detailed below and illustrated on a subset of our example of ontology (Figure 5). The vertical storage layout. This storage layout is a direct translation of the RDF data model. It consists of a single triples table with three columns (subject, predicate, object) [START_REF] Harris | 3store: Efficient Bulk RDF Storage[END_REF]. Since URIs are long strings, additional tables may be used to store only integer identifiers in the triples table. Three B+tree indexes are usually used [START_REF] Abadi | Scalable Semantic Web Data Management Using Vertical Partitioning[END_REF][START_REF] Sidirourgos | Column-Store Support for RDF Data Management: not all swans are white[END_REF]: one clustered on (subject, property, object) and two unclustered on (property, object, subject) and (object, subject, property). As this storage layout is a The binary storage layout. This storage layout consists in decomposing the triples table into a set of 2columns tables (subject, object), one for each predicate [START_REF] Abadi | Scalable Semantic Web Data Management Using Vertical Partitioning[END_REF]. In some implementations, the inheritance of classes and class membership are represented in a different way (e.g., by using the table inheritance mechanism of PostgreSQL [START_REF] Broekstra | Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema[END_REF]). Two indexes are usually used: a clustered B+ tree index on subject to locate them quickly and an unclustered B+ tree index on object. Abadi et al. have shown that this approach can be very efficient if it is implemented on a column-store DBMS [START_REF] Abadi | Scalable Semantic Web Data Management Using Vertical Partitioning[END_REF]. By using different benchmarks, the performance of this storage layout has been analysed in several studies [START_REF] Schmidt | SP 2 Bench: A SPARQL Performance Benchmark[END_REF][START_REF] Sidirourgos | Column-Store Support for RDF Data Management: not all swans are white[END_REF][START_REF] Dehainsala | OntoDB: An Ontology-Based Database for Data Intensive Applications[END_REF]. Two drawbacks have been identified:

(1) when queries involve many properties, this storage layout requires many joins [START_REF] Dehainsala | OntoDB: An Ontology-Based Database for Data Intensive Applications[END_REF] and (2) when properties do not appear as bound variables in queries, this storage layout requires a lot of union clauses and joins [START_REF] Sidirourgos | Column-Store Support for RDF Data Management: not all swans are white[END_REF][START_REF] Weiss | Hexastore: Sextuple Indexing for Semantic Web Data Management[END_REF].

The horizontal storage layout. This storage layout consists in denormalizing the triples table by storing them in a representation more similar to traditional relational schemas [START_REF] Wilkinson | Jena Property Table Implementation[END_REF][START_REF] Dehainsala | OntoDB: An Ontology-Based Database for Data Intensive Applications[END_REF]. This relational representation can be obtained either by grouping the properties that are defined together [START_REF] Wilkinson | Jena Property Table Implementation[END_REF] or by making some typing assumptions [START_REF] Dehainsala | OntoDB: An Ontology-Based Database for Data Intensive Applications[END_REF]. In the latter case, a table C(p 1 , . . . , p n) is created for each class C where p 1 , . . . , p n are the set of single-valued properties used by at least one instance of the class. Multivalued properties are represented by two-column tables as in the binary representation or by using the array datatype available in relational-object DBMSs. Since all instances do not necessarily have a value for all properties of the table, this representation can be sparse which can impose performance overhead. Moreover, as the binary storage layout, this storage layout does not scale well when properties do not appear as bound variables in queries.

As we can see and as several benchmarking studies have shown [START_REF] Schmidt | SP 2 Bench: A SPARQL Performance Benchmark[END_REF], each storage layout is suitable for a different type of queries and there is not a storage layout that gives the best performance for all query workloads. As a consequence, Aluç et al. have recently raised the challenge to define a workloadaware storage layout for managing ontologies and their instances [START_REF] Aluç | Workload Matters: Why RDF Databases Need a New Design[END_REF].

Architecture

Three main architectures called type I, type II and type III architectures are used by OBDBs. The type I and II architectures are illustrated in Figure 6 and an example of type III architecture is presented in Figure 7:

type I architecture: as in traditional databases, this architecture uses two parts: the data part and the system catalog. The data part stores the ontology instances and the ontology schema (classes, properties, etc.). Thus, this architecture implies that the same storage layout is used for ontologies and their instances. type II architecture: in this architecture, ontologies and their instances are stored in two different schemas. Thus, this architecture decomposes the database in three parts: the system catalog, the ontology part and the data part. RStar [START_REF] Ma | RStar: an RDF Storage and Query System for Enterprise Resource Management[END_REF] or Sesame DB [START_REF] Broekstra | Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema[END_REF] are examples of OBDBs that use this architecture. In this architecture the used ontology language is hard encoded by the schema defined in the ontology part. Thus, this architecture is not adapted if the used ontology language changes regularly or if constructors from other ontology languages need to be used; -type III architecture: this architecture has been proposed in OntoDB [START_REF] Dehainsala | OntoDB: An Ontology-Based Database for Data Intensive Applications[END_REF] to be able to extend the used ontology language in the OBDB and to support different ontology languages in the same database. This need is fulfilled by proposing an architecture similar to the MOF architecture (OMG, 2002) defined for managing different metamodels. Thus this architecture is composed of 4 parts: the system catalog, the ontology part, the data part and the metaschema part. This latter part plays the same role for ontologies than the one played by the system catalog for the data. This part is used to store the used ontology language so that it can be extended. More details are given in the next section.

The OntoDB ontology-based database

The OntoDB architecture has been initially designed for storing PLIB ontologies and their instances. As the PLIB ontology language regularly evolves and because several other ontology languages exist, the first objective of this architecture was to support evolutions of the used ontology language. As we have seen in Section 3, instances in engineering domains are fairly structured and respect the strong typing assumption. Thus, the second objective of this architecture was to design an efficient storage layout for such data. As we have seen in the previous section, other solutions to store ontologies do not fulfil these objectives. As a consequence, we have designed the OntoDB architecture presented in the next section.

6

Metaschema part

Ontology part

System catalog

Data part

(1)

(2) (3) (4) Fig. 7 Example of type III architecture: OntoDB 1. The system catalog (1) is a traditional part of any DBMS. It contains system tables used to manage all the data contained in the database. In On-toDB, it contains specifically the description of all the tables and columns defined in the three other parts of this architecture. 2. The data part (2) stores the ontology instances.

An instance belongs to an ontology class and is described by a set of property values. 3. The ontology part (3) stores the ontologies that define the concepts of the domain covered by the database. OntoDB initially supports the PLIB ontology language. 4. The metaschema part (4) stores the ontology language used. For the ontology part, the metaschema part plays the same role as the one played by the system catalog in traditional DBMSs.

It can be in particular used to extend the ontology part and thus to modify the used ontology language.

In the following we detail the three main parts of OntoDB.

The data part

The data part uses the horizontal storage layout. In this storage layout, a table is associated to each concrete class. Each one of these tables has a column named rid to identify class instances. In addition, this table has one column for each property used by at least one instance of this class. To define the link between an instance and its belonging class, the name of a table (resp. of a column) is the concatenation of "E" (resp. "P") with the identifier of the corresponding class (resp. property).

Since properties are represented by columns, each PLIB datatype has a specific representation in Post-greSQL:

- The first one, suffixed by rids, stores the identifiers of the referenced instances. The second one, suffixed by tablenames, stores the names of the tables in which these instances are stored.

An example of the data part of OntoDB for our example of ontology is depicted in Figure 8. Three tables are created for the three classes Product, Ball Bearing and Row Of Balls. The name of a table is defined as the identifier of a class prefixed with E. For example, since the identifier of Product is 1111, the name of the corresponding table is E1111. Each table has a column rid and columns for the used properties. Properties such as width, name or length are represented by a single column whose name is the identifier of the property prefixed with P. The used in property corresponds to an association between the Ball Bearing and Product classes. It is represented by two columns P1124 rid to store the identifier of the corresponding product and P1124 tablename to know the table in which this instance is stored (a sub-class of Product could be used). The same representation is used for the uses property. The only difference is that this property has a collection dataype and thus the ARRAY datatype of PostgreSQL is used. Fig. 8 Example of the data part of OntoDB

The ontology part

The ontology part is initially defined to store PLIB ontologies. The PLIB language is defined in the EX-PRESS formalism [START_REF] Schenk | Information Modelling The EX-PRESS Way[END_REF], which is similar to the UML language. It defines an objectoriented model by a set of entities with inheritance relationships and attributes. The model of the PLIB language is composed of hundred of entities and attributes. Thus, instead of manually defining the storage layout for this part, a program takes as input the object-oriented representation of the PLIB language in EXPRESS and generates the set of tables of this part by applying a set of rules. Each entity of the PLIB language is translated into a table. The name of this table is the one of the corresponding entity suffixed by e. If an entity inherits from another entity, its table inherits from the table corresponding to the other entity thanks to the table inheritance mechanism available in PostgreSQL.

The associations one-to-many or many-to-many are represented by association tables. For an entity A linked to an entity B by an association named a2b, an association table named A 2 a2b is created. This table has the five following columns:

rid identifies the association; -rid s and tablename s contain respectively the identifier of an instance of the A entity and the table in which this instance is stored (it can be a sub-entity of A); -rid d and tablename d play the same role as rid s and tablename s for the entity B.

Moreover, to optimize the access to an association, the table A e has a column a2b that is a foreign key (association one-to-many) or a collection of foreign keys (association many-to-many) pointing to the primary key of the association table.

Example. Figure 9 presents a simplified ontology language and the corresponding tables in the ontology part of OntoDB. The ontology language is composed of three entities. The Class and Property entity has an attribute name. Class and Property is the super-entity of the entities Class and Property which represent respectively ontology classes and properties. These two entities are linked by the scope association that represents the domain of a property. Each entity is translated into a table in the ontology part of OntoDB (suffixed by e). Each one of these tables has a column named rid to identify the corresponding ontology elements. The hierarchy of tables is conformed to the hierarchy of entities: the tables Class e and Property e inherit from the Class and Property e

The metaschema part

In a database, the system catalog is used to record the tables and columns of the data part. Thanks to this part, a SQL query can be checked and the data part can be extended with new tables and columns. The same idea is applied on the ontology part in OntoDB.

As a consequence, OntoDB has a new part called the metaschema. This part stores the ontology language used to define the ontologies. The query language of OntoDB (presented in the next section) leverages it to extend dynamically the ontology language used. The tables of this part correspond to the formalism used to define the ontology language. In the case of OntoDB, these tables correspond to the EXPRESS language. These tables are automatically generated from the model of the EXPRESS language. The rows of these tables correspond to the constructors of the ontology language used (e.g., class, property, etc.).

An extract of the metaschema part of OntoDB for the simplified ontology language presented in Figure 9 is depicted in Figure 10. The tables Entity and Attribute store the corresponding elements of the ontology language. Fig. 10 Example of the metaschema part of OntoDB

Attribute

Performance evaluation of OntoDB

We have presented in [START_REF] Dehainsala | OntoDB: An Ontology-Based Database for Data Intensive Applications[END_REF] a series of performance experiments to compare the storage layout proposed by OntoDB with the vertical and binary storage layouts used by other OBDBs (see Section 5).

As our work targets a specific application domain (engineering), we have developed a benchmark based on the IEC ontology (IEC61360-4, 1999), which reflects the needs of this domain. The results of these experiments show that OntoDB outperforms other storage layouts for queries in which the user specifies the class to be queried. Moreover, the difference of performance between OntoDB and the vertical and binary storage layouts increases with the number of properties used in the query. The only case where the performance of On-toDB is worse than other storage layouts is for queries in which the class to be queried is not specified and which only use a small number of properties. The interested reader can refer to [START_REF] Dehainsala | Managing Instance Data in Ontology-based Databases[END_REF]) for a complete description of these experiments.

In this section, we have presented the OntoDB architecture that we have designed for storing ontologies and their instances. The SQL language could be used to write queries on OntoDB. However, one needs to have a deep knowledge of the storage layout used by OntoDB to write such queries. As a consequence, we have defined a specific language named OntoQL to query ontologies and their instances.

The OntoQL exploitation language

In the last decade, a lot of Semantic Web query languages have been defined. The interested reader can refer to [START_REF] Bailey | Web and Semantic Web Query Languages: A Survey[END_REF] for a survey. SPARQL [START_REF] Prud'hommeaux | SPARQL Query Language for RDF[END_REF] is currently the most well known query language. SPARQL is a graphmatching query language. A SPARQL query consists of a pattern that is matched against a data source. This pattern is composed of a set of triple patterns, which are triples with variables. This language has been defined to query RDF data. As a consequence, it considers both ontologies and instances as triples. To take into account the semantics of RDFS or OWL ontologies, the pattern matching is defined using semantic entailment relations.

Contrary to Semantic Web query languages, our aim was to define a language (1) independent of a given ontology language (2) that exploits the different layer of an ontology (canonical, non canonical and linguistic layers) and (3) which is compatible with the SQL language. This section presents the resulting language called OntoQL. First, we formally define the data model targeted by this language.

Data Model

The data model addressed by OntoQL is composed of two main parts: the ontology and the content part.

The ontology part

The ontology part stores ontologies as instances of an ontology language. This ontology language is not hard-encoded in OntoQL. It is composed of a set of entities and attributes. Formally, this part is defined by a 8-tuple: < E, OC, A, SuperEntities, T ypeOf, AttDomain, AttRange, V al >.

-E is a set of entities representing the ontology language. It includes predefined entities such as the constructor of classes C and properties P as well as user-defined entities. -OC is the set of ontology elements (classes, properties . . .). They have a unique identifier. -A is the set of attributes describing each ontology element. For example, classes are described with names, which can be defined in different natural languages. -SuperEntities : E → 2 E 3 is a partial function that defines the super-entities of an entity. -T ypeOf : OC → E defines the type of an ontology element. For example Ball Bearing is an instance of the C entity.

3 We use the symbol 2 E to denote the power set of E.

-AttributeDomain, AttributeRange : A → E define respectively the domain and range of each attribute. -V al : OC × A → OC defines the value that an ontology element has for a given attribute.

This data model is equipped with atomic types (Int, String, Boolean) and with two parameterized types Set[T] and T uple. Set[T] defines collections of elements of type T and {o 1 , . . . , o n } is an object of this type (the o i 's are objects of type T). The T uple[< (A 1 , T 1), . . . , (A n , T n) >] parameterized type creates relationships between objects. It is constructed by providing a set of attribute names (A i) and attribute types (T i). T uple[< (A 1 , T 1), . . . , (A n , T n) >] denotes a type tuple defined with A i attribute names and T i attribute types. < A 1 : o 1 , . . . , A n : o n > is an object of this type (the o i 's are objects of type T i). The T uple type is equipped with the Get A i value functions to retrieve the value of a T uple object o for the attribute A i . The application of this function can be abbreviated using the dot-notation (o.A i)

From the study made in Section 4, we can see that ontology languages share common constructors to define CCOs. An ontology has a namespace. It is composed of classes and properties. Classes are organized in a hierarchy using subsumption relationships. They are associated to properties whose range may be a class or a datatype. Classes and properties can be referenced using an identifier independent of the underlying system (e.g., a URI or a BSU). They are described by names and definitions that may be defined in different natural languages. As a consequence, we define a set of predefined entities and attributes. Thus, E provides the predefined entities C and P . Instances of C and P are respectively the ontology classes and properties. The entity C defines the attribute SuperClasses : C → SET [C] and the entity P defines the attributes P ropDomain : P → C and P ropRange : P → C. The description of these attributes is similar to the definitions given for SuperEntities, AttributeDomain and AttributeRange replacing entities by classes and attributes by properties. Moreover, a global super class Root is predefined. This core ontology language can then be extended with user-defined entities and attributes.

The content part

The content part stores instances of ontology classes. It is formalized by a 5-tuple < EXT EN T, I, T ypeOf, SchemaP rop, V al >.

-EXT EN T is a set of extensional definitions of ontology classes.

-I is the set of ontology instances. Each instance has an identifier. -T ypeOf : I → EXT EN T defines the type of each instance. -SchemaP rop : EXT EN T → 2 P defines the properties used to describe the instances of a class. -V al : I × P → I gives the value that has an instance for a given property. This property must be used in the extensional definition of the belonging class of the instance.

Relationship between each part

The relationship between the ontology and content parts is defined by the partial function N omination : C → EXT EN T . It associates a definition by intension of a class with its definition by extension. Classes without extensional definition are said to be abstract. The set of properties used in an extensional definition of a class must be a subset of the properties defined in the intensional definition of a class (propDomain -1 (c) ⊇ SchemaP rop(nomination(c))).

The OntoQL Query Algebra

Since our data model uses extensively object-oriented features, the OntoQL algebra, named OntoAlgebra, is based on the ENCORE algebra [START_REF] Shaw | A Query Algebra for Object-Oriented Databases[END_REF]. The signatures of the OntoQL algebra operators belong to

(E ∪ C) × 2 OC∪I → (E ∪ C) × 2 OC∪I .
The main operators of this algebra are OntoImage, On-toProject, OntoSelect and OntoOJoin. For the sake of clarity, only these operators are presented and they are restricted to the signature: C × 2 I → C × 2 I . However, the complete definition of this algebra can be found in (Jean et al, 2007a).

-OntoImage. The OntoImage operator applies a function to a collection of instances. Its signature is

C × 2 I × F unction → C × 2 I .
F unction contains all the properties in P and all the properties that can be defined by composing properties of P (path expressions). Differently from the object-oriented data model, one or more of the properties occurring in the function parameter may not be valued in the extensional definition of a class. Thus, the domain of the V al function needs to be extended with the properties that are defined on the intensional definition of a class but not used in its extensional definition. This extension is called OntoV al and is defined by:

OntoV al(i, p) = V al(i, p) if p ∈ SchemaP rop(T ypeOf (i)) else, U N KN OW N U N KN OW N is a special instance like N U LL
is a special value for SQL. To preserve composition, OntoV al applied to a property whose value is U N KN OW N returns U N KN OW N . With this definition of OntoV al, OntoImage is defined by:

OntoImage(T, {i 1 , . . . , i n }, f) = (P ropRange(f), {OntoV al(i 1 , f), . . . , OntoV al(i n , f)})
-OntoProject. The OntoProject operator extends OntoImage to apply more than one function to an instance. The result type is a T uple defined by:

OntoP roject(T, I t , {(A 1 , f 1), . . . (A n , f n)}) = (T uple[< (A 1 , propRange(f 1)), . . . , (A n , propRange(f n)) >], {< A 1 : OntoV al(i, f 1), . . . , A n : OntoV al(i, f n) > |i ∈ I t }) -OntoSelect. It creates a collection of instances sat- isfying a selection predicate. Its signature is C × 2 I × P redicate → C × 2 I
and it is defined by:

OntoSelect(T, I t , pred) = (T, {i | i ∈ I t ∧ pred(i)})
If the predicate pred contains a function, then OntoV al is used.

-OntoOJoin. It creates relationships between instances of two collections. It is defined by:

OntoOJoin(T, I t , R, I r , A 1 , A 2 , pred) = (T uple[< (A 1 , T), (A 2 , R) >], {< A 1 : t, A 2 : r > |t ∈ I t ∧ r ∈ I r ∧ pred(t, r)})
-Operator *. This operator is used to distinguish queries on instances of a single class C and queries on C and all its sub-classes denoted C * . ext : C → 2 I returns the instances of a class and ext * : C → 2 I returns the instances of a class and of its sub-classes. If c is a class and c 1 , . . . c n are the direct sub-classes of c, ext and ext * are derived recursively 4 by:

ext(c) = T ypeOf -1 (N omination(c)) ext * (c) = ext(c) ∪ ext * (c 1) ∪ . . . ∪ ext * (c n)
With the ext and ext * functions, the * operator is defined by * : C → C × 2 I where * (T) = (T, ext * (T)).

This algebra represents the semantics of the On-toQL query language. The same approach has been followed to define the semantics of the definition and manipulation language of OntoQL. These different sublanguages of OntoQL are presented in the next section.

The OntoQL Language

The OntoQL language can be used to define and query ontologies and their instances. We first describe the sublanguages defined to manipulate the instances. The DDL of OntoQL is used to create, alter and drop ontology elements (classes, properties . . .) as well as their attributes values (name, definition . . .). For example, the following statement creates the Ball Bearing class as a sub-class of Rolling Bearing with a name and a definition defined in different natural languages. The properties width, mass and used in are defined in the same time. As the ontology language used by OntoQL is not hard encoded in its grammar, the # prefix identifies entities and attributes of the used ontology language. Once a class has been defined by intension, an extent can be attached to this class by the following statement:

CREATE EXTENT OF Ball_Bearing (width, mass)

The extent of a class is composed of a subset of the properties defined on the intensional definition of this class. In this example, the properties width and mass are the only properties used to describe the instances of the Ball Bearing class.

Once an extent of a class has been defined, the DML of OntoQL can be used to insert, update and delete instances. The syntax of this language is similar to the one of the DML of SQL as the following statement shows.

INSERT INTO Ball_Bearing (width, mass) VALUES (6.9, 7.8)

The query language of OntoQL keeps a syntax close to SQL (SELECT-FROM-WHERE). Moreover, OntoQL supports the following features, all expressed by a composition of OntoAlgebra operators.

-Path expressions. Associations may be traversed using the dot notation. Let us give some examples of queries to illustrate the particularities of this language. The semantics of On-toQL has been defined to search values of an instance for each property defined on its belonging class. When a property is not used in the extent of this class, the NULL value is returned. The following query retrieves the width, mass and description of the products in which ball bearings are used (path expression).

SELECT width, mass, used_in.desc FROM Ball_Bearing

As the used in property is not used in the extent of the Ball Bearing class, the column corresponding to this property is filled with the NULL value for each resulting row.

Another particularity of ontologies is that classes and properties have a namespace. The USING NAMESPA-CE clause of an OntoQL statement specifies the namespace in which classes and properties must be searched. Several namespaces can be specified in the USING NAMESPACE clause if one wants to query elements defined in different ontologies. The following query specifies that the Roller Bearing class and the mass property should be searched in the namespace http://www.lias-lab.fr.

SELECT mass FROM Roller_Bearing USING NAMESPACE 'http://www.lias-lab.fr' If the USING NAMESPACE clause is not specified and if there is no default namespace, the query is interpreted as an SQL statement. Thus, the OntoQL language is compatible with SQL.

The next example illustrates a third particularity of ontologies: classes and properties have a textual definition that may be given in different natural languages (linguistic layer of an ontology). This particularity is used in OntoQL to express queries in different natural languages. The next query is written in English (a.) and in French (b.). The query a. must be executed when the default language of OntoQL is set to English while the query b. requires the French default value.

The Ontology Definition (ODL), Manipulation (OML) and Query (OQL) Languages of OntoQL

Ontologies and the used ontology language can be managed with the ODL, OML and OQL of OntoQL. These languages have a syntax close to the ones of the DDL, DML and DQL. For example, the next statement, adds the AllValuesFrom constructor from OWL to the used ontology language of OntoQL. This example creates the Row Ball Bearing class as being the set of instances that only use Row of Balls.

Finally the OQL is used to search ontology elements stored in the OBDB. For example, the next query searches the OWLAllValuesFrom classes defined on the uses property with the class in which the values of this property must be taken.

SELECT #name[en], #allValuesFrom.#name[en]

FROM #OWLRestrictionAllValuesFrom WHERE #onProperty.#name[en] = 'uses'

Querying both the ontologies and instances in OntoQL

By combining the DQL and OQL of OntoQL, ontologies and instances can be queried simultaneously.

From ontology to instances. Starting from classes retrieved by a query on ontologies (OQL), the instances of these classes can then be filtered (DQL). This type of queries is possible thanks to dynamic iterators. To query instances, an iterator i on the instances of a class C can be introduced using the C AS i construct. On-toQL extends this mechanism with iterators on the instances of a class identified at run-time, which are called dynamic iterators. For example, the following query retrieves the instances of all classes whose names start with Ball. From instances to Ontology. Starting from instances retrieved by a DQL query, the description of the belonging classes of these instances can be retrieved (OQL). OntoQL proposes the typeOf operator to retrieve the basis class of an instance i.e., the minorant class for the subsumption relationship of the classes it belongs to. For example, the following query retrieves the English name of the basis class of each Rolling Bearing instances.

SELECT typeOf(b).#name[en] FROM Rolling_Bearing AS b

OntoQL Query Processing

As OntoQL is implemented on top of OntoDB, an On-toQL query is translated into SQL. This process follows five main steps.

1. OntoAlgebra query plan generation. The On-toQL query is parsed and turned into an expression tree involving operators of its algebra in its nodes. 2. OntoAlgebra query plan optimization. We have identified optimization situations to reduce the OntoAlgebra query plan. These optimizations techniques are detailed in (Jean et al, 2006). 3. OntoAlgebra query plan translation into relational algebra trees. This translation is achieved by applying a set of rules described below. 4. Relational algebra trees optimization. This step consists in using the different algebraic laws that hold for the relational algebra to turn the relational trees into equivalent trees that may be executed more efficiently by the underlying DBMS. 5. Relational algebra tree translation into SQL.

The optimized relational trees are translated into SQL queries according to the underlying DBMS and executed to get the OntoQL query result.

The translation between OntoQL and SQL query plan is an important step. To illustrate the set of rules defined, table 2 presents a translation rule of an On-toAlgebra expression to a relational algebra expression. The interested reader can refer to [START_REF] Jean | OntoQL, un langage d'exploitation des bases de données à base ontologique[END_REF] for the definition of the complete set of rules. In these rules, π represents the projection operator of the relational algebra. C is a class and p 1 , . . . , p n are the properties defined on this class. Among these properties only p 1 , . . . , p u are used to describe their instances. The datatype of p 1 is a collection of references and the one of p 2 is a single-valued reference. Others properties have primitive datatypes.

Rule 1 computes the direct instances of the class C with their values for all the applicable properties OntoAlgebra Relational Algebra OntoProject (C, ext(C), πPp 1 rids,Pp2 rid,Pp3,...,Ppu, {(p1, p1), . . . , (pn, pn)} NULL→Ppu+1,...,NULL→Ppn (EC) Table 2 Example of a translation rule on this class. The OntoProject operator of OntoAlgebra is translated into a projection of the corresponding columns (prefixed by P) on the corresponding table (prefixed by E). The projections of properties that are not used to describe instances are translated into projections of the NULL values as defined in the On-toAlgebra semantics. The resulting column is renamed (symbol →) according to the OntoDB naming convention so that other operators can reference it as a used property.

If the identifiers of width, mass and Ball Bearing are respectively 1, 2 and 3, an example of the application of the previous rule is:

SELECT width, mass, used_in => SELECT P1, P2, NULL FROM Ball_Bearing FROM E3

In this section, we have presented the OntoQL query language. This language has three main characteristics that distinguish it from other proposed languages: (1) the OntoQL language is independent of a given ontology language. Indeed, it is based on a core ontology language, which contains the constructors shared by different ontology languages and this core ontology language can be extended by the OntoQL language itself, (2) the OntoQL language exploits the linguistic information that may be associated to a conceptual ontology allowing users to express queries in different natural languages and (3) the OntoQL language is compatible with SQL. In the next section we present different applications of the OntoDB/OntoQL platform. This platform is available as open source softwares at http://www.lias-lab.fr/forge/projects/ontodb.

Applications

Standard Ontologies in Engineering

The PLIB ontology language has been used to develop a number of standard ontologies in different fields of the engineering domain such as:

-Electronic Components (IEC 61360-4); -Process Instruments (IEC 61360-4); -Mechanical Fasteners (ISO 13584-511); -Measure Instruments (ISO 13584-501); -Cutting Tools (ISO 13399); -Bearings (ISO 23768); -Technical Product Documentation (ISO/TC 10 NWI); -Optics and Photonics (ISO 23584).

To show the size and the complexity of these ontologies, we detail some examples.

The Mechanical Fasteners ontology (ISO 13584-511) represents fasteners with their properties and domains of values as they are described in the various ISO mechanical fastener standards. These fasteners include bolts, screws, nuts, rivets, pins and washers. This ontology is composed of approximatively 250 classes and 410 properties. The definitions of these classes are given in French and in English. Several man-years were required for its definition.

The Cutting Tools ontology (ISO 13399) defines the terms, properties, and definitions for those portions of a cutting tool that remove material from a workpiece. Cutting items include replaceable inserts, brazed tips, and the cutting portions of solid cutting tools. This ontology is composed of approximatively 500 classes and 360 properties. As for the mechanical fasteners ontology, the definitions of these classes are given in French and in English and several man-years were required for its definition.

The PLIB language has also been used in the eCl@ss classification (http://www.eclass.de/). eCl@ss is a product classification and description standard for information exchange between customers and their suppliers. It describes products such as cable, wire, accumulator or battery and services such as process control system or electrical measurement. This classification is composed of approximatively 33 000 classes and described in 15 natural languages.

These example shows the interest of the PLIB ontology language. Next section describes our approach based on the OntoDB/OntoQL platform to integrate heterogenous data.

Integration a priori and a posteriori

Integrating heterogeneous, autonomous and distributed data sources is one of the favourite application domains of ontologies [START_REF] Noy | Semantic Integration: A Survey Of Ontology-Based Approaches[END_REF]. They contribute on reducing syntactic and semantic heterogeneities that may exist between sources. Due to the increasing number of data sources, automatic integration processes become a necessity for companies. We have proposed data integration solutions for French companies such as Renault S.A. (French multinational vehicle manufacturer established in 1899) which needed to integrate their suppliers data sources. To perform this integration, we claim the following: if we want to avoid human intervention at integration time, mappings between sources shall be done a priori during the data sources design. This means that some formal shared ontology must exist, and each data source shall embed some ontological data that reference explicitly this shared ontology. Some integration systems funded by industrials and academic institutions such as the Piscel2 project funded by France Telecom for integrating Web Services [START_REF] Reynaud | An Application of the Mediator Approach to Services over the Web[END_REF] and the COIN project supported by ARPA and USAF/Rome Laboratory for exchanging financial data [START_REF] Bressan | Context Knowledge Representation and Reasoning in the Context Interchange System[END_REF], worked under the same assumption. Their main limitation is that once the shared ontology is defined, each source shall only use the common vocabulary. The shared ontology is in fact the integrated schema and each source has little schematic autonomy.

To overcome this limitation, we offer more schematic autonomy to data sources participating in the data integration process. To achieve this goal, three assumptions are required.

1. Each data source participating in the integration process shall contain its own ontology. This assumption refers to the need of an ontology-based database (see Section 5). 2. Each data source references a shared ontology as much as possible. As much as possible means that:

(1) each class of a local ontology references explicitly (or implicitly through its parent class) its lowest subsuming class in the shared ontology, and (2) only properties that do not exist in the shared ontology may be defined in a local ontology; otherwise it should be imported through the case-of relationship. This requirement is called smallest subsuming class reference requirement. 3. Local ontologies may extend the shared ontology as needed by adding new concepts and properties.

Based on these assumptions, three integration scenarios have been proposed for Renault S.A called: Fragment-Onto, ExtendOnto and ProjOnto. These scenarios are described as follows.

FragmentOnto: in this scenario, we assume that the shared ontology is complete enough to cover the needs of all data sources. This scenario is feasible for authoritative parties that can force their suppliers to use the shared ontology. The source autonomy consists in (1) selecting the relevant subset of the shared ontology (classes and properties), and (2) designing the local database schema. This approach has been presented in [START_REF] Bellatreche | An a Priori Approach for Automatic Integration of Heterogeneous and Autonomous Databases[END_REF]. It is not well suited for integrating autonomous data sources.

ExtendOnto: in this scenario, the shared ontology is extended by each local specialization. The local in-stances are then integrated within the integrated system without any change.

ProjOnto: in this scenario, the shared ontology is not modified. Each data source instance is projected onto the applicable properties of its smallest subsuming class in the shared ontology, and is then added to the population of this class in the shared ontology. These scenarios are well described in the PhD thesis of Dung Nguyen Xuan [START_REF] Nguyen-Xuan | Intégration de base de données hétérogènes par articulation a priori d'ontologies : application aux catalogues de composants industriels[END_REF] and in [START_REF] Bellatreche | An a Priori Approach for Automatic Integration of Heterogeneous and Autonomous Databases[END_REF].

Engineering model annotation: the e-Wok Hub Project

The goal of the e-Wok Hub project was to help geologists in carrying out petroleum prospection projects. The petroleum exploration activities is based on the representation of underground reservoirs. These representations use complex and well founded geological models like stratigraphic, structural, datation, geological models, etc. Such an activity leads to a set of complex and heterogeneous models that use a huge amount of data produced either by measurement campaigns or by the corresponding computation models. By heterogeneity, we mean both heterogeneous models in terms of semantics and heterogeneous interpretations since two geologists can give different conclusions when interpreting the models and their corresponding data. Moreover, when working on such projects, engineers and geologists use a large panoply of resources such as scientific articles, reports of past projects, softwares, data files, etc.

The platform developed in the context of this project integrates these heterogeneous resources in a global architecture where ontologies play a central role for data integration, exchange and querying. In the context of this project, the OntoDB database served as a repository and the OntoQL language was used to query the integrated data.

For example, in the case of the CO2 capture and storage, engineers and geologists rely on various engineering models. They have to deal with several interpretation difficulties due to the heterogeneity of these models. To ease this process, we have proposed to annotate these models with concepts of ontologies [START_REF] Mastella | Semantic exploitation of persistent metadata in engineering models: application to geological models[END_REF]. As the notions of annotations and engineering models were not available in OntoDB, the OntoQL language was used to introduce these notions. First, elements of the engineering models were created with the CREATE ENTITY statement of OntoQL. Then, an association table was defined to annotate the engineering models by a class of an ontology. Once this extension was done, OntoQL was used to query the engineering models departing from the ontology concepts.

Moreover, the design of the corresponding ontologies involved several ontologies issued from different domains (stratigraphy, datation, sturcural, etc.) that needed to be integrated in a single ontology without impacting their use in different areas. For this purpose, an a posteriori case of relationship has been used to map the different developed ontologies.

This section has shown the interest of the development presented in this paper on several examples of industrial projects. Other successful applications of the PLIB language with its associated technologies include projects with companies such as Toshiba Corporation, Philips, Siemens, Zeiss or Sandvick.

Conclusion

In this paper, we have highlighted the benefits of ontologies in the engineering domain. A deep analysis of the use of ontologies by research communities has brought new insights to the classification of ontologies in three main categories: canonical ontologies, non-canonical ontologies and linguistic ontologies. The canonical ontologies described by formalisms such as PLIB have been largely used in the engineering domain. Compared to Semantic Web languages such as RDFS or OWL, PLIB adheres to the closed-world and unique name assumptions, which are adapted to the controlled environment that we found in industrial engineering settings. This language also proceeds to represent the modeling context of the concepts defined in the ontology. This characteristic is important for data integration as an implicit modeling context is the main cause of semantic data heterogeneity [START_REF] Bressan | Context Knowledge Representation and Reasoning in the Context Interchange System[END_REF]. This modeling context is expressed by the representation of:

the context of each class by its set of properties and of each property by its domain of definition; -the different point of views of the same classes (viewof operator); -the local interpretation of an ontology by the case-of importation mechanism; -the context of evaluation of a property when it depends upon different parameters; -the unit and scaling of values.

The PLIB formalism has been largely used to define several standard ontologies in different fields of the engineering domain. The increasing quantity of semantic instances pushes us to propose a persistent solution for them: the OntoDB architecture. The originality of this architecture compared to those defined for RDFS and OWL is twofold: (i) OntoDB leverages the strong typing assumption made in PLIB to propose an efficient storage layout for engineering data and (ii) OntoDB includes the metaschema part which has been extensively used to extend the used ontology language (e.g., to store and annotate engineering models with ontologies in the e-Wok Hub project).

The OntoDB database is equipped with the OntoQL language that can be used to define, manipulate and query ontologies and their instances. Instead of defining a language specifically for PLIB, OntoQL is based on a core ontology language composed of the main constructors of several ontology languages. And, this core ontology language can be extended with the OntoQL language itself. Another particularity of this language is that it is compatible with the SQL language: a statement without a namespace definition is considered as a SQL statement. Moreover, the syntax and semantics of OntoQL to query ontologies and their instances are close to the SQL language. Finally, OntoQL exploits the different layers of an ontology, and in particular benefits from the linguistic layer allowing users to write queries in different natural languages. The PLIB language and the OntoDB/OntoQL platform have been used in several industrial projects with companies such as Renault, the French Institute of Petroleum, Toshiba and Philips in various projects related to the problem of data integration.

The developments of the OntoDB/OntoQL platform5 are continually evolving to satisfy the needs of our partners and of the addressed research issues. These evolutions concern several facets of our platform: (i) database extension such as the support of multiple ontology languages, engineering models, semantic web services and functional dependencies, (ii) query language extension with user preferences and behaviour semantics, (iii) database optimization with the selection of optimization structures such as materialized views and indexes, (iv) personalization with query recommendation and relaxation techniques.

Currently, we are also working on probabilistic and fuzzy models for representing uncertainly in ontologies as done in [START_REF] Huang | IT2FS-based ontology with soft-computing mechanism for malware behavior analysis[END_REF].

 Fig.1The onion model of domain ontology

Fig. 3

 3 Fig. 3 Nature of properties of a component

Figure 3

 3 Figure 3 presents a 2D representation of a ball bearing. But other points of view of this component are used in engineering such as 3D representation or schematic representation (see Figure 4). Each point of view describes a ball bearing with different characteristics. Requirement 3 (Point of view)

Fig. 4

 4 Fig. 4 Different points of view on the same component

Fig. 5

 5 Fig. 5 Example of the used storage layouts

Fig. 6

 6 Fig. 6 Type I and type II architectures of OBDBs

 7.3.1 The Data Definition (DDL), Manipulation (DML) and Query (DQL) Languages of OntoQL

 CREATE #CLASS Ball_Bearing EXTENDS Rolling_Bearing (DESCRIPTOR(#name[fr] = 'Roulement à billes', #definition[fr] = 'un type de roulement ...', #definition[en] = 'a type of rolling ...') PROPERTIES(width Real, mass Real, used_in REF(Product)))

 SELECT i.oid FROM #class AS C, C AS i WHERE C.#name[en] like 'Ball%'

Table 1

 1 Comparison of the main ontology languages direct translation of the RDF data model, RDF queries can be directly and easily translated into SQL queries. But these queries often require a lot of self-join operations on the triples table. RDF3X[START_REF] Neumann | RDF-3X: a RISC-style engine for RDF[END_REF] and Hexastore[START_REF] Weiss | Hexastore: Sextuple Indexing for Semantic Web Data Management[END_REF] have shown that this approach can still be employed with good performance if the triples table is replaced by a set of indexes.

		RDFS	OWL	OWL Flight	PLIB
	Universal identifier	URI	URI	URI	BSU
	Subsumption	subClassOf	subClassOf	subClassOf	is a
		SubPropertyOf SubPropertyOf	SubPropertyOf	case of
	NCCO constructors	-	Restriction	Restriction	Derivation function
		-	Boolean operators Boolean operators	
	Linguistic information label/comment label/comment	label/comment	name/synonym/definition
		(multilingual)	(multilingual)	(multilingual)	note/remark (multilingual)
	Technical information	-	-	-	specific datatypes (units, level type)
		-	-	-	point of view (is-view-of)
		-	-	-	evaluation context
	Assumptions	OWA	OWA	Local CWA/UNA	CWA/UNA
		WTA	WTA	WTA	STA

 .1 The OntoDB architecture OntoDB is implemented on top of the PostgreSQL DB-MS. It has a four-parts architecture depicted in Figure 7.

		Entity			Meta_table
	ID	name		ID	name
	11	class	… …	1	E1111 … …
		Attribute			Meta_column
	ID	name		ID	name
	12	name … …	2	P1121	…
		Class			E1111
	rid	name	rid	P1121	…
	1111 Ball_Bearing	111	10	…
		Property		E1112
	rid	name		rid	P1122	P1123 …
	1121 width … …	112	10	578	…

 primitive datatypes have equivalent datatypes in PostgreSQL (e.g, the PLIB int type is coded as INT8 in PotgreSQL); -the reference type (class instance type) is used to link two instances. Because of the polymorphism, two columns are used to represent this dataype. The name of the first one is suffixed by rid and provides the identifier of the referenced instance. The second one, suffixed by tablename stores the name of the table in which the referenced instance is stored; -the collection datatype (aggregate type) is represented by the ARRAY type of PostgreSQL. The properties whose values are collections of instances are represented by two columns of type ARRAY.

 table. Finally, the scope association is represented by the Property 2 scope association table. This table makes the link between a property and a class. The scope column of the Property e table is used to join this table with the association table. Example of the ontology part of OntoDB

	STRING	name	Class_and_Property
			Class		scope	Property
	label	Entity		Inheritance
	label	Primitive Datatype	Association
			Ontology language
			Class_and_Property_e
			rid		name
		Class_e			Property_e
	rid	name		rid	name	scope
	1	Ball_Bearing	10	width	100
			Property_2_scope
	rid	rid_s	tablename_s	rid_d	tablename_d
	100	10	Property	1	Class
		Storage layout of the ontology part
	Fig. 9				

-

 Polymorphic query. Queries on direct instances of a class are distinguished from queries on all instances of a class with the keyword ONLY. -Dependent collection. A collection can be traversed using an iterator introduced in the FROM clause. -Nested queries. Queries can be nested in the SELECT, FROM and WHERE clauses. -Aggregate functions. OntoQL provides aggregate functions count, sum, avg, min and max. -Quantification. Existential (ANY, SOME) and universal (ALL) quantification can be expressed. -Set operators. Union, Intersection and Except operators are provided.

Entity Relationship Conference

Panel on New Directions for Conceptual Modeling.

http://www.freebase.com

http://www.lias-lab.fr/forge/projects/ontodb

Acknowledgements This work has been initiated under the supervision of the late Professor Guy PIERRA. He has been the initiator of the OntoDB project. We are grateful for his work and his investment. We learned a lot from his experience and advices. The authors would also like to thank the persons who have contributed to the development of the On-toDB/OntoQL platform and in particular Hondjack Dehainsala for the development of OntoDB during his PhD thesis and Dung Xuan Nguyen for his PhD thesis on data integration.