Mamadou Lakhassane Cisse

Hanh Nhi Tran

Samba Diaw

Bernard Coulette

Alassane Bah

A Pattern-based Process Management System to Flexibly Execute Collaborative Tasks

Keywords: Process Management, Process Execution, Multi-instance Task, Collaboration Process Pattern, Late-binding

Managing collaborations during the execution of a process is complex and challenging, especially for managing the collaboration inside a task having multiple instances performed by various actors. Existing process management approaches propose either a rigid control for conducting such collaborative tasks or no control at all. Aiming at a more flexible way to execute and control multi-instance tasks, we investigate a solution based on late-binding mechanism to allow actors choosing dynamically suitable strategies to perform their collaboration. First, we propose a process modeling language which focuses on describing multi-instance tasks and their dynamic instances at execution time. Second, this language is then used to represent patterns capturing reusable collaboration strategies. A prototype of a pattern-based Process Management System has been developed to demonstrate the possible flexible execution of collaborative tasks.

INTRODUCTION

Collaborative processes have to deal with dynamic and complicated relationships between participants of a given project. Thus, they should benefit from process management methods and tools which, based on the information flows described in the process model, allow coordinating the activities performed by process actors at process execution time. Conventionally, a task is the smallest unit of work in a process subject to management accountability. Existing process management systems focus on coordinating process's tasks but pay less attention to managing the collaboration of actors inside a given task to achieve a common goal. In general, there are two usual approaches to deal with the collaboration inside a task: (1) representing the collaborative task only in the process model but ignoring interactions among actors during its enactment; (2) refining the inner steps inside the task concerning actors and describing these sub-tasks in the process model so that they are manageable during process execution. In the first case, the collaboration at runtime is not monitored and controlled, in the second case, the collaboration is controlled but is rigid and cannot adapt to evolving contexts, for example when the number of task's actors changes.

Many works have been done on designing collab-oration strategies [START_REF] Briggs | Defining key concepts for collaboration engineering[END_REF][START_REF] Kolfschoten | The collaboration engineering approach for designing collaboration processes[END_REF], on modeling collaborations [START_REF] Lonchamp | Process model patterns for collaborative work[END_REF][START_REF] Hawryszkiewycz | A metamodel for modeling[END_REF][START_REF] Kedji | Supporting collaborative development using process models: An integrationfocused approach[END_REF][START_REF] Antunes | Modeling highly collaborative processes[END_REF][START_REF] Gallardo | Modeling collaboration protocols for collaborative modeling tools: Experiences and applications[END_REF]. However, there have been few studies about assisting and controlling the execution of collaborative processes, especially to allow the collaboration to evolve according to the process application context [START_REF] Ariouat | Do process-based systems support emergent, collaborative and flexible processes? comparative analysis of current systems[END_REF]. Motivated by this lack when working on modeling and execution of collaborative processes [START_REF] Cisse | Collaborative processes management: from modeling to enacting[END_REF], we have been investigating a solution for executing collaborative tasks in a flexible way. We are interested in a special form of collaborative tasks, so-called Multi-Instances Tasks (MIT). At execution time, a single task is instantiated once and the task instance is performed by an actor playing the required role. An MIT needs several instances to accomplish the task's goal. The relationships among the instances of an MIT depend on the collaboration strategy used to realize the task's goal. In order to enable a fine control of an MIT's enactment, these inter-instances relations must be defined.

As an extension of the work in [START_REF] Cisse | Collaborative processes management: from modeling to enacting[END_REF], this paper presents our proposition to allow executing flexibly multi-instance tasks. The main steps are: (1) defining a set of patterns to capture different collab-The paper is structured as follow. Section 2 presents first our executable process modeling language used to describe collaborative tasks and the relations among their instances at execution time, and second collaboration patterns for MITs execution. A prototype implementing our work is described in Section 3. We discuss in Section 4 some related works and summarize in Section 5 our contributions as well as our perspectives.

MODELING COLLABORATIVE TASKS

To enable a fine-grained control of collaboration during process execution, both the structural and behavioral aspects of collaborative tasks must be known.

Aiming at a flexible execution, we define these aspects of a collaborative task in two times: at modeling time, only the task's structural elements (e.g. performing role, used artifacts) are described, then at execution time, when the task is instantiated into several instances, the relations among the task's instances (e.g. work-sequences, exchanged-data) will be specified according to the used collaboration strategy and in this way reflect the task's behavior. The challenge for such an approach is how to generate at execution time the behavioral model of a collaborative task without requiring process actors to go back to the modeling phase.

Dealing with this issue, first in Section 2.1 we propose the Executable Collaborative Process Modeling Language (ECPML) which is composed of two packages allowing to represent the process elements at modeling time (ECPML Core) and their dynamic instances at execution time (ECPML Execution). Then in Section 2.2 we propose a catalog of collaboration patterns that can be bound dynamically to a collaborative task instance at execution time to define its behavior.

Executable Collaborative Process Modeling Language

Figure 1 shows an extract of the meta-model of our Executable Collaborative Process Modeling Language (ECPML). This language is inspired from SPEM [START_REF] Omg | Software & systems process engineering meta-model specification v2[END_REF] for the elements of ECPML Core. The concepts representing ECPML Execution were defined by ourselves because SPEM does not provide elements concerning process execution.

The Figure 1a defines the process elements and oration strategies that define typical relations at execution time among the instances of a multi-instance task in specific s ituations; (2) u sing t he p atterns in (1) to specify flexibly the inter-instances relations of an MIT at execution time in order to allow actors adapting their collaboration strategies according to the project's context. The main contribution of this work is the proposal of the late-binding mechanism to dynamically choose the execution strategy of a multi-instance task. In order to do so, we have defined a s et o f collaboration patterns from which one is chosen at execution to conduct a particular strategy in a given project's context.

A collaboration pattern captures a recurrent collaboration strategy that can be used at execution time to perform a collaborative task in a specific context of the application project. A collaboration pattern describes the typical relationships among the instances of a collaborative task from two main perspectives: the control-flow and the d ata-flow. The control-flow perspective provides the execution order of task instances, represented by the work-sequence relations among the instances. The data-flow perspective specifies, via the task parameter relations, the data manipulated, exchanged or shared by the task's instances. In contrast to the modeling patterns proposed in [START_REF] Lonchamp | Process model patterns for collaborative work[END_REF][START_REF] Der Aalst | Workflow patterns[END_REF] and [START_REF] Vo | An approach to define and apply collaboration process patterns for software development[END_REF] that are applied at modeling time for describing collaboration scenarios, our collaboration patterns (see Section 2.2) are applied dynamically at execution time to generate the detailed model of running collaborative tasks.

A loosely specified c ollaborative t ask a t modeling time needs to be completed at execution time to enable a controlled flexible e xecution. To do s o, we use the late-binding mechanism to select dynamically a suitable collaboration pattern and use it as a template to generate the inter-instances relations for the collaborative task. To enable adapting the execution of a collaborative task to the evolution of a project context or to change collaboration strategy during the execution, a collaborative task can be bound to different collaboration patterns. Generally, the main factors that can impact the choice of a collaboration are constraints on the availability of resources (humans, time, tools etc.) or constraints on the order of manipulating or producing the inputs and outputs. Selecting (semi-) automatically a suitable pattern is out of scope of this paper.

Furthermore we have also defined an operational semantics that enables the application of collaboration patterns to make the execution of collaborative tasks flexible. Due to space constraint, this semantics is not presented here. Controlling the execution of a process is essentially coordinating the execution of different STIs. To do so, the TaskInstanceSequence relations among the TaskInstances must be known. However, only those specifying the relations among the instance of different tasks are defined in the process model and thus known at modeling time. For example, from the pro-cess model in Fig. 2, we can know only the worksequences FS (i.e. Finish2Start) between the Write-Document and the ReviewDocument, between the Re-viewDocument and the ReviseDocument. However, the relations among multiple instances of a collaborative task, i.e. among the STIs inside a CTI as among the STIs of the ReviewDocument CTI, are not described in the process model and need to be established at execution time.

The inter-instances relations among the STIs of a CTI are dependent on the collaboration strategy used to carry out the task. In our approach, we use collaboration patterns to capture such strategies and to reuse these patterns as templates to define the relations between the STIs inside a CTI. The following section presents how ECPML can be used to model collaboration patterns and shows two representative patterns.

Patterns for Multi-instances Task Execution

manipulate separately an instance p i of the component P i . The different task instances can be executed at any time as there is no sequencing between them.

They should be executed in parallel to minimize the execution time.

Solution: Figure 3 shows the models of PAR-INSTANCES-COP pattern respectively at modeling time, and at execution time with 2 task instances of the collaborative task T . inside the collaborative task instance of T . Each task instance t i manipulating an instance p i of the component P i and is performed by a different actor playing the same role. The execution order FS among the task instances is imposed by the dependencies defined among the components of P: the creation of P i + 1 needs the completion of P i thus t i + 1 (which works on P i + 1) has to follow t i (which produces P i). The value of n can be given when the collaborative task is deployed.

We have identified several patterns based on the way the manipulated artifacts are shared. In this paper, we consider only how the output artifacts that are changed by the collaborative task are shared among its instances. The input artifacts are implicitly considered as "read-only" items shared by the instances inside the collaborative task and are not shown in the patterns.

Using our own template, a pattern is presented with its name, description, problematic, context of use, and a solution described in ECPML. Presenting the exhaustive list of these patterns is out of scope of this paper. In the following, we present 2 representative patterns corresponding to the two main types of execution: in parallel and in sequence.

Pattern Parallel Instances with Composite

Out Parameter Name: PAR-INSTANCES-COP Problematic: need to realize a quick production of a composite artifact made of independent parts Context: This pattern serves to manipulate a composite artifact regardless of the order of production for the different parts. It means that those parts must be independent. It can be used when all the resources needed for the enactment of the collaborative task are available.

Description: Given a collaborative task T having one output parameter P composed of n independent components P i , this pattern is used to execute a set of n single task instances t i inside the collaborative task instance of T simultaneously. Each task instance t i will Solution: Figure 4 shows the models of SEQ-INSTANCES-COP pattern respectively at modeling time, and at execution time with 2 task instances of the collaborative task T . As a dynamic entity, a TaskInstance has a lifecycle composed of different states through which it goes when executed. To allow deploying and executing a multi-instance task, we need to define the task instance's lifecycle, its operational semantics. As mentioned above, the semantics of the behavior of the process engine is out of scope of this paper.

Figure 5 describes the application of the pattern SEQ-INSTANCES-COP presented in Figure 4 to describe the behavior of the collaborative task Review. Notice that the resulting Review document is composed of Alice Assessment and Bob Assessment.

IMPLEMENTATION OF A PROTOTYPE

As a proof of concept, we have developed the prototype CPE (Collaborative Process Engine), a process management system supporting flexible execution of multi-instance tasks so that users can choose, at enactment time, appropriate collaboration strategies corresponding to their organizational model. Figure 6 below describes the general architecture of CPE. CPE has two main components:

• Process Editor allows process designers using ECPML to model processes and collaboration patterns then store them into Process Model Repository and Patterns Catalog.

• Process Engine supports process actors performing their process, i.e. instantiating the tasks defined in their process model and managing the execution of these tasks. Process actors choose a process model in Process Models Repository to execute and the process engine will generate the dynamic instances of the process's elements and store them in the Instances Store. At execution time, the process engine updates the process's instances, by using the operational semantics, to evolve the process. To deploy a collaborative task, the number of instances for each task can be given by the project manager or imposed by the organizational model of the project. Then according to the project characteristics, the project manager chooses the most suitable collaboration pattern to the project's context, among those of the Patterns Catalog, for executing each collaborative task.

The physical artifacts and human resources manipulated during the process execution are managed by external Databases: Artifacts Management System for artifacts and Resources Management System for actors. These databases are connected to CPE which manages just the references of artifacts and actors inside its InstancesStore.

Figure 7 shows a screenshot of the execution of our motivating example in the prototype. In this step, the manager chooses the most suitable pattern to deploy the collaborative task Review. Given that all the actors are available at the same time and the different document's parts to be reviewed are independent, he has chosen the pattern Parallel Instances Composite Out Parameter.

software development lifecycle or in a business process. The works in [START_REF] Lonchamp | Process model patterns for collaborative work[END_REF][START_REF] De Moor | Community memory activation with collaboration patterns[END_REF][START_REF] Verginadis | A review of patterns in collaborative work[END_REF] proposed patterns capturing best practices about organizing collaborative activities. The mentioned works also focused only on representing collaborative strategies at modeling-time contrarily to our approach which studies the application of collaborative strategies.

The work of [START_REF] Der Aalst | Workflow patterns[END_REF] proposed a series of workflow patterns representing typical solution for modeling and implementing processes. Their work is used principally for evaluating the expressiveness of process modeling languages and the supporting capacity of process management systems. In contrast to us, they did not provide a formalized solution to integrate the proposed patterns into a process system.

Few works on multi-instance tasks have also been investigated in the literature. In [START_REF] Atwood | Bpm process patterns: Repeatable design for bpm process models[END_REF], the author proposed a way to represent loop of tasks or independent tasks. However, it focuses only on controlflow between instances but ignores data-flow. [START_REF] Sun | The specification of workflow activity multiple instances[END_REF]) also introduced patterns for multiple instances activities. They dealt with the flexible execution by allowing a workflow management system to perform an activity several times, not like us who proposes defining the behavior of the system at execution time. Although [START_REF] Der Aalst | Workflow patterns[END_REF] presented some workflow patterns concerning the implementation of multi-instance tasks, it does not address the question of using dynamically patterns to support a flexible execution of collaborative as done in our work.

The flexibility of process execution is an important challenge of the process community. One approach to handle this is allowing deviations inside process environments i.e., detecting, tolerating and managing deviations, as done in [START_REF] Da Silva | Deviation management during process execution[END_REF][START_REF] Smatti | Dealing with deviations on software process enactment: Comparison framework[END_REF]. Another approach is allowing late-modeling or late-binding, i.e. the ability to deal with unpredictable situations by allowing the process model to be partially unknown at designtime and refined at run-time. As for [START_REF] Dustdar | Caramba-a process-aware collaboration system supporting ad hoc and collaborative processes in virtual teams[END_REF], they proposed a process-aware CSCW system supporting process schemas that are created on-the-fly. In [START_REF] Charoy | A dynamic workflow management system for coordination of cooperative activities[END_REF], authors introduced a Workflow management system allowing users to modify the instance of a process, such as adding an activity. It has been taken into account in the development of the Bonita workflow management system. Compared to the cited works, we also adopt the late-binding approach, but propose to use dynamically patterns to parameterize the behavior of the process engine and thus make it flexible. Thanks to CPE, the project manager can monitor the execution of collaborative tasks and adapt the collaboration strategy for conducting collaborative tasks at any moment according to the alteration of project's constraints and needs. CPE provides process actors with not only the necessary functionalities to perform their task (by verifying the condition to create, start, end or assign resources to a task instance) but also a global and real-time view on the progress of development tasks (by showing the information about the collaborative task that he participates in: what is the current state, who are other actors performing the task, what are exchanged data, etc.).

Although CPE is helpful for all kinds of processes which have multi-instance tasks, it can benefit particularly system and software processes which are often performed by several teams to produce different parts of the final p roduct. M oreover, g enerally system and software processes' projects have changing contexts because of the evolution of product's specification as well as the evolution of production's constraints. The above characteristics make system and software processes require more assistance and control during their execution -what is offered by our CPE.

RELATED WORKS

There are some works [START_REF] Hawryszkiewycz | A metamodel for modeling[END_REF][START_REF] Kedji | Supporting collaborative development using process models: An integrationfocused approach[END_REF][START_REF] Antunes | Modeling highly collaborative processes[END_REF][START_REF] Gallardo | Modeling collaboration protocols for collaborative modeling tools: Experiences and applications[END_REF] addressing the modeling of a collaborative process. Mostly they proposed constructs to model activities that need to be coordinated during the process execution but did not deal with the management of collaborative tasks during execution.

Process patterns have been used to describe a set of activities realized to solve common problem in a In [START_REF] Tran | Automatic reuse of process patterns in process modeling[END_REF], the authors defined patterns for modeling process and a mechanism for applying patterns to refactoring process models. This work does not tackle collaborative tasks. [START_REF] Vo | An approach to define and apply collaboration process patterns for software development[END_REF] proposed also an approach to define and apply collaboration patterns for software development modeling. Compared to these pattern-based approaches, our work allows dynamical application of patterns for adapting the behavior of a running process at execution time.

CONCLUSION

Our current research focuses on the flexible management of collaborative processes. Our work targets the modeling and execution of collaborative tasks. The work presented in this paper considers in particular multi-instance tasks which are instantiated several times at execution and performed by different actors but all collaborating to produce a common result. The objective of this work was providing a solution to model partially multi-instance tasks and then using the late-biding mechanism to complete the tasks behavior flexibly at execution time.

The main contribution of our work is the language ECPML used to model collaborative process, both structural and behavioral aspects, at modeling and execution time. We have used ECPML to model a set of collaboration patterns describing the typical behavior models of multi-instance tasks. These patterns can be bound to the structural model of a collaborative task to complete the task information and thus allow managing collaborative tasks. The execution of the collaboration is assisted by our prototype process management system CPE.

To improve the validation of our approach, we need to apply it to other case studies and especially to real projects. Indeed, it is always better to work with real project data, but our objective is mostly to test the set of collaboration strategies at execution time. Adding new collaboration patterns is also desirable but the limited set of collaboration patterns implemented, so far, does not question the validity of our approach. The proposition of more patterns, which is one of our perspective, will not put at risk the scalability of our approach since the search function complexity of a suitable pattern is linear.

We aim also supporting more complex collaborative task behaviors. Currently, we only deal with patterns describing one kind of work-sequence relations among the single tasks instances of a collaborative task (for example Finish2Start). However, sometimes in practice there are several kinds of inter-instances relations inside a task. To support more complex collaborations, we intend to investigate the proposition of new patterns covering those situations. We explore also the capacity of combining dynamically collaboration patterns at execution time.

One of our perspective also is to investigate the possibility of allowing a single task instance inside a collaborative task instance to become itself a collaborative task instance during enactment. Indeed, it is needed sometimes to allow a task to be refined into several instances due to constraints (such as emergency for a faster execution).

Figure 1 :

 1 Figure 1: Extract of the meta-model defining the ECPML. "instance of" dependency abstracts the instantiation links between concepts of ECPML Core and ECPML Execution. the relations among them. Our main focus in this paper is the Task concept representing a manageable unit of work. A Role is an abstract entity representing some qualifications. The relation TaskPerformer allows to specify a specific role required to perform a given task. WorkProduct represents concrete, tangible entities used or produced during the execution of a task via the relation TaskParameter. The relation WorkSequence between two tasks represents the constraint on the orders to execute the tasks. Our language distinguishes two types of task: a SingleTask which has only one instance at execution time and a CollaborativeTask which can have several instances at execution time. The Figure 1b defines the concepts used to represent the execution of a process, i.e. the dynamic instances created at execution time from the elements defined at modeling time in a process model. The relation instance of represents the mapping between the two packages of the meta-model. As an example we can say: a Task at modeling time is instantiated at execution time into one or many TaskInstances; a WorkProduct at modeling time is instantiated at execution time into one or many WorkProductInstances. A Role is played by one or many Actors at execution time. The relations between the instances are the same as those defined between their modeling concepts. Concretely, a TaskInstance can have TaskIn-stanceParameter relations with the WorkProductInstances that it uses or produces, a TaskInstance has a TaskInstancePerformer relation with the Actor who enacts it and a TaskInstance can have TaskInstanceSequence relations with other task instances to specify their execution orders.Focusing on controlling the execution of an MIT

Figure 2 :

 2 Figure 2: Model of the Writing process in ECPML at modeling time.

Figure 3 :

 3 Figure 3: Pattern PAR-INSTANCES-COP for a collaborative task T.

Figure 4 :

 4 Figure 4: Pattern SEQ-INSTANCES-COP for a collaborative task T.

Figure 5 :

 5 Figure 5: Application of SEQ-INSTANCES-COP to define the relations among the task Review's instances.

Figure 6 :

 6 Figure 6: General architecture of CPE.

Figure 7 :

 7 Figure 7: Screenshot of the CPE prototype.