N

N
N

HAL

open science

Handling Duplicates in Dockerfiles Families: Learning
from Experts

Mohamed Oumaziz, Jean-Rémy Falleri, Xavier Blanc, Tegawendé Bissyandé,

Jacques Klein

» To cite this version:

Mohamed Oumaziz, Jean-Rémy Falleri, Xavier Blanc, Tegawendé Bissyandé, Jacques Klein. Handling
Duplicates in Dockerfiles Families: Learning from Experts. 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME), Sep 2019, Cleveland, France. pp.524-535, 10.1109/IC-

SME.2019.00086 . hal-02485839

HAL Id: hal-02485839
https://hal.science/hal-02485839v1
Submitted on 4 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02485839v1
https://hal.archives-ouvertes.fr

Handling duplicates in Dockerfiles families:
Learning from experts

Mohamed A. Oumaziz, Jean-Rémy Falleri, Xavier Blanc

University of Bordeaux
LaBRI, UMR 5800
F-33400, Talence, France
Email: {moumaziz, falleri, xblanc}@labri.fr

Abstract—Docker is becoming a popular tool used by develop-
ers and end-users to deploy and run software applications. Dock-
erfiles are now found alongside projects’ source code. Several
projects are even starting to maintain families of Dockerfiles, like
the Python project that maintains a family of 43 Dockerfiles, each
for a specific Python version on a specific Linux distribution. In
some situations, Dockerfiles family maintainers have to propagate
a change to several, if not all, Dockerfiles of the family (for
instance a bugfix applying on all Dockerfiles targeting Python
2.7). This need to propagate changes is usually due to the presence
of duplicates between several Dockerfiles of the family. In this
paper, our goal is to provide practitioners a clear explanation
for why Dockerfile duplicates arise in projects, and what are the
different means to handle duplicates with their pros and cons. To
perform a grounded analysis, we observe the practices of expert
Dockerfile maintainers of Official Docker projects, which are
setting the best-practices for Dockerfile maintenance. We show
that duplicates in Dockerfiles are frequent in our corpus, that
maintainers are aware of their existence, are frequently facing
them and have a mixed opinion regarding them (error-prone
when not using any tool, but easy to maintain with the right tools).
Finally, we describe and analyse the tools used by maintainers
to handle duplicates.

Index Terms—Dockerfile, Duplicates, Empirical study, Soft-
ware reuse

I. INTRODUCTION

Docker simplifies the deployment of software applications
by enabling developers to package their applications with all
their required dependencies in a single binary unit, called a
Docker image'. To build an image, developers have to write a
Dockerfile, that will be executed by Docker. Such a Dockerfile
is written in a Domain Specific Language (DSL) that can be
compared to a very limited shell scripting language.

Software projects using Docker manage their Dockerfiles in
their Software Configuration Management tool (e.g. GitHub),
as any other software artefacts. Some projects even have to
manage a family of Dockerfiles (DF for short), especially
when they have to support and maintain several versions in
parallel with several sets of dependencies. For instance, the
Python project® provides a family of 43 Dockerfiles, each one
targeting a specific version of python (e.g. 2.7, 3.8-rc) with a
specific set of distributions (e.g. Debian, Alpine, Windows).

Uhttps://www.docker.com/
Zhttps://hub.docker.com/_/python/

Tegawendé F. Bissyandé, Jacques Klein
University of Luxembourg
SnT Interdisciplinary Center
L-1855, Luxembourg
Email: {tegawende.bissyande, jacques.klein} @uni.lu

Looking at such projects, it appears that sometimes a patch
targeting a Dockerfile has to be propagated to some (if not all)
Dockerfiles of the family. As an example, Listing 1 shows a
patch encountered in the official Python project®. This patch
fixes an unexpected segmentation fault that appears only on
Dockerfiles using the Alpine Linux distribution. This bug is
due to a too small stack size and is resolved by adding a new
flag in a make command as shown in Listing 1 (line 5). This
bugfix was propagated to the 7 Dockerfiles of the family that
are based on the Alpine distribution.

Listing 1. A bugfix of the same duplicate across the Alpine family of
Dockerfiles in the official Python project

1 RUN

2 && apk add --no-cache --virtual .build-deps \

3 bzip2-dev \

4 ...

5 && make -j

EXTRA CFLAGS="-DTHREAD STACK SIZE=0x100000"
6 8&

As another example, every image of the official Python
project come with a python package management tool called
pip. When a new version of pip is available, all the family’s
Dockerfiles have to be patched. We observed such situation
when an update was done from pip version 19.0.2 to 19.0.3*
as shown in Listing 2.

Listing 2. An extract of the dicussed version number update across the whole
Dockerfile family
1 ENV PYTHON_PIP_VERSION 49-8-2 19.0.3

The two previous examples highlight a case of patch propa-
gation among a family of Dockerfiles. Such situations arise be-
cause the impacted Dockerfiles share duplicated instructions.
In the first example, all the Dockerfiles that are based on the
Alpine distribution share the same make command with the
same arguments (see Listing 1 (line 5)). In the second example,
all the Dockerfiles mention the pip version they depend on.
As a consequence, for a patch to be safely propagated, all
the impacted duplicates have hence to be identified and then
equally modified, which is time consuming and may be error-

3https://github.com/docker-library/python/commit/8717dc2523c8093990cb
“See the 4 commits performed the 04.20.2019 (i.e. https://github.com/
docker-library/python/commit/af2cf72d9c6¢304d04 1c88db3)

https://www.docker.com/
https://hub.docker.com/_/python/
https://github.com/docker-library/python/commit/8717dc2523c8093990cb
https://github.com/docker-library/python/commit/af2cf72d9c6c304d041c88db3
https://github.com/docker-library/python/commit/af2cf72d9c6c304d041c88db3

prone. For example, this patch applied in 2015 has required
another commit the same day to propagate the modification to
other Dockerfiles®.

The main questions are then: are duplicates abundant in
Dockerfiles families? and if yes, is their handling a source
of concerns? Such questions are relevant to any maintainers
of Software projects that rely on Docker, and that come to
manage several Dockerfiles.

In this paper, we answer the question of duplicates handling
in Dockerfiles families by providing a grounded study based
on the analysis of the Official Docker Projects. This choice is
driven by the fact that these projects are real-world popular
projects that manage medium to large families of Dockerfiles,
but most importantly because as it is written in the Docker
documentation, these projects promote the best practices to
maintain Dockerfiles’ and may be considered as a reference
for any Dockerfile maintainer.

Our hypothesis is that these projects are the best to highlight
the duplicates in Dockerfiles families problem, and the best to
define the cutting-edge practices that exist for handling them.

In our study, we then follow a mixed research method
(quantitative and qualitative) and more precisely answer the
following research questions:

1) Do official projects maintain families of Dockerfiles, and
why?

2) Do duplicates arise in Dockerfiles families and why?

3) What are the tools used by official Docker projects for
managing duplicates? What are their pros and cons?

Through our study, we show that official Docker projects
frequently maintain families of Dockerfiles. We observe
that the most common reasons are: supporting multiple
versions/base-images and versions/flavours. We then show that
duplicates in Dockerfiles are abundant, and find the underlying
reasons behind them: Software installation and configuration,
dependency management and runtime configuration. We also
perform a survey on Dockerfile families maintainers (DFM in
short) of official projects and find out that they are aware of the
duplicates existence and are frequently facing them. However,
while these duplicates are abundant, DFM have a mixed
opinion regarding them. Some of them do not use specific
tools for handling duplicates, and state that their handling may
be error-prone. Others use specific tools for handling them,
and state that they are easy to maintain. We also find that
the specific tools range in the following categories: template
processors, code generators, find and replace executors. We
further show that projects using template processors and code
generators manage to reduce the amount of duplicates with a
median at 30% that goes up to 100% for generators. Finally,
we find that such tools can be hard to set-up and use, calling
for more research on dedicated tools to handle duplicates in
Dockerfiles families.

Shttps://github.com/docker-library/python/commit/
£9739c6da575¢c450aaed8628c1e0bfa97bf1bal8

Shttps://github.com/docker-library/python/commit/
00c226b82eee61c6c68adf813d9f7177d2efa52a

Thttps://docs.docker.com/docker-hub/official_images/

II. DOCKERFILES IN A NUTSHELL

A Docker container is a “lightweight, stand-alone, exe-
cutable package of a piece of software that includes everything
needed to run it: code, runtime, system tools, system libraries,
settings”.

A Docker container is ran from a Docker image, which is
built from a Dockerfile. Using Docker is therefore a two steps
process (1) Build a Docker image from a Dockerfile (docker
build -f Dockerfile -t my_image), (2) Run the Docker container
from the Docker image (docker run my_image).

In our study, we focus on the first step, and more specifically
on Dockerfiles, which are scripts composed of a sequence of
instructions. Listing 3 shows a sample Dockerfile for a web
application written in Python.

Listing 3. A sample Dockerfile for a hypothetical Python application

1 # Use the official python base image

2 FROM python:2.7-slim

3 # Set the working directory to /app

4 WORKDIR /app

5 # Copy current directory content into the
container at /app

6 ADD /app

7 # Install dependencies

8 RUN apt-get update && apt-get install -y
apache2

9 # Make port 80 available to the world outside

this container
10 EXPOSE 8@
11 # Define environment variable
12 ENV NAME Hello World

13 # Run "python app.py"” when the container is
executed
14 CMD [)]

This Dockerfile starts with a FROM instruction stating that
the image to be built will be based on the existing python:2.7-
slim image. The FROM instruction is mandatory, and several
base images are provided by Docker (Ubuntu, Alpine, etc.).
The Dockerfile then contains three instructions that will be
executed when building the image. The WORKDIR instruction
states the working directory of the image. The ADD instruction
copies all the files contained in the local current directory
into the /app directory of the image. The RUN instruction asks
docker to run some commands inside the image, aiming at
modifying the image. Here, the two commands are apt-get
update and apt-get install -y apache2. When Docker will build
the image, it will then refresh the list of packages of the
image, and then install Apache2. It should be noted that RUN
instructions create a layer (persistent state) inside the image.
Thus, increasing build time and final image size. For these
reasons, Docker best practices recommend to use as few RUN
instructions as possible. Therefore, commands are frequently
combined inside a single RUN instruction using shell delimiters
(such as ’&% and ’;’). The three last instructions of the
Dockerfile will be used by Docker when it will run the image
and hence instantiate the container. The EXPOSE instruction
asks Docker to open a port of the container (here the port 80).
The ENV instruction asks Docker to set an environment variable

8https://www.docker.com/what-container

https://github.com/docker-library/python/commit/f9739c6da575c450aaed8628c1e0bfa97bf1ba18
https://github.com/docker-library/python/commit/f9739c6da575c450aaed8628c1e0bfa97bf1ba18
https://github.com/docker-library/python/commit/00c226b82eee61c6c68adf813d9f7177d2efa52a
https://github.com/docker-library/python/commit/00c226b82eee61c6c68adf813d9f7177d2efa52a
https://docs.docker.com/docker-hub/official_images/
https://www.docker.com/what-container

of the container. The Dockerfile states the default value of
this environment variable, but other values can be provided as
an argument of the docker run my_image command. Finally,
the CMD instruction asks the Docker container to execute this
default command just after its creation.

III. DATA COLLECTION

In this section, we present our three main data sources
that are used in the remainder of this paper: a list of 99
GitHub repositories each one corresponds to project that
manages a DF, an on-line survey performed on 25 Dockerfile
family maintainers (DFM) from our 99 repositories and 877
duplicates among the DF of our repositories. All repositories,
survey questions, duplicates are available on-line’.

A. Repositories

As presented in Section I, we choose to look at official
Docker projects only. The list of these official projects is avail-
able on GitHub, with 138 official projects, as of March 2019.'°
Some of these projects share the same Github repository. For
example, InfluxDB and Chronograf are maintained in the same
GitHub repository. We therefore remove these 9 projects from
our corpus to preserve a dataset uniformity. We also discard the
hello world project as it is only intended to provide examples
for beginners. At this stage, our corpus includes 128 projects
with their associated GitHub repositories.

We then count the number of files named Dockerfile in
each of these 128 projects, as it is the most common name for
Dockerfiles (see Section VII for potential threats). We identify
1300 Dockerfiles. Figure 1 depicts the number of Dockerfiles
maintained by each of these 128 projects. We note that half
of the projects maintain at least 4 Dockerfiles with 25%
maintaining more than 10 Dockerfiles. As we are interested
by Dockerfiles families, we discard 29 projects maintaining
a single Dockerfile. Finally, our corpus contains 99 official
Docker projects.

}
0 2 4 10 20 40 60
of Dockerfiles per project

Fig. 1. Boxplot for the number of Dockerfiles maintained by each project.

B. Survey answers

Our study involves a survey of official Dockerfile main-
tainers (DFM) of projects in our corpus to get their opinions
about duplicates and understand their practices.!! Therefore,
we create a survey composed of two main sections asking
questions about 1) duplicates and 2) management tools to

“https://se.labri.fr/a/ICSME19-docker-oumaziz
10https://github.com/docker-library/official-images/tree/master/library
https://forms.gle/sDMkcvSQxnMJIwXaA6

1 RUN apt-get update && apt-get install -y apache2

1

1 RUN apt-get update
2 RUN apt-get install -y apache2

Fig. 2. RUN instruction with multiple shell commands split into two RUN
instructions, one for each shell command.

handle duplicates. In order to retrieve their contact informa-
tion, we analysed all commits from all Github repositories
of projects in our corpus and extracted the commit author’s
e-mail address. Using this process, we retrieved about 900 e-
mail addresses. Finally, we send a link to our online survey
using these addresses and gathered 29 responses, leading to a
response rate of about 3% which may indicate that a large set
of emails were actually from no longer active official DFM
or not active at all (95 bounced emails). Out of these 29
responses, 25 maintainers were actually maintaining more than
a single Dockerfile as we address in our study. The 4 remaining
maintainers were ignored in these results (they left the survey
directly after the first question).

C. Duplicates

We consider a Dockerfile duplicate as a sequence of instruc-
tions that is duplicated across several Dockerfiles of the same
project. We call size the number of instructions contained in
the duplicate and owners the number of files containing the
sequence. We provide a tool that inputs a list of git repositories
and outputs a list of maximal duplicates found among each
repository’s Dockerfiles.

As a first step, our tool starts by scanning repositories look-
ing for Dockerfiles and parses them. During the parsing pro-
cess, we ignore all comments, we identify instructions’ types,
we extract the instructions’ argument’s text and normalise
their white-spaces (replacing tabs by spaces, removing carriage
returns and keeping only one space between two words) to
avoid missing duplicates because of indentation differences.
As said in Section II, RUN instructions often have arguments
that are composed of many shell commands. Therefore, to also
detect duplicates inside these shell commands, we choose to
split these instructions, producing one RUN instruction for each
contained shell command as seen in Figure 2. Instructions are
split using the classical && and ; shell command delimiters.

Once all Dockerfiles are parsed, we extract the maximum-
sized duplicates among each project’s Dockerfiles. We use the
index-based duplicate detection technique [1]. First, for each
Dockerfile in our corpus, we extract and index the hashes of
all possible chunks of instructions for a given size, as shown
in Figure 3. The chunks’ size goes from the maximal number
of instructions contained in the Dockerfile to one which is the
smallest granularity: one instruction.

Figure 3 shows an example of hashes extracted with the
chunk size set at 6. The tuple (DF, 6, 0, AC4EF..) indicates
respectively: the filename, chunk size, chunk’s first instruction
location in the file, the chunk’s hash. After having indexed all

https://se.labri.fr/a/ICSME19-docker-oumaziz
https://github.com/docker-library/official-images/tree/master/library
https://forms.gle/sDMkcvSQxnMJwXaA6

FROM python:2.7-slim

WORKDIR /app

ADD . /app

RUN apt-get update

RUN apt-get install -y apache2

(Df, 6, ©, AC4EF..)

(Df, 6, 1, GEBFC..)

|-
]

EXPOSE 80 (Df, 6, 2, AA9DE..)
ENV NAME Hello World _
CMD [,]

Fig. 3. Dockerfile presenting an example of duplicate index with chunk size
set to 6.

FROM alpine:3.6
ENV _BASH_GPG_KEY 7C@135FBQ88AAF6 \
C66C650B9BB5869F064EA74AB

AN W=

ENV _BASH_VERSION 3.1
ENV _BASH_PATCH_LEVEL 0@
ENV _BASH_LATEST_PATCH 23

Fig. 4. Extract of real Dockerfile duplicate from Bash shell v3.1

hashes, we apply the algorithm described in [1] to extract the
maximum-sized duplicated chunks (duplicated chunks that are
not contained in an other duplicated chunk). Also, contrary
to Hummel et al. [1] we don’t apply any code normalisation
except what was described previously.

Figure 4 and Figure 5 show two extracts of Dockerfiles
from our corpus. They are part of Dockerfiles used to build
images for the well known bash shell (versions 3.1 and 4.0).
After applying our technique, we identify two duplicates with
two different sizes. The first duplicate has a size of 2, ranging
from line 1 to 3, while the second duplicate has the smallest
possible size which is 1 corresponding to line 5.

Finally, we apply our tool on each repository from our
list, and identify a total of 877 duplicates across all projects.
These duplicates will constitute our duplicates dataset for the
remainder of this study.

IV. RQ1: DO OFFICIAL PROJECTS MAINTAIN FAMILIES OF
DOCKERFILES, AND WHY?

To answer our first research question, we perform a manual
inspection of all Dockerfiles contained in a project. We then
identify the reasons behind the existence of multiple Docker-
files in a project.

1) Methodology: While looking at Dockerfiles when build-
ing our dataset, we note that the location path of a
Dockerfile contains information about its purpose. For in-
stance, the rabbitmq project has a Dockerfile located in
3.6/alpine/Dockerfile. Based on this path, we can easily
understand that this Dockerfile targets the version 3.6 of

FROM alpine:3.6
ENV _BASH_GPG_KEY 7C0135FBO88AAF6 \
C66C650B9BB5869F064EA74AB

AN W=

ENV _BASH_VERSION 4.0
ENV _BASH_PATCH_LEVEL 0@
ENV _BASH_LATEST_PATCH 44

Fig. 5. Extract of real Dockerfile duplicate from Bash shell v4.0

Intersection Size

1 platorm

l eor
I bose-image
[—

7% 50 25 0
Set Size

l.

Fig. 6. UpSet plot showing the relationships between versions, flavours, base
images and platforms across our repositories.

rabbitmg and is based upon Alpine Linux, a lightweight
Linux distribution. Therefore, by analysing all Dockerfiles’
paths, we see that rabbitmqg maintains Dockerfiles for various
versions and with various base images.

To perform this analysis on all of our repositories, we
follow a semi-automated process. First, for each project, we
retrieve the path of every Dockerfile. We then split all paths
using the directory separator symbol. For a given nesting
level i in the path, we establish the list of all values seen
at this level. For instance for the following set of paths:
3.6/alpine/Dockerfile, 3.7/alpine/Dockerfile we ex-
tract the following set of names: Level 1: 3.6, 3.7, Level
2: alpine. For each project, the first author goes through
the whole list of extracted names and for each of them,
either creates a new category and associates the name to it,
or associates the name to a category that was created for a
previous name. Finally, we count the number of elements in
each category.

2) Results: Based on our methodology, we identify four
categories. The most represented category is version contain-
ing several versions of the project, similarly to the rabbitmq
example. The second category by order of importance is base
image it contains the different base images used to produce
the project images (e.g. Alpine Linux and Debian Linux).
The third category is flavour containing different variants of
the project (e.g. normal or multi-threaded flavour for the Perl
project'?). The most seldom category is platform, containing
the different Docker platforms supported by the project (e.g.
ARM, x86).

Figure 6 is an UpSet plot [2] showing the relationships
between versions, flavours, base images and platforms across
the projects in our repositories. We first notice that the majority
of projects (41) are actually maintaining images for multiple
base images and versions at the same time. We also note that
maintaining multiple images only because of multiple versions

Zhttps://github.com/Perl/docker-perl/

https://github.com/Perl/docker-perl/

is very common with 28 projects doing it, while 13 projects
maintain images for multiple versions and flavours.

The reasons for maintaining several Dockerfiles in
official projects are to support multiple: versions, base-
images, flavours and platforms. The most common rea-
son combinations being: version/base-image and ver-
sion/flavour.

V. RQ2: DO DUPLICATES ARISE IN DOCKERFILES
FAMILIES AND WHY?

To answer RQ2, we report statistics about extracted dupli-
cates (Section V-A) and confront them to our survey results.
Finally, we manually examine a random subset of duplicates
and analyse the reasons behind their existence (Section V-B).

A. Duplicates and Co-evolution Statistics

In this section, we present some statistics regarding dupli-
cates we have identified with our detection tool. We also take
a closer look at the maintenance surrounding these duplicates
through a co-evolution analysis.

1) Methodology: As we said in Section III-C, our tool
identified 877 duplicates in our repositories. Based on this,
we compute several statistics about the characteristics of these
duplicates. We also take a closer look at the Dockerfile DSL
instructions composing duplicates, especially, which instruc-
tions are most commonly concerned by duplicates.

We then evaluate if these duplicates have an impact on DF
maintenance by analysing if it’s common practice for DFM to
perform the same modification on several Dockerfiles of the
same DF as we have discussed in Section I. To that extent, we
automatically look at every commit of our repositories using
the Diggit tool'? seeking for commits that had two Dockerfiles
or more being edited with the exact same modifications (a
modification being a sequence of removed code and a sequence
of added code, as computed by diff).

2) Duplicates: Figure 7 (left) depicts a boxplot for per-
centage of duplicate instructions per project. We notice that
75% of projects have nearly half of their instructions that are
duplicated. Half the projects have more than 83% of duplicate
instructions. All of this indicates how frequent duplicates are
in DF. When asking DFM of our repositories if they have
faced duplicates in the past: 68% (17 out of 25) said that
they did, while 20% said they’ve never faced duplicates and
12% didn’t know. Figure 7 (right) presents a boxplot for the
number of instructions for each identified duplicate. We notice
that duplicates can be quite small, with half of them having
less than 7 instructions. However, we also note that 25% of
duplicates we have identified have more than 22 instructions.
Finally, we remind that we chose to split RUN instructions as
described in Section III-C, which could artificially increase the
number of instructions in blocs of duplicates. Also, when we
ask all DFM: What should be the minimal size for a duplicate

Bhttps://github.com/jrfaller/diggit

100 100
92

831 - --
75

28 50

25

of instructions by duplicate

%

% of duplicate instructions per project

Fig. 7. Left plot: Boxplot for the percentage of duplicate instructions per
project. Right plot: Boxplot for the number of instructions by duplicate.

of owners by duplicate

Fig. 8. Stripplot of the number of owners of every duplicate in our corpus.

bloc of instructions to be detected?, the majority of DFM (15
out of 25) stated it should be between 1 and 5 instructions
which indicates that even duplicates composed of a single
instruction shouldn’t be ignored.

Figure 8 is a stripplot depicting the number of owners
(i.e. the number of files containing the duplicate) of every
duplicate in our repositories. We notice that the large majority
of duplicates has around 2 and 4 owners. While duplicates
having from 5 to 11 owners are less common. When we ask
DFM for the minimal number of files sharing a duplicate
(owners) in order for that duplicate to be detected, 13 out of 25
DFM stated that it should be 2. These responses confirm that
the minimal thresholds we had set previously in Section III-C
were actually corresponding to the DFM needs.

Also, if we look at the ratio of duplicated instructions over
the total number of instructions for every instruction provided
by the Dockerfile DSL. We find that the high majority of
instructions available in our corpus are duplicated (32,269 out
of 37,319). The RUN instructions being the most frequent in-
structions in our corpus by far (26,053 instructions) where 86%
of them are duplicated. The second most frequent instructions
are ENV instructions (3,762 instructions) with more than 78%
of them being duplicated. Followed by FROM instructions
(1,372 instructions) with 79% of them being duplicated.

Finally, while our tool identifies 877 duplicates, 64% of
all DFM from our survey (16 out of 25) said that they don’t
need a tool to detect duplicates. They state that duplicates
are easy to find and that they don’t want to use another
tool. Therefore, the need for a detection tools for Dockerfile
duplicates isn’t as important as it’s the case with duplicates
in programming languages [3]-[5], however, 9 maintainers
are nonetheless asking for such tools to help them ease the

https://github.com/jrfaller/diggit

maintenance process.

3) Co-evolution: Figure 9 depicts a boxplot for the per-
centage of co-evolving commits per project in our corpus.
We can see that 50% of all projects have 14% of all their
commits propagating the same edit across several Dockerfiles.
This number can go up to more than 29% for 25% of projects
in our corpus.

25 29 50 75 100
% of co—evolving commits per project

Fig. 9. Boxplot for the percentage of co-evolving commits per project.

Also, 94% of DFM who encountered duplicates (16 out of
17) stated that they had performed identical changes across
multiple Dockerfiles in a single commit in the past. This con-
firms that keeping consistency across duplicates is a classical
task performed by maintainers. Half of them (8 out of 16)
qualified these consistency updates as being annoying. 4 out
of 16 DFM felt that these consistency updates can be error-
prone. However, others (6 out of 16) qualified them as being
easy to perform since they can be automated through templates
and other techniques as we’ll see in Section VI.

Duplicates in DF are frequent. While they are usually
small and span across only few Dockerfiles, they can also
sometimes be large and span across many Dockerfiles.
DFM of our corpus frequently have to propagate identical
changes to multiple Dockerfiles. They also have a mixed
opinion about these changes. DFM not using any tool
find them error-prone and annoying, while DFM using
dedicated tools find them easy to perform.

B. Reasons for Duplicates

In this section, we aim at understanding the underlying
reasons behind duplicates we have identified earlier.

1) Methodology: For this study, we take a random sample
of 50 duplicates from our duplicates corpus. We limited the
size of this random selection to only 50 duplicates, because
analysing a duplicate takes a long time. Three of the authors,
external to the DFM of our corpus, review each duplicate
and tag them with what they think is their corresponding
reason (see Section VII for potential threats). Note that a single
duplicate can have multiple underlying reasons.

2) Results: In the remainder of this section, we describe
the main reasons behind duplicates.

a) Software installation and configuration: The installa-
tion process of a software can be identical across multiple
images, leading to duplicate instructions. The process can
be composed of different steps going from downloading the
software and installing it, to checking its signature, etc.. Once

a software is installed, the next step in this process is to
configure the software before running it.

Listing 4. Duplicate due to identical software installation process
ENV XWIKI_VERSION=8.4.5

N —

ENV XWIKI_URL_PREFIX
3 ENV XWIKI_DOWNLOAD_SHA256 52ed122c44984748a729a78
\
4 4c94cb70ccf@d2fa34c2340d0fd45¢c75deb3bobc9
5 RUN rm -rf /usr/local/tomcat/webapps/* && \
6 mkdir -p /usr/local/tomcat/temp && \
7 mkdir -p /usr/local/xwiki/data && \
8 curl -fSL
-0 xwiki.war \&& \
9 echo

sha256sum -c - && \

10 unzip -d /usr/local/tomcat/webapps/R0O0T xwiki.war
11 rm —f&fw;ki.war

Listing 4 is an extract of a whole duplicate (11 lines) that
we manually analysed This duplicate involves two files from
the XWiki project. It first starts by defining some environment
variables (lines 1 to 4), then cleans a folder, and creates other
ones that are mandatory for running XWiki (5 to 7). It then
downloads the software and puts it in the right folder, validates
it, unzip it and deletes the downloaded file. We encountered
this reason for 50% of duplicates we analysed.

b) Dependency management: Dependencies also follow
an installation process. Before installing dependencies, pack-
age managers need to be configured. After having installed
the dependencies, it is sometimes necessary to configure it.
Finally, the list of dependencies that needs to be installed may
vary across images, but most dependencies are identical.

Listing 5. Duplicate due to package manager configuration
RUN apt-key adv --keyserver pgp.mit.edu \
2 --recv-keys 1614552
E5765227AEC39EFCFA7EQQEF33A8F2399
3 RUN echo

\
4 > /etc/apt/sources.list.d/rethinkdb.list

Listing 5 is an extract of a duplicate caused by the pack-
age manager’s configuration to download the dependency. It
involves three Dockerfiles from the rethinkdb project '*.

Listing 6. Duplicate due to dependency manager installation

1 RUN apt-get update

2 RUN apt-get install -y mysgl-client-core-5.7
openjdk-8-jre-headless postgresql-client
unzip curl zip

3 RUN rm -rf /var/lib/apt/lists/*

Listing 6 shows a duplicate due to the installation of iden-
tical dependencies. In this extract, the package manager starts
by updating its list of packages (line 1). Then, it downloads a
bunch of dependencies, and finally, it cleans the package list it
previously downloaded in order to reduce the final image size.
It involves 2 files of the the bonita project '°. It is common to
see the underlying shell commands combined in a single RUN
instruction as we explained in Section II. We encountered this
reason for 40% of duplicates we analysed.

4https://github.com/rethinkdb/rethinkdb- Dockerfiles
Bhttps://github.com/Bonitasoft- Community/docker_bonita

https://github.com/rethinkdb/rethinkdb-Dockerfiles
https://github.com/Bonitasoft-Community/docker_bonita

¢) Runtime configuration: These duplicates arise because
developers set-up a same way of running the container in
several images. Indeed, while writing the Dockerfile, it’s pos-
sible to configure some parameters for the container runtime.
For instance, the instruction ENTRYPOINT lets developers
configure a shell command that will be run inside the image
when instantiated as a container. For example, a bash image
when started, will directly run the bash binary. There are also
instructions such as VOLUME for specifying how to mount a
folder from the user computer into the container, instructions
for specifying the working directory, etc.

Listing 7 shows a duplicate due to runtime configuration. In
this extract, the Dockerfile specifies where a volume should be
mounted (line 1), what command will be used as an entrypoint
(line 4) and what command should be used (line 5). It involves
2 files from the spiped'® project. We encountered this reason
in 26% of duplicates we analysed.

Listing 7. Duplicate due to runtime configuration

1 VOLUME /spiped

2 WORKDIR /spiped

3 COPY x.sh /usr/local/bin/

4 ENTRYPOINT []
5 CMD []

Duplicate instructions are due to: software installation
and configuration, dependency management and runtime
configuration.

VI. RQ3: WHAT ARE THE TOOLS USED BY EXPERTS TO
MANAGE DOCKERFILES WITH THEIR PROS AND CONS?

To answer RQ3, we start by explaining the methodology
we follow to identify the tools used by experts, we present
the three categories of tools we discover, and then we discuss
their advantages and limits.

A. Methodology

To answer our third and final research question, we man-
ually analyse each repository in our corpus to determine if
what we call a Dockerfile management tool has been used.
We define as Dockerfile management tool any tool that helps
the maintenance of Dockerfiles. To that extent, we manually
look at all 99 projects in our corpus looking for scripts or
binaries that could be used as tools to manage Dockerfiles.
Then, we take a closer look at each of these scripts trying to
understand the implemented Dockerfile management strategy.
Next, we cluster theses scripts and binaries and identify 3 main
Dockerfile management tool categories (see Section VII for
potential threats). We perform a thorough analysis to describe
each one of these categories (Section VI-B. We also report
our survey’s answers relative to the use of tools. Finally, we
discuss the tools with regard to their capabilities to handle
change propagation, highlighting their advantages and their
limitations (Section VI-C).

16https://github.com/TimWolla/docker-spiped

B. Dockerfile Management Tools

We find that 66 projects in our repositories use tools to
manage their DF (66% of our corpus) . We notice that
there is no off-the-shelf tool for this purpose: all developers
maintain their own tool. However, all management tools have
an update script file (located in the root of the repository)
that is usually named update.sh, which is responsible for
updating the whole DF. The update script needs some input
parameters to generate the Dockerfiles, such as the version
number or the target base image. 75% of them receive the
parameters from the command-line while 25% automatically
fetch parameters from a website. Finally some of the latter
projects even automate the execution of the update.sh script
at regular intervals via a dedicated bot. We notice that 88%
of these scripts are written in Bash, the remaining 12% are
written in different languages such as Go, PHP, Makefile,
Python, Perl and Groovy.

Further, when we ask DFM in our survey if they use tools
to handle duplicates, 56% (14 out of 25) said they actually
don’t, because it is too much time consuming or difficult to
implement. When we ask them: Would you like to have a tool
built to avoid duplicates in Dockerfiles?, about 57% (8 out
of 14) said they would like to have one, which confirms the
usefulness for management tools. The remaining ones (6 out
of 14) said no because they don’t want to use another tool or
don’t see the need. However, among the remaining 44% (11
out of 25) who are using tools, 9 replied they were using the
tools that we’ll present in this section, and 2 replied that they
were using git branches and multi-stage builds as management
tools for their Dockerfiles. 7 out of the 11 DFM using tools
said that they were satisfied with their tools, remaining 4
weren’t satisfied with their tool. However, by analyzing the
answers, we realized that all maintainers multiple different
tools depending on the project. Therefore, we could not use
the answers of DFM to directly pinpoint their favorite tools.

We now present the main categories of Dockerfiles man-
agement tools we encountered.

a) Template processor: They are the most frequent tools
in our corpus (54%) and are used by 8 out of 11 maintainers
in our survey. Template processors use a template, some input
data, and a template engine. This kind of tools are also
widely used to generate web pages [6], [7]. When invoked,
the template engine injects the input data into the templates
to generate the outputs.

Listing 8. An extract of the python Dockerfile template
1 FROM debian:%%PLACEHOLDER%%
2 ENV GPG_KEY %%PLACEHOLDER%%
3 ENV PYTHON_VERSION %%PLACEHOLDER%%

The most classical templates used in our corpus are just
plain Dockerfiles containing several placeholders as done
in Figure 8. This listing presents an extract of the template
used to generate the Dockerfiles of the python project. We
first notice that the base image is defined by a text replacement
and a variable (line 1). The GPG key and python version that
needs to be installed use the same features (text replacement

https://github.com/TimWolla/docker-spiped

and a variable (lines 2 and 3)). Only a few projects use more
advanced template technologies supporting advanced features
such as inclusion of sub-templates, loops and conditional
statements: only 2 projects implement sub-templates, and only
one project supports conditional statements. For instance, the
XWiki project uses the most advanced template language we
observed. Listing 9 shows an extract of this project’s template.
Among the list of XWiki’s dependencies, developers must
install either mysql or postgres according to the desired image
flavour In the example, we see that a conditional statement is
used (coming from Groovy’s templating language) to handle
this case (lines 7 and 8). Regardless of the template language,
projects using templates all perform the template rendering
inside the update. sh script.

Listing 9. An extract for the XWiki Dockerfile template

1 RUN apt-get update && \

2 apt-get --no-install-recommends -y install \

3 curl \

4 libreoffice \

5 unzip \

6 procps \

7 <% if (db == ’mysql’) print ’libmysql-java’

8 if (db == ’postgres’) print ’libpostgresql -jdbc

-java’ %> && \
9 rm -rf /var/lib/apt/lists/x*

b) Find and replace: Find and replace tools are also
a fairly common Dockerfile management tools, and are used
by 36% of the projects in our corpus and by 2 out of 11
maintainers in our survey. These tools proceed to update all
Dockerfiles present in the repository by directly updating some
of their content using the input data. Therefore, Dockerfiles
present in the repository are overwritten by the updated ones.
Such Dockerfile management tools mainly use regular ex-
pressions or dedicated Unix tools such as sed, located directly
in the update. sh script. For instance, Listing 10 depicts a real
extract from Kibana project’s update script. We see that the
values at the right of KIBANA_MAJOR, KIBANA_VERSION
and KIBANA_SHAI are replaced by the value contained in the
variables passed as input parameters to the update script.

Listing 10. An extract of the Kibana update script

1 sed -ri’

2 s/" (ENV

3 s/ (ENV

/s

4 s/" (ENV
5

KIBANA_MAJOR)
KIBANA_VERSION)

VAN B '/
VAN B

KIBANA_SHAT) .%/\1 ’ /s

’

c) Generator: Generators are the least frequent Docker-
file management tool, only used by 10% of the projects in our
corpus. However, they are used by 8 out of 11 DFM in our
survey. They consist of a single update script that generates
all Dockerfiles with their content using a shell language (bash
for 4 out of 5 projects) or a general-purpose language (perl for
one project). These tools leverage on features offered by their
host language and therefore provide many features (variables,
loops, conditional evaluation, functions, ...). Listing 11 is an
extract from the OpenJDK project’s update script (written in
bash). In this example, we see that a loop is used to generate

the Dockerfiles for all versions of OpenJDK. Additionally, a
conditional evaluation is used to add some extra dependencies
if they are available for the target base image. Tools using gen-
erators place all the generator’s code directly the update.sh
script.

Listing 11. An extract for the Open]JDK Dockerfile generator

1 for version in ; do

2 -

3 if [1; then

4 cat >> <<-EOD

5 RUN echo ’deb http://deb.debian.org/debian
$addSuite main’ > /etc/apt/sources.list.d
/$addSuite.list

6 EOD

7 fi

8 done

Many projects use tools to handle duplicates. They fall
into three categories: find and replace, template processors
and generators. Several DFM stated that such tools can
be too much time consuming or difficult to implement,
and thus are not using them. However DFM using tools
are mostly satisfied with them.

C. Discussion

In this section, we review how each kind of Dockerfile
management tool enables developers to handle duplicate code.
In order to discuss the pros and cons of each tool, we start
by taking a closer look at why DF co-evolve and therefore
what types of changes DFM are propagated on Dockerfiles.
To do so, we randomly select a sample of 50 commits having
several Dockerfiles co-evolving from all co-evolving commits
previously extracted in Section V-A3. We then manually look
at each commit and determine the reason behind each co-
evolution. As a result, we find two main types of changes:
version update (28 out of 50) that are similar to the change
shown in Listing 2 and other changes (22 out of 50), such
as bug-fixes or refactorings, similar to the change shown in
Listing 1. Version updates are predictable changes regularly
performed at the same location, while the other changes are
arbitrary and can span across multiple lines. We use these two
categories of propagated changes to discuss the pros and cons
of each category of tools in the remainder of this section.

a) Find and replace: Pros. Find and replace tools handle
very well version updates propagation. Since the location of
changes is known in advance, it’s easy to build a regular
expression or a sed command that automates them. In addition,
it’s very easy to set-up a find and replace tool, since it only
requires to write a script that does nothing more than applying
the sed command or the regular expression when called.

Cons. On the other hand, find and replace tools are not
adapted to other changes than version updates. Indeed, these
changes are usually only applied once on the code base,
therefore there is no use for defining and storing a regular
expression or a sed command to perform it. In case of such

changes, developers have to find all Dockerfiles containing the
duplicate sequence of instructions and apply the fix manually.

b) Template processor: Pros. Template processors are
capable of handling the two change propagation scenarios.
For both scenarios, it is sufficient to apply the change on the
templates containing the concerned sequence of instructions,
and re-generate the Dockerfiles. We note that projects using
template processors and maintaining Dockerfiles for only one
reason, usually write only one template, thus eliminating all
possibles duplicates.

Cons. Projects using template processors and maintaining a
DF for more than one reason write multiple templates (only
four projects out of 26 in this case managed to write only one
template). When we run the detection tool we used previously
in Section III-C on the templates of projects using multiple
templates (23 projects out of 35 projects using templates), we
still find 95 duplicates in the templates. Figure 10 presents
statistics about these projects. The left figure is a boxplot
showing the percentage of duplicate instructions across Dock-
erfiles of projects using templates. The right figure shows a
boxplot for the percentage of duplicates reduction in projects
using templates. We can see that the use of templates helps
reducing the number of duplicates that a DFM has to manage
with a median reduction of 31%. However, duplicates aren’t
fully eliminated even when using templates, therefore DFM
still have to propagate some changes manually.

100 100
88t - --
82
75

50

75

56
50

314 - --

% of reduction of duplicates

% of duplicate instructions across Dockerfiles

Fig. 10. Left plot: Boxplot for the percentage of duplicate instructions
in Dockerfiles of a project using Templates. Right plot: Boxplot for the
percentage of duplicates reduction in projects using templates.

c) Generator: Pros. Similarly to the template tools, gen-
erator tools are capable of handling both change propagation
scenarios. Indeed, the five projects using these tools have a
single file in their repository that generates all Dockerfiles,
thus eliminating all duplicates. By looking at the source code
of their generator, we found out that the key features were:
text replacement, loops and conditional evaluation (as we can
see in Listing 11). To propagate a change, the DFM have to
locate the concerned location in the generator’s code, perform
the change, and regenerate all Dockerfiles.

Cons. The only downside we found with these tools is that
the content of the generator (usually a shell script) is very
cumbersome. Indeed, while DFM using templates write and
read code that is very similar to a Dockerfile, DFM using
generators write Dockerfiles with a totally different language.

Additionally, it is far from obvious to understand the content
of Dockerfiles that will be generated from it.

Find and replace tools handle very well the propagation
of version updates but aren’t adapted for other changes.
Template tools are capable of handling the two change
propagation scenarios but still don’t fully eliminate du-
plicates. Generators are also capable of handling the two
change propagation scenarios, they do fully eliminate
duplicates but are much less readable than templates.

VII. THREATS TO VALIDITY

We discuss here the threats to validity of our study following
the guidelines provided by Wohlin et al. [8].

Internal validity: In Section III-A, we look for Dockerfiles
only based on their filename while supposing that the name is
Dockerfile. We also assumed in Section I'V-1 that the reason
behind the existence of a Dockerfile is encoded in its path.
Of course, it is possible that some projects use alternative
naming and location schemes as this would bias our results.
To ensure the validity of our hypothesis we manually inspect a
random subset of 20% of projects and don’t find any counter-
example. In Section III-B, the survey gathered 25 responses
from DFM. While this number isn’t large, the fact that they are
experienced DFM of official Docker repositories means that
their answers can be considered of high-quality. Also, since we
are aiming at only official repositories DFM, the answers we
gathered could be biased towards a more advanced category
of Dockerfile maintainers. In Section V-B, while the sample
size is consequent, it isn’t large enough to be representative
of the whole duplicates corpus. Further, duplicates’ reasons
tagging is done by the paper’s authors who aren’t experts of
the projects containing the duplicates. Moreover, the process
of tagging a duplicate is very subjective which could bias
the tagging results. Finally, while the three authors tried to
mitigate the misidentification threat by concerting each other, a
more formal approach should be taken in a future study repli-
cation work. In Section VI-A, Dockerfile management tools
are identified by two authors of the paper. While strategies
aren’t that similar, meaning less subjective to identify, the two
authors concerted each other to mitigate the misidentification
threat. We attempt to provide all the necessary details to
replicate our study and analysis. We also provide all data
involved in our paper to enable replication and scrutiny of
our results'”.

External validity: This study focuses only on mature and
official projects, corresponding to the 99 projects in our
repository. This is on purpose, as these projects are defined
by Docker as implementing all best practices. Therefore, the
projects may be more maintained and have larger Dockerfiles
than more common projects meaning that the results we got
may not be representative of the whole Docker ecosystem but
to a rather more advanced category of projects.

Thttps://se.labri.fr/a/ICSME19-docker- oumaziz

https://se.labri.fr/a/ICSME19-docker-oumaziz

VIII. RELATED WORK

In this section we discuss some research related to Docker
and infrastructure as code. We also discuss different techniques
used to detect duplicates in source code and other artefacts.

Cito et al. [9] conduct an empirical study on over 70,000
Dockerfiles assessing their quality and identify types of
changes between consecutive versions of Dockerfiles. They
show that common Dockerfiles are not changed often, while
they indicate that popular Dockerfiles (like the ones in our
corpus) happen to be more actively updated. They also in-
dicate that the RUN instruction is the most commonly used
instruction in Dockerfiles which can be linked to our results
in Section V-A where we indicate that RUN instructions are
the most frequently duplicated. Zerouali et al. [10] perform
an empirical analysis on 7,380 official and community Docker
images that are based on the Debian Linux distribution. They
look at the relation between outdated containers and vulnerable
and buggy packages. They show that no release is devoid
of vulnerabilities and that even if they wanted, maintainers
couldn’t avoid them even with the most recent packages.
Jiang and Adams [11] through an empirical study on over
256 OpenStack projects analysing infrastructure specification
files show that these files are actually large and are frequently
updated (28% changed monthly) which could lead to potential
bugs. They also show that infrastructure files are tightly
coupled to test files which leads to testers frequently changing
infrastructure specifications when modifying their tests.

Sharma et al. [12] propose 11 implementation and 13
design code smells for configuration (infrastructure) code.
They analyse 4,621 puppet projects for their identified code
smells and show that up to 25% of their analysed repositories
have code that is duplicated. They also analyse the correlation
between their code smells, and show that design smells happen
to co-occur more frequently which indicates the importance
of design choices taken by developers. Hummer et al. [13]
propose a framework for testing Infrastructure as code au-
tomations for idempotence by following a model-based testing
approach. They evaluate their tool on over 300 Chef scripts
and determine that almost the third of them where actually
idempotent. Their tool even let them to actually detect and
report a bug in Chef implementation itself.

Existing research on duplicates detection can be divided in
two categories as follow:

(a) in source code: CCFinder [3] proposes a token-based
detection technique to identify duplicate code. White et al. [14]
used a learning-based detection technique which relies on
deep learning to detect code duplicates. They found that
their approach detected duplicates that weren’t or where
sub-optimally detected by traditional techniques. Ducasse et
al. [15] developed a language independent technique for
detecting duplicated code without using any parser. Their
technique relied on line-based string matching. There are
also other duplicate detection techniques such as AST-based
techniques [16]-[19] and Graph-based techniques [20], [21].
Rattan et al. [22] did a systematic review of all software

clone detection tools, regrouping other duplicates detection
techniques we didn’t present here.

(b) in other artefacts: Liu et al. [23] propose a suffix-
tree based approach to detect duplicates in UML sequence
diagram. Storrle [24] also explores duplicates in UML and
implement algorithms and heuristics for detecting duplicates
with the MQIlone tool. Juergens, Domann et al. [25], [26] apply
code detection techniques to 28 requirement specifications
and discuss the nature and consequences of such duplicates
Deissenboeck et al. [27] apply an automatic clone detection
technique for large control systems models. Mclntosh et
al. [28] analysed 3,872 build systems looking for clones,
they identified what are the underlying reasons behind their
existence and which recent build technologies tend to be more
prone to cloning. Oumaziz et al. [29] performed an empirical
study on documentation reuse. They applied a clustering
technique (formal concept analysis) to detect duplicates in
documentation. And showed that existing documentation tools
lack reuse mechanisms for situations such as code delegation.

IX. CONCLUSION

Docker is becoming a popular tool used by developers and
end-users to deploy and run software applications. Docker-
files are now found alongside projects’ source code. Several
projects are even starting to maintain families of Dockerfiles.
In some situations, Dockerfiles family maintainers have to
propagate a change to several, if not all, Dockerfiles of the
family. This need to propagate changes is usually due to the
presence of duplicates between several family’s Dockerfiles.

In our study, we answer the question of duplicates handling
in Dockerfiles families by providing a grounded study based
on the analysis of the Official Docker Projects. We show that
official Docker projects frequently maintain families of Dock-
erfiles and find the underlying reasons: supporting multiple
versions/base-images and versions/flavours.

We then show that duplicates in Dockerfiles are abundant,
and find the underlying reasons behind them: Software instal-
lation and configuration, dependency management and runtime
configuration. We also perform a survey on DFM of official
projects and find that they are aware of their existence and are
frequently facing them. However, DFM have a mixed opinion
regarding them. While DFM not using tools for handling
duplicates state that their handling may be error-prone, DFM
using tools state that they are easy to maintain.

We also find that some DFM handle duplicates by using
ad-hoc tools: template processors, code generators, find and
replace executors. Then, we show that projects using template
processors and code generators manage to reduce the amount
of duplicates with a median at 30% up to 100% for generators.

As a future work, we plan to extend our study towards
projects maintained by the broad community of maintainers
in order to identify broader needs. We also plan to work on
a management tool that could be easy to use out of the box
by the community of DFM in order to ease the existing initial
burden of migrating to management tools.

[1]

[2

—

[3

[t

[4]

[5

=

[6

=

[7

—

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based
code clone detection: incremental, distributed, scalable,” in Software
Maintenance (ICSM), 2010 IEEE International Conference on. 1EEE,
2010, pp. 1-9.

A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister, “Upset:
visualization of intersecting sets,” IEEE transactions on visualization
and computer graphics, vol. 20, no. 12, pp. 1983-1992, 2014.

T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654-670,
2002.

1. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Software Maintenance, 1998.
Proceedings., International Conference on. 1EEE, 1998, pp. 368-377.
S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions on
software engineering, vol. 33, no. 9, 2007.

T. J. Parr, “Enforcing strict model-view separation in template engines,”
in Proceedings of the 13th International Conference on World Wide
Web, ser. WWW ’04. New York, NY, USA: ACM, 2004, pp. 224-233.
[Online]. Available: http://doi.acm.org/10.1145/988672.988703

M. Tatsubori and T. Suzumura, “Html templates that fly: A template
engine approach to automated offloading from server to client,” in
Proceedings of the 18th International Conference on World Wide Web,
ser. WWW ’09. New York, NY, USA: ACM, 2009, pp. 951-960.
[Online]. Available: http://doi.acm.org/10.1145/1526709.1526837

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and
H. C. Gall, “An empirical analysis of the docker container ecosystem
on github,” in Proceedings of the 14th International Conference
on Mining Software Repositories, ser. MSR ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 323-333. [Online]. Available:
https://doi.org/10.1109/MSR.2017.67

A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona, “On
the relation between outdated docker containers, severity vulnerabilities,
and bugs,” in 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER). 1EEE, 2019, pp. 491—
501.

Y. Jiang and B. Adams, “Co-evolution of infrastructure and source code:
An empirical study,” in Proceedings of the 12th Working Conference on
Mining Software Repositories. 1EEE Press, 2015, pp. 45-55.

T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration
code smell?” in Mining Software Repositories (MSR), 2016 IEEE/ACM
13th Working Conference on. 1EEE, 2016, pp. 189-200.

W. Hummer, F. Rosenberg, F. Oliveira, and T. Eilam, “Testing idempo-
tence for infrastructure as code,” in ACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and Open Distributed
Processing. Springer, 2013, pp. 368-388.

M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2016, pp. 87-98.

S. Ducasse, M. Rieger, and S. Demeyer, “A language indepen-
dent approach for detecting duplicated code,” in Software Mainte-
nance, 1999.(ICSM’99) Proceedings. IEEE International Conference on.
IEEE, 1999, pp. 109-118.

W. Yang, “Identifying syntactic differences between two programs,”
Software: Practice and Experience, vol. 21, no. 7, pp. 739-755, 1991.
R. Falke, P. Frenzel, and R. Koschke, “Empirical evaluation of clone
detection using syntax suffix trees,” Empirical Software Engineering,
vol. 13, no. 6, pp. 601-643, 2008.

R. Tairas and J. Gray, “Phoenix-based clone detection using suffix trees,”
in Proceedings of the 44th annual Southeast regional conference. ACM,
2006, pp. 679-684.

D. Gitchell and N. Tran, “Sim: a utility for detecting similarity in
computer programs,” in ACM SIGCSE Bulletin, vol. 31, no. 1. ACM,
1999, pp. 266-270.

M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,”
in Proceedings of the 30th international conference on Software engi-
neering. ACM, 2008, pp. 321-330.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

R. Komondoor and S. Horwitz, “Using slicing to identify duplication
in source code,” in International Static Analysis Symposium. Springer,
2001, pp. 40-56.

D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, vol. 55, no. 7,
pp. 1165-1199, 2013.

H. Liu, Z. Ma, L. Zhang, and W. Shao, “Detecting duplications in
sequence diagrams based on suffix trees,” in Software Engineering
Conference, 2006. APSEC 2006. 13th Asia Pacific. 1EEE, 2006, pp.
269-276.

H. Storrle, “Towards clone detection in uml domain models,” Software
& Systems Modeling, vol. 12, no. 2, pp. 307-329, 2013.

E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz,
S. Wagner, C. Domann, and J. Streit, “Can clone detection support
quality assessments of requirements specifications?” in Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 2. ACM, 2010, pp. 79-88.

C. Domann, E. Juergens, and J. Streit, “The curse of copy&paste
cloning in requirements specifications,” in Proceedings of the 2009
3rd International Symposium on Empirical Software Engineering and
Measurement. 1EEE Computer Society, 2009, pp. 443-446.

F. Deissenboeck, B. Hummel, E. Jiirgens, B. Schitz, S. Wagner, J.-F.
Girard, and S. Teuchert, “Clone detection in automotive model-based
development,” in Proceedings of the 30th international conference on
Software engineering. ACM, 2008, pp. 603-612.

S. Mclntosh, M. Poehlmann, E. Juergens, A. Mockus, B. Adams,
A. E. Hassan, B. Haupt, and C. Wagner, “Collecting and leveraging
a benchmark of build system clones to aid in quality assessments,” in
Companion proceedings of the 36th international conference on software
engineering. ACM, 2014, pp. 145-154.

M. A. Oumaziz, A. Charpentier, J.-R. Falleri, and X. Blanc, “Documen-
tation reuse: Hot or not? an empirical study,” in International Conference
on Software Reuse. Springer, 2017, pp. 12-27.

http://doi.acm.org/10.1145/988672.988703
http://doi.acm.org/10.1145/1526709.1526837
https://doi.org/10.1109/MSR.2017.67

	Introduction
	Dockerfiles in a Nutshell
	Data collection
	Repositories
	Survey answers
	Duplicates

	RQ1: Do official projects maintain families of Dockerfiles, and why?
	Methodology
	Results

	RQ2: Do duplicates arise in Dockerfiles families and why?
	Duplicates and Co-evolution Statistics
	Methodology
	Duplicates
	Co-evolution

	Reasons for Duplicates
	Methodology
	Results

	RQ3: What are the tools used by experts to manage Dockerfiles with their pros and cons?
	Methodology
	Dockerfile Management Tools
	Discussion

	Threats to validity
	Related work
	Conclusion
	References

