
HAL Id: hal-02485795
https://hal.science/hal-02485795

Submitted on 29 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fostering good coding practices through individual
feedback and gamification: an industrial case study

Matthieu Foucault, Xavier Blanc, Jean-Rémy Falleri, Margaret-Anne Storey

To cite this version:
Matthieu Foucault, Xavier Blanc, Jean-Rémy Falleri, Margaret-Anne Storey. Fostering good coding
practices through individual feedback and gamification: an industrial case study. Empirical Software
Engineering, 2019, 24 (6), pp.3731-3754. �10.1007/s10664-019-09719-4�. �hal-02485795�

https://hal.science/hal-02485795
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Fostering Good Coding Practices through Individual
Feedback and Gamification: an Industrial Case Study

Matthieu Foucault · Xavier Blanc ·
Jean-Rémy Falleri · Margaret-Anne Storey

Received: date / Accepted: date

Abstract Code quality is a constant challenge faced by today’s software industry.
To ensure that developers follow good coding practices, a variety of program anal-
ysis and test coverage tools are routinely deployed. However, these tools often fail
to engage and change the practices of developers when applied to legacy systems
as they output a huge number of warnings, quickly overwhelming the developers.
In this article, we explore how individual feedback and gamification can motivate
developers to pay more attention to good coding practices. To that extent, we im-
plemented these two concepts in a tool that we deployed at two large companies
where we conducted a case study. We find out that individual feedback is essential
for motivating developers. We also find that gamification can be useful but has
to be used with caution as it can frustrate some developers. Finally, we reflect
on some lessons learned during our case studies, and conclude that the promis-
ing approach of our tool needs to be supported by longitudinal studies as well as
comparative studies.

1 Introduction

In today’s software industry, many organizations have to maintain legacy software
systems, which are “large software systems that we don’t know how to cope with

Matthieu Foucault
University of Victoria
E-mail: mfoucault@uvic.ca

Xavier Blanc
Institut Universitaire de France, Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800,
F-33400, Talence, France
E-mail: xblanc@labri.fr

Jean-Rémy Falleri
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
E-mail: falleri@labri.fr

Margaret-Anne Storey
University of Victoria
E-mail: mstorey@uvic.ca



2 Matthieu Foucault et al.

but that are vital to our organization” (Bennett, 1995). One approach managers
use to tackle this issue is to monitor the source code quality using two classical
quality metrics: the number of code smells (Beck et al, 1999) and the level of test
coverage achieved (Tikir and Hollingsworth, 2002).

These quality metrics may be computed using dedicated program analysis
tools, such as SonarQube1 for code smells and Jacoco2 for test coverage. These
tools tend to be used at regular intervals or after each commit and report on any
issues found, either through a browser or directly in the user’s integrated devel-
opment environment (IDE). These reports indicate where code smell issues are or
which lines of code are not adequately covered by existing tests.

On top of these quality metrics, managers may also establish good coding
practices for developers to follow, including avoiding any new code smell, fixing

critical code smells, fully covering new code fragments or aiming for at least 85% code

coverage (Williams et al, 2001). However, motivating developers to follow such
good practices is difficult.

One reason for this situation is probably because reports produced by the
program analysis tools contain too much information, most of which is unrelated
to the changes authored by developers. For instance, when a developer opens a
source code file to perform changes, the program analysis tools may pinpoint all
the bad smells contained in the file (not only the ones authored by the developer)
and all the uncovered lines as well, obfuscating the code and frustrating the de-
veloper. As a consequence analysis tools are unfortunately quite often ignored by
developers (Johnson et al, 2013; Christakis and Bird, 2016).

The other reason of this situation is certainly because software quality is often
perceived as a fifth wheel. Developers are mainly motivated by developing new
features but not by cleaning the source code or making better tests. Improving
quality is a de facto not fun activity, which is reinforced by the attitude of managers
who keep on imposing quality gates as objectives3

As a result, developers tend not to respect the good coding practices and even
turn off the program analysis tools (see the Section 2, that lists the research studies
that highlight this situation). They therefore may continue to commit less-than-
ideal code that eventually leads to a decaying code base.

Two large French companies approached us in 2016 as they wanted to encour-
age their developers of legacy software systems to better use program analysis tools
and follow good coding practices that would improve code quality. They asked us
to suggest a dedicated solution to this motivation challenge with a special focus
on addressing code smells and low test coverage. In this paper, we describe our
case study with these two companies and present how we developed a solution
that addresses poor developer motivation in terms of maintaining and improving
code quality of legacy software systems.

Our collaborative approach to this research involved a design study (Sedlmair
et al, 2012) methodology where we iteratively characterized the problem of poor
developer engagement in good coding practices for improving code quality, itera-

1 http://www.sonarqube.org/
2 https://github.com/jacoco/jacoco
3 A quality gate is defined by a threshold that drives the quality metrics. For instance, 85%

of code coverage. When set, developers have no choice other than respecting the threshold.



Individual Feedback, Gamification, and Developers Engagement 3

tively designed and implemented a solution to this challenge with ongoing input
from users, and validated the solution using field studies.

The solution we arrived at builds on two well-known key concepts: individual
feedback(Nadler, 1979) and gamification(Deterding et al, 2011). It is deployed in
a tool called Themis that is plugged to program analysis tools and that provides
individual feedback to the developers and integrates a gamification layer. Section
2 explains these two concepts and shows that, to the best of our knowledge, there
is no large case study measuring their impact on developers’ motivation to follow
good coding practices in an industrial context.

In this paper we present such an industrial case study, and more precisely
describe the evaluation of our solution with our two industrial partners. We sought
input on the impact that individual feedback and gamification have on developers
behavior through interviews and a questionnaire. Through this paper, we also
share the two major impediments we faced while deploying our solution and share
advice for other practitioners wishing to use similar concepts on how they may
address these issues.

Our case study shows that:

– Individual feedback is perceived positively by all developers we interviewed.
Its positive effects on code quality include an improved self-evaluation, an
increase of awareness, positively changing coding habits and fostering team
communication. To the best of our knowledge, no prior research work measured
that effect in an industrial context.

– Gamification has a positive effect on some developers. It can increase fun and
therefore the engagement in code quality tasks. However it should be used
carefully: some developers are reluctant to play a game while working. This
result confirms the results obtained by the previous studies. However, we also
noted that some developers can take more interest in the game than in the
underlying project and develop deviant behaviors. This is a new result that
emphasizes the fact that gamification has to be used carefully in an industrial
context.

– Managers may use both individual feedback and gamification to enhance coding
practices, but two important aspects have to be enforced for them to work.
Firstly, it is crucial to be very clear about how the individual data produced
by the tool will be used. This confirms the result obtained by the previous study
of gamification in an industrial context. Additionally, we observed that it is
also very important to facilitate the use of the tool by creating new challenges,
resetting scores, etc. This new result may help practitioners who want to deploy
tools including a gamification layer in an industrial context.

The remainder of our paper is structured as follows: In Section 2, we present the
related research. In Section 3, we describe the design of our study by presenting the
industrial context behind the work, our research goals, and details of the research
methods we used. In Section 4, we discuss the concept of individual feedback and
how this was implemented in our solution. We also share how feedback following
developer commits impacted their motivation and behavior in terms of using good
coding practices. In Section 5, we present how gamification was implemented in
our solution and how it influenced developers’ behavior regarding good coding
practices. In Section 6, we discuss the two major impediments we came across



4 Matthieu Foucault et al.

over the course of our case studies. In Section 7, we describe the limitations of our
study. Finally, we conclude the paper in Section 8.

2 Related Work

In this section, we start by briefly describing what program analysis tools are.
We then present existing studies that explain how developers use them. We then
describe the concepts of feedback and gamification, and present existing studies
that show their advantages and limits.

2.1 Program Analysis tools

To help check the quality of their code, developers commonly use two kinds of
program analysis tools: the linters and the test coverage tools.

Linters automatically identify code smells (Beck et al, 1999) and pinpoint parts
of the code that should be fixed (Curtis et al, 2012; Letouzey and Ilkiewicz, 2012).
Some examples of linters are FindBugs (Ayewah et al, 2008) for Java or ESLint4

for JavaScript.
Test coverage tools allow developers to discover which statements of their pro-

gram have been executed by unit tests (Miller and Maloney, 1963) and which
parts are untested. Although research evidence on the utility of test coverage is
mixed (Inozemtseva and Holmes, 2014), several studies have acknowledged the fact
that higher test coverage is correlated with fewer errors in the system (Mockus
et al, 2009; Andrews et al, 2006), a metric frequently used in industry (and by our
industry partners).

Much of the information reported by the linters is irrelevant to the developers
and potentially obscures the one that they may find more meaningful to the task
they are performing (Johnson et al, 2013). Figure 1 illustrates this problem with a
screenshot of SonarQube where some issues are presented. Such a dashboard lists
the issues and sorts them depending on their location, their rule, their criticality,
etc. This situation is furthermore more problematic with legacy software systems
which contain many code smells and uncovered lines of code.

Although the use of linters is widespread across the software development com-
munity, they are scarcely integrated in development processes, and not systemat-
ically used by developers (Ayewah et al, 2008; Beller et al, 2016). Johnson et al
(2013) interviewed 20 developers to investigate the reasons why they don’t use lin-
ters more often and found that the most important reasons are the large number
of and poor presentation of warnings, the high rate of false positives, the lack of
collaboration support in the tools, and their lack of customizability. Similar find-
ings were discussed by Christakis and Bird (2016) for industrial software systems,
and by Fjóla Tómasdóttir et al (2017) with a specific focus on JavaScript.

To the best of our knowledge, there has yet to be an empirical study investi-
gating how test coverage tools are used in practice in an industrial setting. There
is, however, evidence that testing is simply an activity that developers do not per-
form. Beller et al (2016) performed an empirical study to find out how developers

4 http://eslint.org/



Individual Feedback, Gamification, and Developers Engagement 5

Fig. 1 Example of the issues view of SonarQube on a third-party project.

handle testing in the IDE, using the recorded activity of 416 developers. They dis-
covered that most developers do not practice testing and do not run tests. They
also found that tests and code do not co-evolve gracefully, and that developers
usually run only a specific test in the IDE instead of the whole test suite.

After having reviewed the aforementioned research papers about how devel-
opers handle code smells and tests in practice, we can conclude that developers
consider identifying smells or test-related tasks as a burden and are reluctant to
perform them. This body of research reinforces the fact that developers should to
be motivated to better use program analysis tools. They should be engaged so that
the usage of program analysis tools is naturally integrated in their development
process.

2.2 Developers Motivation: Feedback and Gamification

Motivation of developers was extensively studied in the past decades (Hall et al,
2008; Beecham et al, 2008; França et al, 2011). The various studies on this topic
have identified a list of motivators that work well for developers. The main mo-
tivator that has been identified is that developers should identify with the task at
hand. However this is hard to achieve for tedious tasks, such as the ones needed
to maintain legacy software systems. We then choose to leverage on individual
feedback and gamification since feedback, rewards and incentive and recognition are
well established in the list of the known motivators.

The importance of the feedback has been largely studied in the past (Nadler,
1979), showing its benefits on the learning process (Azevedo and Bernard, 1995;
Schooler and Anderson, 1990). Further, the feedback should be as minimal as
possible and actionable (pinpointing the errors and explaining how to fix them)
to provide a strong added value as discussed by Anderson et al (1996). However,
to the best of our knowledge there is no industrial case study targeting the use of
feedback to engage developers in better applying good coding practices.



6 Matthieu Foucault et al.

Gamification is defined as the use of game design elements, such as points, score
or ranking, in non-game contexts (Deterding et al, 2011). Gamification is a young
domain where few theoretical foundations are available (Seaborn and Fels, 2015).
The emerging theories focus on player motivation, behavior change, and engage-
ment, with specific attention paid to the relationship between intrinsic motivation
(aligned with the player’s inner values) and extrinsic motivation (coming from
external factors) (Deci et al, 1999). The objective of gamification is to increase
intrinsic motivation (i.e., become a better programmer) based on extrinsic moti-
vators (i.e., gaining points). However, care must be taken to ensure that extrinsic
motivators do not lead to decreased intrinsic motivation (Deci et al, 1999).

Research on the use of gamification in software engineering is relatively recent.
According to the systematic mapping of Pedreira et al (2015), gamification has
been used in various software engineering activities, with an emphasis on software
development.

Many studies use students to explore the effect of gamified environments.
Prause and Jarke (2015) and Arai et al (2014) showed that gamification for avoid-
ing code smells seems to motivate students in an educational setting. Arai et al
(2014) found that students using the gamified tool removed more code smells
than those using a non-gamified linter. However, they noted than some students
were reluctant to play the game and preferred to remove code smells without
the pressure of the score. Rojas et al (2017) investigated the use of gamification
to improve mutation testing. They performed an experiment involving students
and noted that the students using gamification enjoyed writing tests more than
the ones without, and wrote stronger test suites and mutants. Singer and Schnei-
der (2012) describe a system using points, badges, and leaderboards to provide
an incentive for developers to commit their code more often. After conducting
an experiment with 37 students, their interviews showed that the tool increased
the participants’ awareness of the other developers’ activity, and was effective in
making some participants make more frequent small commits.

To our knowledge, only two studies explore the use of gamification in an indus-
trial context. In the experiment from Prause and Jarke (2015), developers reported
that they were more attentive to the readability of their code when developing,
thanks to the presence of a gamified tool. The tool was well perceived by the
developers and the authors found only few indications of adverse effects. Snipes
et al (2014) explore the effect of gamifiying the IDE to improve the knowledge
of advanced code navigation features among industrial developers. They find out
that generally over 50% of developers are interested in using gamified tools, and
that point score and leaderboard was the more effective gamified motivators.

Finally, Barik et al (2016) present a discussion about how gamification is usu-
ally applied in software engineering activities and find out that it is always applied
in a narrow setting, restricted to points, badges and leaderboards. Dal Sasso et al
(2017) then describe a “framework” to explain how to gamify software engineering
activities.

Our study contributes to these fields (feedback and gamification) by providing
a large industrial case study. In our study, we note that individual feedback and
gamification raise awareness of the code smells and coverage issues. We also find out
that gamification can motivate developers to change their code writing habits. It
confirms most of the results observed by previous studies showing that gamification
may provide benefits in engaging developers to better apply good coding practices.



Individual Feedback, Gamification, and Developers Engagement 7

Deployment of 
Themis at 

Pole Emploi
Online 

questionnaire

3 months

2016

Improvment of 
Themis

Deployment of 
Themis at 

Sopra-Steria

5 months

Interviews

Follow-up 
interviews with 

managers

Analysis

2017 2018

Fig. 2 Timeline of our case studies.

It also confirms that some developers are reluctant to use a gamified tool. Finally
our study pinpoints two impediments that may be faced when deploying such an
approach in an industrial context (the usage of individual data and the need for
facilitation).

3 Study Design

The study we present in this paper followed an iterative process, as illustrated in
Figure 2. We were initially contacted by Pôle Emploi early in 2016. At that time,
our initial goal was to understand how we could motivate developers to follow
good coding practices. Following initial discussion with Pôle Emploi we decided to
explore how interventions concerning individual feedback and gamification could
impact developer habits. We then designed and developed a tool, called Themis,
that puts together these two concepts. A first version was deployed late 2016
at Pôle Emploi for a period of three months. Initially, individual feedback and
gamification features were dependent on one another. At the end of this period,
we surveyed the developers who used Themis: we aimed to understand how they
used the tool’s different features in terms of the feedback it provided, as well as
its gamification elements. It should be noted that Pôle Emploi decided to stop
the use of Themis at the end of the three months period because the developers
felt like it was not mature enough (problems with the game design, bugs with the
version control system connector, etc. see the Section 6).

Based on the results of our survey and discussions with our partners at Pôle
Emploi, we changed our design. The second version separates the individual feed-
back and gamification features. This is the design we present in this paper. In
2017, we deployed the new version of Themis with our second industrial partner,
Sopra-Steria, where it was used for a period of five months. To understand the
impact of this deployment and to gain further insights about how individual feed-
back and gamification can engage developers on code quality issues, we conducted
face-to-face semi-structured interviews with the developers that used the tools. It
should be noted that Sopra-Steria is still using Themis.

Finally, after a period of 6 months, we performed semi-structured interviews
with one manager at Pôle Emploi and one manager at Sopra-Steria to debrief
about the use of Themis in their projects.

This section then presents the context of our two industrial partners and ex-
plains the method we followed to get their insights.



8 Matthieu Foucault et al.

3.1 Context of the Industrial Case Studies

Pôle Emploi and Sopra-Steria faced the challenge of developing a culture of soft-
ware quality that would help motivating their developers to follow good coding
practices. Even though they provide analysis tools for their developers (such as
SonarQube for instance), they felt the need for other means to better motivate
their developers regarding software quality.

3.1.1 Case Study 1: Pôle Emploi

Pôle Emploi is a French governmental agency that provides financial aid for un-
employed people (5.5 million people as of February 2017). It has 50,000 employees
among 900 offices in France and a website that receives over 45 million visits
each month. The business depends on a software platform composed of several
sub-systems, maintained daily by 300 developers. Our study focuses on a central
component of the platform that has a major financial impact on their users. This
central component was initially deployed in 2006 and consists of 550k lines of code
(in 2016). It is a J2EE application that is maintained by a group that includes 1
manager, 2 team leads, and 14 developers (divided into a team of 11 developers
and a team of 3 developers). The manager and the two team leads were seniors
(more than 10 years of experience). The developers were all software engineers
with 5 to 10 years of experience, and could be considered to be expert developers.
The team shared a same software engineering culture: Object Oriented developers
(Java), concerned about good design (patterns) and high code quality, connected
to the end users (iterative process) and therefore willing to provide software system
with no bug.

Back in 2006 when Pôle Emploi started to develop this central component,
no linter was used nor test coverage tool. After several years, Pôle Emploi set-up
company wide quality policies and tools (mainly SonarQube) to be applied only
to new developments. However the manager responsible of this central component
was very interested by code quality, and therefore wanted to use these quality
policies and tools on it, leading him to deploy a custom version of the company
quality policies and tools (dedicated to the component). Furthermore, he decided
to give a five-days training on clean-code principles to all of the developers.

After several months, even using this customized version of SonarQube, there
were still too many quality issues reported by the tool, mostly on naming con-
vention rules that are very tedious to fix. A consensus was then reached between
the manager and the developers to focus on the newly developed code with the
main objective to not introduce any new issue. To enact this vision, a large display
was installed in the development open-space showing the advancement of quality
issues. The display showed a curve reflecting the number of quality issues in real
time. The curve was increasing when new quality issues were created, therefore
implicitly asking developers to fix them. Thanks to this initiative, the manager
and team-leads discussed regularly with the team about code quality, especially
when the display showed that new quality issues were added to the system.

This initiative succeeded in improving the engagement of developers about
quality issues, and the manager wanted to explore new ways to go further on this
topic and contacted us in the beginning of 2016.



Individual Feedback, Gamification, and Developers Engagement 9

3.1.2 Case Study 2: Sopra Steria Atlantic division

Sopra Steria is a European information technology consulting company that de-
velops large software systems for its customers. Sopra Steria has more than 40k
employees among 40 countries. Our study focuses on a group composed of 50 de-
velopers located in Bordeaux, France. That group is lead by a senior manager and
two senior team leads (more than 10 years of experience). They shared a same soft-
ware engineering culture: concerned about good design (patterns) and high code
quality. Furthermore, they were all highly driven by the client satisfaction. The de-
velopers were mostly junior engineer developers (from 1 to 5 years of experience).
The software engineering culture among the developers was highly heterogeneous.

In 2016, that group was assigned to the maintenance of a huge legacy software
component (several thousands man days) owned by a company whose name is
confidential. The development of this component started in 2007 when the owner
asked a third party company, whose name is also confidential, to handle the soft-
ware project. That third party company developed and maintained the component
until 2016, when the owner decided to move and asked Sopra Steria to handle the
project. Regarding quality concerns, we were not able to know what was the poli-
cies and tools used by the third party company. We do know that the owner of
the software component used SonarQube in 2016 and noticed thousands of rule
violations. When the owner contacted Sopra-Steria, a contractual engagement was
signed and stated that the number of violations could not increase further.

When they took over the development, Sopra-Steria applied all the company’s
best-practices about quality management, including the use of a SonarQube in-
stallation configured for the project as well as regular training on the code quality
topic (some mandatory, some optional) too all developers. To ensure that the de-
velopers followed the quality rules of SonarQube, the team leads were performing
regular feedback meetings where they were discussing with the developers about
the violations found by SonarQube.

However, the manager and team leads found that preparing these meetings
was a lot of work and therefore wanted to try tools that could save the time of
manually reviewing the code and the quality reports to prepare them. Therefore,
they contacted us in the beginning of 2017, and decided to deploy Themis.

3.2 Methods

As shown in the Figure 2, we distributed two different questionnaires to members
of Pôle Emploi: one version of the survey was sent to the manager and two team
leads (referred to as managers in the rest of the paper), and another version of
the survey was sent to the 14 developers. All three managers as well as 8 out of
the 14 developers responded to the surveys we sent. All answers were provided
anonymously (unless participants chose to give us their email address) and partic-
ipants were not given any incentive to answer the survey—they generously spent
time answering questions without compensation to help us understand the effects
of the tool they were using.

The surveys included closed- and open-ended questions focusing on the differ-
ent information views provided by Themis, asking how (and how often) developers



10 Matthieu Foucault et al.

What do you expect from using Themis?
Does Themis help you to prevent or fix technical debt?
Does Themis help you to learn?
Were you worried that Themis will grade the quality of your code?
What information do you find useful in the home dashboard?

Table 1 Examples of questions asked in the online survey or the interviews.

and managers used the different features. Other questions were related to how im-
portant gamification is to developers, and whether they noticed a change in their
coding practices since Themis was introduced. Through follow-up questions sent
to willing participants (by email), we were able to learn that the insights we gained
from our analysis of the survey responses resonated with the research participants
and helped to confirm our findings from the survey. In anonymizing the responses,
we were sensitive to maintaining the confidentiality of the individual developers.
A copy of our survey questions, interview guide, and ethics approval are available
online5.

Our analysis of the survey responses allowed us to improve both the individ-
ual feedback and gamification features of the tool. While initially combined, we
also separated the two features as not all developers were enthusiastic about the
gamification functionality.

This improved (second) version of Themis was deployed with our second in-
dustrial partner, Sopra-Steria. Our first partner having ended their trial period of
Themis, we were unable to conduct a second study with them. Five months after
Themis was deployed with all teams at Sopra-Steria, we were given the opportu-
nity to conduct face-to-face interviews with developers and team leads. Two team
leads and six developers volunteered to participate in semi-structured interviews,
lasting no more than 25 minutes each.

For the analysis presented in the paper, we combined the responses from both
industrial case studies, focusing on the open-ended questions. Some of these ques-
tions are shown in Table 1. Our goal is to precisely understand how personal
feedback and gamification affect developers on the code quality topic, on a quali-
tative level. Even though the implementation of Themis differed slightly between
the two case studies, the core principles and goals remained the same, and the find-
ings from the first case study remained relevant for our purpose. To analyze our
data, we resort to a card sorting methodology (Spencer, 2009). Using the responses
from both studies, we produced 280 cards, each containing a statement expressed
by a participant that described how they used the tool, what they learned from
it, how they felt about gamification, etc. Three researchers (three authors of this
paper) worked iteratively to sort the cards into categories: these categories appear
in the findings described in the remainder of this paper. The card sorting activity
is illustrated in Figure 3.

5 https://github.com/thechiselgroup/GamifyTechDebtData



Individual Feedback, Gamification, and Developers Engagement 11

Fig. 3 Card sorting activity: 280 cards were laid out and two researchers classified and anno-
tated the qualitative data over several iterations.

4 Providing Individual Feedback

In this section, we present the feedback model used in our case study and finally
explain how it helps developers achieve clean code and improve test code coverage.
(The gamification feature is separately discussed in the next section.)

4.1 The Feedback Model of Themis

In order to produce individual feedback, Themis performs an analysis of each
commit with respect to adherence to the code coverage and clean code coding
practices. Such an analysis is based on the reports provided by program analysis
tools (such as Jacoco for code coverage and SonarQube for clean code). Themis
links the analysis reported by these tools to the authors of the commits, and
then gives them semantics. More precisely, every file changed through the commit
is tagged with a clean code action, and all non-test files are tagged with a code

coverage action. These actions are then categorized as: healthy, harmful, or repairing.
The meaning of these categories (when applied to the two types of code practice
actions) are listed in Table 2.

For example, if a developer creates a commit where the files Customer.js and
TestCustomer.js are modified, the following action tags will be created:

– A clean code action for Customer.js.
– A clean code action for TestCustomer.js.
– A code coverage action for Customer.js6.

6 Themis does not create any code coverage action for test code, which explains why there
is no such action in TestCustomer.js.



12 Matthieu Foucault et al.

Table 2 Definition of the Themis actions for clean code and code coverage practices. An
action describes a change on a single file and whether it follows a given coding practice.

Coding practice Healthy action Harmful action Repairing action

Clean code Does not add nor re-
moves code smells

Adds more code smells
than it removes

Removes more code
smells than it adds

Code coverage The file’s coverage was
above a set threshold
(by default 80%), and
the action does not re-
duce the coverage

Decreases the coverage
of the file

The file’s coverage was
below a set thresh-
old, and the action in-
creases it

Then, Themis categorizes these actions in the three aforementioned categories—
healthy, harmful, or repairing—depending on the impact of the developer’s change
on the corresponding coding practice.

To further illustrate how Themis defines actions and categorizes them, the list-
ings 1 and 2 present two versions (before and after, respectively) of two JavaScript
files that have been changed through a single commit. This simple source code
aims to create customers with first and last names. The second version adds a
type check on one of the parameters. The green and red marks on the left of the
listing represents whether the line is executed by a test or not, respectively (only
line 4 in listing 2 is not executed by a test). The underlined line of code (line 3 in
listing 1) has a code smell: a logging library should be used instead of console.log.
Note that these adornments shown in the IDE are added by the code coverage and
code smell analysis tools and are shown for all such issues in the code (not just
for the code the developer commits).

1 // Customer.js
2 function createCustomer(firstName , lastName) {
3

:::::::
console

:
.
:::
log

::
("

:
a
:::::::::
customer

::::
was

::::::
saved

::
")

:
;

4 return { firstName , lastName }
5 }
6
7 // TestCustomer.js
8 function testCreateCustomer () {
9 var customer = createCustomer("Bob", "Sponge");

10 assert(customer.firstName).equals("Bob");
11 }

Listing 1 First version of two JavaScript files: one that contains a simple function to create
a customer and another one that tests it.

1 // Customer.js
2 function createCustomer(firstName , lastName) {
3 if (!_.isString(firstName)) {
4 throw "The customer needs a first name"
5 return { firstName , lastName }
6 }
7
8 // TestCustomer.js
9 function testCreateCustomer () {

10 var customer = createCustomer("Bob", "Sponge");
11 assert(customer.firstName).equals("Bob");
12 assert(customer.lastName).equals("Sponge");



Individual Feedback, Gamification, and Developers Engagement 13

Fig. 4 Action feed for the developer Pierre. The first commit contain one harmful and one
healthy action. The harmful action violates one rule (as indicated by the +1). The second
commit contain one repairing action that removes two rule violations (as indicated by the -2).

13 }

Listing 2 Second version of the two JavaScript files. A type check was added in
createCustomer, and the value of lastName is now checked in the test.

By analysing this commit (from listing 1 to listing 2), Themis creates and
categorizes the three following actions:

– A repairing clean code action is created for Customer.js—the console.log call-in
line 3 was removed.

– A healthy clean code action is created for TestCustomer.js—the new line does
not introduce or remove bad smells.

– A harmful code coverage action is created for Customer.js—the added line (line
4) is not covered by the test.

We mentioned in Section 3 that the design of Themis was improved between our
two case studies. The concept of identifying developer actions remained the same,
but its implementation was refined. The granularity of the actions was initially
much finer: each instance of an added or removed code smell resulted in a positive

or negative action, respectively. For example, removing a line of code that had
three code smells was tagged with three positive actions. In the refined version
of Themis, it is just tagged with a “repairing clean code action”, which we found
was easier for developers to follow. Also, the concept of healthy actions did not
exist previously, so if developers wrote code that did not contain any code smells,
this information did not appear in Themis. We found that showing healthy actions
helps motivate developers to avoid adding code smells.

Themis was designed to be used mainly by developers. The main view shown
to a developer when they open Themis contains a summary of their number of
healthy, harmful, and repairing actions in each of the projects they contribute to,
and an action feed listing their last actions, as illustrated in Figure 4.

When they perform harmful actions, developers can click on the action to see
the infringing code and, in the case of harmful and repairing clean code practices,
they can view a detailed description of the rules they broke and see examples that
show how to rewrite the code in a compliant format.



14 Matthieu Foucault et al.

4.2 Advantages and Limits of the Themis Individual Feedback Model

To better engage developers in improving the software quality, we propose indi-
vidual feedback to developers that may be perceived as more actionable. The core
idea is that information about the quality of the code changed in a particular de-
veloper’s commits should be highlighted in their code quality report, as opposed
to presenting information about the quality of all of the code, especially code the
developer didn’t touch.

In both case studies, Themis was introduced in the teams’ development envi-
ronments and the use of the tool was voluntary. Out of the 14 developers that used
Themis and participated in our surveys or interviews, 12 reported looking at the
Themis feed at least once a day, most of those either first thing in the morning or
after lunch. Below we report the themes that appeared in our classification of the
developers’ answers to our survey and interviews.

4.2.1 Individual Feedback Brings Self Evaluation

Individual feedback is perceived by participants as a mechanism to perform a bet-
ter self evaluation: “I really see what I did myself, but on our linter we have everything

that is raised’. It is more personal, therefore it’s better.”[d12], although this report
of being “better” is highly subjective and not shared by all developers. Develop-
ers reported using the action feed to “evaluate [their] work very quickly” [d6] and
“see [their] areas for improvement” [d1]. Overall, the developers felt that individual
feedback allowed them to see whether they followed the good coding practices.
They didn’t have to filter through information that is reported by the analysis
tools, i.e., code that they did not write—the developers could therefore identify
how they followed the coding practices.

4.2.2 Individual Feedback Raises Awareness

Participants reported that individual feedback makes software quality more con-
crete, and therefore raises awareness: “The individual feedback helped [them be] aware

of the importance of some practices”.[d13] One participant even reported that he “did
not think about following the practices everyday ”[d12], expressing the fact that in-
dividual feedback now reminds him to follow the practices. However, the message
transmitted within the feedback should be as clear as possible for the developers
to take advantage of them. One participant said that “sometimes he can’t find the

errors that cause the harmful actions in the source code”.[d15] The feedback should
therefore be meaningful otherwise it may quickly be considered as “noise”.

4.2.3 Few Learning of Good Coding Practices

Most participants reported that they already knew the coding practices, and there-
fore did not acquire new knowledge. However, some participants did report that
they learned some coding rules, particularly related to code smells. One participant
explicitly mentioned the “correction templates”[d16] as an important part of the tool
when it comes to learning new rules. The participant also reported that he “was

not convinced with some rules.”[d16]. An interesting tidbit is that the correction



Individual Feedback, Gamification, and Developers Engagement 15

templates (small examples explaining how to fix the rule) as well as the rules are
provided by the program analysis tools (such as SonarQube), and not by Themis.
Themis only presents them within the individual feedback. These comments from
d16 show however that the developers pay more attention to the rules thanks to
the individual feedback.

4.2.4 More Caution to Code Quality in Coding Habits

We identified two factors that changed the behaviors of developers: the increased
awareness and knowledge mentioned above, and the fact that the quality of one’s
work was attached to their actions (“the harmfulness can only increase, not decrease”

[d12]). A participant explained how the feedback from Themis lead them to follow
good coding practices: “It does not disrupt the development process, on the contrary.

When we code we think about not creating any harmful actions, therefore we have less

[negative] feedback, and we spend less time fixing mistakes.”[d12] In both iterations of
the study, developers reported paying “specific attention every day before commit-

ting code” [d2] as well as using “quality measurement tools available to [them] before

committing [their] code.” [d6] This effect is also seen with the monitoring of code
coverage as one developer reported: “We force ourselves to add unit tests, we are

more careful.”[d13]

4.2.5 Quality Is Promoted As A Teamwork Concern

One participant mentioned that “I go to check which issues are triggered the most,

and I send a message to the whole team to explain how it should be done.”[m12] Some
participants also use monitoring features to update and communicate with their
co-workers: “the actions reports at the end of the sprint [...] are useful to me in order

to [...] provide reminders to the team or individuals, if needed.” [m3] This shows that
individual feedback is not only individual but also promote collaboration. One
participant clearly express that point: “It gives birth to team discussion with the goal

to promote and disseminate good coding practices.”[d15]

5 Gamification

In this section we first describe the gamification model we propose with the main
objective to increase intrinsic motivation based on extrinsic motivators (Deterding
et al, 2011). We then describe our findings relevant to the use of this gamification
model in our case study.

5.1 The Gamification Model of Themis

The gamification aspect is an opt-in feature: if a developer wants to use the gam-
ification layer and compete, they can join (or create) a game room. A game room

gathers a set of developers that participate in a game and agree to share their
scores and be ranked in a shared leaderboard. This game room concept was de-
signed after analyzing the feedback we received from the first case study conducted
with Pôle Emploi, where we found that developers prefer to have the freedom to



16 Matthieu Foucault et al.

Fig. 5 A game room where six developers are playing.

join a game (or not) and feel more confident when they know who can (and cannot)
see their scores and rankings. Figure 5 presents the game room view.

Our gamification model provides developers with two different games. The first
game consists of a way to earn points and achieve levels in the game— the more
healthy and repairing actions a developer performs (in terms of code smells and
test coverage), the more points they earn. By default, harmful actions do not lead
to a developer losing points, but this option can be configured for a more difficult
game if they wish. These points and levels are a measure of how well someone does
with respect to good coding practices.

The second game supports developers in winning badges based on the type of
actions a developer performs. There are five type of badges, each with three levels
(bronze, silver, gold) and harder requirements for each level:

– Steadfast: the developer must perform a streak of actions that are either
healthy or repairing.

– Samaritan: the developer must perform a specified number of repairing ac-
tions.

– Meticulous: the developer must perform less than a specified number of harm-
ful actions.

– Fair: the developer must perform a given number of healthy actions.
– Accomplished: the developer must receive a combination of all the other

badges to achieve this badge. Furthermore, to have a silver or gold accom-
plished badge, the developer must have the four other silver (or better) or gold
badges, respectively.

The ranking in a room is shown thanks to a leaderboard. The ranking is com-
puted by badges first (similar to the Olympic Games), and, in case of equal-
ity (same badges), the levels are used. Figure 6 presents Camille’s rankings and
badges: she is at level 10 with 450 points (next level is 660 points), has four bronze
badges, and the silver Samaritan badge. She is first in the room because she has



Individual Feedback, Gamification, and Developers Engagement 17

Fig. 6 Camille’s level and badges.

more badges than the other players. Pierre (4th in the ranking) is level 10 but has
less badges than Camille, Nicolas and Jean.

To make the room more fun, the badges are periodically reset, which allows
new players to join games and challenge the more experienced players.

As mentioned above, the gamification feature was not opt-in in the first version.
The game was also much simpler: each positive action gave points to the developer,
while each negative action they performed reduced their points. The developers in
our study found this to be rather tedious and it led to a “rat race” where the best
scores could be obtained by performing mass corrections of code smells. Although
the game was different between the two versions, much of the feedback we received
was relevant to our second research question, and thus we report it below.

5.2 Gamification Findings

Here we present the findings of the survey and interviews that consider the gami-
fication layer in Themis.

5.2.1 Gamification Affects Mood (mostly positively)

The team leads and developers from our study were instrumental in setting a
positive culture for the use of gamification. In particular, the teams did not take
“the game” too seriously and they enjoyed an atmosphere of playfulness, as one of
the developers shared with us: “[The game room] allows [us] to figure out who will

bring chocolate croissants at the end of the sprint”. [d5] Rather than saying a certain
developer was “last”, they could joke that they owed the team chocolate croissants.
Participants found the gamification fun without it being a clear motivator: “the
badges themselves are not a goal [that I have], but it’s fun, especially to obtain those

we never had ” [d11] Across all the developers who agreed to answer our survey
or participate in the interviews, only one person did not wish to use the Themis

gamification feature: “I don’t really like the idea of a game room. [...] I think it is a pity

that you need to have a reward to code properly.” [d7] Such consideration shows that
gamification must be an opt-in feature, and no one should be forced to participate
in a game room.



18 Matthieu Foucault et al.

5.2.2 Leaderboard and Badges Induce Comparison

Some developers mentioned using the leaderboard to “position [themselves] rela-

tively to [their] colleagues, not with the goal to show that [they are] better than them,

but to see if [they are] as good as them.” [d6] The gamification then promotes good
coding practices and induces personal or team challenges: “I use levels and badges

to challenge myself in the team” [d15]. One participant clearly expressed that com-
municating about healthy actions is gratifying: “There is a better consideration of

the healthy actions. The transparency of the game room calls for meticulousness.”[d1]
Some participants did not necessarily see the badges as a motivator, but looked
at the game room to check whether they produced the same level of code quality
as their teammates. One developer said that “by following Themis’ suggestions, the

badges always end up coming” [d16].

5.2.3 Game Goals Impact Project Goals

We found that many developers were “competitive” by nature and that they felt
the extrinsic reward of the game was a motivator to improve their code quality
and perform corrective actions. These developers reported that the levels and
badges were the first items they would look at when using Themis, and that they
would make code changes that were clearly motivated by badges rewards. The
main strategy used to win badges was to be opportunistic: “We use our linter to

fix the mistakes in the code and thus win points. We do this mainly in the classes we

are working on.” [d14] This strategy was mentioned by several developers who all
pointed out that they limited themselves to performing repairing actions in the
vicinity of the source code they were already modifying. A participant pointed
to a possible adverse effect of gamification: “some people spend time fixing classes

that are historically not modified only to win a few points when they have pending

development/debugging [tasks].” [d5] However, this negative feedback was mitigated
by our discussions with the team leads, who assured us that this behavior was
incidental at worst. Further, we didn’t hear of any other strategies used to win
points and the team leads we interviewed confirmed that they “did not observe any

unconventional behavior to win points or badges.” [m11]

5.2.4 Game Design Matters

We already explained that the first version of Themis deployed at Pôle Emploi
had a poor game design (kind of rat race). In particular, one participant expressed
the fact that: “a large difference of levels may discourage developers to play, and even

make them stopping their engagement in software quality.”[d3] This is why we decided
to provide a brand new game design with more games in the second version of
Themis. Some bugs in the game design or in the tool may frustrate developers and
even change their behavior. For instance, in the second version of Themis, a bug
was affecting wrong actions in case of git merge. A developer complained about
this bug: “The merge bug made me lose some healthy actions. It prevented me to be

first”.[d12] Another developer even changed his way of making commits: “There is a

bug with the git merge, so I try not to merge anymore”[d14] We therefore quickly fixed
that bug to avoid more frustration. The current game design considers that the
developers all perform quite the same amount of work. However one participant



Individual Feedback, Gamification, and Developers Engagement 19

noted that “The level and the badges are biased because they depend on your number

of commits. However one may work part-time”[d15]

6 The Two Major Impediments

In this section, we present the two major impediments we came across to deploy
our solution in an industrial context. The insights we present in this section were
discussed during the follow-up interviews with the managers of Pôle Emploi and
Sopra-Steria.

6.1 Developers Need a Clear Understanding of How the Data Is Used

Managers may have access to a variety of information, such as the number of
harmful actions performed by a team or an individual. Although this information
is available in other tools, the way it is presented in Themis—showing “good” and
“bad” actions—may make it easier for leads to evaluate a developer’s “skill” or
to judge the “quality” of their work. Evaluations that are based on such limited
information can not only be inaccurate, but they can also pose a major ethical
issue.

That said, we did not hear any concern with this potential misuse of the data
in either case study we conducted. Before Themis was deployed in the first case
study, the issue was briefly and informally raised with managers of the company,
but no formal document was created to define a data usage policy. In the second
case study, the company defined a data usage policy in a more formal manner,
and developers were made aware of it during a presentation before Themis was
introduced to them

However, in both case studies, developers reported that they were initially
worried about being evaluated through Themis. This fear of being evaluated quickly
disappeared when the developers understood that the goal of the tool was to help
them, and that no performance assessment was going to be made. Nevertheless,
this initial fear is an important issue that needs to be addressed if similar tools
are to be deployed in other settings.

As the designers of Themis, we are also preparing a generic data usage policy
to ensure that the conditions of data usage are well defined. This policy will be
provided to companies wishing to use the tool in the future. We also intend to
make the policy directly visible to users in Themis, such as when the tool starts
up. This is particularly important as future users of Themis may not be available
for a demonstration of the tool and presentation of these policies, or they may join
the teams that use the tool after it is introduced.

6.2 An Organizer Should Facilitate the Gamification

Both Individual Feedback and Gamification aim to improve the engagement in
Software quality. These two concepts rely on human aptitudes and therefore should
be organized and facilitated.



20 Matthieu Foucault et al.

Based on our experiment, we observed that one member of the team should play
a specific role, we named organizer. The organizer has the responsibility to make all
the developers react to the individual feedback they receive. At the beginning, the
organizer should therefore explain to all the developers how to read the individual
feedback and react to it. We further observed that some developers prefer to
receive feedback after each commit, although others want to be notified once or
twice a day at most. The organizer should therefore explain the developer how
to configure their feeds. Regarding gamification, the organizer should create a
positive atmosphere and involve the developers in game rooms. They should also
put some rhythm into the game by resetting the score or adding some challenges.

It should be noted that this role of organizer appeared organically at Sopra-
Steria. Two developers (technical leads) were so enthusiastic that they deliberately
decided to organize the team. Thanks to the discussion with the manager of Sopra-
Steria, we realized that this role was mandatory. Likewise, the discussion with the
manager of Pôle Emploi brought up the lack of an organizer as an issue in their
case. We therefore now ask for volunteers that want to play this role when we
deploy Themis in a new industrial context.

7 Limitations

There are inevitably a number of limitations with our study, some of which are
specific to our chosen research methodology. We discuss the limitations and the
steps we took to offset them.

Throughout our study, the tool researchers and designers were actively involved
in the development and evaluation of the tool. We recognize that this active role of
the researcher may have positively influenced the attitudes of the developers and
managers towards the tool in the survey and follow-up questions. It even may have
changed how they used the tool. This limitation is an artifact of our design science
research methodology as the role “of the researcher is central and desirable, rather

than being a dismaying incursion of subjectivity that is a threat to validity.” (Sedlmair
et al, 2012) Indeed, the close knowledge of the teams and their needs informed the
design of the tool so that it would solve their specific problems, and it influenced
the nature of the questions asked and how they were phrased in the survey and
interviews. This contextual knowledge was also instrumental in the analysis of the
responses we received.

The developers might have been subject to the “social desirability bias” when
answering questions in the interviews. Therefore, they might have exaggerated
when reporting how often they use the tool and how useful it is. The novelty of
the tool and some of the graphical aspects of the user interface are also confounding
factors to take into account. Several developers expressed the fact that Themis was
“prettier” than other tools as one of the reasons why they would use it. Although
participants clearly indicated that the individual feedback was essential, regardless
of its graphical presentation, this is a mitigating factor that needs to be kept in
mind when evaluating our findings.

We acknowledge that only 8 out of 14 developers answered our survey in the
first case study, and only 6 out of 40 developers participated in our interviews in
the second case study. We recognize that other developers may have a different
experience and that developers that did not like the tool features may not have



Individual Feedback, Gamification, and Developers Engagement 21

participated in our studies. However, the findings we report are consistent with
the managers’ point of view of their developers’ opinions on Themis.

Finally, we hope that the description of the tool given in this paper is suffi-
ciently detailed should other researchers wish to implement and evaluate a similar
system. Additional screenshots from Themis are available online7.

8 Conclusion and Future Work

Organizations that own legacy software systems aim to improve the quality of their
source code. To that extent they may focus on two quality metrics: the number
of code smells and the level of test coverage. Based on these metrics they further
promote their developers to follow good coding practices such as avoiding any new

code smell or reaching a 85% code coverage.
Facing some difficulties, two such organizations (Pôle Emploi and Sopra Steria)

asked us to help them to better engage their developers in following these practices.
During 2 years we then worked with them to develop an approach that lies on two
well known concepts: Individual Feedback and Gamification.

Our case study shows that individual feedback provides a true added value to the
developers as it motivates them in an actionable manner to improve the quality of
their code. For instance when a developer receives an individual feedback explain-
ing that a violation has just been created, the developer is naturally encouraged
to fix it.

Regarding gamification, our case study that such a concept may bring fun and
then motivate the developers to take a better attention to software quality. How-
ever, even if the use of gamification in software engineering is gaining momentum,
our study also shows that not all developers want to join in a game, and therefore
forcing gamification introduces a lot of risks. Our study further shows that game
design has a huge impact on the benefits that gamification may bring. We then feel
that much more research is needed into the benefits and risks of gamification, while
at the same time there are more tasks in software engineering where gamification
could be introduced.

Further, we learnt that deploying individual feedback and gamification within a
company raises some concerns regarding scrutiny. The developers fear their man-
agers to use these concepts for management purposes (i.e. pay increase). We there-
fore recommend the manager to clearly express the fact that they won’t use these
mechanisms for performance monitoring. Finally, we also observed that these con-
cepts require to be organized, and then recommend a developer to play that role
of organizer.

As future work, we plan to conduct a longitudinal study, integrating quantitative
elements such as usage statistics or project-level metrics, of individual feedback
and gamification use, which could provide insights about how these mechanisms
may be used over time and the impact of them on long-term code quality. Will
these mechanisms succeed in motivating developers to follow good coding practices
over one or two years of a project, or will the novelty wear off? Additionally, are
there adverse effects of using individual feedback or gamification? Does it induces
a loss of “collective” code knowledge as developers only see feedback about their

7 http://promyze.com/themis



22 Matthieu Foucault et al.

own code? Does it foster bad developer behavior as there might be some developers
that prefer earning badges than performing pending tasks?

We further agree with Pedreira et al (2015) that there is a need for comparative

studies and that we should strive to conduct studies of developers doing the same
task in a gamified and a non-gamified manner, or with gamification realized in dif-
ferent ways. However, we note that doing so is very difficult due to many possible
confounding factors such as age, gender, experience of the developers, team spirit
and size. For instance, in our studies, most of the developers were male, between
the age of 25-34, and many on the team already played games. The success of
gamification in our context may have been in part due to age, as Dorling et al.
note that Generation Y users appreciate clear goals, trackable progress, and social
rewards (Dorling and McCaffery, 2012). In terms of gender, Gneezy et al (2003)
and Vasilescu (2014) found some differences in how females participate within
the gamified Stack Overflow environment. With a larger sample of participants,
we may see differences in how females respond to the gamification of good coding
practices. Personality is another consideration, as one manager noted: “Some de-

velopers have a more discreet nature and gamification may not be a good motivator for

these ones” [m2].
In the meantime, we hope that our findings from this study will prove useful to

both researchers and practitioners interested in the role of gamification in software
engineering and how individual feedback can motivate developers to follow good
coding practices.

Acknowledgements: We thank our research participants and Cassandra Petra-
chenko for improving our paper.

References

Anderson JR, Corbett AT, Koedinger KR, Pelletier R (1996) Cognitive tutors:
lessons learned. URL https://hal.archives-ouvertes.fr/hal-00699789, aRI
Research Note 96-66

Andrews JH, Briand LC, Labiche Y, Namin AS (2006) Using Mutation Analysis
for Assessing and Comparing Testing Coverage Criteria. IEEE Transactions on
Software Engineering 32(8):608–624, DOI 10.1109/TSE.2006.83

Arai S, Sakamoto K, Washizaki H, Fukazawa Y (2014) A Gamified Tool for Mo-
tivating Developers to Remove Warnings of Bug Pattern Tools. In: Proceedings
of the 2014 6th International Workshop on Empirical Software Engineering in
Practice, IEEE Computer Society, Washington, DC, USA, IWESEP ’14, pp 37–
42, DOI 10.1109/IWESEP.2014.17, URL http://dx.doi.org/10.1109/IWESEP.

2014.17

Ayewah N, Hovemeyer D, Morgenthaler JD, Penix J, Pugh W (2008) Using Static
Analysis to Find Bugs. IEEE Software 25(5):22–29, DOI 10.1109/MS.2008.130

Azevedo R, Bernard RM (1995) A meta-analysis of the effects of
feedback in computer-based instruction. Journal of Educational Com-
puting Research 13(2):111–127, DOI 10.2190/9LMD-3U28-3A0G-FTQT,
URL https://doi.org/10.2190/9LMD-3U28-3A0G-FTQT, https://doi.org/10.

2190/9LMD-3U28-3A0G-FTQT

Barik T, Murphy-Hill E, Zimmermann T (2016) A perspective on blending pro-
gramming environments and games: Beyond points, badges, and leaderboards.



Individual Feedback, Gamification, and Developers Engagement 23

In: 2016 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pp 134–142, DOI 10.1109/VLHCC.2016.7739676

Beck K, Fowler M, Beck G (1999) Bad smells in code. Refactoring: Improving the
design of existing code pp 75–88, URL http://www-public.tem-tsp.eu/~gibson/

Teaching/Teaching-ReadingMaterial/BeckFowler99.pdf

Beecham S, Baddoo N, Hall T, Robinson H, Sharp H (2008) Motivation in Soft-
ware Engineering: A systematic literature review. Information and Software
Technology 50(9–10):860–878, DOI 10.1016/j.infsof.2007.09.004, URL http:

//www.sciencedirect.com/science/article/pii/S0950584907001097

Beller M, Bholanath R, McIntosh S, Zaidman A (2016) Analyzing the State
of Static Analysis: A Large-Scale Evaluation in Open Source Software. In:
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol 1, pp 470–481, DOI 10.1109/SANER.2016.105

Bennett KH (1995) Legacy Systems: Coping with Success. IEEE Software 12:19–23
Christakis M, Bird C (2016) What Developers Want and Need from Program

Analysis: An Empirical Study. In: Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering, ACM, New York,
NY, USA, ASE 2016, pp 332–343, DOI 10.1145/2970276.2970347, URL http:

//doi.acm.org/10.1145/2970276.2970347

Curtis B, Sappidi J, Szynkarski A (2012) Estimating the Principal of an
Application’s Technical Debt. IEEE Software 29(6):34–42, DOI http://doi.
ieeecomputersociety.org/10.1109/MS.2012.156

Dal Sasso T, Mocci A, Lanza M, Mastrodicasa E (2017) How to gamify soft-
ware engineering. In: Software Analysis, Evolution and Reengineering (SANER),
2017 IEEE 24th International Conference on, IEEE, pp 261–271, URL http:

//ieeexplore.ieee.org/abstract/document/7884627/

Deci EL, Koestner R, Ryan RM (1999) A meta-analytic review of experiments
examining the effects of extrinsic rewards on intrinsic motivation. Psychological
Bulletin 125(6):627–668, DOI 10.1037/0033-2909.125.6.627

Deterding S, Dixon D, Khaled R, Nacke L (2011) From Game Design Elements
to Gamefulness: Defining ”Gamification”. In: Proceedings of the 15th Inter-
national Academic MindTrek Conference: Envisioning Future Media Environ-
ments, ACM, New York, NY, USA, MindTrek ’11, pp 9–15, DOI 10.1145/
2181037.2181040, URL http://doi.acm.org/10.1145/2181037.2181040

Dorling A, McCaffery F (2012) The gamification of SPICE. In: International
Conference on Software Process Improvement and Capability Determination,
Springer Berlin Heidelberg, pp 295–301

Fjóla Tómasdóttir K, Finavaro Aniche M, van Deursen A (2017) Why and How
JavaScript Developers Use Linters. In: 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering

França ACC, Gouveia TB, Santos PCF, Santana CA, Silva FQBd (2011) Moti-
vation in software engineering: A systematic review update. In: 15th Annual
Conference on Evaluation Assessment in Software Engineering (EASE 2011),
pp 154–163, DOI 10.1049/ic.2011.0019

Gneezy U, Niederle M, Rustichini A, others (2003) Performance in competitive en-
vironments: Gender differences. QUARTERLY JOURNAL OF ECONOMICS-
CAMBRIDGE MASSACHUSETTS- 118(3):1049–1074

Hall T, Sharp H, Beecham S, Baddoo N, Robinson H (2008) What do we know
about developer motivation? IEEE software 25(4):92



24 Matthieu Foucault et al.

Inozemtseva L, Holmes R (2014) Coverage is Not Strongly Correlated with Test
Suite Effectiveness. In: Proceedings of the 36th International Conference on
Software Engineering, ACM, New York, NY, USA, ICSE 2014, pp 435–445, DOI
10.1145/2568225.2568271, URL http://doi.acm.org/10.1145/2568225.2568271

Johnson B, Song Y, Murphy-Hill E, Bowdidge R (2013) Why Don’t Software
Developers Use Static Analysis Tools to Find Bugs? In: Proceedings of the
2013 International Conference on Software Engineering, IEEE Press, Piscat-
away, NJ, USA, ICSE ’13, pp 672–681, URL http://dl.acm.org/citation.cfm?

id=2486788.2486877

Letouzey JL, Ilkiewicz M (2012) Managing Technical Debt with the SQALE
Method. IEEE Software 29(6):44–51, DOI 10.1109/MS.2012.129

Miller JC, Maloney CJ (1963) Systematic Mistake Analysis of Digital Computer
Programs. Commun ACM 6(2):58–63, DOI 10.1145/366246.366248, URL http:

//doi.acm.org/10.1145/366246.366248

Mockus A, Nagappan N, Dinh-Trong TT (2009) Test coverage and post-verification
defects: A multiple case study. In: 2009 3rd International Symposium on Empir-
ical Software Engineering and Measurement, pp 291–301, DOI 10.1109/ESEM.
2009.5315981

Nadler DA (1979) The effects of feedback on task group behavior: A review of
the experimental research. Organizational Behavior and Human Performance
23(3):309–338

Pedreira O, Garćıa F, Brisaboa NR, Piattini M (2015) Gamification in soft-
ware engineering - A systematic mapping. Information & Software Technol-
ogy 57:157–168, DOI 10.1016/j.infsof.2014.08.007, URL http://dx.doi.org/10.

1016/j.infsof.2014.08.007

Prause CR, Jarke M (2015) Gamification for Enforcing Coding Conventions. In:
Proceedings of the 2015 10th Joint Meeting on Foundations of Software En-
gineering, ACM, New York, NY, USA, ESEC/FSE 2015, pp 649–660, DOI
10.1145/2786805.2786806, URL http://doi.acm.org/10.1145/2786805.2786806

Rojas JM, White TD, Clegg BS, Fraser G (2017) Code Defenders: Crowdsourcing
Effective Tests and Subtle Mutants with a Mutation Testing Game. In: Proceed-
ings of the 39th International Conference on Software Engineering, IEEE Press,
Piscataway, NJ, USA, ICSE ’17, pp 677–688, DOI 10.1109/ICSE.2017.68, URL
https://doi.org/10.1109/ICSE.2017.68

Schooler LJ, Anderson JR (1990) The disruptive potential of immediate feedback.
In: Proceedings of the twelfth annual conference of the Cognitive Science Society,
pp 702–708

Seaborn K, Fels DI (2015) Gamification in theory and action: A survey. In-
ternational Journal of Human-Computer Studies 74:14–31, DOI 10.1016/j.
ijhcs.2014.09.006, URL http://www.sciencedirect.com/science/article/pii/

S1071581914001256

Sedlmair M, Meyer M, Munzner T (2012) Design study methodology: Reflections
from the trenches and the stacks. IEEE Transactions on Visualization and Com-
puter Graphics 18(12):2431–2440

Singer L, Schneider K (2012) It Was a Bit of a Race: Gamification of Ver-
sion Control. In: Proceedings of the Second International Workshop on Games
and Software Engineering: Realizing User Engagement with Game Engineer-
ing Techniques, IEEE Press, Piscataway, NJ, USA, GAS ’12, pp 5–8, URL
http://dl.acm.org/citation.cfm?id=2663700.2663702



Individual Feedback, Gamification, and Developers Engagement 25

Snipes W, Nair AR, Murphy-Hill E (2014) Experiences Gamifying Developer
Adoption of Practices and Tools. In: Companion Proceedings of the 36th In-
ternational Conference on Software Engineering, ACM, New York, NY, USA,
ICSE Companion 2014, pp 105–114, DOI 10.1145/2591062.2591171, URL http:

//doi.acm.org/10.1145/2591062.2591171

Spencer D (2009) Card sorting: Designing usable categories. Rosenfeld Media
Tikir MM, Hollingsworth JK (2002) Efficient Instrumentation for Code Coverage

Testing. SIGSOFT Softw Eng Notes 27(4):86–96, DOI 10.1145/566171.566186,
URL http://doi.acm.org/10.1145/566171.566186

Vasilescu B (2014) Human aspects, gamification, and social media in collabora-
tive software engineering. In: Companion Proceedings of the 36th International
Conference on Software Engineering, ACM, pp 646–649

Williams TW, Mercer MR, Mucha JP, Kapur R (2001) Code coverage, what does
it mean in terms of quality? In: Annual Reliability and Maintainability Sym-
posium. 2001 Proceedings. International Symposium on Product Quality and
Integrity (Cat. No.01CH37179), pp 420–424, DOI 10.1109/RAMS.2001.902502


