
HAL Id: hal-02486107
https://hal.science/hal-02486107v1

Submitted on 20 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A List of Pre-Requisites to Make Recommender Systems
Deployable in Critical Context

Elodie Bouzekri, Alexandre Canny, Camille Fayollas, Célia Martinie, Philippe
Palanque, Eric Barboni, Yannick Deleris, Christine Gris

To cite this version:
Elodie Bouzekri, Alexandre Canny, Camille Fayollas, Célia Martinie, Philippe Palanque, et al.. A List
of Pre-Requisites to Make Recommender Systems Deployable in Critical Context. 2nd Workshop on
Engineering Computer-Human Interaction in Recommender Systems, co-located with the 9th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems (EnCHIReS @ EICS 2017), Jun
2017, Lisbonne, Portugal. pp.42-55. �hal-02486107�

https://hal.science/hal-02486107v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Official URL
http://ceur-ws.org/Vol-1945/paper_7.pdf

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24797

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Bouzekri, Elodie and Canny, Alexandre and

Fayollas, Camille and Martinie De Almeida, Celia and Palanque,

Philippe and Barboni, Eric and Deleris, Yannick and Gris, Christine A

List of Pre-Requisites to Make Recommender Systems Deployable in

Critical Context. (2017) In: 2nd Workshop on Engineering Computer-

Human Interaction in Recommender Systems co-located with the 9th

ACM SIGCHI Symposium on Engineering Interactive Computing

Systems (EnCHIReS @ EICS 2017), 26 June 2017 - 29 June 2017

(Lisbonne, Portugal).

A List of Pre-Requisites to Make Recommender

Systems Deployable in Critical Context

E. Bouzekri1, A. Canny1, C. Fayollas1, C. Martinie1, P. Palanque1,
E. Barboni1, Y. Deleris2, C. Gris2

1 ICS-IRIT, University of Toulouse
118, route de Narbonne
31042 Toulouse, France

{Elodie.Bouzekri,Alexandre.Canny, fayollas,palanque,barboni}@irit.fr
2 AIRBUS Operations
316 Route de Bayonne
31060 Toulouse, France

{Yannick.Deleris,Christine.Gris}@airbus.com

Abstract. In the academic area, recommender systems have received a
lot of attention in the recent years (see for instance the increasing success
of the RecSys conference). This success has also reached industry and
the general public via large platforms such as Amazon or Netflix. The
recommender systems present multiple benefits that can be attributed to
automation by means of the migration of function from the operator to
the Recommender System itself. Depending on the type of recommender
system, these functions can cover: support to perception of information,
support to identification of potentially relevant elements, support to the
selection of one element amongst a list... Despite their widespread use,
their development has not reached the level of maturity required for the
deployment in the context of critical command and control systems. This
position paper identifies some pre-requisite for making recommender sys-
tems deployable in critical context of critical systems.

Keywords: Automation, recommender systems, automation, operator
tasks, dependability, certification.

1 Introduction

Recommender Systems (RS) are nowadays widely used in the area of consumer
electronics and home entertainment. They are exploited by large companies (such
as Amazon in the area of e-commerce [17]) and used by millions of users (e.g.
93 million for Netflix [1]). The main target for RS designers and developers has
been accuracy as demonstrated in [22]. More recently, focus has moved to other
perceived quality of use such as user experience and specific attributes of this
quality factor [19]. Despite all these efforts, engineering recommender systems
follows craft processes and remain far away from software engineering practices.
Contributions such as [22] address reliability but only in the sense of reliability

of users (in the information they provide to the system) and [29] only consider
recommender systems in software engineering i.e. how a recommender system
could help software engineers.

As for the development of RS, several platforms have been proposed through-
out the years starting with Lenskit [12]. Other open source platforms for develop-
ing RS have been proposed such as ?? or [14] focusing on the integration of vari-
ous algorithms implementing the main types of RS (e.g. item-based, knowledge-
based, collaborative ...). Assessing which platform produces better results has
also been identified as a challenge that RiVal [30] is meant to address.

The software engineering aspects of RS thus remain mainly an untouched
problem whose challenges range from requirements and specification to valida-
tion and verification and are not covered by generic programming platforms.

This position paper intent to highlight the pre-requisite related to the soft-
ware engineering of recommender systems to be deployed in a critical context.
Next section introduces briefly the main characteristics of recommender systems
and highlights their role as automation of users’ tasks. The following introduces
both the challenges raised by critical systems engineering and the tools and meth-
ods that have to be used to ensure adequate levels of dependability. Through
this list, we elicit a list of requirements that recommender systems should meet
to be eligible for deployment in critical context. Last section presents the ECAM
concept of civil aircrafts and highlights how its functioning could be extended
to cover more functions of recommender systems.

2 Brief Introduction to Recommender Systems

This section presents the characteristics of recommender systems and makes
explicit their role as automation of users’ tasks.

2.1 What are recommender systems

Recommender Systems (RSs) are “software tools and techniques providing sug-
gestions for items to be of use to a user or a group of users” [6, 15, 28]. The
RSs provides support for the process of decision-making for a user or a group
of users. Recommendations are predictions of the most suitable items based
on user’s preferences [28]. An “Item” is the general term referring to what the
system recommends to users [28]. They also argue that a RS normally focuses
on a specific type of item (e.g., product, news or command) and that the user
interface has to be designed accordingly.

Recommender systems implement one of the following recommendation meth-
ods [5]:

– Memory-based: heuristics that make rating predictions based on all rated
items by the users.

– “Model-based”: a machine-learning algorithm updates a model from rated
items to make rating predictions.

Types of RSs Recommender systems can implement several types of filter-
ing, following the sources of information and algorithm used for the filtering.
These filtering can be: collaborative filtering (e.g. [13, 20]), content-based filter-
ing (e.g. [9]), knowledge-based filtering (e.g. [13]) and hybrid filtering (e.g. [16,
26]) or demographic filtering (e.g. [9]) that predict absolute value of ratings.

In addition, other recommender systems predict relative preferences for users
and not absolute values. Jerbi et al. [18] presents a preference-based recom-
mender system that uses the past queries of the user to generate recommenda-
tions.

The RSs include more and more criteria to improve the quality of recommen-
dations and take into account the context [6]: real-time recommendations (e.g.
the one used by Amazon [21]), location awareness (e.g. [10]) and recommendation
for a group of users (e.g. [8]) for example.

Tasks when interacting with a RS Recommender systems provide support
for particular types of user goals. The tasks to be performed in order for the
user to reach their goal are both generic (i.e. supported by most recommender
systems e.g. “browse recommendations”) and specific (i.e. only supported by a
given recommender system e.g. “find director of the recommended movie”). List
of generic tasks are provided in the literature [28] and can be seen as generic
requirements for recommender systems in order to support users goals. When
using a RS, users target the accomplishment of the following goals:

– Find some good items / Find all good items
– Find a recommended sequence of items
– Find a recommended bundle of items
– Browse the proposed list of items
– Look in detail at one recommended item
– Annotate in context the item under consideration
– Improve my profile / Express myself
– Help others / Influence others

2.2 Recommender systems as partly-autonomous interactive

systems

Recommender systems execute functions that users were previously performing
on their own. Fig. 1 depicts the functions performed by the RSs with respects
to the stages of human information processing:

– Sensory processing stage: RS filters, ranks and highlight recommended items.
Localization of the information from the recommender system might deeply
affect that sensing.

– Perception/working memory: RS reminds items to the users by duplicating
them or recalls items by repeating them. In addition, RS filters items and
presents only the relevant items for the user or the group of users. Human
errors such as interference, overshooting a stop rule... [27] and thus should
be avoided (and if not possible shall be detected, recovered or mitigated).

Fig. 1. RSs automation of Four-stages model of Human information processing.

– Decision-making: RS filters recommendation by ordering information about
items presented. It brands one or several recommendations by highlighting
information that are interesting for the user.

– Response selection: RS enables the user to select one of the recommendation.

2.3 Recommender Systems in Critical Context

Currently, there is no recommender system deployed in critical contexts. How-
ever, as detailed above, recommender systems present multiple benefits that can
be attributed to automation by means of the migration of function from the
operator to the Recommender System itself. Depending on the type of recom-
mender system, these functions can cover: support to perception of information,
support to identification of potentially relevant elements, support to the selec-
tion of one element amongst a list... These automation means could be useful in
supporting operators’ activities in critical context. For instance, in the avionics
domain, aircrafts pilots have to manage all of the aircraft systems through the
cockpit (the flight deck). The cockpit is a really complex environment and the
use of automation is mandatory to support the pilots’ activities. The use of rec-
ommender systems in this context may, for instance, help the pilots in choosing
an action from a multitude. The example of how a recommender system may be
useful in an aircraft cockpit is detailed in the last section of this paper.

3 Critical Systems Engineering

This section highlights the software engineering and dependability context of
critical systems development. We use this presentation as a mean for identifying
12 requirements to address when engineering recommender systems for a critical
context.

3.1 Dependability for critical systems

Building dependable critical systems is a cumbersome task that raises the need
to identify and treat the threats that can impair their functioning. In the per-
spective of identifying all of those threats, Avizienis et al. [7] have defined a
typology of all the faults and errors that can impair a computing system. This
typology leads to the identification of 31 elementary classes of faults. Fig. 3
presents a simplified view of this typology. It makes explicit the two main cat-
egories of faults (top level of the figure): i) the ones occurring at development
time (including bad designs, programming errors,...) and ii) the one occurring at
operation times (right-hand side of the figure including user error such as slips,
lapses and mistakes as defined in [26]). This Figure organizes the leaves of the
typology in five different groups, each of them bringing a different issue that has
to be addressed:

– Development software faults (issue 1): software faults introduced by a human
during the system development.

– Malicious faults (issue 2): faults introduced by human with the deliberate
objective of damaging the system (e.g. causing service denial or crash of the
system).

– Development hardware faults (issue 3): natural (e.g. caused by a natural
phenomenon without human involvement) and human-made faults affecting
the hardware during its development.

– Operational natural faults (issue 4): faults caused by a natural phenomenon
without human participation, affecting the hardware and occurring during
the service of the system. As they affect hardware, they are likely to damage
software as well.

– Operational human-errors (issue 5): faults resulting from human action dur-
ing the use of the system. These faults are particularly of interest for inter-
active system and the next subsection describe them in detail.

Fig. 2. Typology of faults in computing systems (adapted from [7]) and associated
issues for the resilience of these systems.

We consider that development hardware faults (that are more on the electronic
side of computing) and malicious faults (that are a separated concern in the
avionics domain for now) are beyond the scope of this paper. Each remaining
branch of this classification of faults calls for specific engineering methods, pro-
cesses and tools to be used and followed for developing recommender systems to
be used in a critical context.

3.2 Regulation for critical systems

Several types of standards rule the development and operation of critical systems.
In this article, we focus on standards that define processes and methods for the
development of interactive software applications in aeronautics.

Development
Assurance
Level

Failure
condition
categories

Description of the failure
conditions

Failure rate
(failures/hour)

A Catastrophic Failure conditions that may
cause a crash

Extremely
improbable
10−9 +fail safe

B Hazardous Failure has a large negative
impact or performance, Or
reduces the ability of crew to
operate the plane

Extremely
remote
10−7

C Major Failure is significant, but
has lesser impact than haz-
ardous

Remote
10−5

D Minor Failure is noticeable, but has
lesser impact than Major

Probable
10−3

E No safety
effect

No impact on dependability Any range

Table 1. Development Assurance Level for civil aircraft.

Regulation for software development DO-178C [3] defines Development As-
surance Levels (DAL) for commercial software-based aerospace systems. These
levels correspond to failure condition categories defined by certification authori-
ties such as EASA (European Aviation Safety Agency) or FAA (Federal Aviation
Administration). Table 1 presents the five Development Assurance Levels associ-
ated with their failure condition category and its description (summarized from
the EASA CS-25 standard [4]). As presented in the first row of Table 1, a fail-
ure having catastrophic consequences (failure condition column) must not occur
more often than once per 10-9 hours of functioning (failure rate column).

According to the standard DO 178-C, the first two rows of Table 1 (colored
in grey) correspond to so-called critical systems while systems in the lower rows

are called non critical.

Requirement1: DAL level of recommender system must be identified.

Requirement2: Development methods used for the recommender system must
be adequate with the identified level of DAL.

It is important to note that DAL levels can also be ensured by the availability
of redundant systems of a lower DAL. This means that systems not developed
following DAL A constraints could be used for systems with potentially catas-
trophic failure conditions, provided it exists redundant systems of a lower DAL.

Interactive systems for flight crew The Certification Specification 25 (CS
25) standard [4] specifies, in its section 1302 named “Installed systems and equip-
ment for use of the flight crew”, that the cockpit must allow the crew to per-
form safely all of their tasks and that the cockpit must not lead to error prone
behaviors. In addition to requirements, the CS 25 standard provides a list of Ac-
ceptable Means of Compliances (AMC), which are acceptable means of showing
compliance with the requirements. Fig. 3 depicts an excerpt of these means of
compliance for systems that contain automation (see [4], page 2-F-20).

Requirement3: Tasks performed by the operator using the recommender sys-
tem should be explicitly described.

Requirement4: The functions of the recommender system should support all
the tasks identified.

Requirement5: The presentation and interaction with the recommender sys-
tem must not be error prone.

Requirement6: As the recommender system automates flight crew tasks, the
design of this specific automation shall follow guidelines on automation.

Requirement7: The automation behavior should be as dependable as the
other part of the recommender systems.

3.3 Model-based approaches for dealing with faults during

development

Model-based approaches and in particular formal model-based approaches pro-
vide support for the design and analysis of interactive systems. They are a
mean to analyze in a complete and unambiguous way the interactions between
a user and a system [23]. Several types of approaches have been developed [11],
which encompass contributions about formal description of an interactive system
and/or formal verification of its properties. For example, developing a system of
a DAL A or B now requires the use of formal description techniques according
to DO-178C supplement 330 [2]. This supplement defines the overall analysis
process (depicted in Fig. 4) that developers of aircraft systems must apply.

In this process, presented in Fig. 4, software engineers have to rely on the
software requirements (“shall” statement) to develop a model of the system
and, independently, they have to express the same requirements in the format of
CTL properties. A formal analysis model integrates the system model and the
properties. A model checker takes the analysis model as input and generate a
counterexample if a property of the system does not hold.

Requirement8: High-level requirements for the recommender system shall be
formally described.

Requirement9: Behavior of the recommender system shall be described using
formal methods.

Requirement10: Compatibility between behavioral descriptions and high-
level requirements shall be checked using verifications techniques.

3.4 Approaches for dealing with natural faults during operations

The issue of operational natural faults must be addressed, more particularly
when dealing with the avionics domain as a higher probability of occurrence of
these faults [31] concerns systems deployed in the high atmosphere (e.g., air-
crafts [25]) or in space (e.g., manned spacecraft). As the operational natural
faults are unpredictable and unavoidable, the dedicated approach for dealing

Fig. 3. Excerpt of the Book 2 of EASA Certification Specification 25.

Fig. 4. Analysis process from DO-178C supplement 330.

with them is fault-tolerance [7] that can be achieved through specialized fault-
tolerant architectures (such as the COM-MON architecture [32]), by adding
redundancy (e.g. [33] or diversity using multiple versions of the same software
or by fault mitigation (reducing the severity of faults using barriers or healing
behaviors [24]).

Requirement11: Fault-tolerant mechanisms shall be embedded in the imple-
mentation of the recommender system (at least to support detection of faults).

Requirement12: Effective fault-tolerance of the recommender system shall
be checked using, for instance, fault-injection techniques.

3.5 Summary of the Identified Requirements

In this section, we identified 12 requirements to address when engineering recom-
mender systems for a critical context. These requirements cover both the certifi-
cation aspects (more particularly in the avionic domain) and the dependability
aspects of critical systems. They also cover properties specific to interactive sys-
tems (such as usability aspects). It is important to note that the some of these
requirements are specific to recommender systems (e.g.requirement 6) while oth-
ers (e.g.requirement 12) are generic for interactive applications deployed in the
cockpit. Finally, while these requirements might not be exhaustive, they depict
a first draft of the issues that have to be addressed to deploy recommender sys-
tems and call for methods from the area of software engineering, dependable
computing and human-computer interaction to address them.

Fig. 5. Warning and system displays in A380 cockpit.

4 An Illustrative Example of Recommender System in

Aircraft Cockpit

Currently, there is no recommender system deployed in critical contexts. In the
avionics domain, this is due (in particular) to the lack of means to ensure their
dependability. However, the concepts underlying recommender systems (e.g. re-
striction of choices from a multitude) could be useful in supporting operators’
activities. This section presents a system from large commercial aircraft that
could be a good candidate to become a recommender system in future pro-
grams. This section first presents the current concepts of the ECAM (Electronic
Centralized Aircraft Monitor) and then highlights what would be required for
its engineering in order to embed recommender systems’ philosophy.

4.1 Overview of the ECAM

The ECAM, in the Airbus family, monitors aircraft systems (e.g., the engines)
and relays to the pilots data about their state (e.g., if their use is limited due
to a failure) as well as the procedures that have to be achieved by the pilots to
recover from a failure.

The ECAM is in charge of the processing of data from the monitoring of the
aircraft systems and produces:

– The display of information about the status of the aircraft systems parame-
ters. In the example of the Airbus A380, this display is done on the System
Display (SD in Fig. 5).

– The display of alerts about system failures and procedures that have to be
completed by the pilot to manage the detected warning. In the example of
the Airbus A380, this display is done on Warning Display (WD in Fig. 5).

Fig. 6. Example of the display of warning messages on the Warning Display.

– Aural and visual alerts - also called attention getters (using several lights
and loudspeakers in the cockpit).

Fig. 6 presents an example of the display of warning messages (one “APU
FIRE” called red warning on line L1) and its associated recovery procedure
on the Warning Display. In this example, the pilots are informed that a fire
has been detected within the APU (Auxiliary Power Unit) system. The APU
system provides bleed and electricity to the aircraft and consumes fuel. In case
of failure, among others, the APU can trigger APU FAULT and APU FIRE
alarms. The corresponding recovery procedure first indicates to the pilots that
they have to land as soon as possible (“LAND ASAP” indication onL2). Then,
they first have to push the “APU FIRE” pushbutton (L3) and shut off the “APU
BLEED” service (L4). Then, if the fire is still present after 10 seconds (L5), they
have to discharge an agent (L6) to stop the fire and to shut the APU off (L7).

If the Flight Warning System processes simultaneously several warning mes-
sages, it sorts them, in order to obtain a display order, according to three mech-
anisms:

– Their relationship with others warning messages: some warning messages
may be inhibited in case of presence of others warning messages (for instance,
the “APU FAULT” warning message is not displayed if the “APU FIRE” is
already detected);

– The current flight phase: some warning messages are only displayed when the
aircraft is in a given flight phase (for instance, flight management systems
failures are not displayed after landing);

– Their priority level: a priority level is associated to each alert message in
order to prioritize the more critical ones.

4.2 Flight Warning System as a Recommender System

The processing of warning messages (as presented above) is similar to the filtering
activity of a recommender system. Indeed, only some of the potential messages
are presented to the pilot according to the context (e.g. flight phases or other

messages). However, this filtering could be extended to other aspects (beyond
context) such as feedback from other pilots who performed the same procedure
(this is called collaborative filtering). Beyond that, FWS only presents one list
of procedures at a time to the pilot. Procedures are sorted by order of priority
and should be performed in that order by the pilot even though within a given
procedure, options are offered. Exploiting recommender systems functionalities
would allow presenting alternatives to the pilots that could select the most ap-
propriate procedure to perform according to information that is not present in
the system (for instance, in case of a LAND ASAP, the selection of the most
practical airport for the airline to repair the aircraft).

5 Summary and Conclusions

To our knowledge, recommender systems have not been deployed in critical con-
texts. This position paper has first presented how the use of recommender sys-
tems in critical context could be helpful to support the operators’ activities.
The paper has then presented the issues that have to be addressed in order to
deploy recommender systems in a critical context. We have made explicit those
issues as a list of 12 requirements that call for methods in the area of software
engineering, dependable computing and human-computer interaction to address
them. Finally, the paper has presented an illustrative example of recommender
system in an aircraft cockpit for supporting the pilots’ activities while managing
aircraft systems failures.

Acknowledgments

This work has been partially founded by the project SEFA IKKY (Intégration
du KoKpit et de ses sYstèmes) under the convention number #IA-2016-08-02
(Programme d’Investissement Avenir).

References

1. Netflix users statistics. https://www.statista.com/statistics/250934/

quarterly-number-of-netflix-streaming-subscribers-worldwide/. Accessed:
March 2017.

2. DO-333, Formal Methods Supplement to DO-178C and DO-278A. RTCA and
EUROCAE, December 2011.

3. DO-178C / ED-12C, Software Considerations in Airborne Systems and Equipment
Certification. RTCA and EUROCAE, 2012.

4. CS-25 - Amendment 17 - Certification Specifications and Acceptable Means of
Compliance for Large Aeroplanes. EASA, 2015.

5. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on

Knowl. and Data Eng., 17(6):734–749, June 2005.

6. G. Adomavicius and A. Tuzhilin. Context-aware recommender systems. In F. Ricci,
L. Rokach, and B. Shapira, editors, Recommender Systems Handbook, pages 191–
226. Springer, 2015.

7. A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans. Dependable Secur.

Comput., 1(1):11–33, Jan. 2004.
8. J. Bobadilla, F. Ortega, A. Hernando, and J. Bernal. Generalization of recom-

mender systems: Collaborative filtering extended to groups of users and restricted
to groups of items. Expert Syst. Appl., 39(1):172–186, Jan. 2012.

9. J. Bobadilla, F. Ortega, A. Hernando, and A. GutiéRrez. Recommender systems
survey. Know.-Based Syst., 46:109–132, July 2013.

10. D. Chatzopoulos and P. Hui. Readme: A real-time recommendation system for mo-
bile augmented reality ecosystems. In Proceedings of the 2016 ACM on Multimedia

Conference, MM ’16, pages 312–316, New York, NY, USA, 2016. ACM.
11. A. Dix. Upside down As and algorithms - computational formalisms and theory.

HCI Models Theories and Frameworks: Toward a Multidisciplinary Science. Mor-
gan Kaufmann, 2003.

12. M. D. Ekstrand, M. Ludwig, J. A. Konstan, and J. T. Riedl. Rethinking the
recommender research ecosystem: Reproducibility, openness, and lenskit. In Pro-

ceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11, pages
133–140, New York, NY, USA, 2011. ACM.

13. A. Felfernig, M. Jeran, G. Ninaus, F. Reinfrank, S. Reiterer, and M. Stettinger.
Basic approaches in recommendation systems. In M. P. Robillard, W. Maalej,
R. J. Walker, and T. Zimmermann, editors, Recommendation Systems in Software

Engineering, pages 15–37. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.
14. Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Mymedialite:

A free recommender system library. In Proceedings of the Fifth ACM Conference

on Recommender Systems, RecSys ’11, pages 305–308, New York, NY, USA, 2011.
ACM.

15. I. Garcia, L. Sebastia, and E. Onaindia. On the design of individual and group
recommender systems for tourism. Expert Syst. Appl., 38(6):7683–7692, June 2011.

16. M. A. Ghazanfar and A. Prügel-Bennett. A scalable, accurate hybrid recommender
system. In Third International Conference on Knowledge Discovery and Data

Mining, WKDD 2010, Phuket, Thailand, 9-10 January 2010, pages 94–98. IEEE
Computer Society, 2010.

17. J. R. Hauser, G. L. Urban, G. Liberali, and M. Braun. Website morphing. Mar-

keting Science, 28(2):202–223, Mar. 2009.
18. H. Jerbi, F. Ravat, O. Teste, and G. Zurfluh. Preference-based recommendations

for olap analysis. In Proceedings of the 11th International Conference on Data

Warehousing and Knowledge Discovery, DaWaK ’09, pages 467–478, Berlin, Hei-
delberg, 2009. Springer-Verlag.

19. B. P. Knijnenburg, M. C. Willemsen, Z. Gantner, H. Soncu, and C. Newell. Explain-
ing the user experience of recommender systems. User Modeling and User-Adapted

Interaction, 22(4-5):441–504, Oct. 2012.
20. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-

mender systems. Computer, 42(8):30–37, Aug. 2009.
21. G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item

collaborative filtering. IEEE Internet Computing, 7(1):76–80, Jan. 2003.
22. P. Moradi and S. Ahmadian. A reliability-based recommendation method to im-

prove trust-aware recommender systems. Expert Syst. Appl., 42(21):7386–7398,
Nov. 2015.

23. D. Navarre, P. Palanque, J.-F. Ladry, and E. Barboni. Icos: A model-based user in-
terface description technique dedicated to interactive systems addressing usability,
reliability and scalability. ACM Trans. Comput.-Hum. Interact., 16(4):18:1–18:56,
Nov. 2009.

24. S. Neema, T. Bapty, S. Shetty, and S. Nordstrom. Autonomic fault mitigation in
embedded systems. Eng. Appl. Artif. Intell., 17(7):711–725, Oct. 2004.

25. E. Normand. Single-event effects in avionics. IEEE Transactions on Nuclear Sci-

ence, 43(2):461–474, Apr 1996.
26. C. Porcel, A. Tejeda-Lorente, M. A. Mart́ınez, and E. Herrera-Viedma. A hy-

brid recommender system for the selective dissemination of research resources in
a technology transfer office. Inf. Sci., 184(1):1–19, Feb. 2012.

27. J. Reason. Human Error. Cambridge University Press, 1990.
28. F. Ricci, L. Rokach, and B. Shapira. Introduction to recommender systems hand-

book. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender

Systems Handbook, pages 1–35. Springer, 2011.
29. M. P. Robillard and R. J. Walker. An introduction to recommendation systems in

software engineering. In M. P. Robillard, W. Maalej, R. J. Walker, and T. Zim-
mermann, editors, Recommendation Systems in Software Engineering, pages 1–11.
Springer, 2014.

30. A. Said and A. Belloǵın. Replicable evaluation of recommender systems. In Pro-

ceedings of the 9th ACM Conference on Recommender Systems, RecSys ’15, pages
363–364, New York, NY, USA, 2015. ACM.

31. B. Schroeder, E. Pinheiro, and W.-D. Weber. Dram errors in the wild: A large-scale
field study. SIGMETRICS Perform. Eval. Rev., 37(1):193–204, June 2009.

32. P. Traverse, I. Lacaze, and J. Souyris. Airbus fly-by-wire - A total approach to
dependability. In R. Jacquart, editor, Building the Information Society, IFIP 18th

World Computer Congress, Topical Sessions, 22-27 August 2004, Toulouse, France,
volume 156 of IFIP, pages 191–212. Kluwer/Springer, 2004.

33. Y. C. Yeh. Triple-triple redundant 777 primary flight computer. In 1996 IEEE

Aerospace Applications Conference. Proceedings, volume 1, pages 293–307 vol.1,
Feb 1996.

