Pedro Cabalar

Jorge Fandinno

Torsten Schaub
email: torsten@cs.uni-potsdam.de

Sebastian Schellhorn

Lower Bound Founded Logic of Here-and-There

A distinguishing feature of Answer Set Programming is that all atoms belonging to a stable model must be founded. That is, an atom must not only be true but provably true. This can be made precise by means of the constructive logic of Here-and-There, whose equilibrium models correspond to stable models. One way of looking at foundedness is to regard Boolean truth values as ordered by letting true be greater than false. Then, each Boolean variable takes the smallest truth value that can be proven for it. This idea was generalized by Aziz to ordered domains and applied to constraint satisfaction problems. As before, the idea is that a, say integer, variable gets only assigned to the smallest integer that can be justified. In this paper, we present a logical reconstruction of Aziz' idea in the setting of the logic of Here-and-There. More precisely, we start by defining the logic of Here-and-There with lower bound founded variables along with its equilibrium models and elaborate upon its formal properties. Finally, we compare our approach with related ones and sketch future work.

Motivation

A distinguishing feature of Answer Set Programming (ASP; [START_REF] Baral | Knowledge Representation, Reasoning and Declarative Problem Solving[END_REF]) is that all atoms belonging to a stable model must be founded. That is, an atom must not only be true but provably true. This can be made precise by means of the constructive logic of Here-and-There (HT; [START_REF] Heyting | Die formalen Regeln der intuitionistischen Logik[END_REF]), whose equilibrium models correspond to stable models [START_REF] Pearce | Equilibrium logic[END_REF]. One way of looking at foundedness is to regard Boolean truth values as ordered by letting true be greater than false. Then, each Boolean variable takes the smallest truth value that can be proven for it. Thus, in analogy to [START_REF] Leone | Disjunctive stable models: unfounded sets, fixpoint semantics, and computation[END_REF][START_REF] Van Gelder | The well-founded semantics for general logic programs[END_REF] foundedness in ASP can be understood by minimizing values of Boolean variables. This idea was generalized in [START_REF] Aziz | Answer set programming: founded bounds and model counting[END_REF] to ordered domains and applied to constraint satisfaction problems. As before, the idea is that a, say integer, variable gets only assigned to the smallest integer that can be justified. In fact, ASP follows the rationality principle, which says that we shall only believe in things, we are forced to [START_REF] Gelfond | Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach[END_REF]. While this principle amounts to foundedness in the propositional case, there are at least two views of statements such as x ≥ 42. First, we may accept any value greater or equal than 42 for x. Second, we may only consider value 42 for x, unless there is a reason for a greater value. Arguably, the latter corresponds to the idea of foundedness in ASP.

The ASP literature contains several approaches dealing with atoms containing variables over non-Boolean domains [7,8,[START_REF] Janhunen | Clingo goes linear constraints over reals and integers[END_REF] but these approaches do not comply with foundedness in our sense. For instance, approaches to Constraint ASP (CASP) like [7] only allow for atoms with variables over non-Boolean domains in the body of a rule. Thus, these atoms and the values of non-Boolean variables cannot be founded in terms of ASP.

Approaches like [8,[START_REF] Janhunen | Clingo goes linear constraints over reals and integers[END_REF] focus on foundedness on an atom level and allow for almost any kind of atoms in heads and bodies. They match the view of the rationality principle that accepts any value satisfying a statement like x ≥ 42. This permits assignments over non-Boolean domains to be founded but the variables are not necessarily assigned to the smallest value that can be justified. The following examples point out the difference of the two views of the rationality principle. Moreover, we show that taking any value satisfying a statement as a rational choice together with separate minimization will not yield foundedness in terms of ASP. Consider the rules

x ≥ 0 y ≥ 0 x ≥ 42 ← y < 42 (1)
The approach presented in [8] produces the following result. The first two rules alone would generate any arbitrary pair of positive values for x and y, but the last rule further restricts x ≥ 42 when the choice for y satisfies y < 42. It is clear that this last rule causes the range of x to depend on the value of y.

Unfortunately, this dependence disappears if we try to minimize variable values a posteriori by imposing a Pareto minimality criterion on the solutions. If we do so, we get a first minimal solution with y → 0 and x → 42 which somehow captures the expected intuition: we first decide the minimal value of y (which does not depend on x) assigning 0 to y and then apply the third rule to conclude x ≥ 42 obtaining the minimal value 42 for x. However, among the solutions of (1), we also get those in which we chose y ≥ 42, so the third rule is not applicable and x ≥ 0. Therefore, we get a second Pareto-minimal solution with y → 42 and x → 0 that seems counter intuitive: as y does not depend on x there seems to be no reason to assign a minimal value other than 0 to y. To show that separate minimization on solutions does not always yield all (and possibly more) solutions as expected by foundedness, consider the rules

x ≥ 1 x ≥ 42 ← ¬(x ≤ 1) (2)
In this case, depending on whether we assume ¬(x ≤ 1) or not, we may get two founded solutions. By assuming x ≤ 1, the second rule is disabled and the first rule x ≥ 1 determines the founded minimal value 1 for x, still compatible with the assumption x ≤ 1. If, on the contrary, we assume ¬(x ≤ 1), then the second rule imposes x ≥ 42 determining the minimal value 42 for x that, again, confirms the assumption ¬(x ≤ 1). In other words, we expect two founded solutions with x → 1 and x → 42, respectively. In contrast, if we first apply [8] and then a Pareto minimization, we lose the solution with x → 42. This is because when assuming x ≤ 1, we get x ≥ 1 as before, and the only compatible solution assigns 1 to x, whereas if we assume ¬(x ≤ 1), we obtain infinitely many values x ≥ 42 compatible with the assumption. The solutions are then x → 1 plus the infinite sequence x → 42, x → 43 and so on. Thus, the unique Pareto minimal solution assigns 1 to x.

On the other hand, Aziz' original approach to foundedness [START_REF] Aziz | Answer set programming: founded bounds and model counting[END_REF] has some counter intuitive behavior. In this approach, p ← ¬p alone yields a solution with p, unlike in traditional ASP. In view of this, we present in the following a logical reconstruction of Aziz' idea of foundedness in the setting of the logic of Here-and-There. More precisely, we start by defining the logic of Here-and-There with lower bound founded variables (HT LB for short) along with its equilibrium models. 1 We elaborate upon the formal properties of HT LB like persistence, negation and strong equivalence. 2 Furthermore, we point out the relation of HT LB to HT, and show that our approach can alternatively be captured via a Ferraris-style definition of stable models [START_REF] Ferraris | Answer sets for propositional theories[END_REF] adapted to our setting. Finally, we compare our approach with related work and point out the benefits of HT LB .

Background

Let A be a set of propositional atoms. A formula ϕ is a combination of atoms by logical connectives ⊥, ∧, ∨, and ←. As usual, we define ⊤ def = ⊥ → ⊥ and ¬ϕ def = ϕ → ⊥. A theory is a set of formulas.

We denote an interpretation over A by I ⊆ A and an HT-interpretation over A by H , T where H ⊆ T ⊆ A are interpretations. Since we want to abstract from the specific form of atoms, we rely upon denotations for fixing their semantics. A denotation of atoms in A is a function • A : A → 2 As usual, an equilibrium model of a theory Γ is a (total) HT-interpretation T , T such that T , T |= Γ and there is no H ⊂ T such that H , T |= Γ . Then, T is also called a stable model of Γ .

Let us recall some characteristic properties of HT. For HT-interpretations H , T and T , T and formula ϕ over A both H , T |= ϕ implies T , T |= ϕ (persistence) and H , T |= ϕ → ⊥ iff T , T |= ϕ (negation) holds. Furthermore, Γ 1 ∪ Γ and Γ 2 ∪ Γ have the same stable models for theories Γ 1 and Γ 2 and any theory Γ over A iff Γ 1 and Γ 2 have the same HT-models (strong equivalence).

Lower Bound Founded Logic of Here-and-There

In what follows, we introduce the logic of Here-and-There with lower bound founded variables, short HT LB , and elaborate on its formal properties.

HT LB Properties

The language of HT LB is defined over a set of atoms A X comprising variables, X , and constants over an ordered domain (D,). For simplicity, we assume that each element of D is uniquely represented by a constant and abuse notation by using elements from D to refer to constants. Similarly, we identify with its syntactic representative. The specific syntax of atoms is left open but assumed to refer to elements of X and D. The only requirement is that we assume that an atom depends on a subset of variables in X . An atom can be understood to hold or not once all variables in it are substituted by domain elements. Clearly, variables not occurring in an atom are understood as irrelevant for its evaluation. Examples of ordered domains are ({0, 1, 2, 3}, ≥) and (Z, ≥), respectively; corresponding atoms are x = y and x ≥ 42. An example of a formula is 'y < 42 ∧ ¬(x = y) → x ≥ 42'. We let vars(ϕ) ⊆ X be the set of variables and atoms(ϕ) ⊆ A X the atoms occurring in a formula ϕ.

For capturing partiality, we introduce a special domain element u, standing for undefined, and extend (D,) to (D u , u) where

D u def = D ∪ {u} and u def = ∪ {(c, u) | c ∈ D u }.
With it, we define a (partial) valuation over X , D as a function v : X → D u mapping each variable to a domain value or undefined. For comparing valuations by set-based means, we alternatively represent them by subsets of X × D. Basically, any function v is a set of pairs (x, c) such that v (x) = c for c ∈ D. In addition, we view a pair (x, c) as x c and add its downward closure (x ↓ c) def = {(x, d) | c, d ∈ D, c d}. Given this, a valuation v is represented by the set v (x)=c,x∈X (x ↓ c). 3 As an example, consider variables x and y over domain ({0, 1, 2, 3}, ≥). The valuation v = {x → 2, y → 0} can be represented by v = (x ↓ 2) ∪ (y ↓ 0) = {(x, 0), (x, 1), (x, 2), (y, 0)}. Then, v ′ = {x → 1, y → u}, viz. {(x, 0), (x, 1)} in set notation, can be regarded as "smaller" than v because v ′ ⊆ v . The comparison of two valuations v and v ′ by set-inclusion ⊆ amounts to a twofold comparison. That is, v and v ′ are compared regarding the occurrence of variables and their particular values wrt . We let V X ,D stand for the set of valuations over X and D.

We define the satisfaction of formulas over A X wrt atom denotations over X , D, which are functions • X ,D : A X → 2 V X ,D mapping atoms to sets of valuations. Let a be an atom of A X and a X ,D its denotation. Then, a X ,D is the set of valuations making a true. Since a depends on variables vars(a) ⊆ X , we have for each v ∈ a X ,D and valuation

v ′ with v (x) = v ′ (x) for x ∈ vars(a) that v ′ ∈ a X ,D .
Intuitively, values of X \ vars(a) may vary freely without changing the membership of a valuation to a X ,D . For simplicity, we drop indices X , D whenever clear from context.

For instance, interpreting the atoms x ≥ 42, 42 ≥ 0 and 0 ≥ 42 over (Z, ≥) yields the following denotations:

x ≥ 42 def = {v | v (x) ≥ 42} 42 ≥ 0 def = V 0 ≥ 42 def = ∅.
x ≥ 42 is the set of valuations assigning x to values greater or equal than 42 and all variables in X \ {x} take any value in D u , eg (x ↓ 45) and (x ↓ 45) ∪ (y ↓ 0) for y ∈ X \ {x} are possible valuations. Interestingly, atoms like x

x with x x = {v | v (x) = u} force variables to be defined over D per definition of . A valuation v is defined for a set of variables Y ⊆ X if v (x) = u for all x ∈ Y.

We define an HT LB -valuation over X , D as a pair h, t of valuations over X , D with h ⊆ t. We define satisfaction of formulas in HT LB as follows.

Definition 2. Let h, t be an HT LB -valuation over X , D and ϕ be a formula over A X . Then, h, t satisfies ϕ, written h, t |= ϕ, if the following holds:

1. h, t |= ⊥ 2. h, t |= a iff v ∈ a X ,D for atom a ∈ A X and for both v ∈ {h, t} 3. h, t |= ϕ 1 ∧ ϕ 2 iff h, t |= ϕ 1 and h, t |= ϕ 2 4. h, t |= ϕ 1 ∨ ϕ 2 iff h, t |= ϕ 1 or h, t |= ϕ 2 5. h, t |= ϕ 1 → ϕ 2 iff v , t |= ϕ 1 or v , t |= ϕ 2 for both v ∈ {h, t}
As usual, we call h, t an HT LB -model of a theory Γ , if h, t |= ϕ for all ϕ in Γ . For a simple example, consider the theory containing atom x ≥ 42 only. Then, every HT LB -valuation h, t with h, t ∈ x ≥ 42 is an HT LB -model of x ≥ 42. Note that, different to HT, satisfaction of atoms in HT LB forces satisfaction in both h and t, instead of h only. We discuss this in detail below when comparing to a Ferraris-like stable model semantics.

Our first result shows that the characteristic properties of persistence and negation hold as well when basing satisfaction on valuations and denotations. Proposition 2. Let h, t and t, t be HT LB -valuations over X , D, and ϕ be a formula over A X . Then, 1. h, t |= ϕ implies t, t |= ϕ, and 2. h, t |= ϕ → ⊥ iff t, t |= ϕ.

Persistence implies that all atoms satisfied by h, t are also satisfied by t, t . To make this precise, let At(h, t) def = {a ∈ A X | h ∈ a and t ∈ a } be the set of atoms satisfied by h, t .

Corollary 1. Let h, t and t, t be HT LB -valuations over X , D. Then, At(h, t) ⊆ At(t, t).

Finally, we define an equilibrium model in HT LB . Definition 3. An HT LB -valuation t, t over X , D is an HT LB -equilibrium model of a theory Γ iff t, t |= Γ and there is no h ⊂ t such that h, t |= Γ .

We refer to an HT LB -equilibrium model t, t of Γ as an HT LB -stable model t of Γ . Let us reconsider the theory containing atom x ≥ 42 only. Then, t = (x ↓ 42) is an HT LB -stable model of x ≥ 42, since t ∈ x ≥ 42 and there is no h ⊂ t with h ∈ x ≥ 42 . In contrast, neither HT LB -model t ′ , t ′ with t ′ = (x ↓ 42) ∪ (y ↓ 0) nor t ′′ , t ′′ with t ′′ = (x ↓ 53) are HT LB -stable models since t is a proper subset of both and t, t ′ |= x ≥ 42 as well as t, t ′′ |= x ≥ 42 holds. Hence, HT LBstable models make sure that each variable is assigned to its smallest founded value.

Note that HT LB -equilibrium models induce the non-monotonic counterpart of the monotonic logic of HT LB . Following well-known patterns, we show that HT LB allows us to decide strong equivalence wrt HT LB -equilibrium models.

Proposition 3 (Strong Equivalence). Let Γ 1 , Γ 2 and Γ be theories over A X .

Then, theories Γ 1 ∪ Γ and Γ 2 ∪ Γ have the same HT LB -stable models for every theory Γ iff Γ 1 and Γ 2 have the same HT LB -models.

The idea is to prove the only if direction via contraposition, and the if direction by proving its direct implication. The contraposition assumes that there exists an HT LB -valuation that satisfies Γ 1 but not Γ 2 which implies that the stable models of Γ 1 ∪ Γ and Γ 2 ∪ Γ do not coincide. There are two cases to construct Γ in a way that Γ 1 ∪ Γ has a stable model which is not a stable model of Γ 2 ∪ Γ and the other way around. Consider an example to illustrate the idea of the construction of Γ . Let h = (x ↓ 0) and t = (x ↓ 2) ∪ (y ↓ 0) be HT LB -valuation over {x, y}, {0, 1, 2, 3} with h, t |= Γ 1 and h, t |= Γ 2 . For the first case, assume that t, t |= Γ 2 . Since t cannot be a model of Γ 2 ∪ Γ by assumption, we construct Γ in a way that t is a stable model of

Γ 1 ∪ Γ . Hence, let Γ = {z c | (z, c) ∈ t} = {x 0, x 1, x 2
, y 0} be the theory with the only stable model t. By persistence of h, t wrt Γ 1 and construction of Γ , we get that t is a stable model of Γ 1 ∪ Γ but not of Γ 2 ∪ Γ . For the second case, we assume t, t |= Γ 2 . Now, we construct Γ in a way that t is a stable model of Γ 2 ∪ Γ but not of Γ 1 ∪ Γ . By assumption, we have that h, t |= Γ 1 and h, t |= Γ 2 as well as t, t |= Γ 2 , thus we want to have h, t and v , v ′ with t ⊆ v ⊆ v ′ as the only models of Γ . Hence, let Γ = Γ ′ ∪ Γ ′′ with Γ ′ = {z c | (z, c) ∈ h} = {x 0} be the theory satisfied by everything greater or equal than h, and

Γ ′′ = {z t(z) → z ′ t(z ′), z c → z t(z) | (z, c), (z, t(z)), (z ′ , t(z ′)) ∈ t \ h, z = z ′ } = {x 2 → y 0, y 0 → x 2, x 1 → x 2, x 2 → x 2}
the theory deriving values of t for each v ′′ with h ⊂ v ′′ ⊂ t. Since h, t |= Γ 2 and by construction of Γ , we get that t is a stable model of

Γ 2 ∪ Γ but not of Γ 1 ∪ Γ .
The following result shows that a formula a ← ¬a has no stable model if a cannot be derived by some other formula. Proposition 4. Let Γ be a theory over A X containing a formula of form a ← ¬a and for each HT LB -stable model v of Γ \ {a ← ¬a} over X , D we have that v , v |= a.

Then, Γ has no HT LB -stable model.

This proposition may seem to be trivial but we show in Sect. 4 that Aziz' original approach does not satisfy this property.

Negation in HT LB

In the following, we elaborate on complements of atoms and their relation to negation, since A X may contain atoms like x ≥ 42 and x < 42. Intuitively, the complement of an atom holds whenever the atom itself does not hold. This can be easily expressed by using atom denotations. More formally, the complement a of atom a is defined by its denotation a X ,D def = 2 V X ,D \ a X ,D . To illustrate that the simple complement of an atom is insufficient to yield something similar to strong negation let us take a closer look at propositional atoms in HT LB . For mimicking Boolean truth values, we consider the domain ({t, f }, {t f }). Then, the denotation of propositional atoms in HT LB can be defined as follows:

p = t A,{t,f } def = {v | v (p) = t} and p = f A,{t,f } def = {v | v (p) = f }.
Note that p = t and p = f are regarded as strong negations of each other, as in the standard case [START_REF] Gelfond | Logic programs with classical negation[END_REF]; their weak negations are given by ¬(p = t) and ¬(p = f), respectively. For instance, the complement p = t is characterized by denotation

p = t A,{t,f } = 2 V A,{t,f } \ p = t A,{t,f } = {v | v (p) = t}.
However, this complement allows for valuations v with v (p) = u which are not in p = f A,{t,f } .

Let us define another complement to exclude assigning undefined to variables of an atom. First, we define a denotation a X ,D of an atom a as strict if each v ∈ a X ,D is defined for vars(a). Then, we characterize the strict complement a s of atom a by the strict denotation a s

X ,D def = 2 V X ,D \ (a X ,D ∪ {v | v (x) =
u for some x ∈ vars(a)}). Informally, the strict complement of an atom holds whenever all variables are defined and the atom itself does not hold. That is, atoms p = f and p = t are strict complements of each other.

More generally, an atom with a strict denotation and its strict complement can be regarded as being strongly negated to each other. For instance, consider atom x ≥ 42 and its strict denotation x ≥ 42 X ,D = {v | v (x) ≥ 42}. Then, its strict complement x ≥ 42 s is defined by x ≥ 42 s X ,D = {v | u = v (x) < 42}. As in the Boolean case, the strict complement x ≥ 42 s can be seen as the strong negation of x ≥ 42. For making the relation of complements and negation precise, we define entailment: A theory Γ over A X entails a formula ϕ over A X , written Γ |= ϕ, if all HT LB -models of Γ are HT LB -models of ϕ. Then, we have the following result.

Proposition 5. Let a be an atom over A X , and a and a s its complement and its strict complement over A X , respectively. Then, {a s } |= a and {a} |= ¬a.

This implies that the strict complement a s of an atom a implies its negation ¬a, just as strong negation implies weak negation in the standard case [START_REF] Pearce | Equilibrium logic[END_REF]. To illustrate that in general the negation of an atom does not entail its complement, viz {¬a} |= a, consider atom x ≤ 42 with strict denotation x ≤ 42

X ,D = {v | u = v (x) ≤ 42}. Then, its complement x ≤ 42 is defined by x ≤ 42 X ,D = 2 V X ,D \ x ≤ 42 X ,D = {v | v (x) = u or v (x) > 42}.
For valuations h = (x ↓ 42) and t = (x ↓ 50), we have h, t |= ¬(x ≤ 42) since (x ↓ 50) ∈ x ≤ 42 X ,D . In contrast, h, t |= x ≤ 42, since (x ↓ 42) ∈ x ≤ 42 X ,D . Thus, the complement a can be seen as a kind of negation in between strong and weak negation.

HT LB versus HT

Analogously to [8], we next show that HT can be seen as a special case of HT LB . Note that both types of denotations p A in HT and p = t A,{t} in HT LB of a propositional atom p collect interpretations and valuations assigning true to p. To begin with, we define a transformation τ relating each propositional atom p with corresponding atom p = t by τ (p) def = p = t. Let Γ be a propositional theory, then τ (Γ) is obtained by substituting each p ∈ atoms(Γ) by τ (p). Moreover, we extend τ to interpretations I by τ (I) def = {(p, t) | p ∈ I } to obtain a corresponding valuation over A, {t}. The next proposition establishes that HT can be seen as a special case of HT LB . Proposition 6. Let Γ be a theory over propositional atoms A and H , T an HT-interpretation over A. Let τ (Γ) be a theory over atoms {p = t | p ∈ A} and τ (H), τ (T) an HT LB -valuation over A, {t}.

Then, H ,

T |= Γ iff τ (H), τ (T) |= τ (Γ).
This can be generalized to any arbitrary singleton domain {d} and corresponding atoms p = d and the relationship still holds. We obtain the following result relating HT LB and HT:

Proposition 7. Let Γ be a theory over A X and h, t an HT LB -model of Γ over X , D. Then, At(h, t), At(t, t) is an HT-model of Γ over A X .

That is, the collected atoms satisfied by an HT LB -model of Γ can be seen as an HT-model of Γ by interpreting A X as propositional atoms. For instance, consider the theory containing only atom x = y and its denotation x = y def = {v | u = v (x) = v (y) = u}. Let h = (x ↓ 0) ∪ (y ↓ 4) and t = (x ↓ 0) ∪ (y ↓ 42) be valuations and hence At(h, t) = At(t, t) = {x = y} interpretations. Then, h, t |= x = y in HT LB and At(h, t), At(t, t) |= x = y in HT. Furthermore, we relate tautologies in HT and HT LB .

Proposition 8. Let ϕ be a tautology in HT over A and ϕ ′ a formula over A X obtained by replacing each atom in ϕ by an atom of A X . Then, ϕ ′ is a tautology in HT LB .

That is, tautologies in HT are independent of the form of atoms. For example, consider the well known tautology p → p over A. Then, x ≥ 42 → x ≥ 42 over A X is a tautology as well. Note that the other direction of the implication does not hold, since x ≥ 42 → y ≥ 42 over A X with domain {42} is a tautology, but p → q over A is not.

HT LB -stable versus Ferraris-style stable models

As mentioned, in Definition 2 satisfaction of atoms differs from HT by forcing satisfaction in both h and t, instead of h only. This is necessary to guarantee persistence in HT LB . To see this, consider an HT LB -valuation h, t satisfying atom a in A X . Hence, by persistence, HT LB -valuation t, t satisfies a as well. However, this does not necessarily mean that HT LB -valuations v , t with h ⊂ v ⊂ t satisfy a. For instance, consider atom x = 42 with x = 42 def = {v | u = v (x) = 42} and valuations h = (x ↓ 0) and t = (x ↓ 53). Then, h, t |= x = 42 and t, t

|= x = 42, but v , t |= x = 42 for v = (x ↓ 42) with h ⊂ v ⊂ t.
A question that arises now is whether HT LB behaves in accord with stable models semantics. To this end, we give straightforward definitions of classical satisfaction and the reduct by Ferraris [START_REF] Ferraris | Answer sets for propositional theories[END_REF] in our setting and show that equilibrium models correspond to stable models according to the resulting Ferraris-like stable model semantics.

We define the counterpart of classical satisfaction as follows.

Definition 4. Let t be a valuation over X , D and ϕ a formula over A X . Then, t satisfies ϕ, written t |= cl ϕ, if the following holds:

1. t |= cl ⊥ 2. t |= cl a iff t ∈ a X ,D for atom a ∈ A X 3. t |= cl ϕ 1 ∧ ϕ 2 iff t |= cl ϕ 1 and t |= cl ϕ 2 4. t |= cl ϕ 1 ∨ ϕ 2 iff t |= cl ϕ 1 or t |= cl ϕ 2 5. t |= cl ϕ 1 → ϕ 2 iff t |= cl ϕ 1 or t |= cl ϕ 2 .
We call t a classical model of a theory Γ , if t |= cl ϕ for all ϕ in Γ . Then, we define a Ferraris-like reduct for formulas over A X as follows.

Definition 5. Let ϕ be a formula over A X and t a valuation over X , D. Then, the reduct of ϕ wrt t, written ϕ t , is defined as

ϕ t def =      ⊥ if t |= cl ϕ a if t |= cl ϕ and ϕ = a is an atom in A X ϕ 1 t ⊗ ϕ 2 t if t |= cl ϕ and ϕ = (ϕ 1 ⊗ ϕ 2) for ⊗ ∈ {∧, ∨, →}
For theory Γ and HT LB -valuation t, we define Γ t def = {ϕ t | ϕ ∈ Γ }. Note that in case of propositional formulas our reduct corresponds to Ferraris' original [START_REF] Ferraris | Answer sets for propositional theories[END_REF].

With it, we define a Ferraris-like stable model as expected.

Definition 6. A valuation t over X , D is a Ferraris-like stable model of theory

Γ over A X iff t |= cl Γ t and there is no h ⊂ t such that h |= cl Γ t .
In analogy to the standard case [START_REF] Ferraris | Answer sets for propositional theories[END_REF], the next proposition shows that models in HT LB can be alternatively characterized in the style of Ferraris: Proposition 9. Let h, t be an HT LB -valuation over X , D and Γ a theory over

A X . Then, h |= cl Γ t iff h, t |= Γ .
As a special case, we obtain that every HT LB -stable model corresponds to a Ferraris-like stable model and vice versa.

Corollary 2. Let t be a valuation over X , D and Γ a theory over A X . Then, t is an HT LB -stable model of Γ iff t is a Ferraris-like stable model of Γ .

The last two results show that our logic follows well known patterns wrt different representations of stable models.

Modeling with Bound Founded Programs

In what follows, we define logic programs over linear constraint atoms to illustrate the modeling capabilities of HT LB on an example.

We define linear constraint atoms over the integers (Z, ≥) as

m i=1 w i x i ≺ k
where w i , k ∈ Z are constants, x i ∈ X are distinct variables, and ≺∈ {≥, ≤, =, =}4 is a binary relation. The denotation of a linear constraint atom is given by

m i=1 w i x i ≺ k def = {v | m i=1 w i v (x i) ≺ k, v (x i) = u}.
We denote the set of linear constraint atoms over variables X and domain (Z, ≥) by L X .

a 1 ∨ • • • ∨ a n ← l 1 ∧ • • • ∧ l n ′ (3)
where a i is a linear constraint atom for 1 ≤ i ≤ n and l j is a literal for 1 ≤ j ≤ n ′ . A logic program is a theory over L X of rules of form (3).

As an example, consider the dependency of the revolutions per minute (rpm) of the engine of our car to its maximal range. The maximal range of a car decreases with higher rpm; we need more fuel when choosing a smaller gear which increases the rpm assuming the same conditions like speed. For simplicity, we do not model gears, fuel or speed. Assume that our car needs at least 2000 rpm. Moreover, we know that our car has a range of at least 100 km. If we go by less than 4000 rpm, then our range is at least 200 km. Then, the following program P models the dependency of rpm and range without explicitly using negation or minimization: rpm ≥ 2000 range ≥ 100 range ≥ 200 ← rpm < 4000

The HT LB -stable model of P is (range ↓ 200) ∪ (rpm ↓ 2000), since 2000 is the minimal value satisfying rpm ≥ 2000 and thus rpm < 4000 holds and yields range ≥ 200. For instance, if we extend P by the new statement rpm ≥ 4000, then we get the HT LB -stable model (range ↓ 100) ∪ (rpm ↓ 4000), since the minimal value derived by rpm ≥ 4000 does not produce range ≥ 200 any more. Thus, 100 is the minimal value for range derived by range ≥ 100. Intuitively, it makes no sense to go by higher rpm and thus decrease the range if one is not forced to.

This example behaves similar to the example in [START_REF] Aziz | Answer set programming: founded bounds and model counting[END_REF]. The intuition is to minimize the value of rpm first since it does not depend on range. Afterwards, we derive the minimal value of range out of the obtained consequences. Note that this example can also be modeled by other approaches like [START_REF] Aziz | Answer set programming: founded bounds and model counting[END_REF]8], but those may not provide the same intuitive modeling to achieve a bound founded semantics or behave counter intuitive on some well known modeling techniques like integrity constraints. For instance, the approach of [8] yields solutions for P consisting of any arbitrary pair of values with rpm ≥ 2000 and range ≥ 100 where range is further restricted to values greater or equal to 200 if the choice of rpm is smaller than 4000. To achieve the same bound founded intuition as in HT LB with approaches like [8] we need to rewrite the rpm example in a less intuitive way. This is similar to representing formula p ← q under stable models semantics in propositional logic.

Related Work

We start by comparing our approach to Aziz' Bound Founded ASP (BFASP; [START_REF] Aziz | Answer set programming: founded bounds and model counting[END_REF]). Both aim at generalizing foundedness to ordered domains. In BFASP, an arbitrary formula is called constraint and a rule is defined as a pair of a constraint and a variable called head. The constraint needs to be increasing wrt its head variable. Informally, a constraint is increasing in a variable if the constraint is monotonic in this variable. Note that increasing is defined on constraints instead of atoms. For an example, the constraint x ≤ 42 is not increasing in x, but the constraint x ≤ 42 ← y < 0 is increasing in x over domain N. Stable models are defined in BFASP via a reduct depending on the monotonicity of constraints wrt their variables and by applying a fix point operation.

Both, BFASP and HT LB assign variables to their smallest domain value by default. Interestingly, they differ in their understanding of smallest domain values. In HT LB , the smallest domain value is always the value 'undefined' to capture partiality, whereas in BFASP partiality is not considered if undefined is not explicitly part of the domain.

The value of a head variable is derived by the constraint even if it contains no implication. For instance, consider rule (x + y ≥ 42, x) over N in BFASP. Then, BFASP yields one stable model with x → 42 and y → 0. By default the value of y is 0, since y appears nowhere as a head. The value of x is derived from the value of 42-y. In contrast, HT LB results in 43 stable models from (x ↓ 0)∪(y ↓ 42) to (x ↓ 42) ∪ (y ↓ 0) for theory {x + y ≥ 42}. In HT LB , the variables of an (head) atom are treated in an equal way instead of an implicatory way by declaring one of them as head.

As already mentioned, BFASP does not satisfy Proposition 4. Rule p ← ¬p has no stable model in ASP and HT LB , but BFASP yields a stable model containing p, since the BFASP reduct never replaces head variables and produces the rule as is and yields p as the minimal (and only) model of the rule. This means that BFASP provides a bound founded semantics but behaves unexpectedly on rules representing integrity constraints.

Next, we compare HT LB to the logic of HT with constraints (HT C ; [8]). First, note that both are based on HT and capture theories over (constraint) atoms in a non-monotonic setting and can thus express default values. The difference is that HT C follows the rationality principle by accepting any value satisfying an atom and thus foundedness is focused on atom level. Unlike this, foundedness in HT LB is focused on variable level by following the rationality principle in accepting minimal values only. The latter is achieved by additionally comparing models wrt the values assigned to variables to determine equilibrium models. For instance, reconsider the fact x ≥ 42 over {x}, N and valuations v and v ′ with v (x) = 42 and v ′ (x) = 43. Then, in HT C we have v = v ′ , whereas in HT LB we have v ⊂ v ′ . Hence, v and v ′ are solutions in HT C but only v is a solution in HT LB . The theories in (1) and [START_REF] Balduccini | Representing constraint satisfaction problems in answer set programming[END_REF] show that the semantics of HT LB cannot be obtained by adding separate minimization to HT C .

On the other hand, both HT LB and HT C define atomic satisfaction in terms of atom denotations. A difference is that in HT C denotations need to be closed. Informally, a denotation is (upwards) closed if it is closed under the superset relation. For HT LB , this cannot be maintained, due to the additional comparison of valuations regarding values. The closure of denotations is significant to satisfy persistence in HT C . In contrast, in HT LB persistence is established by forcing atomic satisfaction in both h and t, instead of h only as in HT C . The corresponding benefit is that this allows us to consider denotations of atoms in HT LB which are not allowed in HT C , like x . = y with x . = y def = {v | v (x) = v (y)} which is not closed in HT C .

The integration of non-Boolean variables into ASP is also studied in ASP modulo Theories [START_REF] Balduccini | Representing constraint satisfaction problems in answer set programming[END_REF][START_REF] Banbara | aspartame: solving constraint satisfaction problems with answer set programming[END_REF][START_REF] Banbara | Clingcon: the next generation[END_REF][START_REF] Bartholomew | System aspmt2smt: computing ASPMT theories by SMT solvers[END_REF]7,[START_REF] Drescher | A translational approach to constraint answer set solving[END_REF][START_REF] Gebser | Theory solving made easy with clingo 5[END_REF][START_REF] Gebser | Constraint answer set solving[END_REF][START_REF] Janhunen | Clingo goes linear constraints over reals and integers[END_REF][START_REF] Janhunen | Tight integration of non-ground answer set programming and satisfiability modulo theories[END_REF][START_REF] Lierler | SMT-based constraint answer set solver EZSMT (system description)[END_REF][START_REF] Liu | Answer set programming via mixed integer programming[END_REF]. The common idea of these hybrid approaches is to integrate monotone theories, like constraint or linear programming, into the non-monotonic setting of ASP. Similar to HT C , foundedness is only achieved at the atomic level-if at all. In fact, many approaches avoid this entirely by limiting the occurrence of theory atoms to rule bodies.

Finally, logic programs with linear constraints under HT LB 's semantics amount to a non-monotonic counterpart of Integer Linear Programming (ILP; [START_REF] Schrijver | Theory of linear and integer programming[END_REF]). As a matter of fact, the monotonicity of ILP makes it hard to model default values and recursive concepts like reachability. It will be interesting future work to see whether HT LB can provide a non-monotonic alternative to ILP.

Conclusion

We presented a logical reconstruction of the idea of foundedness over ordered domains in the setting of the logic of Here-and-There. We have shown that important properties like persistence, negation and strong equivalence hold in our approach. Also, we showed that HT is a special case of HT LB , and that HT LBstable models correspond to stable models according to a Ferraris'-like stable model semantics. We instantiated HT LB with linear constraints to illustrate its modeling capabilities by means of an example representing the dependency of the rpm of a car and its range. Finally, we compared our approach to related work to point out that foundedness is a non-trivial key feature of HT LB . Although HT LB and BFASP share the same motivation, they differ in their treatment of partiality. Furthermore, we indicated that HT LB can be seen as a non-monotonic counterpart of monotonic theories such as ILP.

Interestingly, HT LB offers a new view of aggregates under Ferraris' semantics as atoms. In fact, sum aggregates are related to linear constraint atoms in HT LB . As we will show in a follow-up work, aggregates under Ferraris' semantics [START_REF] Ferraris | Logic programs with propositional connectives and aggregates[END_REF] can be represented by atoms in HT LB . This is interesting since then aggregates are no longer an extension of an existing approach, but rather an integral atomic parts of HT LB . Hence, results shown in this work also apply to aggregates (under Ferraris' semantics) and provide a way to elaborate upon properties and relationships to other conceptions of aggregates. The view on aggregates as atoms provided by HT LB may thus help us to better understand the differences among various aggregate semantics.

 2 A mapping atoms in A to sets of interpretations over A. Accordingly,p A |= p iff H ∈ p A for propositional atom p ∈ A 3. H , T |= ϕ 1 ∧ ϕ 2 iff H , T |= ϕ 1 and H , T |= ϕ 2 4. H , T |= ϕ 1 ∨ ϕ 2 iff H , T |= ϕ 1 or H , T |= ϕ 2 5. H , T |= ϕ 1 → ϕ 2 iff I , T |= ϕ 1 or I , T |= ϕ 2 for both I ∈ {H , T } '. H , T |= p iff p ∈ H for propositional atom p ∈ AIt is easy to see that both definitions of HT satisfaction coincide. Proposition 1. Let H , T be an HT-interpretation and ϕ a formula over A.Then, H , T |= ϕ iff H , T |= ϕ by replacing Condition 2 by 2'.

	def = {I | p ∈ I }
	represents the set of interpretations where atom p holds.
	With it, we next define satisfaction of formulas in HT.
	Definition 1. Let H , T be an HT-interpretation over A and ϕ a propositional
	formula over A. Then, H , T satisfies ϕ, written H , T |= ϕ, if the following
	conditions hold:
	1. H , T |= ⊥
	2. H , T As usual, we call H , T an HT-model of a theory Γ , if H , T |= ϕ for all ϕ
	in Γ . The usual definition of HT satisfaction (cf. [23]) is obtained by replacing
	Condition 2 above by

1

Upper bound founded variables are treated analogously.

2

We provide an extended version including all proofs at: www.cs.uni-potsdam.de/ ∼ seschell/JELIA19-paper-proofs.pdf. 2

Note that (x ↓ u) = ∅, since u ∈ D.

As usual, w 1 x 1 , + • • • + w n x n < k and w 1 x 1 , + • • • + w n x n > k can be expressed by w 1 x 1 , + • • • + w n x n ≤ k -1 and w 1 x 1 , + • • • + w n x n ≥ k + 1, respectively.

Appendix of Proofs

Proof of Proposition 2. It is enough to prove the proposition for the base case, since the rest follows directly by structural induction for each formula over A X . Let h, t an HT LB -valuation over X , D and a atom of A X .

First, we prove persistence, represented by 1 of the proposition. We have

Proof of Proposition 5. Let a be an atom over A X , and a and a s its complement and its strict complement over A X , respectively. First, we prove a s |= a. For any HT LB -valuation h, t over X , D we have

Secondly, we prove a |= ¬a. For any HT LB -valuation h, t over X , D we have

It is enough to prove the proposition for the base case, since the rest follows directly by structural induction for each theory over A.

Let Γ be a theory over propositional atoms A and H , T an HTinterpretation over A. Let τ (Γ) be a theory over atoms {p = t | p ∈ A} and τ (H), τ (T) an HT LB -valuation over A, {t}. Then we have

Proof of Proposition 7. It is enough to prove the proposition for the base case, since the rest follows directly by structural induction for each theory over A X .

First, note that the pair H , T over A X with H = At(h, t) and T = At(t, t) is a well formed HT-interpretation, since H ⊆ T holds by h ⊆ t and Proposition 1. Then we have

Proof of Proposition 9. It is enough to prove the proposition for the base case, since the rest follows directly by structural induction for each theory over A X .

Let Γ be a theory over A X and h, t an HT LB -valuation over X , D.