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We evaluate here three hemodynamic models used for the numerical simulation o
artery flows. We focus on two flow features responsible for intra-stent restenosis: th
and the re-circulation lengths around a stent. The studied models are the Poiseuille pr
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 computational time for the complete pulsatile model is five times that of the simplified pulsatile model.

Considering the additional “cost” for the complete model, we recommend using the simplified pulsatile
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ization, 29% of the 56
e attributed to cardio-
hey are often due to a

it seems that this model is not adequate to accurately calculate the
characteristics of the arterial flows or as a parabolic profile with an
unsteady maximum velocity (Seo et al., 2005; Barakat and Cheng,
2000; Kim et al., 2004). In this work, we propose a more physically
acceptable model for the blood flow and we compare it with the
vascular diseases (Murray et al., 2002). T
tenosis related to the simplified models for the flow in the human left coronary artery.
In the following section, the simplified hemodynamic models and

characteristics at once and simplifications are required. The non-
Newtonian characteristics of blood generally occur in small vessels
growth of atherosclerosis plaque. One of the therapeutic means of
treatment is the stent implementation. However intra-stent rest-
enosis often occurs in bare stents (Williams et al., 2000; Mehran
et al. 1999a,b). To solve this problem, drug-eluting stents have
been designed since the 2000s with encouraging results but with
new risks such as late thrombosis (Kastrati et al., 2007). Intra-stent
restenosis is a multifaceted phenomenon: besides human factors,
it depends on how the surgeon implants the stent, on its shape, on
the drug used for an eluting stent, etc. It is also strongly coupled
with the blood flow dynamics near the stent struts. LaDisa et al.
(2005) or Wentzel et al. (2001) show that low wall shear stresses
promote cell proliferation and neo-intimal hyperplasia. This occurs
in re-circulation zones induced by the flow separation around the
stent strut. Therefore it is essential to characterize properly the
dynamics of in-stent blood flows. In most approaches found in the
literature, the blood flow is modeled either as a Poiseuille profile
(Bozsak et al., 2014; Chen et al., 2014; Weiler et al., 2012) although
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the alternative model based on the work of Womersley (1955) are
exposed.

2. Hemodynamic models

Modeling blood flows is very challenging: blood is a non-New-
tonian fluid, the vessels are elastic, the flows are pulsatile and
possibly turbulent. It is almost impossible to consider all these
for low values of the shear rate 100 s 1γ ̇ < − (Merrill, 1969) and of the
Womersley number 1α < (McDonald, 1955). In this work the
Womersley number is α¼2.7 and the shear rate can be estimated as

114 s 1γ ̇ = − in the most critical case. Therefore blood can be con-
sidered as a Newtonian fluid. The elasticity of the vascular walls
affects the pressure and the velocity field but when the subject
becomes older and ill, the arterial rigidity increases. Ozolanta et al.
(1998) report that the elastic modulus of the coronary arteries
increases from 1.2 MPa (0–1 year) to 4.1 MPa (60–80 years).
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Likewise, patients with hypercholesterolemia, hypertension and
atherosclerosis present stiffer vessels. Grosse et al. (2008) and
recently Pielhop et al. (2015) compare the flow fields for rigid and
elastic walls to test the Womersley model. They show that the rigid
and elastic models converge when the Womersley and Reynolds
numbers are low enough. Knowing that these parameters are still
smaller in our study than in theirs, we consider that the effects of
elasticity are small and that the vessel has a constant circular cross-
section. Finally the Reynolds number is low and the flow is laminar
(McDonald, 1955). Some of these assumptions are debatable but the
main objective here is more the qualitative evaluation of some
commonly used hemodynamic models in CFD rather than the
reproduction of the complex details of real arterial flows. We now
present some of the models found in the literature, which are based
on the Poiseuille profile, and develop another approach to model
the blood flow.
2.1. Existing simplified models

The models found in the literature for intra-stent flows can be
divided into steady and unsteady models. The simplest way to
model the stationary laminar flow of a Newtonian fluid of dynamic
viscosity μ and density ρ in a tube of radius R subject to a pressure
gradient P L/Δ , is the Poiseuille parabolic profile:
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with V being the average velocity. We refer to this model in the
following lines as the PM (Poiseuille Model). It is accepted that it
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The drawback of this model is that it cannot account for the
unsteady character of real physiological flows. In recent studies
(Coppola and Caro, 2009; O'Brien et al., 2013; Kolachalama et al.,
2009) a simplified pulsatile model is used
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with V(t) being the instantaneous average velocity. The expres-
sions of Q(t) and of twτ ( ) are identical to Eqs. (2.2) and (2.3) with V
(t) instead of V. Eq. ((2.4) is not a solution of the Navier–Stokes
equations (except at very low frequencies) and it misrepresents
the flow when pulsatile effects are important because the profiles
are no longer parabolic and present a phase shift between Q and

P L/Δ . In the next parts, this model is referred to as SPM (Simplified
Pulsatile Model).
2.2. A more physically acceptable model

Womersley (1955) solved the unsteady Stokes equation for the
flow in a rigid circular vessel:
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In these expressions, R is the real part of a complex expression
and J0 is the Bessel function of the first kind and of zero order. The
Womersley number R /α ρω μ= accounts for the pulsatility of the
flow. The unsteady flow rate is
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with J1 being the Bessel function of the first kind and order 1. The
wall shear stress is
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The pressure gradient for real blood flows being a periodic
waveform, it can be written as the sum of terms of the form of Eq.
(2.6):
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with a A iBn n n˜ = − being the complex amplitude of the nth har-
monics of the pressure gradient (An and Bn are real with a A0 0˜ =
and B 00 = ). For a pressure gradient like Eq. (2.9), the velocity
profile is the superposition of solutions such as Eq. (2.5) because of
linearity of the Stokes equation:
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with R n /nα ρω μ= being the generalized Womersley number. The
flow rate is

R

⎧
⎨⎪
⎩⎪

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎫
⎬⎪
⎭⎪

Q t
A R R a

i n

J i

i J i
e

8
1

2

2.11n

n n

n n

in t0
4

1

2 1
3/2

3/2
0

3/2

( )
( )∑π

μ
π

ρ ω

α

α α
( ) = +

˜
−

( )

ω

=

∞

and the wall shear stress:
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The difficulty in this model is to obtain the real and imaginary
parts of J0 and J1. This separation involves the Kelvin functions bern
and bein :

J i x ber x ibei x 2.13n n n
3/2( ) ( ) ( )= + ( )

Moreover the application of this model to actual blood flows
requires the measurement of the pressure gradient which cannot
be obtained easily. It is much simpler to measure the flow rate, for
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Fig. 1. Mean velocity in the left coronary artery (Bénard, 2005).
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instance by a Doppler ultrasound flowmeter. We have therefore
adapted Eq. (2.10) in the case where Q(t) or V t Q t R/ 2π( ) = ( ) is
known. Since the signal is periodic with period T 2 /π ω= , it can be
decomposed into Fourier series:
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Finally the velocity profile can be written as
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We can calculate the Kelvin functions from their integral for-
mulation (Watson, 1995):
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We refer to this model as the CPM (Complete Pulsatile Model) and
in the following section, we apply and compare the three previous
models.
3. Application: flow in the human left coronary artery

3.1. Restitution of the flow

We consider here the flow in a human left coronary artery. This
vessel is taken as a circular pipe of constant radius R 1.75 mm= .
The dynamic viscosity of the blood is equal to 3.46 mPa sμ = and

its density is 1050 kg/m3ρ = . The instantaneous average velocity V
(t) extracted from Bénard (2005) is presented in Fig. 1 (this curve is
based on in vivo Doppler measurements of the blood flow in a
human left coronary artery).

The period of this signal T¼0.8 s corresponds to the heartbeat
of a person at rest. The Reynolds number ranges between

Re106 266< < (laminar regime). This signal is divided into
N¼100 samples Vk , ( k N0 1≤ ≤ − ) at constant time intervals

t T N/Δ = . A discrete Fourier transform is applied to the sampled
signal Vk to extract the values of Vn and Wn :
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To reconstruct the initial signal with a sufficient accuracy, 11 terms
in Eq. (2.14) are required. Once Vn and Wn are known, we calculate
the velocity profile Eq. (2.21). In the following section, a bare and a
stented artery are considered. In the first case, the equations for
the velocity profiles, the flow rates and the wall shear stresses are
known theoretically but in the second case a numerical procedure
is required. In order to validate these models (in all the domain for
the bare artery and at the inlet/outlet for the stented artery), we
performed a successful comparison of the analytical solutions
calculated by the Wolfram Mathematica package with the numer-
ical solutions computed by “ANSYS Fluent 14.5”.
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3.2. Numerical approach

We restrict our attention to the flow around a single 2D strut of
squared cross-section with side a¼0.1 mm. The Navier–Stokes and
continuity equations are solved with “ANSYS Fluent 14.5”. The flow
is axisymmetric around the z-axis and in the (r z, ) plane, the
domain consists of a rectangular surface of radial extension
R¼1.75 mm deprived of the stent cross-section (Fig. 2). We
achieved a parametric study of the sensitivity to the mesh, to the
size of the domain and to the time step. The solution is found to be
independent of the domain size when its extensions upstream and
downstream of the strut are respectively 40a and 60a. A structured
mesh with variable grid size allows a local refinement near the
stent while maintaining a reasonable number of cells (a range of
35,000 was used). Finally, for the time step t 10 s3Δ = − , the solu-
tion is found to be accurately discretized in time. The convergence
criteria are chosen as 10�10 for each equation and the solutions are
considered after the fourth period to ensure the accuracy of the
numerical results. The boundary conditions are given in Fig. 2. The
velocity profiles for the inlet and outlet are programmed with a
UDF (User Defined Function) in C language. In the case of the CPM,
the integrals defining ((2.22)–(2.25)) are calculated with the tra-
pezoid rule (Press et al., 2007). In the following section, the three
models are analyzed and compared for a bare artery and a stented
artery.
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Fig. 3. Comparison of the velocity profiles for three models at different times.
4. Results and discussion

4.1. Bare artery

For the present flow, the Womersley number R / 2.7α ωρ μ= =
is in the intermediate range. It is expected that the pulsatility is
significant and that the PM is unsuitable to model the flow. Fig. 3
shows the velocity profiles given by the three hemodynamic
models at t T T0, /4, /2= and T3 /4 for the SPM and CPM. We note
that the pulsatility of the flow is indeed not negligible and that at
the intermediate value α¼2.7, the PM represents a very rough
approximation of the flow, especially during the diastole. The wall
shear stress is thus undoubtedly underestimated or overestimated
during the pulsation. The systole takes place when t0 s 0.29 s< <
and t0.73 s 0.8 s< < and the PM is less defective in this phase.
Consequently the PM is only an acceptable model during less than
one half of the pulsation, mainly during the systole, but fails when
Fig. 2. Schematic of the computational domain of a stented artery and boundary
conditions.
the blood acceleration and deceleration become large during the
diastole. Now comparing both the SPM and the CPM, the differ-
ence is lesser but still not negligible. If the CPM gives profiles with
a maximum velocity in the axis, these flows are no longer para-
bolic contrary to the SPM given by Eq. (2.4). We note for example
at t¼T/2 that the SPM overestimates the velocity in the axis and
underestimates it near the wall. The reverse phenomenon occurs
at t¼3T/4 with a direct impact on the wall shear stress. Like the
PM, the SPM is less defective during the systole and worse during
the diastole where large changes in the velocity occur. The wall
shear stress is plotted in Fig. 4. As expected from the velocity
profiles, the PM gives a poor estimate of the wall shear stress
during most of the pulsation. The relative difference between this
model and the CPM exceeds 100% at t¼0.3 s and t¼0.6 s (begin-
ning and the end of the diastole). Compared to the PM, the SPM
improves the value of the wall shear stress (the time shift between
the CPM and the SPM occurs because the pressure gradient and
the flow-rate are in phase in the SPM but not in the CPM). There
are also significant differences in the amplitude of the wall shear
stress: for the SPM, it varies in the range of 0.79 Pa 1.98 Pawτ≤ ≤ ,
whereas for CPM it ranges at an interval of 0.57 Pa 2.28 Pawτ≤ ≤ .
The relative difference between the SPM and the CPM is at most of
about 40%, at times near t¼0.3 s and t¼0.6 s corresponding again
to the beginning and the end of the diastole. During one third of
the period, the relative difference between the wall shear stress
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Fig. 4. Wall shear stress for the three models.
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given by the SPM and by the CPM exceeds 10%. It is therefore clear
that the choice of the hemodynamic model is very important if we
want to estimate at best the shear stress at the cardiovascular wall.
We recall here that there is a strong correlation between low
values of the shear stress and the development of the athero-
sclerosis plaque (Bénard, 2005).
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Fig. 6. Distal and proximal re-circulation lengths versus Re (steady case).
4.2. Stented artery

Intra-stent flows are characterized by re-circulation zones
located upstream and downstream of the strut. These cells are due
to the separation of the main flow in the right-angled corners
formed by the strut and the artery wall. Inside these re-circula-
tions, low velocities are observed which induce very low values of
the wall shear stress. It is also established that the re-circulation
cells affect the mass transport in the case of drug-eluting stents
(Kolachalama et al., 2009). The size and intensity of these patterns
influence the drug delivery in a complex manner by disturbing the
mass boundary layer in the vicinity of the stent. It is therefore
important to characterize correctly the intra-stent flows and par-
ticularly these re-circulation zones. Using dimensional analysis, it
is easy to show that the re-circulation length L is a function of the
Reynolds number Re V R2 /ρ μ= and of some geometric ratio

R a/Λ = . There are many studies related to the relationship
between L and Λ but most are devoted to low values of Λ and to
the distal re-circulation cell. In our case, 17.5Λ = and the com-
parison with the existing studies is difficult. Let Lp and Ld be the re-
circulation lengths in the proximal and distal positions respec-
tively (Fig. 5). In our calculations, Lp and Ld are determined by
searching for the position where the wall shear stress is zero. First
we characterize the re-circulation cells in the steady case for
comparisons with data available in the literature. Then we com-
plete the study with the time-dependent flows.

Steady flow
Using the PM, we studied Lp and Ld in the range Re100 270< <

(these limits correspond to the minimum and maximum average
velocities of the signal in Fig. 1). Fig. 6 shows L a/p and L a/d as a
function of Re. We see that these lengths are of the order of the stent
size L ap d, ≈ . Moreover, L Ld p> and the distal re-circulation length is
about twice the proximal one ( L L1.5 / 2.3d p< < ), indicating that the
hydrodynamical regime is slightly inertial. Ld increases linearly with
Re in accordance with the works dealing with re-circulations behind
steps in laminar flow (Armaly et al., 1983). Concerning Lp, its value
decreases as Re increases. We note that Ld varies more rapidly with
Re than Lp: between Re¼100 and Re¼270, the relative increase in Ld
is about 30% whereas the relative decrease in Lp is only about 14%.
This can be also seen by calculating:
a

aLp Ld

Fig. 5. Streamlines around the stent and definition of Lp and Ld.
L L

L L
2, 8

4.1

d max d min

p max p min
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, ,

−
−

≈
( )

The variation of Ld is almost thrice the variation of Lp. This is due to
a blockage effect caused by the strut wall in contact with the
proximal re-circulation which prevents this cell from contracting
and stretching easily. The most similar study can be found in the
work of Bénard (2005) who calculated Lp and Ld for the same ratio

17.5Λ = and for Re¼106 and Re¼265. Kolachalama et al. (2009)
also studied the flow around a strut with a square cross-section, an
aspect ratio 15Λ = slightly lower than ours, and for Re¼141 and
Re¼282. Table 1 compares our results with these studies. A good
agreement is found between our values of Lp and Ld and those of
Bénard (2005) with relative differences of less than 6%. The
comparison with Kolachalama et al. (2009) is less satisfactory:
his values of the re-circulation lengths are substantially smaller
than ours on both sides of the stent. This may be due to the
difference in Λ but it is unlikely that such a low change in this
parameter could produce such large effects. In a more qualitative
way, Seo et al. (2005) studied Ld for a semi-circular stent. For
Re¼200 and for 20Λ = , they obtained L ad ∼ despite the differ-
ence in the shape of the stent. Oliveira et al. (2007) studied the
flow in axisymmetric abrupt contractions with 2Λ = . In the limit
of low Reynolds numbers their results show that L a/ 0.7p ∼ in
accordance with the values in Table 1 for the lowest Reynolds
number. This confirms that Lp is mainly controlled by the height of
the stent strut as already mentioned in Bénard (2005). Even
though Lp and Ld are of the same order of size, the way these re-
circulation cells affect the wall shear stress is different. The
proximal re-circulation cell disturbs the flow less markedly. At a
distance equal to 7a to the left of the strut, the wall shear stress
recovers the value for a bare artery whereas in the distal region,
Table 1
Comparison of the re-circulation lengths (steady case).

Re L a/p L a/d

106 141 265 282 106 141 265 282

Bénard ( 17.5Λ = ) 0.677 / 0.591 / 1.118 / 1.321 /
Kolachalama

( 15Λ = )
/ 0.399 / 0.339 / 0.943 / 1.255

Present study
( 17.5Λ = )

0.647 0.620 0.560 0.546 1.067 1.087 1.312 1.333

Relative difference
(%)

4.4 55.4 5.2 61.1 4.6 15.3 0.7 6.2



F. Chabi et al. / Journal of Biomechanics 48 (2015) 1769–17761774
the wall shear stress recovers the undisturbed value at a distance
of 44a. This result shows the large influence of the distal re-
circulation on the flow downstream and the lesser effect of the
proximal cell on the flow upstream. We now turn our attention to
the case of the unsteady flows.

Unsteady flows
Fig. 7 compares Lp and Ld given by the PM, SPM and CPM. The

main observation is that the difference between the two unsteady
models is small (this implies that in the case of drug-eluting
stents, the SPM and the CPM would give similar mass fluxes). The
maximum relative difference for both lengths Lp and Ld calculated
by the SPM and the CPM is at most 3% and the time shift observed
in Fig. 4 has disappeared. This suggests that Lp and Ld are no longer
sensitive to the details of the velocity profiles at the inlet of the
domain and that the boundary layer development around the strut
is almost achieved. Lp and Ld oscillate around the mean values
previously obtained in the steady case and deviate at most by 15%
and 17% respectively. The use of the PM to model the flow in the
vicinity of the stent seems to be less questionable as in the case of
bare artery. The distal re-circulation length peaks at L a1.33d =
around t 0.4 s= (maximum of the diastole) and simultaneously
the proximal re-circulation length bottoms at L a0.53p = . Fig. 7
clearly shows the strong correlation between the evolution of Lp
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and Ld (an increase in Ld is related to a decrease in Lp and con-
versely). We also note that the variation in the amplitude of Ld is
again larger than for Lp:
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In the range of Reynolds numbers studied here, Ld varies twice as
much as Lp. In other words, the proximal re-circulation cell is less
affected by the pulsatility of the flow than the distal one because
of the same blockage effect mentioned in the previous steady case.

The size and intensity of these re-circulation cells have also a
direct impact on the value of the shear stress (and on the mass flux
in the case of drug-eluting stents). Fig. 8 shows the wall shear
stress normalized by the steady-state value at a distance a/2 from
the strut to the left in the proximal region and to the right in the
distal region. Once again, we observe that the SPM and the CPM
give similar results. The phase shift present in Fig. 4 has vanished
(boundary layer development). The main difference between the
SPM and the CPM now resides in the amplitude. The maximum
relative difference between the wall shear stress given by the SPM
and the CPM in the distal region is at most 13% and occurs at
t¼0.6 s (minimum of the diastole). In the proximal zone, the
maximum relative difference between the two unsteady models is
lower (about 8%) and still occurs at t¼0.6 s. In a predictable way
the PM is also insufficient to assess the wall shear stress in the re-
circulation cells (for drug-eluting stents the mass flow would also
be inaccurate, not including the enhancement of the mass flux by
pulsatility). In the distal region, the maximum relative difference
between the PM and the SPM is of the order of 120% while in the
proximal region, it does not exceed 30%. As mentioned above, the
wall shear stress in the re-circulation cells is drastically smaller
than at large distances from the strut. This is an important feature
because in the restenosis phenomenon, the response of the
arterial wall cells is clearly related to the wall shear stress. The
value 0.5 Pa 5 dyne/cmw

2τ = = is often cited in the literature
(Malek and Izumo, 1996; Malek et al., 1999) to correspond to the
threshold under which the smooth muscle cells proliferate. To
complete these comparisons, we calculated the ratio between the
wall shear stresses in the re-circulation zones (always at distance
a/2 from the strut) and those far upstream and downstream of the
stent pτ (∞) and dτ (∞). The wall shear stress is reduced by 6 in the
distal re-circulation and by 13.5 in the proximal region for the PM.
These values give the order of magnitude of the decreases in the
wall shear stress near the stent. For both unsteady models, the
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decrease in the re-circulation cells relative to their values far from
the strut fluctuate around the average values obtained prev-
iously with a4.5 /2 / 8d dτ τ< ( ) (∞) < in the distal region and

a8 /2 / 22p pτ τ< ( − ) (∞) < in the proximal zone. Compared to the
wall shear stress values far from the stent in Fig. 4, it is obvious
that the threshold of 0.5 Pawτ = is reached in the re-circulation
cells and particularly in the proximal region (considering only the
data given by the PM, the proximal wall shear stress bottoms at

a/2 /13.5 0.09 Pap pτ τ( − ) = (∞) ≈ and can even be smaller for both
unsteady models).

Computational time
Another important parameter is the computational time which is

often the limiting factor in CFD. In the present study we used the
parallel version (4 nodes) of the software and performed the simu-
lations on a quadcore Xeon E5-1607 processor and 8 Gb of DDR RAM.
It is irrelevant to compare the computational time for the steady case
to its counterparts for the unsteady cases because the former is
evidently less demanding (for the sake of information, the compu-
tational time of the PM is of the order of 4 min). For the SPM and
CPM, the computational time was chosen as the time to perform

t5 5 10 s3Δ = · − . The computational time for the CPM (50 min) is
5 times longer than for the SPM. This five-fold difference is mainly
due to the much more complex UDF in the CPM and particularly to
the additional efforts to compute the Kelvin and Bessel functions. If
we consider only the flow in a bare artery, the additional time in the
CPM is not superfluous in view of the results presented in Section 4.1.
In the case of the flow past a stent, the situation is less critical and
the SPM is an acceptable model if one only focuses on the flow
around the stent. In the case of drug eluting stents, the use of the
SPM would be even more justified: the characteristic time for the
drug diffusion over the distance a 10 m4= − is of the order of

a D/ 100 sm
2τ = ≈ (with D 10 m /s10 2≈ − the mass diffusivity). Com-

paring this time to the characteristic times of the present flow
T 0.8 sτ = = and of momentum diffusion a / 3. 10 sv

2 3τ ν= ≈ − (with
/ 3. 10 m /s6 2ν μ ρ= ≈ − ), we see that the transport phenomena take

place on very different time scales. The slowest phenomenon is of
controlling the problem, we understand why the PM is often used in
the literature.
5. Conclusion

In this work we studied the flows given by three hemodynamic
models used in the numerical simulation of intra-stent flows. The
first model is the Poiseuille profile, widely used in the literature
for its simplicity, low computational time and ease to implement.
The second model is an unsteady parabolic velocity profile whose
mean velocity is taken as the actual average velocity of the real
blood flow. Finally the last model is based on the analysis of
Womersley. The implementation of this model is not as straight-
forward as the two others because it requires the computation of
complex Bessel and Kelvin functions. From the perspective of its
application to the problem of intra-stent flows, the PM is not
surprising clearly questionable because the re-circulation lengths
and the related values of the wall shear stress are not accurately
estimated. The SPM and the CPM give close results, except at times
where the peaks of the flow rate occur, but the discrepancies are
relatively small (13% at most). Concerning the computational time,
the PM is naturally the least time-consuming. Comparing the SPM
and the CPM, we found that the former is at least 5 times more
rapid than the latter. Considering the acceptable differences in the
results between these unsteady models and the additional com-
putational time of the CPM, we recommend the SPM for future
numerical studies of stented arteries.
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