
1

Interactive Simulation of Scattering Effects in
Participating Media Using a Neural Network Model

Liangsheng Ge, Beibei Wang, Lu Wang, Xiangxu Meng and Nicolas Holzschuch

Rendering participating media is important to the creation of photorealistic images. Participating media
has a translucent aspect that comes from light being scattered inside the material. For materials with a
small mean-free path, multiple scattering effects dominate. Simulating these effects is computationally
intensive, as it requires tracking a large number of scattering events inside the material. Existing
approaches precompute multiple scattering events inside the material and store the results in a table
during rendering time, this table is used to compute the scattering effects. While these methods are
faster than explicit scattering computation, they incur higher storage costs. In this paper, we present a
new representation for double and multiple scattering effects that uses a neural network model. The
scattering response from all homogeneous participating media is encoded into a neural network in a
preprocessing step. At run time, the neural network is then used to predict the double and multiple
scattering effects. We demonstrate the effects combined with Virtual Ray Lights (VRL), although our
approach can be integrated with other rendering algorithms. Our algorithm is implemented on a GPU.
Double and multiple scattering effects for the entire participating media space are encoded using only
23.6 KB of memory. Our method achieves a rendering times of 50 ms per frame in typical scenes and
provides results almost identical to the reference.
Index Terms—Participating Media, Multiple Scattering, Real-time, Neural Network

F

1 Introduction
Many materials, such as milk or wax, exhibit so-called scattering
effects; incoming light enters the material and is scattered inside,
giving a translucent aspect. Rendering these effects is compu-
tationally intensive, as it requires simulating a large number of
events.

A full computation using ray-tracing or photon mapping is
expensive, even with accelerating methods such as Virtual Ray
Lights [1] or the state-of-the-art method Unified Points, Beams
and Paths (UPBP) [2]. The dipole approximation [3] is fast,
but involves too much approximation of material behavior. Pre-
computing the material response for multiple scattering [4], [5],
[6] integrates well with existing rendering algorithms, allowing
separate computation for single- and double- scattering along with
fast computation for multiple scattering. The main issue with these
methods concerns efficient storage for the precomputed multiple
scattering data.

In this paper, we present a method to encode multiple scat-
tering effects using a neural network model for the entire par-
ticipating media space. We treat the multiple scattering response
as a six-dimensional function: two dimensions for the material
parameters (albedo α and anisotropy g), two dimensions for the
spatial position, and two dimensions for the outgoing direction
relative to the incoming direction. A straightforward approach

• L. Ge, L. Wang and X. Meng are with School of Software, Shandong
University, 250101, Jinan, China. L. Wang is corresponding author. E-
mail: luwang hcivr@sdu.edu.cn

• B. Wang is with School of Computer Science and Engineering, Nanjing
University of Science and Technology, 210094, Nanjing, China. Joint First
Author.

• N. Holzschuch is with Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP,
LJK, 38000 Grenoble, France.

of this kind would involve storing the entire space of materials
in a single table; such a table, however would exceed 50 GB,
which is impractical for rendering, especially at interactive rates.
To solve this issue, we treat it as a regression problem and train
a neural network model to learn the multiple scattering function.
Regarding storage memory, our algorithm provides far more com-
pact representation (only 23.6 KB, 11.8 KB for multiple scattering
and 11.8 KB for double scattering) compared to explicitly storing
the multiple and double scattering response [4]. For rendering,
we reconstruct an explicit 4D table for each material using this
network. This 4D table costs about 20 MB (including both double
and multiple scattering); while more expensive than the neural
network model, it is already compact enough to fit on the GPU. We
then use the reconstructed table for multiple scattering rendering in
a GPU-friendly pipeline. The neural network provides pictures that
are identical to those produced by explicitly storing the material
response, with a cost of only 50 ms per frame. In this paper, we
focus on dense media, where multiple scattering effects dominate.

We review related work in the next section. We then describe
our algorithm in Section 3, with implementation details presented
in Section 4. In Section 5, we compare our method with previous
works and reference solutions. Finally, we conclude this paper in
Section 6.

2 Previous work
2.1 Photon Mapping

Chandrasekhar [7] introduced the radiative transfer equationto de-
scribe radiation transport in participating media. Photon mapping
has been used as a means of efficiently solving this equation. Most
recently, Křivánek et al. [2] combined photons with beams and
paths and automatically selected between these representations

2

GPU

Generate VRLs

Store VRLs after surface event.

Reconstruction

Reconstruct radiance table.

Level 0

Transfer grids and
VRLs onto GPU.

Level 1

Level 2

VRL Hierarchy

GPU

Training Precomputation Rendering

... ...

Train Neural Network Ray Tracing Pass

Ray tracing for surface radiance
and medium segments buffer

Evaluation Pass

2×2 Down Sampling

Medium segments buffer down
sampling and mul. scat. radiance
evaluation with radiance table.

Medium Segment

GPU

Neural
Network

mfp

Accumulate radiance
for segments

Accumulation

CPU CPU

Fig. 1. In the training stage, we train a neural network model to represent multiple scattering as a function of medium parameter, position and orientation.
The trained model can be used for any homogeneous participating media. In the precomputation stage, we reconstruct multiple scattering radiance from our
neural network, accumulating the radiance in the table for query segment from the query point. We then generate the VRLs build hierarchy. The rendering
stage is conducted in two passes: a ray tracing pass for surface lighting and camera segments in the medium, and a multiple scattering evaluation pass for
the down-sampled camera segments in the medium and get the final result in the end.

using multiple importance sampling. Bitterli and Jarosz [8] further
extended this concept by tracing photon planes and volume.

While both of these methods provide high-quality simulations
of light transport in participating media, they usually require a
long time to converge. By contrast, our method provides similar
quality with much faster convergence, as it represents the multiple
scattering with neural networks and even an interactive frame rate
via an efficient GPU implementation.

2.2 Virtual Ray Lights

Novák et al. [1] proposed virtual ray lights (VRL) for simulat-
ing light transport inside translucent materials, using importance
sampling for the transfer between camera rays and virtual light
sources.

VRL can be used to achieve high-quality simulation of multi-
ple scattering, although this comes at the cost of a large number of
virtual rays and a consequent slow convergence speed, especially
for highly scattering media. Comparatively speaking, combining
our method with VRL is much faster while still providing similar
results.

2.3 Diffusion Theory

Dipole-based methods are very efficient at representing multiple
scattering effects in high-albedo materials. The material multiple
scattering response is encoded into a surface function that can
be queried efficiently. Jensen et al. [3] introduced the method to
computer graphics, after which Jensen and Buhler [9] presented
a faster version relying on precomputed incoming radiance on
the surface. D’Eon and Irving [10] improved the accuracy of the
Dipole method using quantized diffusion, while Frisvad et al. [11]
introduced the Directional Dipole, which takes into account the
orientation of incoming light relative to the surface. Subsequently,
Habel et al. [12] combined photon beams and the diffusion model.
All dipole methods approximate the material response as isotropic,
and approximate the object as a flat surface. Our algorithm, like
that of Wang and Holzschuch [4], handles arbitrary geometry and
phase functions, and is thus more accurate than diffusion-based
methods.

2.4 Precomputation-based Method

The idea behind precomputation methods involves precomputing
the multiple scattering response and storing it in a structure, to
be accessed at rendering time. Donner et al. [13] precomputed

the material response on the surface as a function of material
properties, surface position and outgoing direction. Instead of
computing response on the surface, Wang et al. [14] and Wang
and Holzschuch [6] assumed an infinite medium and stored mul-
tiple scattering response in a precomputed table, as a function
of position and outgoing direction. Wang and Holzschuch [4]
then combined this precomputed table with several illumination
simulation algorithms. Our algorithm is based on Wang and
Holzschuch [4], but provides a far more compact representation
that contains all material parameters.

Precomputation has also been used for discrete media. Moon
et al. [5] computed the visual aspect of sand by storing the
probability density in a set of concentric spheres or shells. Meng et
al. [15] converted discrete grains to continuous homogeneous me-
dia in order to decouple the precomputation from the grain pack.
Muller et al. [16] converted discrete mixing granular materials to
heterogeneous media.

In a departure from the above methods, we here represent the
multiple scattering effects using a neural network model, which is
more compact than their naive table representation. The extra cost
associated with reconstructing from the neural network is proven
to be negligible.

2.5 Neural Networks

Ren et al. [17] used a multilayer acyclic feed-forward neural
network to map scene data, such as position, view direction and
light direction to the indirect illumination. Both their approach and
ours rely on the multilayer perceptron; while they use it for global
illumination representation, and we use it for multiple scattering
effects.

Kallweit et al. [18] devised a technique for efficiently syn-
thesizing images of atmospheric clouds using a combination of
Monte Carlo integration and neural networks, in which the spatial
and directional distribution of radiant is pre-learned from from
tens of cloud exemplars. To render a new scene, these authors
sampled the visible points of the cloud and, for each, extracted
a hierarchical 3D descriptor of the cloud geometry with respect
to the shading location and light source. This method is highly
decoupled from the shape of the scene. By contrast, our method
avoids handling the scene shape by assuming an infinite medium.

3

Precomputation Stage

（ ，）

Fig. 2. Parametrization of the multiple scattering effects.

3 Neural Network Model For Precomputed Multiple
Scattering
3.1 Notations and Context

We only consider a homogeneous material with index of refraction
η, scattering coefficient σs, absorption coefficient σa and phase
function p(ω,ωt). We use ` to denote the mean-free path inside
the material, with 1/` = σt = σs + σa.

We distinguish between single-, double- and multiple-
scattering effects, depending on the number of volume scattering
events inside the translucent material. Single scattering corre-
sponds to a light path with only one scattering event inside the
material, double scattering to paths with two scattering events, and
multiple scattering to paths with more than two scattering events.
We only count the number of scattering events, independently of
the number of internal reflections on the specular surface.

Our algorithm is designed to work with any rendering frame-
work. We here describe integration with Virtual Ray Lights (VRL).

3.2 Multiple Scattering Function

First, we precompute multiple scattering effects in a table, as-
suming a light source with a dirac in position and direction in
an infinite participating medium. The problem is characterized
by symmetry of revolution: we parametrize multiple scattering
using cylindrical coordinates for position r(ρ, z) and spherical
coordinates at each point with direction (θ, ϕ) (see Figure 2).
We sample the homogenous media space with varying anisotropy
g and scattering albedo α. All spatial dimensions are normal-
ized by the material mean-free path, to reduce the number of
parameters. Finally, we obtain the following multiple scattering
function parametrization: R(ρ, z, θ, ϕ, g, α). This is a function that
maps from a six-dimensional domain to one dimension (multiple
scattering intensity).

We compute this function using Monte Carlo-based simula-
tion. We shoot photons from the light source, let them travel in
the medium (being scattered or absorbed), and then accumulate
their contributions in a table. It is too expensive to store the entire
function in this discrete manner.

3.3 Neural Network Model

The multiple scattering function R(ρ, z, θ, ϕ, g, α) maps from a six-
dimensional domain to one dimension, where the output function
has an exponential falloff with the spatial coordinates and can be
highly anisotropic for the angular coordinates (depending on the
anisotropy of the material) for a given material with property g, α.

We treat this as a regression problem and train a neural
network to learn the multiple scattering function Φ, approximating

Input layer 1st hidden layer 2nd hidden layer Output layer

... ...

Fig. 3. The structure of our neural network. We use a two-layer (hidden
layer) model with 50 nodes in each layer. The activation function is tanh.

it with ΦN(ρ, z, θ, ϕ, α, g,w), where w denotes the weights and
biases of ΦN , found by minimizing:

E =
∑

i

‖ri − ΦN(ρ, z, θ, ϕ, α, g,w)‖2 . (1)

3.4 Data Set

To get the data set for the multiple scattering function, we first
sample the material space g, α, then use Monte Carlo by shooting
photons into the sampled medium and collecting the multiple
scattering data for sampled positions and directions. We set the
` as 1, then sample the anisotropy parameter g with {0.0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99} and the albedo α with
{0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.995 }.
This results in 156 different materials. For each sampled material,
we shoot 500 million photons and collect the scatter events in a
table with a maximum size of 24 × `. We take 100 samples for
the spatial parameters ρ and z and sample the angular parameters
θ and ϕ every 10 degrees.

The computational cost differs for each material; in total, it
takes 8.5 hours to compute the values for all the materials.

We preprocess the radiance in the table by apply-
ing a logarithm operator for improved training performance:
Φ
′

(ρ, z, θ, ϕ, g, α) = log(Φ(ρ, z, θ, ϕ, g, α) + 1).

3.5 Neural Network Structure and Training

We used a neural network model to learn the multiple scattering
function. We use two fully connected hidden layers with 50 nodes
for each layer (see Figure 3), and employ tanh as the activation
function.

We normalize the input parameters into [0, 1] and shuffle them.
The networks are then optimized using the ADAM optimizer in
TensorFlow with a learning rate of 0.01. We compute the loss
for the network as the difference between predicted radiance and
computed radiance. The network is trained using the L2 error
metric; we split the entire database into training (70 %) and testing
(20 %) subsets. 10% of the dataset is not used. The model is
trained using the mini-batch approach: in total, we have 9513
batches, each with a batch size of 30K. During the training, the
mini-batches are chosen sequentially.

We train our network with 64 epochs. It takes 45 minutes to
train the network on a 2.20GHz Intel(R) Xeon(R) CPU E5-2699
(44 cores) machine with Nvidia TITAN RTX GPU. Through the
implementation of our neural network model, we decrease the
storage cost for all materials from 50.0 GB to 11.8 KB.

4

Precomputed Lobe Reconstructed Lobe

g
=

 0
.3

g
=

 0
.6

Fig. 4. Comparison between the lobe simulated using the Monte Carlo
method and the one reconstructed by our neural network. Material: Bumpy-
sphere, g = 0.3 and g = 0.6, lobe position (4.8, 4.8).

mfp (z)

m
fp

 (
ρ)

mfp (z)

m
fp

 (
ρ)

ra
di

an
ce

Precomputed Table Reconstructed Table Difference

m
fp

 (
ρ)

mfp (z)

m
fp

 (
ρ)

m
fp

 (
ρ)

m
fp

(ρ
)

mfp (z) mfp (z) mfp (z)

ra
di

an
ce

(l
og

10
)

(l
og

10
)

M
ul

ti
pl

e
S

ca
tt

er
in

g
D

ou
bl

e
S

ca
tt

er
in

g

Fig. 5. Comparison between the reconstructed radiance and the radiance
simulated using the Monte Carlo method. Material: Lucy, g = 0.0.

3.6 Double Scattering Neural Network

Another neural network is trained to express the response for
double scattering, which has a higher frequency than multiple
scattering. As representing them together in one neural network
would introduce bias, we here represent them with two separate
neural networks.

For double scattering, we employ the same structure as the
multiple scattering neural network, with a different data set, where
only the first two scattering events are stored in the precomputed
table. We also change the parameters, setting the learning rate to
0.001 and the number of mini-batches to 19521 with size 4K and
1024 epochs. The size of our double scattering model is the same
as that of our multiple scattering model.

3.7 Multiple Scattering Table Extraction and Accumulation

Before rendering, for a specific material, we first reconstruct
the multiple scattering and double scattering table from the
neural network model, convert these tables to a 4D look-up
table, and then sum them up. More precisely, we extract the
precomputed table data from the network for a given material

and apply an exponential operator to reconstruct the radiance:
Φ̂(ρ, z, θ, ϕ, g, α) = exp(Φ̂

′

N(ρ, z, θ, ϕ, g, α)) − 1, where Φ̂ is the
reconstructed multiple (or double) scattering radiance we stored
in the table, while Φ̂

′

N is the value reconstructed from the neural
network.

Figure 4 presents a comparison between the lobes recon-
structed using our algorithm and the raw data from the Monte
Carlo simulation, for multiple scattering.

Figure 5 depicts a comparison of both double and multiple
scattering between the outgoing radiance reconstructed using our
algorithm and the value computed using Monte Carlo simulation,
for an isotropic material.

Once this step is complete, we have a table representing the
outgoing radiance at a point (zi, ρi), with a specific direction
(θi, φi). We obtain the Segment-to-Point contribution with this
table. Starting from this table, we encode the length of the camera
ray by accumulating the contribution along direction (θi, φi) with
length 5× mfp and thereby create a segment-to-segment table.
The accumulated table represents the multiple scattering from
a point (zi, ρi), with a specific direction (θi, φi) and length 5×
mfp. We use the GPU to accelerate this accumulation step. It
should be briefly noted here that we tried training the Segment-
to-Segment contribution with a neural network directly, but found
that it tended to overestimate contributions (see Section 5.5 for a
more detailed discussion).

3.8 Rendering

Our rendering algorithm is based on Virtual Ray Lights [1]. We
trace rays from the light source and store the first ray after an
interaction with the surface of the medium; this ray will be the
Virtual Ray Light. Each VRL has the following attributes: position
of the ray origin, ray direction, light ray length before the next
surface event, and radiance at the ray origin. We organize these
VRLs into a hierarchy of regular grids (as detailed in Section 4.3).
We then transfer the data to the GPU.

Rendering is done on the GPU, gathering the contributions of
the VRLs from other nodes using the segment-to-segment table.
We use one specific level of the grid hierarchy and discard the
unimportant nodes that have a large solid angle. The contribution
from a VRL to a camera ray is computed in a manner similar to
[4]:

z = (P − v) · d, (2)

ρ = ‖(P − v) − zd‖ , (3)

mult. (P,ωt) = W Φ̂

(
ρ

`
,

z
`
,T(v,d)(ωt)

)
. (4)

where (v, d) is the position and orientation of the segment-to-
segment precomputed table, (ρ, z) are the cylindrical coordinates
around the axis of propagation, and T(v,d)(ωt) is the direction
corresponding to ωt in the frame defined by (v, d). Moreover, W
is the factor denoting the ratio of the camera segment length to the
accumulated segment length (5× mfp) and is defined as:

W =

∑i=k
i=1 e−i`∑i=5
i=1 e−i`

, (5)

where k is the length of the camera segment divided by 5 × mfp.

5

Algorithm 1 Multiple Scattering Estimation
Input:

S = camera segment ray in medium
G = all grid cells included in current thread
A = accumulated segment table

Output:
R = multiple scattering radiance

for all grid cell ∈ G do
// discard grid cells with small contribution

if solidAngle(gridcell,S) > ε then discard this grid cell
end if
V = all VRLs in grid cell

for all vrl ∈ V do
// compute relative coordinate between vrl and S
index = relativeCoordinate(vrl, S)
// weight of segment length (see Section 3.8)
R += A[index] × power(vrl) × weight(S)

end for
end for

4 Implementation Details

4.1 GPU Pipeline

We implement our rendering process on the GPU, using Optix. It
runs in three passes:

1) Compute direct illumination and store the first segment
inside the medium into a buffer;

2) Gather double and multiple scattering from these Virtual
Ray Lights (see Alg. 1);

3) Approximate single scattering using the algorithm pro-
posed by Jensen et al. [3].

For the first step, we trace a path from the camera, with
multiple bounces (the maximum depth is provided in Table 2). For
the second step, we downsample scattering illumination with one
sample per 2 × 2 tile, as multiple scattering trends to be smooth.
We then interpolate the multiple scattering radiance computed in
the second pass and add it to the direct illumination and single
scattering to obtain the final result (see Figure 1).

4.2 Multiple Scattering Table Representation

We use a regularly sampled 4D structure to store the double
and multiple scattering radiance tables. In the spatial domain, we
sample both z and ρ per mean-free path (mfp), with a maximum
distance of 32 mfp. In the directional domain, we sample both θ
and φ every 10 degrees. Both tables are stored as one-dimensional
buffers on the GPU.

To reduce memory and access costs, we cull low values in the
tables. For each cell, we check the precomputed lobe; if most of
the directions (90%) for this lobe have low radiance values, this
lobe is discarded.

This radiance table is used as an intermediate representation
before the neural network computations are run, since these
computations tend to be expensive. Each query requires three
matrix multiplications (6 × 50, 50 × 50 and 50 × 1) and several
trigonometric function evaluations, and there are multiple queries
for each sample.

level i level i + 1

Fig. 6. Two grid layers in our grid representation. The layer i + 1 is computed
from layer i by merging eight grid cells together.

kth

n Grid Cells
Grid

Screen Space (Pixels) GPU Threads

Thread (i , j , k)

Pixel (i , j)

Fig. 7. The mapping between the pixels, grid cells and 3D threads.

4.3 VRL Grid Representation

We organize our virtual ray lights into a hierarchy of regular grids.
Each grid in the hierarchy is regular, with all cells being identical
in size. Each grid cell stores the index of all virtual ray lights that
are located inside, along with a representative virtual ray light for
the cell, and the bounding box of the virtual ray lights.

We build two to five levels of regular grids, depending on the
relative size of the object and the material mean-free path.

At rendering time, we select the appropriate grid level and
transfer only this level to the GPU. We store all virtual ray lights
in a one-dimensional buffer and reorder them to ensure that the
virtual ray lights in each grid cell are stored continuously.

We compute the rendering via the use of threads. The threads
are organised in 3D, with two dimensions used to indicate the
pixel coordinates of the camera ray’s origin, while the third
dimension represents several grid cells. Each GPU thread gathers
the contribution made by the grid cells to the pixel. We discard
grid cells during the traversal if the solid angle subtended by the
cell and the camera ray is smaller than a predefined threshold.

5 Results
We trained our neural network model with Tensorflow on a
2.20GHz Intel(R) Xeon(R) CPU E5-2699 (44 cores) machine with
an Nvidia TITAN RTX GPU. For rendering, we used Virtual Ray
Lights (VRL) implementation inside the Mitsuba Renderer [19].
All timings in this section are measured on a 2.20GHz Intel(R)
Xeon(R) CPU E5-2699 (44 cores) with 32 GB of main memory
and an Nvidia TITAN RTX GPU for real-time rendering using
Optix (Cuda). Unless otherwise specified, all timings correspond
to pictures with 512×512 pixels; for the Dragon and Lucy scenes,
we used 768×576 pixels. Reference solutions are computed using
UPBP inside smallUPBP [20]. We also compare our results with
those of Wang and Holzschuch [4].

6

All materials in our scenes are homogeneous, with Henyey-
Greenstein phase functions and refractive boundaries. Material
properties are derived from Křivánek et al. [2], Narasimhan et al.
[21] and Holzschuch [22] (see Table 1).

We use our neural network model for multiple and double
scattering evaluation, combined with the single scattering approx-
imation proposed by Jensen et al. [3]. In the single scattering
evaluation, we use 100 regular samples along each camera ray
and connect each of these samples with the light sources, without
considering refraction at the medium boundary.

5.1 Quality Validation

Figure 8 presents a comparison between our method, competing
methods (Wang and Holzschuch [4] and Virtual Ray Lights
(VRL)), and a reference image computed using UPBP. To facilitate
better comparison, only multiple scattering results are displayed
here. Our algorithm produces pictures that are virtually identical
to the reference image and to Wang and Holzschuch [4], while
being several orders of magnitude faster.

Figures 9, 10, 11 and 20 present the different scattering
components in our method: multiple scattering only, double and
multiple scattering, and double and multiple scattering combined
with the single scattering approximation (full solution). Increasing
the number of scattering components increases the computation
time, which goes from roughly 50 ms per frame for multiple
scattering only to roughly 150 ms per frame for the full solution.
The visual importance of each component depends on the material:
for a high-albedo material such as milk (Figure 9), with α = 0.999,
most of the visual appearance comes from multiple scattering,
while for lower-albedo values (α ≈ 0.9), the visual impact of the
double and multiple scattering effects is more visible (Figures 10,
11 and 20).

Figure 10 presents a comparison between our method, com-
peting methods by Wang and Holzschuch [4] and Virtual Ray
Lights, and a reference image computed using UPBP, for the full
solution (single-, double-, multiple- scattering and other surface
lighting). Overall, the end result of our method appears similar to
the reference, and the difference image confirms this. We zoom in
on two interesting areas: a thin area on the ears and a thick area
on the body. We find that our method with full solution works
well in both cases. Combining Wang and Holzschuch [4] and
UPBP provides a result that is closer to the reference, but with
a computation time measured in minutes rather than milliseconds.
Moreover, VRL produces results with a large number of artifacts,
due to the insufficient count of VRLs.

Figure 11 presents results computed using our method with an
index-matching material. In this situation, there is no refraction at
the boundaries of the material, which allows us to use path-tracing
for the reference solution. For this material, single and multiple
scattering effects bring the result closer to the reference, for a total
cost of only 150 ms per frame.

5.2 Comparison to Dipole-based Methods

We further compare our method to the fast approximation of
multiple scattering effects using the Dipole approximation [3], as
implemented in the Mitsuba Renderer. Figure 20 presents a side-
by-side comparison between our method, UPBP for reference and
the dipole diffusion method. For our method, the results shown
are for multiple scattering only, multiple scattering with double
scattering and full solution. For the Dipole-based method, we

TABLE 1
Parameters for the materials used in this paper.

Name α ` g η
R G B R G B

BumpS. 0.955 0.677 0.457 4.55 3.23 2.17 0.9 1.50
Candle 0.980 0.962 0.750 0.65 0.63 0.59 0.8 1.45
Dragon 0.882 0.938 0.980 0.29 0.18 0.33 0.5 1.50

Milk 0.999 0.999 0.999 0.84 0.75 0.68 0.7 1.30
Oil 0.398 0.453 0.032 9.71 11.63 2.74 0.9 1.50

Lucy 0.936 0.939 0.941 0.21 0.20 0.19 0.0 1.50
Cloud 0.909 0.909 0.909 0.909 0.909 0.909 0.0 1.0

compute single scattering using UPBP and double & multiple
scattering using the Dipole approximation. Overall, our method
appears similar to the reference at an interactive frame rate,
benefiting from the GPU acceleration. By contrast, the dipole
diffusion method overestimates the thin areas, e.g. the hand.

5.3 Performance Measurement

Table 2 reports timings, memory cost and Perceived Signal-Noise
Ratio (PSNR) for our method: first with multiple scattering only,
then with double and multiple scattering, and finally with single,
double and multiple scattering (full solution). We also report
computation times for the two competing methods, Wang and
Holzschuch [4] and VRL, and the reference solution. For the
reference, we always used 6 h of computation time.

Even with all scattering effects included, our method achieves
interactive framerates, at approximately 150 ms per frame. With
multiple scattering effects only, our method achieves interactive
framerates of around 50 ms per frame. The increase in compu-
tation time when more scattering effects are included is not only
related to more effects being computed: double scattering also
requires more virtual ray lights to avoid artefacts. The increase
in computation time corresponds with an improvement in quality,
as measured by the Perceived Signal-Noise Ratio. Adding single
scattering approximation has a smaller impact on performance
while increasing the visual quality. Users can select which scatter-
ing components to include depending on their performance budget
and quality requirements.

Wang and Holzschuch [4] used a precomputed table for each
material. For this algorithm, changing the material parameters re-
sults in additional computation time being required to generate the
table. By contrast, our method provides a single neural network for
all homogeneous participating media, regardless of their param-
etersparameters; changing material parameters is instantaneous.
Our method requires 23.6 KB to store parameters for the entire
space of participating media, compared to 100 MB for a single
material in Wang and Holzschuch [4].

Virtual Ray Lights significantly underperform in these test
scenes: the equal time requirements results in a small number of
virtual lights, insufficient for the method.

Tables 3 and 4 present the cost of each step in our method,
first with double and multiple scattering (Table 3), then with
multiple scattering only (Table 4). For precomputation, both
methods require only a couple of seconds (1 s – 4 s). With double
scattering, it is necessary to reconstruct two precomputed tables,
thus doubling the reconstruction cost; more virtual ray lights are
also required, increasing the VRL generation and organization
time. For rendering time, the first step, tracing rays inside the
material, is independent from the scattering effects. The evaluation

7

[WH17] VRL Reference

UPBP, 6h 60s

140s UPBP, 6h

Our Algorithm

60s x 3

140s x 3

60s

140s

Difference

10ms Ours

Ours 38ms

Fig. 8. Our algorithm (multiple scattering represented with neural network models), compared to Wang and Holzschuch [4] (multiple scattering represented
with a naive table), Virtual Ray Lights (VRL) [1] and Unified Points, Beams and Paths (UPBP) [2]. Using neural networks to represent multiple scattering
produces results that are almost identical to the reference at a real-time frame rate.

UPBP, Full Solution, 6hOurs, Multiple Only, 50 ms DifferenceOurs, Mul. & Double, 130 ms Ours, Full Solution, 135 ms

Fig. 9. With high-albedo, small mean-free path materials like milk, our algorithm produces images that are very close to the reference, at a fraction of the
cost. It should be noted here that GPU ray-tracing does not handle transparency effects, which causes the difference in shadows. Material: Milk.

step is more expensive when double scattering is included, due to
the increased number of virtual ray lights.

5.4 Grid Hierarchy Validation

Grid hierarchy is an important component of our algorithm. To
validate its influence, we here illustrate a performance and error
comparison between two cases: with and without grid hierarchy
for varying mean-free path (mfp) in Figure 12. Without a grid
hierarchy in place, decreasing the mean-free path has a significant
impact on performance; with the grid hierarchy, however, there is
no visible impact on performance when mfp decreases. The impact
of the grid hierarchy on quality is minimal at around 5 %.

5.5 Segment-to-Segment Neural Network Model

As noted above, we initially attempted to use a neural network
to generate Segment-to-Segment multiple scattering directly, rather
than generating these contributions as the sum of Segment-to-Point
contributions. Figure 13 presents a comparison between results
computed by training a neural network on Segment-to-Segment
contributions, the results of our method and the reference. As
can be seen from the figure, the Segment-to-Segment contributions

obtained by directly training a neural network overestimate the
contributions.

To train our neural network on the Segment-to-Segment mul-
tiple scattering effects, we constrain the length of the camera
segment to 5 mfp, then perform an accumulation for the camera
segment from the Segment-to-Point contribution. The accumula-
tion tends to amplify the differences between lobes and makes the
neural network less accurate.

5.6 Neural Network Parameters

Figures 15 and 16 illustrate the impact of the neural network
parameters on loss: namely, number of epochs, number of nodes
for each layer, and the choice of the activation function (i.e. using
tanh or Rectified Linear Unit (ReLU)).

Increasing the number of epochs decreases the loss, as does
increasing the number of nodes in each layer. In practice, we used
50 nodes and selected tanh for the activation function.

5.7 Rendering Parameters

Figure 21 presents the impact of changing the scale of the mean-
free path on the candle scene. From left to right, the mean-free

8

Ours, Multiple Only, 60 ms Ours, Mul. & Double, 111 ms Difference, Ours. & Reference

UPBP, Full Solution, 6 h[WH17] & UPBP, Full Solution, 70 minVRL & UPBP, Full Solution, 70 min

Ours, Full Solution, 144 ms

Difference, [WH17] & Reference

Fig. 10. When multiple scattering effects are dominant, our algorithm produces images that are close to the reference: comparison with Wang and
Holzschuch [4], VRL and UPBP on the Dragon Scene (full solution). Material: Dragon.

Ours, Multiple Only, 30 ms Ours, Mul. & Double, 82 ms PT, Full Solution, 36 min DifferenceOurs, Full Solution, 150 ms

Fig. 11. To facilitate a meaningful comparison with Path Tracing (PT), we used a material with a matching refraction index, meaning that there is no refraction
at the interface. As we assume a single interface and semi-infinite material when computing scattering, our algorithm tends to overestimate extinction (full
solution). Material: Cloud.

mfp scale mfp scale

T
im

e
(m

s)

E
rr

or
 (

M
S

E
 x

1e
-4

)

Fig. 12. Comparisons between our method with and without the grid hierar-
chy on the Candle Scene with varying mean-free path (mfp).

path is divided by 10, making the material less transparent. For
all values of the mean-free path, our method provides results that
are similar to the reference. The rendering cost increases slightly

Segment-to-Point Neural Network Segment-to-Segment Neural Network UPBP, Reference

PSNR 32 PSNR 26

Fig. 13. Using a neural network on Segment-to-Segment precomputed
multiple scattering, as opposed to Segment-to-Point in our algorithm, over-
estimates scattering effects and produces images that are lighter than the
reference.

as mfp decreases, from 26 ms to 65 ms, even though the number
of virtual ray lights used increases from 40,000 to 2 million. This

9

TABLE 2
Computation time, memory costs and error for our test scenes.

Ours (Multiple only) Ours (Multiple + Double) Ours (Full Solution) [WH17] VRL Reference
scene resolution VRLs time PSNR VRLs time PSNR VRLs time PSNR VRLs PSNR Memory VRLs PSNR time

K ms K ms K ms K MB K h
BumpS. 512 × 512 3 10 31.4 - - - - - - 3 34.8 32 1 24.5 6
Candle 512 × 512 40 38 32.1 - - - - - - 40 36.3 33 3 14.1 6

Oil 512 × 512 1 20 22.6 1 20 22.6 1 35 23.2 - - - - - 6
Dragon 768 × 576 40 60 26.3 150 111 29.8 150 144 28.6 40 37.3 78 8 23.5 6

Milk 512 × 512 80 50 24.5 250 130 24.6 250 135 24.5 60 32.9 33 10 21.5 6
Lucy 768 × 576 80 27 23.7 250 44 27.6 250 69 30.5 80 36.3 43 1.5 19.8 6

TABLE 3
Cost of each step for our test scenes with multiple and double scattering

evaluation.

scene Precomputation (M&D) Rendering (M&D)
Recons. Acc. VRL G. Tot. Ray. M.&D. Eval. Tot.

s ms s s ms ms ms
Drag. 1.39 3 0.51 1.90 34 77 111
Milk 1.34 3 2.78 4.12 8 122 130
Lucy 1.33 3 0.60 1.93 13 31 44
Cloud 1.45 3 0.86 2.31 1 81 82

TABLE 4
Cost of each step for our test scenes for multiple scattering only. VRL G.
includes VRL generation and VRL hierarchy organization. Recons. and

Acc. refer to radiance table reconstruction and accumulation respectively.
M. Scat. Eval. indicates multiple scattering evaluation.

scene Precomputation (M.) Rendering (M.)
Recons. Acc. VRL G. Tot. Ray. M. Eval. Tot.

s ms s s ms ms ms
BumpS. 0.75 3 0.16 0.91 5 5 10
Candle 0.75 3 1.72 2.47 4 34 38
Drag. 0.72 3 0.16 0.88 34 26 60
Milk 0.75 3 1.00 1.75 8 42 50
Lucy 0.71 3 0.24 0.95 13 14 27
Cloud 0.78 3 0.3 1.08 1 29 30

T
im

e
(m

s)

grid layergrid layer

E
rr

or
 (

M
S

E
)

Fig. 14. Performance and Error (MSE) as a function of grid layer on the
Candle Scene (multiple scattering only) with different mfp .

Epochs

L
os

s
(M

S
E

)

Fig. 15. Error (MSE) as a function of the number of epochs, for different
node sizes for each layer.

Epochs

L
os

s
(M

S
E

)

Fig. 16. Error (MSE) as a function of the number of epochs for different
activation functions.

0.80.60.40.20
30

35

34

33

32

31

anisotropic parameter g

P
S

N
R

Fig. 17. PSNR as a function of varying anisotropic parameter: g. Material:
Lucy.

confirms the benefits of our hierarchical representation.
Figure 14 presents the impacts of the number of grid layers

on the performance and the error (MSE) of the Candle Scene with
different mean-free paths. Increasing the number of grid layers
always increases the quality of the simulation; however the impact
is less significant for this scene after the third layer. Moreover, the
impact on computation time is more varied: when mfp is small,
increasing the number of grid layers decreases the computation
time. This is due to the number of virtual ray lights involved, as
smaller mean-free paths (0.1 or 0.2) require a larger number of
virtual ray lights. At the top grid layer, there are a large number of
grid cells assigned to each thread, which has a significant impact
on the time cost. Increasing the number of grid layers results in
a smaller number of cells being assigned to each thread, which
improves the performance. Further increasing the number of layers
(from 3 to 5) results in larger grid cells, which in turn results in
a smaller number of cells being discarded, meaning that costs
increase. For large mean-free paths (1), the number of virtual ray-
lights is smaller and does not affect the performance for the top
layer. In this situation, only discarding cells has an impact on
performance, with the result that computation time increases with
the number of grid layers.

Figure 17 illustrates the impact of anisotropic parameter g

10

0.00

0.51

1.02

1.53

2.04

2.55

3.06

3.57

4.08

4.59

mfp (z)

m
fp

 (
ρ)

er
ro

r
(%

)

0 2

2

4

4

6

6

8

8

10

10

12

12

14

14
0

Fig. 18. The energy error ratio between the precomputed table and the
table reconstructed by our neural network. The error ratio is evaluated by
summing up the difference between two lobes at the sampled position in
the two tables and then dividing by the precomputed table value. Material:
Candle.

Ours, Multiple Only, 20 ms UPBP, Multiple Only, 6h Difference, Multiple Only

Fig. 19. Comparison between our method and references on a medium with
a low albedo (Oil). On this material, low-order scattering effects dominate.
Our method tends to underestimate multiple scattering, due to the inaccu-
racy of neural network representation for extremely small values caused by
the low albedo in the media.

on the rendering quality for our algorithm on the Lucy Scene.
The PSNR (Peak Signal-Noise Ratio) stays consistently above 30,
which confirms that the rendering quality is almost independent of
the value of g, although there are some variations.

5.8 Discussion and Limitations

Our neural network cannot guarantee energy conservation. Nev-
ertheless, the energy error introduced remains acceptable. Figure
18 presents the error ratio on the Candle Scene. The error ratio
is evaluated by summing up the difference between lobes at the
sampled positions in the precomputed table and those in the table
reconstructed by the neural network, then dividing by the precom-
puted table value. The maximum error ratio is around 5%. Large
error ratios are concentrated in areas with small scattering values,
i.e. from the source. The neural network tends to underperform in
areas with small values. These are also areas where scattering is
less visible, resulting in little visual difference in our experiments.

Our method performs better for materials where multiple
scattering effects are dominant. Figure 19 presents a comparison
with reference for a medium where the albedo is small and
where the mean-free path is large. Our approximation tends to
underestimate scattering effects with this material; this is because
the neural network tends to underperform on small values, which
is caused by the low albedo.

6 Conclusion
We have presented a neural network model to represent double and
multiple scattering events in the entire participating media space.
The model provides a highly compact representation for precom-
puted double and multiple scattering, and can also be combined
with many existing rendering algorithms, providing similar results
for a fraction of the memory cost. We use our precomputed data
for multiple scattering and an approximated solution for single
scattering. Our model is able to represent scattering effects for
any type of participating media, but is especially interesting for
materials with a large albedo and small mean-free path, where
higher-order scattering effects tend to dominate.

In future work, we aim to use our neural network directly
on the GPU, rather than being required to reconstruct the 4D
table first, by using the new APIs that support neural networks
on the GPU. We also want to train new models in order to extend
the range of parameters for learning, enabling inclusion of the
surface property and layer thickness, as this will allow the model
to be used in combination with more rendering algorithms, such as
subsurface scattering or more complex participating media, such
as layered media.

Acknowledgments. We thank the reviewer for their valuable
comments. This work has been partially supported by the National
Key R&D Program of China under grant No. 2017YFB0203000,
the National Natural Science Foundation of China under grant
No. 61802187 and 61872223, the Natural Science Foundation of
Jiangsu under grant No. BK20170857, the Fundamental Research
Funds for the Central Universities No. 30918011320 and ANR
project ANR-15-CE38-0005 ”Materials”.

11

Ours, Multiple Only, 27 ms

UPBP, Full Solution, 6 h Dipole Diffusion & UPBP, 26 min Difference, Ours. & Reference

Ours, Mul. & Double, 44 ms Ours, Full Solution, 69 ms

Fig. 20. Comparison with dipole-based methods for the full solution (including single and double scattering). Material: Lucy.

U
P

B
P,

 R
ef

er
en

ce
O

ur
s

mfp x 1, VRLs: 40K mfp x 0.5, VRLs: 80K mfp x 0.2, VRLs: 300K mfp x 0.1, VRLs: 2000K mfp x 0.3, VRLs: 150K

6h

38ms

6h

29ms

12h

33ms

12h

65ms

12h

26ms

Fig. 21. Comparisons between our method with UPBP on the Candle Scene with varying mfp.

12

References
[1] J. Novák, D. Nowrouzezahrai, C. Dachsbacher, and W. Jarosz, “Virtual

ray lights for rendering scenes with participating media,” ACM Trans.
Graph. (proc. SIGGRAPH), vol. 31, July 2012.

[2] J. Křivánek, I. Georgiev, T. Hachisuka, P. Vévoda, M. Šik,
D. Nowrouzezahrai, and W. Jarosz, “Unifying points, beams, and paths
in volumetric light transport simulation,” ACM Trans. Graph. (proc.
SIGGRAPH), vol. 33, pp. 1–13, Aug. 2014.

[3] H. W. Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan, “A practical
model for subsurface light transport,” in SIGGRAPH, pp. 511–518, ACM,
2001.

[4] B. Wang and N. Holzschuch, “Precomputed multiple scattering for light
simulation in participating medium,” in ACM SIGGRAPH 2017 Talks,
SIGGRAPH ’17, pp. 35:1–35:2, 2017.

[5] J. T. Moon, B. Walter, and S. R. Marschner, “Rendering Discrete Random
Media Using Precomputed Scattering Solutions,” in Rendering Tech-
niques (J. Kautz and S. Pattanaik, eds.), The Eurographics Association,
2007.

[6] B. Wang and N. Holzschuch, “Point-based rendering for participating
media with refractive boundaries,” IEEE Transactions on Visualization
and Computer Graphics, vol. 24, no. 10, pp. 2743 – 2757, 2018.

[7] S. Chandrasekhar, Radiative transfer. New York: Dover publications,
1960.

[8] B. Bitterli and W. Jarosz, “Beyond points and beams: Higher-dimensional
photon samples for volumetric light transport,” ACM Transactions on
Graphics (Proceedings of SIGGRAPH), vol. 36, July 2017.

[9] H. W. Jensen and J. Buhler, “A rapid hierarchical rendering technique for
translucent materials,” ACM Trans. Graph., vol. 21, pp. 576–581, July
2002.

[10] E. D’Eon and G. Irving, “A quantized-diffusion model for rendering
translucent materials,” ACM Trans. Graph. (proc. SIGGRAPH), vol. 30,
pp. 56:1–56:14, July 2011.

[11] J. R. Frisvad, T. Hachisuka, and T. K. Kjeldsen, “Directional dipole
model for subsurface scattering,” ACM Trans. Graph., vol. 34, pp. 5:1–
5:12, Nov. 2014.

[12] R. Habel, P. H. Christensen, and W. Jarosz, “Photon beam diffusion: A
hybrid monte carlo method for subsurface scattering,” Comput. Graph.
Forum (proc. of EGSR), vol. 32, June 2013.

[13] C. Donner, J. Lawrence, R. Ramamoorthi, T. Hachisuka, H. W. Jensen,
and S. Nayar, “An empirical bssrdf model,” ACM Trans. Graph., vol. 28,
pp. 30:1–30:10, July 2009.

[14] B. Wang, J.-D. Gascuel, and N. Holzschuch, “Point-Based Light Trans-
port for Participating Media with Refractive Boundaries,” in Eurograph-
ics Symposium on Rendering 2016 (EI&I), (Dublin, Ireland), June 2016.

[15] J. Meng, M. Papas, R. Habel, C. Dachsbacher, S. Marschner, M. Gross,
and W. Jarosz, “Multi-scale modeling and rendering of granular materi-
als,” ACM Trans. Graph., vol. 34, pp. 49:1–49:13, July 2015.

[16] T. Müller, M. Papas, M. Gross, W. Jarosz, and J. Novák, “Efficient render-
ing of heterogeneous polydisperse granular media,” ACM Transactions
on Graphics (Proceedings of SIGGRAPH Asia), vol. 35, p. 168:1–168:14,
December 2016.

[17] P. Ren, J. Wang, M. Gong, S. Lin, X. Tong, and B. Guo, “Global
illumination with radiance regression functions,” ACM Trans. Graph.,
vol. 32, pp. 130:1–130:12, July 2013.

[18] S. Kallweit, T. Müller, B. Mcwilliams, M. Gross, and J. Novák, “Deep
scattering: Rendering atmospheric clouds with radiance-predicting neural
networks,” ACM Trans. Graph., vol. 36, pp. 231:1–231:11, Nov. 2017.

[19] W. Jakob, “Mitsuba renderer.” http://www.mitsuba-renderer.org/, 2010.
[20] J. Křivánek, “SmallUPBP.” http://www.smallupbp.com/, 2014.
[21] S. G. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. K. Nayar,

and H. W. Jensen, “Acquiring scattering properties of participating media
by dilution,” ACM Trans. Graph. (proc. Siggraph), vol. 25, pp. 1003–
1012, July 2006.

[22] N. Holzschuch, “Accurate computation of single scattering in participat-
ing media with refractive boundaries.,” Comput. Graph. Forum, vol. 34,
no. 6, pp. 48–59, 2015.

Liangsheng Ge is a second-year Masters student
at Shandong University. He received his Bache-
lor Degree from Nanjing Tech University in June
2017. His research interests include rendering
techniques.

Beibei Wang is an Associate Professor at Nan-
jing University of Science and Technology. She re-
ceived her PhD from Shandong University in 2014
and visited Telecom ParisTech from 2012 to 2014.
She worked as a Postdoc in Inria from 2015 to
2017. She joined NJUST in March 2017. Her re-
search interests include rendering and game de-
velopment.

Lu Wang is a Professor at the School of Soft-
ware, Shandong University. She received her PhD
from Shandong University in 2009. Her research
interests include photorealistic rendering and high
performance rendering.

Xiangxu Meng is a professor in the School of
Software, Shandong University. He received his
PhD from the Institute of Computing Technology,
Chinese Academy of Sciences, in 1998. His cur-
rent research interests include human-computer
interaction, virtual reality, computer graphics, and
visualization.

Nicolas Holzschuch is a Senior Researcher at
INRIA Grenoble Rhône-Alpes, and the scientific
leader of the MAVERICK research team. He re-
ceived his PhD from Grenoble University in 1996
and his Habilitation in 2007. He joined INRIA in
1997. His research interests include photorealistic
rendering and real-time rendering, with an empha-
sis on material models and participating media.

