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Abstract

Sparse linear regression methods generally have a free hyperpa-
rameter which controls the amount of sparsity, and is subject to a
bias-variance tradeoff. This article considers the use of Aggregated
hold-out to aggregate over values of this hyperparameter, in the con-
text of linear regression with the Huber loss function. Aggregated
hold-out (Agghoo) is a procedure which averages estimators selected
by hold-out (cross-validation with a single split). In the theoretical
part of the article, it is proved that Agghoo satisfies a non-asymptotic
oracle inequality when it is applied to sparse estimators which are
parametrized by their zero-norm. In particular, this includes a variant
of the Lasso introduced by Zou, Hastié and Tibshirani [49]. Simula-
tions are used to compare Agghoo with cross-validation. They show
that Agghoo performs better than CV when the intrinsic dimension
is high and when there are confounders correlated with the predictive
covariates.

1 Introduction

From the statistical learning point of view, linear regression is a risk-minimization
problem wherein the aim is to minimize the average prediction error φ(Y −
θTX) on a new, independent data-point (X, Y ), as measured by a loss func-
tion φ. When φ(x) = x2, this yields classical least-squares regression; how-
ever, Lipschitz-continuous loss functions have better robustness properties
and are therefore preferred in the presence of heavy-tailed noise, since they
require fewer moment assumptions on Y [8, 20]. Similarly to the L2 norm
in the least-squares case, measures of performance for estimators can be de-
rived from robust loss functions by substracting the risk of the (distribution-
dependent) optimal predictor, yielding the so-called excess risk.
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In the high-dimensional setting, where X ∈ Rd with potentially d > n,
full linear regression cannot be achieved in general: the minimax excess risk
is bounded below by a positive function of d

n
(proposition 2.2). Stronger

assumptions on the regression coefficient θ are needed in order to estimate it
consistently.

A popular approach is to suppose that only a small number k∗ of covari-
ates are relevant to the prediction of Y , so that θ may be sought among
the sparse vectors with less than k∗ non-zero components. Estimators which
target such problems include the Lasso [36], least-angle regression [11] (a sim-
ilar, but not identical method [16, Section 3.4.4]), and stepwise regression [16,
Section 3.3.2]. In the robust setting, variants of the Lasso with robust loss
functions have been investigated by a number of authors [22, 34, 6, 44].

Such methods generally introduce a free hyperparameter which regulates
the ”sparsity” of the estimator; sometimes this is directly the number of non-
zero components, as in stepwise procedures, sometimes not, as in the case of
the Lasso, which uses a regularization parameter λ. In any case, the user is
left with the problem of calibrating this hyperparameter.

Several goals are conceivable for a hyperparameter selection method, such
as support recovery - finding the ”predictive” covariates - or estimation of
a ”true” underlying regression coefficient with respect to some norm on Rd.
From a prediction perspective, hyperparameters should be chosen so as to
minimize the risk, and a good method should approach this minimum. As
a consequence, the proposed data-driven choice of hyperparameter should
allow the estimator to attain all known convergence rates without any a
priori knowledge, effectively adapting to the difficulty of the problem.

For the Lasso and some variants, such as the fused Lasso, Zou, Wang, Tib-
shirani and coauthors have proposed [49] and investigated [43, 38] a method
based on Mallow’s Cp and estimation of the ”degrees of freedom of the Lasso”.
However, consistency of this method has only been proven [43] in an asymp-
totic setting where the dimension is fixed while n grows, hence not the setting
considered here. Moreover, the method depends on specific properties of the
Lasso, and may not be readily applicable to other sparse regression proce-
dures.

A much more widely applicable procedure is to choose the hyperparame-
ter by cross-validation. For the Lasso, this approach has been recommended
by Tibshirani [37], van de Geer and Lederer [39] and Greenshtein [13], among
many others. More generally, cross-validation is the default method for cali-
brating hyperparameters in practice. For exemple, R implementations of the
elastic net [12] (package glmnet), LARS [11] (package lars) and the huber-
ized lasso [48] (package hqreg) all incorporate a cross-validation subroutine
to automatically choose the hyperparameter.
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Theoretically, cross-validation has been shown to perform well in a variety
of settings [1]. For cross-validation with one split, also known as the hold-out,
and for a bagged variant of v-fold cross-validation [23], some general oracle
inequalities are available in least squares regression [26, Corollary 8.8] [46]
[23]. However, they rely on uniform boundedness assumptions on the estima-
tors which may not hold in high-dimensional linear regression. For the more
popular V-fold procedure, results are only available in specific settings. Of
particular interest here is the article [32] which proves oracle inequalities for
linear model selection in least squares regression, since linear model selection
is very similar to sparse regression (the main difference being that in sparse
regression, the ”models” are not fixed a priori but depend on the data). This
suggests that similar results could hold for sparse regression.

However, in the case of the Lasso at least, no such general theoretical
guarantees exist, to the best of our knowledge. Some oracle inequalities
[23, 30] and also fast rates [17, Theorem 1] have been obtained, but only
under strong distributional assumptions: [23] assumes that X has a log-
concave distribution, [30] that X is a gaussian vector, and [17, Theorem 1]
assumes that there is a true model and that the variance-covariance matrix
is diagonal dominant. Recently, Chetverikov et al. [7] have obtained fast
rates (up to log-terms) for a certain class of conditional distributions (of
Y given X) which are smooth transformations of Gaussian distributions.
In contrast, there are also theorems [5] [17, Theorem 2] which make much
weaker distributional assumptions but only prove convergence of the (in-

sample) error at the ”slow” rate O(r
√

log d
n

) or slower. Though this rate is

basically minimax [33] for the model

Y = 〈X, θ∗〉+ ε,E[ε|X] = 0,E[ε2|X] ≤ 1, X ∈ Rd, ‖θ∗‖`1 ≤ r, (1)

a hyperparameter selection method should adapt also to the favorable cases
where the Lasso converges faster ([21, Theorem 14]); these results do not
show that CV has this property.

Thus, the theoretical justification for the use of standard CV, which se-
lects a single hyperparameter by minimizing the CV risk estimator, is some-
what lacking. In fact, two of the articles mentioned above introduce variants
of CV which modify the final hyperparameter selection step; a bagged CV
in [23] and the aggregation of two hold-out predictors in [5]. In practice
too, there is reason to consider alternatives to hyperparameter selection in
sparse regression: sparse estimators are unstable, and selecting only one esti-
mator can result in arbitrarily ignoring certain variables among a correlated
group with similar predictive power [47]. For the Lasso, these difficulties
have motivated researchers to introduce several aggregation schemes, such

3



as the Bolasso [3], stability selection [27], the lasso-zero [9] and the random
lasso [45], which are shown to have some better properties than the standard
Lasso.

Since aggregating the Lasso seems to be advantageous, it seems logical
to consider aggregation rather than selection to handle the free hyperpa-
rameters. In this article, we consider the application to sparse regression
of the aggregated hold-out procedure. Aggregated hold-out (agghoo) is a
general aggregation method which mixes cross-validation with bagging. It is
an alternative to cross-validation, with a comparable level of generality. In
a previous article with Sylvain Arlot and Matthieu Lerasle [25], we formally
defined and studied Agghoo, and showed empirically that it can improve
on cross-validation when calibrating the level of regularization for kernel re-
gression. Though we came up with the name and the general mathematical
definition, Agghoo has already appeared in the applied litterature in combi-
nation with sparse regression procedures [18], among others [42], under the
name ”CV + averaging” in this case.

In the present article, the aim is to study the application of Agghoo to
sparse regression with a robust loss function. Theoretically, assuming an
L∞ − L2 norm inequality to hold on the set of sparse linear predictors, it
is proven that Agghoo satisfies an asymptotically optimal oracle inequality.
This result applies also to cross-validation with one split (the so-called hold-
out), yielding a new oracle inequality which allows norms of the sparse linear
predictors to grow polynomially with the sample size. Empirically, Agghoo
is compared to cross-validation in a number of simulations, which investigate
the impact of correlations in the design matrix and sparsity of the ground
truth on the performance of aggregated hold-out and cross-validation. Ag-
ghoo appears to perform better than cross-validation when the number of
non-zero coefficients to be estimated is not much smaller than the sample
size. The presence of confounders correlated to the predictive variables also
favours Agghoo relative to cross-validation.

2 Setting and Definitions

The problem of non-parametric regression is to infer a predictor t : X → R
from a dataset (Xi, Yi)1≤i≤n of pairs, where Xi ∈ X and Yi ∈ R. The pairs
will be assumed to be i.i.d, with joint distribution P . The prediction error
made at a point (x, y) ∈ X × R is measured using a non-negative function
of the residual φ(y− t(x)). The global performance of a predictor is assessed
on a new, independent data point (X, Y ) drawn from the same distribution
P using the risk L(t) = E[φ(Y − t(X))]. The optimal predictors s are
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characterized by s(x) ∈ argminuE[φ(Y − u)|X = x] a.s. The risk of any
optimal predictor is (in general) a non-zero quantity which characterizes the
intrinsic amount of “noise” in Y unaccounted for by the knowledge of X.
A predictor t can be compared with this benchmark by using the excess
risk `(s, t) = L(t) − L(s). Taking φ(x) = x2 yields the usual least-squares
regression, where s(x) = E[Y |X = x] and `(s, t) = ‖(s− t)(X)‖2

L2 . However,
the least-squares approach is known to suffer from a lack of robustness [20,
Chapter 7]. For this reason, in the field of robust statistics, a number of
alternative loss functions are used. One popular choice was introduced by
Huber [19].

Definition 2.1 Let c > 0. Huber’s loss function is φc(u) = u2

2
I|u|≤c +

c
(
|u| − c

2

)
I|u|>c.

When c→ +∞, φc converges to the least-squares loss. When c→ 0, 1
c
φc

converges to the absolute value loss x→ |x| of median regression. Thus, the
c parameter allows a trade-off between robustness and approximation of the
least squares loss.

The rest of the article will focus on sparse linear regression with the loss
function φc. Thus, notations s, `(s, t) and L are to be understood with
respect to φc.

2.1 Sparse linear regression

With finite data, it is impossible to solve the optimization problem minL(t)
over the set of all predictors t. Some modeling assumptions must be made
to make the problem tractable. A popular approach is to build a finite
set of features (ψj(X))1≤j≤d and consider predictors that are linear in these

features: ∃θ ∈ Rd, ∀x ∈ X , t(x) =
∑d

j=1 θjψj(x). This is equivalent to

replacing X ∈ X with X̃ = (ψj(X))1≤j≤d ∈ Rd and regressing Y on X̃. For
theoretical purposes, it is thus equivalent to assume that X = Rd for some d
and predictors are linear: t(x) = θTx.

As the aim is to reduce the risk L(t), a logical way to choose θ is by
empirical risk minimization:

θ̂ ∈ argmin
θ∈Rd

1

n

n∑
i=1

φc(Yi − θTXi).

Empirical risk minimization works well when d � n but will lead to over-
fitting in large dimensions [41]. Indeed, if d is too large, no estimator can
succeed at minimizing the risk over Rd, as the following proposition shows.
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Proposition 2.2 Let σ > 0 and Σ be a positive definite matrix of dimension
d. For any θ ∈ Rd, let Pθ denote the distribution such that (X, Y ) ∼ Pθ iff
almost surely, Y = 〈θ,X〉 + σε, where X ∼ N (0,Σ), ε ∼ N (0, 1) and ε,X
are independent. Then for any n > d,

inf
θ̂

sup
θ∈Rd

EDn∼P⊗nθ
[
`
(
θT , θ̂(Dn)T

)]
≥ E

[
min(σ2ε2, cσ|ε|)

](√
1 +

2d

πn
− 1

)
,

where inf θ̂ denotes the infimum over all estimators and θT denotes the linear
functional x 7→ 〈θ, x〉.

Proposition 2.2 is proved in appendix A. With respect to σ, the lower
bound of proposition 2.2 scales as σ2 when σ � c and as cσ when σ � c,
as could be expected from the definition of the Huber loss (Definition 2.1).
With respect to d and n, it scales as d

n
when d � n. Moreover, there is

a positive lower bound on the minimax risk when d is of order n. Thus,
for such large values of d, consistent risk minimization cannot be achieved
uniformly over the whole of Rd.

Sparse regression attempts instead to locate a “good” subset of variables
in order to optimize risk for a given model dimension. The Lasso [37] is now
a standard method of achieving sparsity. The specific version of the Lasso
which we consider here is given by the following definition.

Definition 2.3 Let n ∈ N and let Dn = (Xi, Yi)1≤i≤n be a dataset such that
Xi ∈ Rd and Yi ∈ R for all i ∈ [|1;n|] and some d ∈ N. Let φc be the Huber
loss defined in Definition 2.1. For any r ≥ 0, let

Ĉ(r) = argmin
(q,θ)∈Rd+1:‖θ‖1≤r

1

n

n∑
i=1

φc
(
Yi − q − θTXi

)
and

(q̂(r), θ̂(r)) ∈ argmin
(q,θ)∈Ĉ(r)

∣∣q+ < θ,
1

n

n∑
i=1

Xi >
∣∣. (2)

Now let
Alasso(r)(Dn) : x→ q̂(r) + θ̂(r)Tx.

The intercept q is left unconstrained in definition 2.3, as is usually the
case in practice [48]. Equation (2) is a tiebreaking rule which simplifies the
theoretical analysis.
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2.2 Hyperparameter tuning

The zero-norm of a vector θ is the integer ‖θ‖0 = |{i : θi 6= 0}|. Many
sparse estimators, such as best subset or forward stepwise [16, Section 3.3],
are directly parametrized by their desired zero-norm, which must be chosen
by the practitioner. It controls the “complexity” of the estimator, and hence
the bias-variance tradeoff. In the case of the standard Lasso (Definition 2.3

with φ(x) = x2), Zou, Hastie and Tibshirani [49] showed that
∥∥∥θ̂(λ)

∥∥∥
0

is

an unbiased estimator of the “degrees of freedom” of the estimator A(λ).
As a consequence, [49] suggests reparametrizing the lasso by its zero-norm.
Applying their definition to the present setting yields the following.

Definition 2.4 For any dataset Dn, let (q̂, θ̂) be given by Definition 2.3,
equation (2) . Let M ∈ N and (rm)1≤m≤M be the finite increasing sequence

at which the sets {i : θ̂(r)i 6= 0} change. Let r0 = 0. For any k ∈ N let

m̂last
k,R = max

{
m ∈ N|

∥∥θ̂(rm)
∥∥

0
= k and rm ≤ R

}
,

with the convention max ∅ = 0. Let then

Alassok,R (Dn) = Alasso
(
rm̂lastk,R

)
(Dn) . (3)

Let Alassok = Alassok,+∞ denote the unconstrained sequence (corresponding to
[49]’s original definition).

The (optional) constraint
∥∥∥θ̂(rm)

∥∥∥
`1
≤ rm ≤ R has some potential practical

and theoretical benefits. From the practical viewpoint, it allows to reduce the
computational complexity by excluding lasso solutions with excessively large
`1 norm, which may be expected to perform poorly anyway. From a theoreti-
cal viewpoint, it helps control the Lp norms of the predictor 〈θ̂(rm), X〉, thus
avoiding inconsistency issues encountered by the empirical risk minimizer for
some pathological designs [31] .

More generally, consider any sequence (Ak)k∈N of learning rules which

output linear predictors Ak(Dn) : x → q̂k(Dn) + 〈θ̂k(Dn), x〉. To prove the
main theoretical result of this article (Theorem 3.2), we make the following
assumptions on the collection (Ak)k∈N.

Hypothesis 2.1 For any n ∈ N, let Dn ∼ P⊗n denote a dataset of size n.
Assume that

1. Almost surely, for all k ∈ [|1;n|],
∥∥∥θ̂k(Dn)

∥∥∥
0
≤ k.

7



2. For all k ∈ [|1;n|], q̂k(Dn) ∈ argminq∈Q̂(Dn,θ̂k(Dn))

∣∣∣q + 〈θ̂k(Dn), 1
n

∑n
i=1Xi〉

∣∣∣,
where Q̂(Dn, θ) = argminq∈R

1
n

∑n
i=1 φc (Yi − 〈θ,Xi〉 − q) .

For the reparametrized Lasso given by definition 2.3 and 2.4, hypothesis 2.1
holds by construction.

Moreover, condition 1 is naturally satisfied by such sparse regression
methods as forward stepwise and best subset [16, Section 3.3]. Condition
3 states that the intercept q is chosen by empirical risk minimization, with a
specific tie-breaking rule in case the minimum is not unique.

2.3 Aggregated hold out applied to the zero-norm pa-
rameter

The tuning of the zero-norm k is important to ensure good prediction per-
formance by optimizing the bias-variance tradeoff. Depending on the ap-
plication, practicioners may want more or less sparsity, depending on their
requirements in terms of computational load or interpretability. For this
reason, we consider the problem of selecting the zero-norm among the set
{1, . . . , K}, for some K ∈ N which may depend on the sample size. This
article investigates the use of Agghoo in this context, as an alternative to
cross-validation. Agghoo is a general hyperparameter aggregation method
which was defined in [25], in a general statistical learning context. Let us
briefly recall its definition in the present setting. For a more detailed intro-
ductory discussion of this procedure, we refer the reader to [25]. To simplify
notations, fix a collection (q̂k, θ̂k)1≤k≤K of linear regression estimators. First,
we need to define hold-out selection of the zero-norm parameter.

Definition 2.5 Let Dn = (Xi, Yi)1≤i≤n be a dataset. For any T ⊂ {1, . . . , n},
denote DT

n = (Xi, Yi)i∈T . Let then

k̂T (Dn) = min argmin
1≤k≤K

1

|T c|
∑
i/∈T

φc

(
Yi − q̂k(DT

n )− 〈θ̂k(DT
n ), Xi〉

)
.

Using the hyperparameter k̂T (Dn) together with the dataset DT
n to train a

linear regressor yields the hold-out predictor

f̂ ho
T (Dn) : x→ q̂k̂T (Dn)(D

T
n ) + 〈θ̂k̂T (Dn)(D

T
n ), x〉.

Aggregation of hold-out predictors is performed in the following manner.
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Definition 2.6 Let T = (T1, . . . , TV ) be a collection of subsets of {1, . . . , n},
where V = |T |. Let:

θ̂agT =
1

V

V∑
i=1

θ̂k̂Ti (Dn)(D
Ti
n )

q̂agT =
1

V

V∑
i=1

q̂k̂Ti (Dn)(D
Ti
n ).

Agghoo outputs the linear predictor:

f̂ ag
T (Dn) : x→ q̂agT + 〈θ̂agT , x〉.

Thus, Agghoo also yields a linear predictor, which means that it can be
efficiently evaluated on new data. If the θ̂k̂T (Dn) have similar support, θ̂agT
will also be sparse: this will happen if the hold-out reliably identifies a true
model. On the other hand, if the supports have little overlap, the Agghoo
coefficient will lose sparsity, but it can be expected to be more stable and to
perform better.

The linear predictors x → q̂k̂Ti (Dn)(D
Ti
n ) + 〈θ̂k̂Ti (Dn)(D

Ti
n ), x〉 aggregated

by Agghoo are only trained on part of the data. This subsampling (typi-
cally) decreases the performance of each individual estimator, but combined
with aggregation, it may stabilize an unstable procedure and improve its
performance, similarly to bagging.

An alternative would be to retrain each regressor on the whole data-
set Dn, yielding the following procedure, which we call ”Aggregated cross-
validation” (Agcv).

Definition 2.7 Let T = (T1, . . . , TV ) be a collection of subsets of {1, . . . , n},
where V = |T |. Let:

θ̂acvT =
1

V

V∑
i=1

θ̂k̂Ti (Dn)(Dn)

q̂acvT =
1

V

V∑
i=1

q̂k̂Ti (Dn)(Dn).

The output of Agcv is the linear predictor:

f̂ acv
T (Dn) : x→ q̂acvT + 〈θ̂acvT , x〉.
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Agghoo is easier to study theoretically than Agcv due to the conditional

independence:
(
θ̂k
(
DT
n

))
1≤k≤K

⊥⊥ k̂T (Dn)
∣∣∣DT

n . For this reason, the theoret-

ical section will focus on Agghoo, while in the simulation study, both Agghoo
and Agcv will be considered.

In comparison to Agghoo and Agcv, consider the following definition of
a general cross-validation method.

Definition 2.8 Let T = (T1, . . . , TV ) be a collection of subsets of {1, . . . , n},
where V = |T |. Let

k̂cvT (Dn) = min argmin
1≤k≤K

1

V

V∑
j=1

1

|T cj |
∑
i/∈Tj

φc

(
Yi − q̂k(DTj

n )− 〈θ̂k(DTj
n ), Xi〉

)
.

Let then

θ̂cvT = θ̂k̂cvT (Dn)(Dn)

q̂acvT = q̂k̂cvT (Dn)(Dn).

CV outputs the linear predictor

f̂ cv
T (Dn) : x→ q̂cvT + 〈θ̂cvT , x〉.

This makes clear the difference between cross-validation and Agghoo (or
Agcv): cross-validation averages the hold-out risk estimates (and selects a
single linear predictor) whereas Agghoo and Agcv aggregate the selected
predictors (q̂k̂Ti

, θ̂k̂Ti
). If the parameter k̂cvT is used instead of the k̂Ti in

Definition 2.6, this yields the bagged CV method of Lecué and Mitchell
[23]. This method applies bagging to individual estimators q̂k, θ̂k, whereas
Agghoo also bags the estimator selection step. When there is a single, clearly
established optimal model of small dimension, the advantages of a more
accurate model selection step (as in CV and its bagged version) may outweigh
the gains due to aggregation. In contrast, when there are many different
sparse linear predictors with close to optimal performance, model selection
will be unstable and aggregation should provide benefits relative to selection
of a single parameter k.

2.4 Computational complexity

There are two types of computational costs to take into account when con-
sidering a (sparse) linear predictor such as f̂ ag

T (Dn): the cost of calculating
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the parameters q̂agT (Dn), θ̂agT (Dn) at training time and the cost of making a

prediction on new data, i.e computing f̂ ag
T (Dn)(x) for some x. In this section,

Agghoo, Agcv and cross-validation are compared with respect to these two
types of complexity.

Let (q̂k, θ̂k)1≤k≤K be some finite collection of sparse linear regression esti-

mators. Let S(n) = E
[
max1≤k≤K

∥∥∥θ̂k(Dn)
∥∥∥

0

]
denote the expected maximal

number of non-zero coefficients. In particular, under point 1 of hypothesis
2.1, S(n) ≤ K. Let V = |T | and nv = n−nt, where nt is given by hypothesis
(Reg-T ) below (equation 4).

Computational complexity at training time Agghoo, Agcv and cross-
validation must all compute the hold-out risk estimator for each subset in T
and each k ∈ {1, . . . , K}. Let Ĉhos denote the number of operations needed
for this.

For a given subset Ti, the estimators q̂k(D
Ti
n ), θ̂k(D

Ti
n ) must be computed

for all k, which may be more or less expensive depending on the method. In
the case of the Lasso, the whole path can be computed efficiently using the
LARS-Lasso algorithm [11].

Then, the empirical risk of all estimators must be calculated on the test
set. On average, this takes at least S(nt)nv operations to compute the risk of
the least sparse θ̂k (nv scalar products involving an average of S(nt) non-zero
coefficients) and at most O(KS(nt)nv) operations in general. In particular,
E[Ĉhos] ≥ V S(nt)nv.

In a next step, Agghoo and agcv compute the minima of V vectors of
length K, whereas cross-validation averages these vectors and calculates the
argmin of the average. Both operations have complexity of order V K.

It is in their final step that the three methods differ slightly. Agghoo uses
the θ̂k̂Ti

(DTi
n ) which have been computed in a previous step, whereas Agcv

and cross-validation must compute the θ̂k̂Ti
(Dn) and θ̂k̂cvT

(Dn), respectively.

The complexity of this depends on the method, but can be expected to be
small compared to Ĉhos, as there is only one estimator to fit instead of K.

Finally, Agghoo and Agcv must aggregate V vectors drawn from the
θ̂k(D

Ti
n ) and θ̂k(Dn), with respective complexity O(V S(nt)) and O(V S(n)),

provided that a suitably ”sparse” representation is used for the θ̂k. Assuming
S(n) ≈ S(nt), this is negligible compared to E[Ĉhos].

All in all, Agghoo, Agcv and cross-validation have a similar complexity
at training time, of order E[Ĉhos] + V K, with E[Ĉhos] most likely being the
dominant term.
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Evaluation on new data Given new data x, the complexity of evaluating
q + 〈θ, x〉 is proportional to ‖θ‖0. If the sparse estimators θ̂k perform as
intended and consistently identify similar subsets of predictive variables, then
Agghoo and Agcv sould not lose much sparsity compared to CV, as the
θ̂k̂Ti

(DTi
n ), θ̂k̂Ti

(Dn) and θ̂cvT should all have similar supports.

At worst, if the supports of the θ̂k̂Ti
(DTi

n ) are disjoint,
∥∥∥θ̂agT ∥∥∥

0
may be as

much as V times greater than
∥∥∥θ̂k̂T1

(DT1
n )
∥∥∥

0
. In contrast,

∥∥∥θ̂cvT ∥∥∥
0

=
∥∥∥θ̂k̂cvT (Dn)(Dn)

∥∥∥
should heuristically be of the same order as

∥∥∥θ̂k̂T1
(DT1

n )
∥∥∥

0
– as both k̂cvT and

k̂T1 optimize the same bias-variance tradeoff with respect to the ”complexity
parameter” k . However, this situation is one in which the hold-out is very
unstable, so Agghoo can be expected to yield significant improvements in
exchange for the increased computational cost. The same argument applies
to agcv.

3 Theoretical results

Let n ∈ N and Dn = (Xi, Yi)1≤i≤n denote an i.i.d dataset with common

distribution P . Let
(
q̂k, θ̂k

)
1≤k≤K

be a collection of linear regressors which

satisfies assumption 2.1. Let T be a collection of subsets of {1, . . . , n}. In this

section, we give bounds for the risk of the Agghoo estimator f̂ ag
T (Definition

2.6) built from the collection
(
q̂k, θ̂k

)
1≤k≤K

.

3.1 Hypotheses

To state and prove our theoretical results, a number of hypotheses are re-
quired. First, the collection of subsets T - chosen by the practitioner - should
satisfy the following two conditions.

(Reg−T ) There exists an integer nt such that max(3, n
2
) ≤ nt < n and

T ⊂ {T ⊂ {1, . . . , n} : |T | = nt}
T is independent from Dn .

(4)

Let also nv = n− nt denote the size of the validation sets.

Independence of T from Dn ensures that for T ∈ T , DT
n is also iid with

distribution P . The assumption that T = (T1, . . . , TV ) contains sets of equal
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size ensures that the pairs q̂k̂Ti (Dn)(D
Ti
n ), θ̂k̂Ti (Dn)(D

Ti
n ) are equidistributed for

i ∈ {1, . . . , V }. Most of the data partitioning procedures used for cross-
validation satisfy hypothesis (Reg-T ), including leave-p-out, V -fold cross-
validation (with n− nt = nv = n/V ) and Monte-Carlo cross-validation [1].

To state an upper bound for `(s, f̂ ag
T ), we also need to quantify the amount

of noise in the distribution of Y given X, in a way appropriate to the Huber
loss φc. That is the purpose of the following assumption.

(Lcs) Let (X, Y ) ∼ P . Let s denote an optimal predictor, i.e a measurable
function Rd → R such that s(x) ∈ argminu∈R E[φc(Y − u)|X = x] for almost
all x ∈ Rd. Assume that there exists s and a positive real number η such
that

P
[
|Y − s(X)| ≤ c

2

∣∣∣X] ≥ η a.s, (5)

where c denotes the parameter of the Huber loss.

Equation (5) is specific to the Huber loss: it requires the conditional dis-
tribution of the residual Y − s(X) to put sufficient mass in a region where
the Huber function φc is quadratic. For example, assume that Y = s(X)+σε
where ε is independent from X and has a continuous, positive density q in
a neighbourhood of 0. If the Huber parameter c is proportional to or larger
than σ, then a constant value of η can be chosen, independently of σ. On the
other hand, if c� σ, the optimal value of η satisfies η = η(σ) ∼ c

σ
→0

q(0)c
2σ

.
Finally, some hypotheses are needed to deal with pathological design

distributions which can in general lead to inconsistency of empirical risk
minimization [31]. To illustrate the problem as it applies to the hold-out,
consider a distribution P such that 0 < P (X ∈ H) < 1 for some vector
subspace H, as in [31]. Assume to simplify that Y = 〈θ∗, X〉 + ε. Let pH
denote the orthogonal projection on H. With small, but positive probability,
Xi ∈ H for all i ∈ {1, . . . , n}. On this event, it is clearly impossible to
estimate θ∗ − pH(θ∗). Likewise, the hold-out cannot correctly assess the
impact of the orthogonal components θ̂k−pH(θ̂k) of the estimators θ̂k on the
risk, since 〈θ̂k, Xi〉 only depends on pH(θ̂k), whereas out of sample predictions
〈θ̂k, X〉 may depend on θ̂k − pH(θ̂k) (since P (X ∈ H) < 1). This means that

the hold-out-selected predictors f̂ ho
Ti

may be arbitrarily far from optimal in
general.

To avoid this issue, two sets of assumptions have been made in the littera-
ture. First, there are boundedness assumptions: for example, if the predictors
q̂k + 〈θ̂k, X〉 and the variable Y are uniformly bounded, this clearly limits
the impact of low-probability events such as {∀i ∈ {1, . . . , n}, Xi ∈ H} on
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the risk. Such hypotheses have been used to prove general oracle inequalities
for the hold-out [14, Chapter 8] [26, Corollary 8.8] and cross-validation [40].
Alternatively, pathological designs can be excluded from consideration by
assuming an Lp−Lq norm inequality or ”small ball” type condition [28, 29]:
this has been used to study empirical risk minimization over linear models
[31, 2].

In this article, a combination of both approaches is used. First, we assume
a weak uniform upper bound on L1 norms of the predictors (hypothesis
(Uub)). The bound is allowed to grow with nt at an arbitrary polynomial
rate.

(Uub) Let (Xi, Yi)1≤i≤nt = Dnt be iid with distribution P , where nt is given
by hypothesis (Reg-T ). Let X ∼ X1 be independent from Dnt . There exist
real numbers L, α such that

1. E
[
max1≤k≤nt max1≤i≤nt

∣∣〈θ̂k(Dnt), Xi − EX〉
∣∣] ≤ Lnαt

2. E
[
max1≤k≤nt E

[∣∣〈θ̂k(Dnt), X − EX〉
∣∣|Dnt

]]
≤ Lnαt .

For the Lasso, if R ≤ nα1
t in Definition 2.3, then hypothesis (Uub) holds

if in addition E [‖X − EX‖∞] ≤ nα−α2
t . This is the case if the components

of X have variance 1 and d is polynomial in n, or if the components of X are
sub-exponential with constant 1 and log p is polynomial in n.

Hypothesis (Uub) is much weaker than boundedness assumptions usually
made in the litterature, where typically the L∞ norm is used instead of the
L1 norm, and the bound is a constant rather than a polynomial function of
nt. Point 1 of Hypothesis (Uub) is natural in the sense that an estimator θ̂k
which violates it cannot perform well anyway: assuming that P (|Y |) < +∞
, by definition of φc, for any (q, θ),

E [φc(Y − q − 〈θ,X〉)] ≥ cE
[∣∣Y − q − 〈θ,X〉∣∣]− c2

2

≥ cE
[∣∣q + 〈θ,X〉

∣∣]− cE[|Y |]− c2

2

≥ c

2
E
[∣∣〈θ,X − EX〉∣∣]− cE[|Y |]− c2

2
. (6)

Thus, if E
[∣∣〈θ̂k(Dnt), X − PX〉

∣∣] grows faster than nαt , then so do the ex-

pected risk and expected excess risk of Ak(Dnt). Point 2 of Hypothesis
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(Uub) can be seen as an ”empirical version” of point 1, wherein the inde-
pendent variable X is replaced by the elements of Dnt . The lack of inde-
pendence between θ̂k and Xi makes this condition less straightforward than
1. However, by the Cauchy-Schwarz inequality, it is always the case that

E
[∣∣〈θ̂k, Xi − PXi〉

∣∣] ≤ √dE[〈θ̂k, X −PX〉2]
1
2 . Thus, it is enough to suppose

that d and E[〈θ̂k, X − PX〉2] are bounded by Lnαt for some α > 0.
Together with the weak uniform bound (Uub), we assume that for sparse

linear predictors x 7→ 〈θ, x−EX〉 with ‖θ‖0 ≤ K, the L2 norm is equivalent
to the stronger ”Orlicz norm” defined below.

Definition 3.1 Let Z be a real random variable. Let ψ1 : x 7→ ex − 1. The
ψ1−norm of Z is defined by the formula

‖Z‖Lψ1 = inf

{
u > 0 : E

[
ψ1

(
Z

u

)]
≤ 1

}
,

with the convention inf ∅ = +∞. We say that Z ∈ Lψ1 if ‖Z‖Lψ1 < +∞.

Plainly, ‖Z‖Lψ1 < +∞ if and only if Z is sub-exponential; it can be shown
that ‖·‖Lψ1 is indeed a norm.

The constant relating ‖·‖Lψ1 and ‖·‖L2 is allowed to depend on nt in the
following way.

(Ni) Let (X, Y ) ∼ P and X̄ = X − PX. For any m ∈ N, let

κ(m) = sup
θ 6=0,‖θ‖0≤2m

∥∥〈X̄, θ〉∥∥
Lψ1∥∥〈X̄, θ〉∥∥
L2

∨ 1

log 2
. (7)

There exists a constant ν0 such that

κ(K) log κ(K) ≤ ν0

√
nv

log(nt ∨K)
. (8)

The interpretation of this hypothesis is not obvious. Note first that κ(K)
is a non-decreasing function of K, and in particular,

κ(K) ≤ κ(d) = sup
θ 6=0

∥∥〈X̄, θ〉∥∥
Lψ1∥∥〈X̄, θ〉∥∥
L2

.

Unlike κ(K), κ(d) is invariant under linear transformations of X: in other
words, it only depends on the linear space V spanned by the columns of X.
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In particular, κ(d) does not depend on the covariance matrix of X, provided
that it is non-degenerate. The inequality

∥∥〈X̄, θ〉∥∥
Lψ1
≤ κ(d)

∥∥〈X̄, θ〉∥∥
L2 can

be interpreted as an effective, scale invariant version of sub-exponentiality: it
states that the tail of 〈X̄, θ〉 is sub-exponential with a scale parameter which
isn’t too large compared to its standard deviation. In sections 3.3 , 3.4 and
3.5, we shall give examples where simple bounds can be proved for κ(K) or
κ(d).

3.2 Main Theorem

When Agghoo is used on a collection (Ak)1≤k≤K of linear regression esti-
mators satisfying Hypothesis (2.1), such as the Lasso parametrized by the
number of non-zero coefficients, as in Definition 2.4, the following theorem
applies.

Theorem 3.2 Let X ∈ Rd and Y ∈ R be random variables with joint dis-
tribution P such that hypothesis (Lcs) holds. Let Dn = (Xi, Yi)1≤i≤n ∼ P⊗n

be a dataset of size n. Let nv = n − nt, where nt is given by assumption
(Reg-T ). Let c denote the Huber loss parameter from Definition 2.1.

Let K be an integer such that 3 ≤ K ≤ e
√
nv and (Ak)1≤k≤K be a collection

of linear regression estimators which satisfies hypothesis (2.1). Assume that
hypotheses (Ni) and (Uub) hold.

There exist numerical constants µ1 > 0, µ2 ≥ 1 such that, for any θ ∈ R
such that

√
α + 3µ2ν0

η
≤ θ < 1,

(1−θ)E
[
`(s, f̂ ag

T )
]
≤ (1+θ)E

[
min

1≤k≤K
`(s,Ak(Dnt))

]
+54(α+3)

c2 log(K ∨ nt)
θηnv

+
7µ1Lc logK

θnt
√
nv

.

(9)

Theorem 3.2 is proved in appendix B. Theorem 3.2 compares the excess
risk of Agghoo to that of the best linear predictor in the collection Ak(Dnt),
trained on a subset of the data of size nt. Taking |T | = 1 in Theorem 3.2
yields an oracle inequality for the hold-out, which is also cross-validation with
one split. It is, to the best of our knowledge, the first theoretical guarantee
on hyperparameter aggregation (or selection) for the huberized Lasso. That
nt appears in the oracle instead of n is a limitation, but it is logical, since
estimators aggregated by Agghoo are only trained on samples of size nt.
Typically, the excess risk increases at most by a constant factor when a
dataset of size n is replaced by a subset of size τn, and this constant tends
to 1 as τ → 1. This allows to take nv of order n (nv = (1− τ)n), while losing
only a constant factor in the oracle term.
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In addition to the oracle, E
[
min1≤k≤K `(s,Ak(Dnt))

]
, the right hand side

of equation (9) contains two remainder terms. Since K ≤ nt, the second of
these terms is always negligible with respect to the first as nv, nt → +∞ for
fixed L, c. Assuming that nv, nt are both of order n, the first remainder term
is O( logn

n
) with respect to n. In comparison, the minimax risk for prediction

in the model Y = 〈θ∗, X〉 + ε, ‖θ∗‖0 ≤ k∗, ε ∼ N (0, 1) is greater than a
constant times k∗

n
by proposition 2.2. Thus, if more than log n independent

components of X are required for prediction of Y , the remainder term can
be expected to be negligible compared to the oracle as a function of n.

As a function of a scale parameter σ in a model Y = s(X)+σε, where ε is
distributed symmetrically around 0, the remainder term scales as c2

η
, where

η depends only on σ and on the fixed distribution of ε. When σ
c

is lower

bounded and if ε is sufficiently regular, then c2

η
= O(cσ) (see the discussion

of hypothesis (Lcs)). In that case, the rate cσ is the same as in the minimax
lower bounds of Proposition 3.2, and can therefore be considered correct.
When σ

c
→ 0, c2

η
∼ c2 is suboptimal for Gaussian distributions σε, where the

correct scaling is σ2 (by Proposition 2.2 and a simple comparison with least
squares). However, Theorem 3.2 makes no moment assumptions whatsoever
on the residual Y − s(X) - thus, it is logical that the parameter c, which
controls the robustness of the Huber loss, should appear in the bound.

In equation (9), there is a tradeoff between the oracle and the remain-
der terms, governed by the tuning parameter θ ∈ (0; 1]. θ must be larger
than a positive constant depending on α, ν0 and η; as a result, Theorem
3.2 only yields a nontrivial result when ν0 <

η
µ2
√
α+3

. Note that hypothe-

sis (Ni), which defines ν0, allows ν0 to decrease with n as fast as
√

logn
n

,

in case κ(K) is a constant - as when X is gaussian (see section 3.3 be-
low). Assuming only that ν0 = ν0(n) → 0 and that the remainder term is

negligible compared to the oracle, equation (9) proves that E
[
`(s, f̂ ag

T )
]
∼

E
[
min1≤k≤K `(s,Ak(Dnt))

]
by taking θ = θn → 0 slowly enough - an ”opti-

mal” oracle inequality.

3.3 Gaussian design

In the case where X ∈ Rd is a Gaussian vector, 〈θ,X − EX〉 follows a
centered normal distribution. As a result, κ(K) - defined in equation (7) - is
a fixed numerical constant, equal to max(‖Z‖Lψ1 ,

1
log 2

), where Z ∼ N (0, 1).

It follows that for any fixed ν0, hypothesis (Ni) holds as soon as nv
log(nt∨K)

is
large enough.
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Moreover, for Gaussian design, it is possible to show that the Lasso esti-
mators of Definition 2.4 satisfy hypothesis (Uub) for any R ≥ 0 (including
R = +∞), as long as Y has some moments and K isn’t too large. More
precisely, hypothesis (Uub) holds with L, α independent from R. This leads
to the following corollary.

Corollary 3.3 Assume that X ∈ Rd is a Gaussian vector, that for some
u ∈ (0; 1], Y ∈ L1+u and that hypothesis (Lcs) holds. Let R ∈ R ∪ {+∞}
and let f̂ ag

T be the Agghoo estimator built from the collection
(
Alassok,R

)
1≤k≤K.

Assume that nt ≥ 13 + 6
u

and

3 ≤ K ≤ min

(
nt

log nt
,
nt

log d
,
2(nt − 1)

5

)
. (10)

There exist numerical constants µ5, µ8 such that for all θ ∈
[
µ5

η

√
lognt
nv

; 1
]

and all q ∈ R,

(1− θ)E
[
`(s, f̂ ag

T )
]
≤ (1 + θ)E

[
min

1≤k≤K
`(s,Alassok,R (Dnt))

]
+ 243

c2 log nt
θηnv

+ (c ∨ ‖Y1 − q‖L1+u)
µ8c

θnt
√
nv
.

Corollary 3.3 allows to take θ → 0 at any rate slower than
√

lognt
nv

, so

that the asymptotic constant in front of the oracle is 1. The constraint (10)
imposed on K by Corollary 3.3 is mild, since there are strong practical and
theoretical reasons to take k much smaller than nt

lognt
anyway: this enforces

sparsity – minimizing computational complexity and improving interpretabil-
ity – and allows better control of the minimax risk (Proposition 2.2). Equa-
tion (10) serves only to prove that θ̂lassok,R satisfies hypothesis (Uub), hence it
could be replaced by a polynomial bound on R and on X−EX, as explained
in the discussion of hypothesis (Uub).

3.4 Nonparametric bases

Given real random variables U ∈ [a, b], Y ∈ R, a linear model may be a poor
approximation to the actual regression function s0(U). A popular technique
to obtain a more flexible model is to replace the one-dimensional variable U
with a vector X = ψj(U)1≤j≤dn , where (ψj)1≤j≤dn spans a space of functions
Wdn known for its good approximation properties, such as trigonometric
polynomials, wavelets or splines ([16, Chapter 5]). dn is practically always
allowed to tend to +∞ as n grows to make sure that the approximation error
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of s by functions in Wdn = 〈(ψj)1≤j≤dn〉 converges to 0. In this section, we
discuss conditions under which Theorem 3.2 applies to such models.

It turns out that most of the classical function spaces satisfy an equation
of the form

∀f ∈ Wdn , ‖f‖∞ ≤ µ(a, b)
√
dn ‖f‖L2([a,b]) ,

where µ(a, b) is some constant independent of dn [4, Section 3.1]. By replacing
ψj(x), defined on [a; b], by ψj(

x−a
b−a ) defined on [0; 1], we can see that the

correct scaling with respect to a, b is µ(a, b) = µ(0,1)√
b−a . Thus, if the distribution

of U dominates the uniform measure on [a, b], in the sense that for some
p0 > 0 and any measurable A ⊂ [a, b], P (U ∈ A) ≥ p0

b−a

∫
A
dx, then

∀f ∈ Wdn , ‖f(U)‖L∞ ≤
µ(0, 1)
√
p0

√
dn ‖f(U)‖L2 .

In particular, if Wdn contains the constant functions - which is the case with
splines, wavelets and trigonometric polynomials - then equation (7) holds
with κ(dn) of order

√
dn. Thus, equation (30) of hypothesis (Ni) holds

under the assumption that dn ≤ µν0
nv

lognt
for some constant µ. Assuming

that nv and nt are both of order n (for example, a V−fold split with fixed
V ), this assumption is mild: as a consequence of [14, Theorem 11.3] and
approximation-theoretic properties of the spaces Wdn [10], taking dn ≤ n

log2 n
,

for example, is sufficient to attain minimax convergence rates [35] [14, The-
orem 3.2] over standard classes of smooth functions.

Note that even though κ(dn) ≈
√
dn, this does not in general imply that

κ(K) = O(
√
K): for example, in the case of regular histograms on [0, 1],

ψj =
√
dnI[ j

dn
, j+1
dn

] so
‖ψj‖∞
‖ψj‖L2

=
√
dn and when U ∼ Unif([0; 1]), κ(1) ∼dn→+∞

√
dn. The property κ(K) = O(

√
K) does, however, hold in the case of the

Fourier basis: as a result, dn may be arbitrarily large, and only bounds on
K (the maximal zero-norm of the estimators) are required. We examine this
case in detail in the following section.

3.5 The Fourier basis

Suppose that real variables (U, Y ) are given, and that we wish to find the
best predictor of Y among 1−periodic functions of U . Let sper denote the
minimizer of the risk E[φc(Y −t(U))] among all measurable 1−periodic func-
tions on R. For all k ∈ N, let ψ2k(x) =

√
2 cos(2πkx) and ψ2k−1(x) =√

2 sin(2πkx). Let X = (ψj(U))1≤j≤d, where d ∈ N and d ≥ 2. One can
easily show that sper(U) = s(X), where s minimizes P [φc(Y − t(X))] among
measurable functions t on Rd. By taking d large and using sparse methods,
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it is possible to approximate functions sper which have only a small num-
ber of non-zero Fourier coefficients, but potentially at high frequencies, as is
commonly the case in practice [15].

Let (q̂k, θ̂k)1≤k≤K be a collection of sparse linear regression estimators
satisfying hypothesis 2.1 and let t̂k denote the predictor t̂k : x 7→ q̂k(Dnt) +
〈θ̂k(Dnt), x〉. Given this initial collection of linear predictors, Definition 3.4
below constructs a second collection (q̃k, θ̃k)1≤k≤K which also satisfies hy-
pothesis (Uub) under an appropriate distributional assumption (Corollary
3.6, equation (14)).

Definition 3.4 Let (q̃k, θ̃k)1≤k≤K be defined by

(q̃k, θ̃k) =

 (q̂k, θ̂k) if
∥∥∥θ̂k∥∥∥

`2
≤ n

3
2
t

(q̃, 0) otherwise,
(11)

where

q̃(Dnt) ∈ argmin
q∈Q̂(Dnt )

|q|

Q̂(Dnt) = argmin
q∈R

nt∑
i=1

φc(Yi − q).

For any k, let t̃k : x 7→ q̃k(Dnt) + 〈θ̃k(Dnt), x〉.

By construction, (q̃k, θ̃k) also satisfies hypothesis 2.1. Replacing (q̂k, θ̂k) by
(q̃k, θ̃k) may improve performance and cannot significantly degrade it, as
proposition 3.5 below makes clear.

Proposition 3.5 Assume that Y ∈ Lα for some α ∈ (0, 1] and let q∗ ∈ R.
If

nt ≥ max

(
16

α
,

4

η2
, c+ 10 ‖s(X)− q∗‖L1

)
, (12)

for some numerical constant µ10 ≥ 0,

E
[

min
1≤k≤K

`(s, t̃k)

]
≤ E

[
min

1≤k≤K
`(s, t̂k)

]
+
µ10c

n3
t

(
c ∨ 2

2
α ‖Y − q∗‖Lα

)4

. (13)

Theorem 3.2 can be applied to the collection (q̃k, θ̃k)1≤k≤K , which yields
the following Corollary.
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Corollary 3.6 Assume that U has a density pU such that

inf
t∈[0;1)

∑
j∈Z

pU(t+ j) ≥ p0 > 0. (14)

Assume that there exists η > 0 such that almost surely,

P
(
|Y − sper(U)| ≤ c

2

)
≥ η.

There exists a constant µ9 ≥
√

8 such that, if

K ≤ p0

(
θη

µ9

)2
nv

log3 nt
(15)

for some θ ∈ (0; 1], then

(1− θ)E
[
`(s, f̂ ag

T )
]
≤ (1 + θ)E

[
min

1≤k≤K
`(s, t̃k)

]
+ 270

c2 log nt
θηnv

+
5µ1cK logK

θn2
t

√
nv

.

(16)

If the 1−periodicity of sper represents (say) a yearly cycle, then Equation
(14) states that each ”time of year” u ∈ [0; 1] is sampled with a positive
density, i.e that the density of U−bUc is lower bounded by a positive constant

p0 on [0; 1]. This ensures that equation (7) holds with κ(K) of order
√

K
p0

,

so that hypothesis (8) reduces to K ≤ p0

(
θη
µ9

)2
nv

lognt
. In particular, if θ is

constant and nv is of order n, then K is allowed to grow with n at rate
n

logn
. This is a reasonable restriction, as by Proposition 2.2, one cannot

expect to estimate more than n
logn

coefficients with reasonable accuracy (a
1

logn
convergence rate being too slow for most practical purposes).

Corollary then deduces an oracle inequality with leading constant 1+θ
1−θ

(arbitrarily close to 1) and remainder term of order c2 logn
ηn

, which is typically
negligible in the non-parametric setting of this corollary. For this reason,
corollary 3.6 can be said to be optimal, at least up to constants.

3.6 Effect of V

The upper bound given by Theorem 3.2 only depends on T through nv and
nt. The purpose of this section is to show that for a given value of nv,
increasing V = |T | always decreases the risk. This is proved in the case of
monte carlo subset generation defined below.
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Definition 3.7 For τ ∈
[

1
n
; 1
]

and V ∈ N∗, let T mcτ,V be generated indepen-
dently of the data Dn by drawing V elements independently and uniformly in
the set

{T ⊂ [|1;n|] : |T | = bτnc} .

For fixed τ , the excess risk of Agghoo is a non-increasing function of V .

Proposition 3.8 Let U ≤ V be two non-zero integers. Let τ ∈
[

1
n
; 1
]
. Then:

E
[
`(s, f̂ ag

T mcτ,V
)
]
≤ E

[
`(s, f̂ ag

T mcτ,U
)
]
.

Proof Let (Ti)i=1,...,V = T mcτ,V . Let I = {I ⊂ [|1;V |] : |I| = U}. Then

f̂ ag
T mcτ,V

=
V∑
i=1

1

V
f̂ ho
Ti

=
V∑
i=1

(
V−1
U−1

)
U
(
V
U

) f̂ ho
Ti

=
1

U

V∑
i=1

∑
I∈I Ii∈I
|I|

f̂ ho
Ti

=
1

|I|
∑
I∈I

1

U

∑
i∈I

f̂ ho
Ti
.

It follows by convexity of f 7→ `(s, f) that

E
[
`(s, f̂ ag

T mcτ,V
)
]
≤ 1

|I|
∑
I∈I

E

[
`(s,

1

U

∑
i∈I

f̂ ho
Ti

)

]
.

For any I ∈ I, (Ti)i∈I ∼ T mcτ,U and is independent ofDn, therefore 1
U

∑
i∈I f̂

ho
Ti
∼

f̂ ag
T mcτ,U

. This yields the result.

It can be seen from the proof that the proposition also holds for Agcv.
Thus, increasing V can only improve the performance of these methods. The
same argument does not apply to CV, because CV takes an argmin after
averaging, and the argmin operation is neither linear nor convex. Indeed,
no comparable theoretical guarantee has been proven for CV, to the best of
our knowledge, even though increasing the number of CV splits (for given τ)
generally improves performance in practice.
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Proposition 3.8 does not quantify the gain due to aggregation. This gain
depends on the properties of the convex functional t 7→ `(s, t), in particular on
its modulus of strong convexity in a neighbourhood of the target s (assuming
that at least some estimators in the collection are close to s). Moreover, as
for any loss function, the gain due to aggregation depends on the diversity
of the collection (f̂ ho

Ti
)1≤i≤V : the more the hold-out estimators f̂ ho

T vary with
respect to T , the greater the effect of aggregation.

More precisely, under hypothesis (Lcs), we can prove the following im-
provement to Proposition 3.8.

Proposition 3.9 Let (X, Y ) ∼ P be independent from Dn. Assume that P
satisfies hypothesis (Lcs). For any i ∈ {1, . . . , V }, let Ei(c) denote the event

|(f̂ ho
Ti
− s)(X)| ≤ c

2
|. Then for any V ∈ N,

E
[
`(s, f̂ ag

T mcτ,V
)
]
≤ E

[
`(s, f̂ ho

T1
)
]
− ηV − 1

4V
E
[(
f̂ ho
T1
− f̂ ho

T2

)2

(X)IE1(c)IE2(c)

]
.

(17)

When `(s, f̂ ho
T1

) is small enough, the event E1(c) occurs with high probability.

As a consequence, if E
[
`(s, f̂ ho

T1
)
]
≤ ηc2

64
, then

E
[
`(s, f̂ ag

T mcτ,V
)
]
≤ E

[
`(s, f̂ ho

T1
)
]
− ηV − 1

16V
Med

[(
f̂ ho
T1
− f̂ ho

T2

)2

(X)

]
, (18)

where Med[Y ] denotes the largest median of a random variable Y .

Proposition 3.9 is proved in appendix C.3. It quantifies the gain due to
aggregation in terms of the parameter c of the Huber loss, the constant η
given by hypothesis (Lcs) and the distance between two hold-out estimators
that are close enough to s. Taking c→ +∞ recovers the least-squares case,
where η = 1 and there are no constraints on f̂ ho

Ti
− s. Only two indices

1, 2 appear in the right-hand side of equation (17): that is a consequence

of the exchangeability of the collection (f̂ ho
Ti

)1≤i≤V for Monte-Carlo subset
generation. The same result also applies to V−fold Agghoo, since it also
yields an exchangeable collection. For arbitrary T , all distinct pairs of indices
would have to be considered.

Going beyond proposition 3.9 requires giving nontrivial lower bounds on(
f̂ ho
T1
− f̂ ho

T2

)2

(X), which is no easy task, given the complex dependencies

involved. Results in this direction have only recently been obtained in the
setting of least-squares density estimation [24, Chapters 5-6].

A few general heuristics apply: first, if there is one learning ruleAk∗ in the
collection which is much better than the others, the hold-out can be expected

23



to select it most of the time: in that case, Agghoo reduces to bagging, and
potential gains depend on the stability of Ak∗ . In contrast, if there are many
rules Ak which are close to optimal, while being distant from each other, then
the gains of aggregation can be expected to be large, even if the individual
rules Ak are stable.

4 Simulation study

This section focuses on hyperparameter selection for the Lasso with huber
loss, either using a fixed grid or using the reparametrization from Definition
2.4. The methods considered for this task are Aggregated hold-out given
by Definition 2.6, Aggregated cross-validation given by Definition 2.7 and
standard cross-validation given by Definition 2.8. In all cases, the subsamples
are generated independently from the data and uniformly among subsets of
a given size τn, as in Definition 3.7. Thus, all three methods share the same
two hyperparameters: τ , the fraction of data used for training the Lasso, and
V , the number of subsets used by the method.

For the huberized Lasso with a fixed grid, the hqreg raw function from
the R package hqreg [48] is used with a fixed grid designed to emulate the
default choice: a geometrically decreasing sequence of length 100, with max-
imum value λmax and minimum value λmin = 0.05λmax. The fixed value of
λmax is obtained by averaging the (data-dependent) default value chosen by
hqreg raw over 10 independent datasets. To compute the reparametrization
given by Definition 2.4, we implemented the LARS-based algorithm described
by Rosset and Zhu [34], which allows to compute the whole regularization
path.

I.i.d training samples of size n = 100 are generated according to a dis-
tribution (X, Y ), where X ∈ R1000 and Y = wT∗X + ε, with ε independent
from X. To illustrate the robustness of the estimators, Cauchy noise is used:
ε ∼ Cauchy(0, σ). The performance of Agghoo and cross-validation may
depend on the presence of correlations between the covariates X and the
sparsity of the ground truth w∗. To investigate these effects, three para-
metric families of distribution are considered for X, in sections 4.1, 4.2 and
4.3.

The risk of each method is evaluated on an independent training set of size
500, and results are averaged over 1000 repetitions of the simulation. More
precisely, 1000 training sets Dj of size n = 100 are generated, along with 1000
test sets (X ′i,j, Y

′
i,j)1≤i≤500, each of size 500. For each simulation j and any

learning rule Aτ,V among the six obtained by combining Agghoo, monte carlo
CV and AGCV with either a fixed grid or the zero-norm parametrization,
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the average excess risk

R̂j(A, τ, V ) =
1

500

500∑
i=1

[
φc
(
Y ′i,j −Aτ,V (Dj)(X

′
i,j)
)
− φc

(
Y ′i,j − s(X ′i,j)

)]
is computed on the test set for all values of V ∈ {1, 2, 5, 10} and τ ∈{
i

10
: 1 ≤ i ≤ 9

}
.

4.1 Experimental setup 1

X is generated using the formula Xi = 1
‖u‖2

∑d
j=1 ui−jZj, where Zj are in-

dependent standard Gaussian random variables, ui = I|i|≤core−
2.332i2

2cor2 and
cor ∈ N is a parameter regulating the strength of the correlations. The
regression coefficient has a support of size r = 3 ∗ k drawn at random from
[|1; 1000|], and is defined by w∗,j = u∗,g(j), where g is a uniform random per-
mutation, u∗,j = b if 1 ≤ j ≤ k and u∗,j = b

4
if 2k + 1 ≤ j ≤ 3k, with b

calibrated so that ‖Xw∗‖L2 = 1. The noise parameter is σ = 0.08, while the
Huber loss parameter c is set to 2 – a suboptimal choice in this setting, but
convenient for computing the huberized Lasso regularization path.

Choice of τ parameter For all methods, in most cases the optimal value
of τ is 0.8 or 0.9, similarly to what was observed in the rkhs case [25], where
τ = 0.8 was recommended. Table 1 displays the quantity

Ĝ(A, τ, V ) =
Mean

[
(R̂j(A, τ, V )− R̂j(A, τ∗, V ))1≤j≤1000

]
Sd
[
(R̂j(A, τ, V )− R̂j(A, τ∗, V ))1≤j≤1000

] ,

where Sd denotes the (empirical) standard deviation and τ∗ the optimal

choice of τ , τ∗ = argminτ∈{0.1,...,0.9}Mean
[
(R̂j(A, τ, V ))1≤j≤1000

]
. Thus, val-

ues of Ĝ(A, τ, V ) bigger than a few units suggest that τ is suboptimal to a
statistically significant degree. When τ∗ = 0.9, Ĝ(A, 0.8, V ) is displayed in
black on table 1. When τ∗ = 0.8, Ĝ(A, 0.9, V ) is displayed in blue on table
1. Exceptions where τ∗ /∈ {0.8, 0.9} are highlighted in red, with the value

min
(
Ĝ(A, 0.8, V ), Ĝ(A, 0.9, V )

)
.

Most of the exceptions τ∗ /∈ {0.8, 0.9} occur on the column r = 150,
cor = 1, while most of the others are of low statistical significance, with
values less than 1.1 on the fourth column (r = 60 and cor = 1). Thus, table
1 confirms the claim that τ∗ ∈ {0.8, 0.9} for all methods, in most cases. For
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grid agghoo, 0−norm agghoo, grid agcv and V ≥ 5, τ∗ ∈ {0.8, 0.9} for all
simulations. Comparing now τ = 0.8 and τ = 0.9, grid agghoo and 0−norm
agghoo with V ≥ 5 show a clear pattern: τ = 0.9 is better or as good as
τ = 0.8 in all cases except r = 150, cor = 1 where τ = 0.8 is significantly
better. For other methods, results are not so clear and the difference in risk
between the two values of τ is often insignificant.

Choice of V For all methods considered, performance is expected to im-
prove when V is increased, but by how much? If the performance increase is
too slight, it may not be worth the additional computational cost. In figure
1, the mean excess risk for the optimal value of τ is displayed as a function of
V , with error bars corresponding to one standard deviation. The scale used
for the vertical axis in each graph is the average excess risk of the oracle with
respect to the fixed grid over the λ parameter. Quantifying performance as
a percentage of the oracle risk, when cor = 15, Agghoo improves by roughly
20% from V = 1 to V = 2, by roughly 10% from V = 2 to V = 5 and by a few
percent more from V = 5 to V = 10. CV with the standard grid behaves sim-
ilarly in these two simulations, while CV with the zero-norm parametrization
shows much less improvement when V is increased. Thus, taking V ≥ 5 is
advantageous, but there are clearly diminishing returns to choosing V much
larger than this. For CV with the zero-norm parametrization, V = 2 seems
sufficient in these simulations .

Comparison between methods From figure 1, it appears that grid agcv
is a very poor choice, being worse than both grid agghoo and grid cv for all
values of V when r = 150, cor = 15 , and being the worst of all the methods
for V ≥ 2 when r = 24, as well as highly unstable, as the size of the error
bars clearly shows.

Interestingly, 0−norm agcv behaves much better, being the second best
method when cor = 1, and very close to the best when r = 24 and cor = 15.

Generally speaking, of the two types of parametrization of the Lasso, the
zero-norm parametrization appears to perform better than the standard grid
when correlations are small (cor = 1), while the performance is significantly
worse when r = 150 and cor = 15.

Comparing now Agghoo and CV, Agghoo appears to be better than CV
when V ≥ 2 in situations where r is larger (r = 150). This seems to hold
for both the standard parametrization (grid agghoo) and the zero-norm one
(0−norm agghoo). The relation is reversed for small r, with CV performing
better than Agghoo for all values of V when r = 24.
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Figure 1: Performance relative to the oracle, as a function of V
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Further studies The previous simulations suggest that Agghoo performs
better than CV in the case of high intrinsic dimension. This behaviour is
logical, since the cross-validated Lasso will ignore some predictive variables
when there are too many of them, and randomized aggregation may help
recover more of the support. However, the effect of correlations is unclear.
Experimental setup 1 mixes different types of correlations: correlations be-
tween predictive variables, correlations between predictive and non-predictive
variables, and correlations among non-predictive variables. It is possible that
one type of correlation favours Agghoo while another favours CV.

To gain a more accurate idea of when Agghoo is advantageous over CV,
two more settings are studied, considering separately correlations among pre-
dictive variables, and between predictive and non-predictive variables. Since
previous simulations showed that τ = 0.8, 0.9 and V = 10 were the optimal
parameters, only those parameters will be considered in the following.

Since the choice of lasso parametrization did not seem to affect the relative
performance of Agghoo and CV, we only consider the standard parametriza-
tion, as it is more popular and also easier to use in our simulations. Agcv
is not considered either, since it was discovered to be unreliable in previous
simulations.

4.2 Experimental setup 2: correlations between pre-
dictive and noise variables

Let r be the number of predictive variables and let each predictive covariate
have s ”noise” covariates which are correlated with it at level ρ = 0.8. As-
sume that rs ≤ d, where d is the total number of variables. Let (Z0

j )1≤j≤r,
(Zj,i)1≤j≤r,1≤i≤s and (Wk)1≤k≤d−rs be independent standard gaussian vari-
ables. For any j ∈ [|0 : r − 1|] and any i ∈ [|1; s|], let Xjs+i =

√
0.8Z0

j+1 +√
0.2Zj+1,i and for rs < i ≤ d, let Xi = Wi−rs. For the regression coefficient,

choose w∗ = 3∗u
‖Xu‖L2

, where u = (Is|(j−1)Ij≤rs)1≤j≤d. Let then Y be distributed

conditionnally on X as Cauchy(〈w∗, X〉, 0.3). The loss function used here is
φc with c = 2.

Results Figure 2 shows a bar plot of the average excess risk of CV and
Agghoo as a fraction of the average risk of the oracle. 90 % error bars were
estimated using a normal approximation. Parameters used for Agghoo and
CV were τ = 0.9 and V = 10 (τ = 0.8 yields similar result).

Overall, Agghoo’s risk relative to the oracle significantly decreases as the
zero-norm of w∗ increases from r = 10 to r = 50 , as was observed in section
4.1 . For r = 25 and r = 50 separately, the risk relative to the oracle
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significantly decreases as s increases from 2 to 10. For r = 10, this trend is
unclear due to the random errors.

In contrast, CV’s performance relative to the oracle shows no statistically
significant trend either as a function of r or as a function of s.

As a result of these trends, Agghoo performs significantly worse than CV
for r = 10 and significantly better when r = 50, especially when s ≥ 5.
When r = 25, CV performs significantly better than Agghoo for s = 2 and
s = 5 and they perform similarly when s = 10 and s = 20.

4.3 Experimental setup 3: correlations between pre-
dictive variables

We consider now predictive covariates which are correlated between them,
and independent from the unpredictive covariates. As above, let r denote
the number of predictive variables and ρ > 0 be the level of correlations. Let
Z0, (Zi)1≤i≤r and (Wi)1≤i≤d−r be standard Gaussian random variables. The
random variable X is then defined by Xi =

√
ρZ0 +

√
1− ρZi for 1 ≤ i ≤ r

and Xi = Wi−r for r+ 1 ≤ i ≤ d. As in section 4.2, the regression coefficient
w∗ is a constant vector of the form 3∗u

‖Xu‖L2
, where this time u = (I1≤i≤r)1≤i≤d.

Y is distributed conditionnally on X as Cauchy(〈X,w∗〉, 0.3) and the loss
function used is the Huber loss φ2.

Results Figure 3 shows a barplot generated in the same way as in section
4.2. Parameters used for Agghoo and CV were V = 10 and τ = 0.8, which
is optimal in this case for both Agghoo and CV.

As in previous simulations, Agghoo’s performance relative to the oracle
improves significantly when the intrinsic dimension r grows from 25 to 200,
for a given value of ρ. The decrease in relative risk is faster for small values
of ρ. As a result, Agghoo performs best, relative to the oracle, when ρ = 0.2
for r = 200, whereas best performance seems to occur at ρ = 0.5 for smaller
values of r, up to random errors.

For cross-validation, the relative risk seems more or less unaffected by the
dimension r, but shows an increasing trend as a function of ρ for all values
of r.

As a result, Agghoo performs better than CV for r = 200 and for r = 100
and ρ = 0.2, 0.5. For r = 200 and ρ = 0.2, Agghoo even performs signifi-
cantly better than the oracle! This is possible, since the Agghoo regression
coefficient θ̂agT does not itself belong to the Lasso regularization path.
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r = 150 r = 60 r = 24
method V 15 1 15 1 15 1

1 grid agghoo 1 2.2 2.7 3.0 2.7 0.5 5.6
2 grid agghoo 2 2.5 2.1 3.1 1.4 1.0 7.9
3 grid agghoo 5 2.5 6.8 3.5 0.6 0.6 11.9
4 grid agghoo 10 0.7 7.2 3.7 1.1 4.5 16.7
5 grid cv 1 1.0 3.9 1.6 0.1 1.2 1.5
6 grid cv 2 0.8 5.0 2.6 0.5 1.4 1.1
7 grid cv 5 1.4 2.8 1.5 0.8 0.5 3.7
8 grid cv 10 2.0 2.6 2.9 1.1 1.6 5.9
9 grid agcv 1 1.0 3.9 1.6 0.1 1.2 1.5
10 grid agcv 2 0.3 2.0 1.4 1.9 0.3 0.8
11 grid agcv 5 0.3 2.2 0.5 0.7 0.5 1.1
12 grid agcv 10 0.5 0.4 0.0 0.3 0.8 1.0
13 0−norm agghoo 1 1.3 4.1 2.0 0.3 0.5 5.6
14 0−norm agghoo 2 3.0 1.4 3.2 1.3 1.9 9.2
15 0−norm agghoo 5 4.0 6.7 5.1 3.3 4.0 13.7
16 0−norm agghoo 10 4.6 7.3 7.0 3.7 5.2 18.5
17 0−norm cv 1 4.3 9.4 4.3 1.1 2.0 3.9
18 0−norm cv 2 1.9 7.2 1.8 4.4 4.8 2.7
19 0−norm cv 5 2.7 5.3 2.4 3.3 1.5 0.7
20 0−norm cv 10 6.1 4.6 5.4 3.5 0.6 0.1
21 0−norm agcv 1 4.3 9.4 4.3 1.1 2.0 3.9
22 0−norm agcv 2 1.9 5.8 2.4 4.5 5.9 3.5
23 0−norm agcv 5 2.1 1.9 1.0 4.0 5.7 3.7
24 0−norm agcv 10 4.5 1.0 3.3 3.6 7.3 3.9

Table 1: Ĝ(A, τ, V ) for sub-optimal τ ∈ {0.8, 0.9} and various distributions.
Colours show optimal τ∗: blue for τ∗ = 0.8, black for 0.9, red when τ∗ /∈
{0.8, 0.9}.
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5 Conclusion

Aggregated hold-out (Agghoo) satisfies an oracle inequality (Theorem 3.2) in
sparse linear regression with the Huber loss. This oracle inequality is asymp-
totically optimal in the non-parametric case where the intrinsic dimension
tends to +∞ with the sample size n, provided that an Lψ1 − L2 norm in-
equality holds on the set of sparse linear predictors. The condition holds for
gaussian vectors and for classical approximation spaces in non-parametric
regression. In the case of the trigonometric basis, this approach yields an
oracle inequality in which the total dimension d does not appear.

When Monte-Carlo subsampling is used (Definition 3.7), Agghoo has two
parameters, τ and V . Theoretically, it is shown that Agghoo’s performance
always improves when V grows for a fixed τ . Simulations show a large
improvement from V = 1 to V = 5 in some cases, but diminishing returns
for V > 5. With respect to τ , simulations show that τ = 0.8 or τ = 0.9
is optimal or near optimal in most cases. In particular, a default choice of
V = 10, τ = 0.8 seems reasonable.

Compared to cross-validation with the same number of splits V , simula-
tions show that Agghoo performs better when the intrinsic dimension r is
large enough (r = 150 in section 4.1, r = 50 in section 4.2 and r = 100
in 4.3) for n = 100 observations and d = 1000 covariates. Correlations be-
tween predictive and non-predictive covariates, which increase the number
of covariates correlated with the response Y , clearly favour Agghoo relative
to CV and the oracle, whereas the effect of correlations between predictive
covariates is ambiguous.
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A Proof of Proposition 2.2

The proof follows the same lines as the proof of [31, Theorem 1], with some
differences due to the non-quadratic risk.

Since θ̂ is allowed to depend on Σ, which is positive definite by assump-
tion, we can always replace the Xi by Σ−

1
2Xi. Thus, it can be assumed
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without loss of generality that Σ = In. Using the notation of Proposition 2.2

`(θT∗ , θ
T ) = E [φc(σε+ 〈θ∗ − θ,X〉)− φc(σε)] ,

where ε,X are assumed to be independent from the sampleDn. Since ε,X are
independent, centered normal variables, σε+ 〈θ∗− θ,X〉 is centered normal,
with variance σ2 + ‖θ∗ − θ‖2

2.
It follows that

`(θT∗ , θ
T ) = gc(

√
σ2 + ‖θ∗ − θ‖2

2)−gc(σ), where gc(x) := E[φc(xZ)] for Z ∼ N (0, 1).

Let also gc,σ(r) = gc(
√
r2 + σ2)− gc(σ), so that `(θT∗ , θ

T ) = gc,σ(‖θ∗ − θ‖2).

Consider the prior Πλ = N (0, σ
2

λn
Id) on θ∗. Then a classical computation

[31] shows that the posterior π̂n = Πλ(·|Dn) is gaussian and centered at the
ridge estimator

θ̂λ,n = (Σ̂n + λId)
−1 1

n

n∑
i=1

YiXi,

where Σ̂n is the empirical covariance matrix. Fix a sample Dn and let θ̃ ∼ π̂n
be independent from ε,X. Notice that

E[∇θ`(θ̃
T , θT )] = E[Xφ′c(σε+ 〈θ̃ − θ,X〉)]

= E
[
XE

[
φ′c(σε+ 〈θ̃ − θ,X〉)|X

]]
.

Set now θ = θ̂λ,n. Since θ̃ ∼ π̂n, knowing X, 〈θ̃ − θ̂λ,n, X〉 is centered
normal and independent from ε, which is also centered normal. It follows
that E

[
φ′c(σε + 〈θ̃ − θ,X〉)|X

]
= 0, since φ′c is an odd function. This shows

that θ̂λ,n is a Bayes estimator with respect to the prior Πλ and the loss
function `.

Thus, for any estimator θ̂,

sup
θ∗

EDn∼P⊗nθ∗

[
`(θ̂(Dn)T , θT∗ )

]
≥ Eθ∗∼Πλ

[
EDn∼P⊗nθ∗

[
`(θT∗ , θ̂

T (Dn))
]]

≥ Eθ∗∼Πλ

[
EDn∼P⊗nθ∗

[
`(θT∗ , θ̂

T
λ,n(Dn))

]]
= Eθ∗∼Π1

[
P⊗nθ∗√

λ

[
`( θ

T
∗√
λ
, θ̂Tλ,n(Dn))

]]
.

`(θT∗ , θ
T ) = gc,σ(‖θ∗ − θ‖2), so by convexity of `(θT∗ , ·), gc,σ must be convex.

Hence, by Jensen’s inequality,

E
[
`(θT∗ , θ̂

T
λ,n(Dn))

]
≥ gc,σ

(
E
[∥∥∥θ∗ − θ̂λ,n(Dn)

∥∥∥
2

])
.
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Under P θ∗√
λ

, Yi = 〈 θ∗√
λ
, Xi〉+ σεi, so

θ̂λ,n − θ∗ = (Σ̂n + λId)
−1

(
1

n

n∑
i=1

XiX
T
i

θ∗√
λ

+ σεiXi

)
− θ∗√

λ

= (Σ̂n + λId)
−1Σ̂n

θ∗√
λ
− θ∗√

λ
+
σ

n

n∑
i=1

εi(Σ̂n + λId)
−1Xi

= −
√
λ(Σ̂n + λId)

−1θ∗ +
σ

n

n∑
i=1

εi(Σ̂n + λId)
−1Xi.

Since d < n, Σ̂n is almost surely non-degenerate. It follows that

lim
λ→0

∥∥∥θ̂λ,n − θ∗∥∥∥ =

∥∥∥∥∥σn
n∑
i=1

εiΣ̂
−1
n Xi

∥∥∥∥∥ .
Let r̂n = σ

n

∑n
i=1 εiΣ̂

−1
n Xi. By Fatou’s lemma,

sup
θ∗

EDn∼P⊗nθ∗

[
`(θT∗ , θ̂

T (Dn))
]
≥ gc,σ (E[‖r̂n‖2])

Since the εi are iid normal N (0, 1) and independent from the Xi, condition-
nally on X1, . . . , Xn, r̂n is centered normal, with covariance matrix

σ2

n2

n∑
i=1

Σ̂−1
n XiX

T
i Σ̂−1

n =
σ2

n
Σ̂−1
n .

It follows by lemma A.1 that

E[‖r̂n‖2 |(Xi)1≤i≤n] ≥
√

2

π

σ√
n

√
Tr(Σ̂−1

n ).

By convexity of the function M 7→
√
Tr(M−1) on the positive definite ma-

trices (lemma A.2),

E[‖r̂n‖2] ≥
√

2

π

σ√
n

√
Tr
(
E[Σ̂n]−1

)
= σ

√
2

π

√
d

n
.
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Since gc is non-decreasing and convex,

sup
θ∗

EDn∼P⊗nθ∗

[
`(θT∗ , θ̂

T (Dn))
]
≥ gc,σ

(
σ

√
2

π

√
d

n

)

= gc

(
σ

√
1 +

2d

πn

)
− gc(σ)

≥ σg′c(σ)

[√
1 +

2d

πn
− 1

]
.

By definition, gc(x) = E[φc(xZ)], where Z ∼ N (0, 1), so

σg′c(σ) = σE[Zφ′c(σZ)] = σE[min(σZ2, c|Z|)].

This proves the proposition.

Lemma A.1 Let Y ∼ N (0,Σ) be a gaussian vector, where Σ is positive
definite. Then

E [‖Y ‖2] ≥
√

2

π

√
Tr(Σ).

Proof Let Y0 = Σ−
1
2Y ∼ N (0, Id). Then

E [‖Y ‖2] = E
[∥∥∥Σ

1
2Y0

∥∥∥
2

]
= E

[√
Y T

0 ΣY0

]
.

Thus, the lemma is equivalent to

E

[√
Y T

0

Σ

Tr(Σ)
Y0

]
≥
√

2

π
.

Let Σ0 = Σ
Tr(Σ)

. Let Σ0 = QTDQ, where D is diagonal and Q is orthogonal.

Let λ1, . . . , λd be the diagonal coefficients of D (that is to say, the eigenvalues
of Σ0). Then

E

[√
Y T

0 Σ0Y0

]
= E

[√
(QY0)TD(QY0)

]
.

As Q is orthogonal, QY0 ∼ N (0, Id), so

E

[√
Y T

0 Σ0Y0

]
= E

[√
Y T

0 DY0

]
= E


√√√√ d∑

i=1

λiY 2
0i

 .
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The coefficients λi are positive (since Σ0 is positive definite) and sum to 1
(since Tr(Σ0) = 1 by construction). It follows by Jensen’s inequality that

E

[√
Y T

0 Σ0Y0

]
≥ E

[
d∑
i=1

λi|Y0i|

]

= E[|Y01|]
d∑
i=1

λi

= E[|Y01|]

=

√
2

π
since Y01 ∼ N (0, 1).

This proves the lemma.

Lemma A.2 The function f : M 7→
√
Tr(M−1) is convex over the convex

cone of positive definite matries.

Proof Let M be a positive definite matrix. Let H be a small, symmetric
perturbation. Then

(M +H)−1 = (Id +M−1H)−1M−1

=
(
Id −M−1H + (M−1H)2 + o(‖H‖2)

)
M−1

= M−1 −M−1HM−1 + (M−1H)2M−1 + o(‖H‖2).

Therefore,

Tr((M+H)−1) = Tr(M−1)−Tr(M−1HM−1)+Tr((M−1H)2M−1)+o(‖H‖2).

For any positive real a > 0,
√
a+ h =

√
a + h

2
√
a
− h2

8a
3
2

+ o(h2). It follows

that√
Tr((M +H)−1) =

√
Tr(M−1)− Tr(M−1HM−1)

2
√
Tr(M−1)

+
Tr((M−1H)2M−1)

2
√
Tr(M−1)

− Tr(M−1HM−1)2

8Tr(M−1)
3
2

+ o(‖H‖2).

(19)
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For any two matrices A,B, let 〈A,B〉 := Tr(M− 1
2ABTM− 1

2 ). It is easy to see
that this defines a scalar product. Thus, by the Cauchy-Schwarz inequality,

Tr(M−1HM−1)2 = Tr(M− 1
2M− 1

2HM− 1
2M− 1

2 )2

= 〈M− 1
2HM− 1

2 , Id〉2

≤ 〈Id, Id〉〈M− 1
2HM− 1

2 ,M− 1
2HM− 1

2 〉
= Tr(M−1)Tr

(
M−1HM−1HM−1

)
= Tr(M−1)Tr((M−1H)2M−1).

Thus,

Tr((M−1H)2M−1)

2
√
Tr(M−1)

− Tr(M−2H)2

8Tr(M−1)
3
2

≥ 3

8

Tr((M−1H)2M−1)√
Tr(M−1)

≥ 0.

By equation (19), this proves that the Hessian of f at M is non-negative
definite.

B Proof of Theorem 3.2

The idea of the proof is to apply [25, Theorem 17] using suitable functions
(ŵi,j)(i,j)∈{1;2}2 .

In this proof, we shall adopt the following notational conventions. The
notation P,E will be reserved for probabilities and expectations which involve
the sample Dnt (or Dn). For a (possibly random) function f : Rd × R →
R, P (f) = P (f(X, Y )) will denote the expectation taken with respect to
(X, Y ) ∼ P only (ignoring the potential randomness in the construction of
f). The notation E will be used for any other expectation. Moreover, for
any measurable function t : Rd → R, we denote

‖t‖α,P = ‖t(X)‖α,P ; = ‖t(X)‖Lα where (X, Y ) ∼ P

‖t‖ψ1,P
= ‖t(X)‖ψ1,P

; = ‖t(X)‖Lψ1 where (X, Y ) ∼ P.

For a random function t̂ : ω 7→ (x 7→ t̂(ω)(x)), let∥∥t̂∥∥
α,P

=
∥∥t̂(X)

∥∥
α,P

: ω 7→
∥∥t̂(ω)

∥∥
α,P

,

with a similar definition for
∥∥t̂∥∥

ψ1,P
.

Fix a dataset Dnt , K ∈ {1, . . . , nt} and for any k ∈ [|1;K|]2, let t̂k =
Ak(Dnt) : x→ q̂k(Dnt) + 〈θ̂k(Dnt), x〉. More precisely, to apply [25, Theorem
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17], one must show inequalities of the form H(w1, w2, (t̂k)1≤k≤K): for all
r ≥ 2,

P
(∣∣φc(t̂k(X)− Y )− φc(t̂l(X)− Y )− ckl

∣∣r) ≤ r!
[
w1

(√
`(s, t̂k)

)
+ w1(

√
`(s, t̂l))

]2

×
[
w2

(√
`(s, t̂k)

)
+ w2

(√
`(s, t̂l)

)]r−2

,

(20)

where w1, w2 are non-decreasing functions. Since φc is Lipschitz, it is enough
to control

∥∥t̂k − t̂l∥∥ψ1,P
and

∥∥t̂k − t̂l∥∥2,P
by functions of `(s, t̂k) and `(s, t̂l).

B.1 A few lemmas

Lemma B.1 Let X be a non-negative random variable such that

∀x ∈ R, P (X ≥ x) ≤ ae−x,

where a ≥ 1. Let g ∈ L1(R+, e
−xdx) be an increasing, differentiable function.

Then for all b ∈ R+,

E [g(X)IX≥b] ≤ a

∫ +∞

b

e−vg(v)dv.

Proof

E [g(X)IX≥b] =

∫ +∞

0

P (g(X)IX≥b ≥ u) du

= g(b)P (X ≥ b) +

∫ +∞

g(b)

P (g(X) ≥ u) du

= g(b)P (X ≥ b) +

∫ +∞

b

P (g(X) ≥ g(v)) g′(v)dv

≤ g(b)P (X ≥ b) + a

∫ +∞

b

e−vg′(v)dv since g increases

≤ g(b)P (X ≥ b)− ae−bg(b) + a

∫ +∞

b

e−vg(v)dv

≤ a

∫ +∞

b

e−vg(v)dv.
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Lemma B.2 Let Z be a random variable. Then for all r > 2,

E[Z2] ≤ E[|Z|]
r−2
r−1E[|Z|r]

1
r−1 .

In particular, if ‖Z‖Lr ≤ κr ‖Z‖L2 for some r > 2, κr > 0, then ‖Z‖L2 ≤
κ

r
r−2
r ‖Z‖L1.

Proof Let p = r−1
r−2

> 1, 1
q

= 1− 1
p
, α = 1

p
, then by Hölder’s inequality,

E[Z2] = E[|Z|α|Z|2−α]

≤ E [|Z|pα]
1
p E
[
|Z|q(2−α)

] 1
q .

Now by definition, 1
p

= r−2
r−1

, 1
q

= 1− r−2
r−1

= 1
r−1

, pα = p× 1
p

= 1 and

q(2− α) =
2− 1

p

1− 1
p

=
2− r−2

r−1

1− r−2
r−1

=
2(r − 1)− (r − 2)

r − 1− (r − 2)

= r.

Assume now that ‖Z‖Lr ≤ κr ‖Z‖L2 . Then

‖Z‖2
L2 = E[Z2]

≤ E[|Z|]
r−2
r−1E[|Z|r]

1
r−1

≤ ‖Z‖
r−2
r−1

L1 κ
r
r−1
r ‖Z‖

r
r−1

L2 .

It follows that

‖Z‖
r−2
r−1

L2 ≤ κ
r
r−1
r ‖Z‖

r−2
r−1

L1 ,

which yields the result.

Lemma B.3 Let Z be a ψ1− random variable. Then for all r ∈ N,

‖Z‖rLr ≤ 2r! ‖Z‖rLψ1
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Proof By definition of ‖Z‖Lψ1 and Markov’s inequality

P
(

Z

‖Z‖Lψ1

≥ x

)
≤ 2e−x.

It follows by lemma B.1 that

E

[(
Z

‖Z‖Lψ1

)r]
≤ 2

∫ +∞

0

xre−xdx

≤ 2r!(moment of an exponential distribution).

Lemma B.4 Let Z be a ψ1−random variable such that ‖Z‖Lψ1 ≤ κ ‖Z‖L2,
where κ ≥

√
2. Then for all integers r ≥ 2,

E [Zr] ≤ r!E[Z2] ((4 + 4 log κ) ‖Z‖Lψ1 )r−2 .

Proof Since 2 > 1, the statement is true for r = 2. Consider now r ≥ 3.
Let b > 1 be a real number to be determined later. Then

E [Zr] ≤ E
[
ZrIZ≤b‖Z‖

Lψ1

]
+ E

[
ZrIZ≥b‖Z‖

Lψ1

]
≤ br−2 ‖Z‖r−2

Lψ1 E[Z2] + ‖Z‖rLψ1 E

[(
Z

‖Z‖Lψ1

)r
I Z
‖Z‖

Lψ1
≥b

]
.

By definition of ‖Z‖Lψ1 and a Chernoff bound, the variable Y = Z
‖Z‖

Lψ1

satisfies P(Y ≥ x) ≤ 2e−x for all x, therefore by lemma B.1,

E [Zr] ≤ br−2 ‖Z‖r−2
Lψ1 E[Z2] + 2 ‖Z‖rLψ1

∫ +∞

b

tre−tdt.

An easy induction argument shows that∫ +∞

b

tre−tdt =
r∑
j=0

r!

j!
bje−b

= r!bre−b
r∑
j=0

1

j!br−j
.

It follows that

E [Zr] ≤ br−2 ‖Z‖r−2
Lψ1 E[Z2] + 2 ‖Z‖rLψ1 r!b

re−b
r∑
j=0

1

j!br−j
.
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Let b = 4 + 4 log κ ≥ 4 + 2 log 2. Then for all r ≥ 3,

r∑
j=0

1

j!br−j
=

1

br
+

1

br−1
+

1

2br−2
+

r∑
j=3

1

j!br−j

≤ 1

b3
+

1

b2
+

1

2b
+

1

6
+

1

(r ∨ 4)!
+

1

b

+∞∑
j=4

1

j!

≤ 1

b3
+

1

b2
+

1

2b
+

1

6
+

1

24
+

1

b

(
e− 2− 1

2
− 1

6

)
< 0.36.

As a result, for all r ≥ 3,

E [Zr] ≤ r!

3!
br−2 ‖Z‖r−2

Lψ1 E[Z2] + 0.72 ‖Z‖rLψ1 r!b
re−b.

We now prove that for all t ≥ b, t ≥ 2 log t+ 2 log κ. For all t ≥ 4,

d

dt
[t− 2 log t− 2 log κ] = 1− 2

t
≥ 1

2
,

therefore

t− 2 log t ≥ 4− 2 log(4) +
t− 4

2

≥ t− 4

2
.

It follows that for all t > 4+4 log(κ) = b, t > 2 log t+2 log(κ). In particular,
b2e−b ≤ b2 exp(−2 log(b)− 2 log(κ)) ≤ 1

κ2 , therefore

E [Zr] ≤ r!

6
br−2 ‖Z‖r−2

Lψ1 E[Z2] + 0.72 ‖Z‖rLψ1 r!b
r−2 1

κ2

≤ r!

6
br−2 ‖Z‖r−2

Lψ1 E[Z2] + 0.72 ‖Z‖rLψ1 r!b
r−2 E[Z2]

‖Z‖2
Lψ1

≤ r!E[Z2](b ‖Z‖Lψ1 )r−2.

Lemma B.5 There exists a constant µ0 such that, for any sub-exponential
random variable Z and any κ ≥

√
2,

‖Z‖Lψ1 ≤ κ ‖Z‖L2 =⇒ ‖Z‖L2 ≤ µ0κ log κ ‖Z‖L1 .
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Proof By lemmas B.3 and B.2, for all r ≥ 3,

‖Z‖L2 ≤ (2
1
rκr)

r
r−2 ‖Z‖L1 .

Remark that

(2
1
rκr)

r
r−2 = 2

1
r−2κ

r
r−2 × r × r

2
r−2

and
d

dr
log
(
r

2
r−2

)
=

d

dr

[2 log r

r − 2

]
=

2

r − 2

[1
r
− log r

r − 2

]
≤ 0

for r ≥ 3 since log r ≥ 1 and 1
r−2
≥ 1

r
. Let r = 3 + log(κ) ≥ 3. Thus,

r
2
r−2 ≤ 3

2
3−2 = 9 and

(2
1
rκr)

r
r−2 ≤ 2× 9× rκ

r
r−2

≤ 18(3 + log(κ))κ× κ
2

1+log(κ)

≤ 18(3 + log(κ))κ exp

(
2 log(κ)

1 + log(κ)

)
≤ 18e2(3 + log(κ))κ.

The conclusion follows since by assumption, log κ ≥ log(
√

2) > 0.

B.2 Controlling the ψ1 norm
∥∥t̂k − t̂l∥∥ψ1,P

First, let us bound the supremum norm by the L2 norm.

Claim B.5.1 For any k ∈ {1, . . . , K}, recall that t̂k = Ak(Dnt). Then:

∀(k, l) ∈ {1, . . . , K}2,
∥∥t̂k − t̂l∥∥ψ1,P

≤
√

2κ(K)
∥∥t̂k − t̂l∥∥2,P

a.s. .

Proof Let X be independent from Dn and observe that for any k,

t̂k(X) = b̂k + θ̂Tk (X − PX),

where b̂k = q̂k + θ̂Tk (PX) (using the notations of hypothesis 2.1). Note that
‖1‖ψ1,P

= 1
log 2

. Hence, by the triangle inequality,

∥∥t̂k(X)− t̂l(X)
∥∥
ψ1,P
≤ 1

log 2
|b̂k − b̂l|+

∥∥∥(θ̂k − θ̂l)T (X − PX)
∥∥∥
ψ1,P

.
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By hypothesis 2.1,
∥∥θ̂k∥∥0

≤ k. Thus, if K ≥ max(k, l),
∥∥∥θ̂k − θ̂l∥∥∥

0
≤ k + l ≤

2K. The definition of κ (equation (7)) implies that∥∥t̂k(X)− t̂l(X)
∥∥
ψ1,P
≤ 1

log 2
|b̂k − b̂l|+ κ(K)

∥∥∥(θ̂k − θ̂l)T (X − PX)
∥∥∥
L2

≤ κ(K)
[
|b̂k − b̂l|+

∥∥∥(θ̂k − θ̂l)T (X − PX)
∥∥∥
L2

]
≤
√

2κ(K)

√
|b̂k − b̂l|2 +

∥∥∥(θ̂k − θ̂l)T (X − PX)
∥∥∥2

L2

=
√

2κ(K)
∥∥t̂k(X)− t̂l(X)

∥∥
L2 .

A uniform bound on the Orlicz norm is also required.

Definition B.6 Let
β̂ = max

1≤k,l≤K

∥∥t̂k − t̂l∥∥ψ1,P
.

E[β̂] can be bounded as follows.

Claim B.6.1 Assume that hypotheses (Reg-T ), (Uub) hold and that for
some λ > 0, κ(K) log(κ(K)) ≤ λ

√
nt. Then

E[β̂] ≤
(

2

log 2
+

2µ0λ
2

| log log 2|

)
Ln1+α

t .

Proof Let (k, l) ∈ {1, . . . , K}2. Defining X̃i = Xi− 1
nt

∑nt
i=1 Xi and changing

variables in hypothesis 2.1 from (q, θ) to
(
b = q+ < θ, 1

nt

∑nt
i=1Xi >, θ

)
, we

can rewrite t̂k as

t̂k(x) = b̂k(Dnt) + θ̂k(Dnt)
T

(
x− 1

nt

nt∑
i=1

Xi

)

where

b̂k(Dnt) ∈ argmin
b∈Q̂′(Dnt ,θ̂k(Dnt ))

|b|

Q̂′(Dnt , θ) = argmin
b∈R

1

nt

nt∑
i=1

φc

(
Yi − b− θT X̃i

)
.
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Therefore, differentiating with respect to b,

1

nt

nt∑
i=1

φ′c
(
Yi − b̂k − θ̂Tk X̃i

)
= 0.

Assume by contradiction that

∃b > 0,∀i ∈ [|1;nt|], b̂k + b+ θ̂Tk X̃i ≤ b̂l + θ̂Tl X̃i. (21)

Let b be such that (21) holds. Then by monotony of φ′c, for all ε in [0; b
2
],

0 =
1

nt

nt∑
i=1

φ′c
(
Yi − b̂k − θ̂Tk X̃i

)
≥ 1

nt

nt∑
i=1

φ′c
(
Yi − b̂k − ε− θ̂Tk X̃i

)
≥ 1

nt

nt∑
i=1

φ′c
(
Yi − b̂k −

b

2
− θ̂Tk X̃i

)
≥ 1

nt

nt∑
i=1

φ′c
(
Yi − b̂l +

b

2
− θ̂Tl X̃i

)
≥ 1

nt

nt∑
i=1

φ′c
(
Yi − b̂l + ε− θ̂Tl X̃i

)
≥ 1

nt

nt∑
i=1

φ′c
(
Yi − b̂l − θ̂Tl X̃i

)
= 0.

It follows that

∀ε ∈ [0;
b

2
],

1

nt

nt∑
i=1

φ′c
(
Yi− b̂k− ε− θ̂Tk X̃i

)
=

1

nt

nt∑
i=1

φ′c
(
Yi− b̂l + ε− θ̂Tl X̃i

)
= 0.

(22)
By integration, this implies that for all ε ∈ [0; b

2
],

(b̂k + ε) ∈ Q̂′
(
Dnt , θ̂k(Dnt)

)
, (23)

(b̂l − ε) ∈ Q̂′
(
Dnt , θ̂l(Dnt)

)
. (24)

If b̂l > 0, then for small enough ε, (24) contradicts the minimality of |b̂l|.
On the other hand, if b̂l ≤ 0, then averaging (21) over i ∈ {1, . . . , n} yields

b̂k + b ≤ b̂l ≤ 0.
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Then for ε ∈ [0; b
2
], (23) contradicts the minimality of |b̂k|. Thus, (21) leads

to a contradiction. Let i be such that b̂k + θ̂Tk X̃i ≥ b̂l + θ̂Tl X̃i. Then

b̂l − b̂k ≤
(
θ̂k − θ̂l

)T
X̃i ≤ max

i=1,...,nt

∣∣(θ̂k − θ̂l)T X̃i

∣∣.
Exchanging k and l yields

|b̂l − b̂k| ≤ max
1≤i≤nt

∣∣(θ̂k − θ̂l)T X̃i

∣∣ ≤ 2 max
1≤i≤nt

∣∣(θ̂k − θ̂l)T (Xi − PX)
∣∣.

Let X ∼ X1 be independent from Dnt . For any k, l,

|(t̂k − t̂l)(X)| ≤ |b̂l − b̂k|+
∣∣(θ̂k − θ̂l)T (PX − 1

nt

nt∑
i=1

Xi)
∣∣+
∣∣(θ̂k − θ̂l)T (X − PX)

∣∣
≤ 3 max

1≤i≤nt

∣∣∣(θ̂k − θ̂l)T (Xi − PX)
∣∣∣+
∣∣(θ̂k − θ̂l)T (X − PX)

∣∣.
As X is independent from Dnt , conditionnally on Dnt , by hypothesis 2,∥∥t̂k − t̂l∥∥ψ1,P

≤ 3

log 2
max

1≤i≤nt

∣∣∣(θ̂k − θ̂l)T (Xi − PX)
∣∣∣+
∥∥∥(θ̂k − θ̂l)T (X − PX)

∥∥∥
ψ1,P

≤ 3

log 2
max

1≤i≤nt

∣∣∣(θ̂k − θ̂l)T (Xi − PX)
∣∣∣+ κ(K)P

(
〈θ̂k − θ̂l, X − PX〉2

) 1
2

Hence, by lemma B.5,∥∥t̂k − t̂l∥∥ψ1,P
≤ 3

log 2
max

1≤i≤nt

∣∣∣(θ̂k − θ̂l)T (Xi − PX)
∣∣∣

+ µ0κ(K)2 log(κ(K))P
(∣∣〈θ̂k − θ̂l, X − PX〉∣∣)

≤ 3

log 2
max

1≤i≤nt

∣∣∣(θ̂k − θ̂l)T (Xi − PX)
∣∣∣

+ µ0κ(K)2 log2(κ(K))

| log log 2|
P
(∣∣〈θ̂k − θ̂l, X − PX〉∣∣) .

Thus, by the hypotheses of claim B.6.1,

E
[
β̂
]
≤ 6L

log 2
nαt +

2µ0λ
2

| log log 2|
Ln1+α

t .

The result follows since for all nt ≥ 3, 6L
log 2

nαt ≤ 2L
log 2

n1+α
t .
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B.3 Proving hypotheses H
(
ŵi,1, ŵi,2, (t̂k)1≤k≤K

)
The following lemmas will be useful.

Lemma B.7 For any (u, v, a, b) ∈ R4
+,

max(u(a+ b), v(a+ b)2) ≤
(

max(
√
ua,
√
va) + max(

√
ub,
√
vb)
)2

.

Proof(
max(

√
ua,
√
va) + max(

√
ub,
√
vb)
)2

= max(ua, va2) + max(ub, vb2)

+ 2 max(
√
ua,
√
va) max(

√
ub,
√
vb)

≥ max(u(a+ b), v(a+ b)2).

Claim B.7.1 Let `X(u) = P [φc(Y − u)− φc(Y )|X]. Let s(X) ∈ argminu∈R `X(u);
s is a risk minimizer. Under hypothesis (Lcs), almost surely, for any u ∈ R,

s(X)− c

2
≤ u ≤ s(X) +

c

2
=⇒ d2

du2
`X(u) ≥ η.

As a result, for any u ∈ R,

`X(u)− `X(s(X)) ≥ η

2
(u− s(X))2 if |u− s(X)| ≤ c

2

≥ ηc

4
|u− s(X)| if |u− s(X)| ≥ c

2
.

Proof Recall that

φc(x) =
x2

2
I|x|≤c + c

(
|x| − c

2

)
I|x|>c.

Then φ′c(x) = sgn(x)(|x| ∧ c) and φ′′c (x) = I|x|≤c. By differentiating under the
expectation, almost surely, for any u such that |u− s(X)| ≤ c

2
,

d2

du2
`X(u) = ∂2

uP [φc(Y − u)− φc(Y )|X]

= P [φ′′c (Y − u)|X]

= P [|Y − u| ≤ c|X]

≥ P [|Y − s(X)|+ |u− s(X)| ≤ c|X]

≥ P
[
|Y − s(X)| ≤ c

2
|X
]

≥ η.

47



This proves the first equation. Since s(X) is a global minimum, it follows
that, for any u ∈

[
s(X)− c

2
; s(X) + c

2

]
,

`X(u)− `X(s(X)) ≥ η(u− s(X))2

2
.

Because `X(·) is convex, for any u such that u ≥ s(X) + c
2
,

`X(u)− `X(s(X)) ≥ (u− s(X))
`X(s(X) + c

2
)− `X(s(X))
c
2

≥ (u− s(X))
2

c

ηc2

8

≥ ηc

4
(u− s(X)).

Similarly, for u < s(X)− c
2
, `X(u)− `X(s(X)) ≥ ηc

4
(s(X)− u). This proves

the lemma.

We now relate the L2 norm to the excess risk in the following Proposition.

Proposition B.8 Let (X, Y ) ∼ P be random variables. Let φc be the Huber
loss with parameter c > 0. Assume that P satisfies hypothesis (Lcs). Let
(f1, f2) : X → R2 be measurable functions. If for some r > 2, ‖f1 − f2‖r,P ≤
κr ‖f1 − f2‖2,P , then

‖f1 − f2‖2
2,P ≤

(
w0(r, κr,

√
`(s, f1)) + w0(r, κr,

√
`(s, f2))

)2

,

where w0(r, κr, x) = max
(

2
√

2√
η
x, 8

ηc
2
r−1
r−2κ

r
r−2
r x2

)
.

In particular, there exists a constant µ3 such that, whenever ‖f1 − f2‖ψ1,P
≤

κ ‖f1 − f2‖2,P for some κ ≥ 2,

c2 ‖f1 − f2‖2
2,P ≤

(
w1(κ,

√
`(s, f1)) + w1(κ,

√
`(s, f2))

)2

, (25)

where w1(κ, x) = max
(

2
√

2c√
η
x, µ3

η
κ log(κ)x2

)
. One can take µ3 = 16e2 ×

3+log 2
log 2

× supu≥3 exp
(

log(u)
u−2

)
.

Proof Let f1, f2 satisfy the hypotheses of proposition B.8. Let U = f1(X), V =
f2(X), S = s(X) where

s(X) ∈ argmin
u∈R

P [φc(Y − u)− φc(Y )|X] .
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Let
Z = P [φc(Y − U) + φc(Y − V )− 2φc(Y − S)|X] .

Notice that in the notation of claim B.7.1, Z = `X(U) + `X(V )−2`X(S) and
in particular, P [Z] = `(s, f1) + `(s, f2). Define the event A = {|U − S| ≤
c
2
, |V − S| ≤ c

2
}. By claim B.7.1,

(U − V )2IA ≤ 2
[
(U − S)2 + (V − S)2

]
I|U−S|≤ c

2
I|V−S|≤ c

2

≤ 4

η
ZIA. (26)

Let r > 2. By lemma B.2,

P
[
(U − V )2IAc

]
≤ P [|U − V |IAc ]

r−2
r−1 P [|U − V |rIAc ]

1
r−1

≤ P [|U − V |IAc ]
r−2
r−1 P [|U − V |r]

1
r−1

= P [|U − V |IAc ]
r−2
r−1 ‖f1 − f2‖

r
r−1

r,P

≤ P [|U − V |IAc ]
r−2
r−1 κ

r
r−1
r ‖f1 − f2‖

r
r−1

2,P .

By definition, on Ac, max(|U − S|, |V − S|) ≥ c
2
, therefore by lemma B.7.1,

|U − V |IAc ≤ 2 max(|U − S|, |V − S|)IAc ≤
8

ηc
ZIAc .

It follows that

P
[
(U − V )2IAc

]
≤
(

8

ηc

) r−2
r−1

P [Z]
r−2
r−1κ

r
r−1
r ‖f1 − f2‖

r
r−1

2,P . (27)

From equations (26) and (27), it follows that

‖f1 − f2‖2
2,P = P

[
(U − V )2

]
= P

[
(U − V )2IA

]
+ P

[
(U − V )2IAc

]
≤ 4

η
P [ZIA] +

(
8

ηc

) r−2
r−1

P [Z]
r−2
r−1κ

r
r−1
r ‖f1 − f2‖

r
r−1

2,P

≤ 2 max

(
4

η
P [Z],

(
8

ηc

) r−2
r−1

P [Z]
r−2
r−1κ

r
r−1
r ‖f1 − f2‖

r
r−1

2,P

)
.
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Therefore, either ‖f1 − f2‖2
2,P ≤

8
η

[`(s, f1) + `(s, f2)] or

‖f1 − f2‖2
2,P ≤ 2

(
8

ηc

) r−2
r−1

P [Z]
r−2
r−1κ

r
r−1
r ‖f1 − f2‖

r
r−1

2,P

⇐⇒ ‖f1 − f2‖
r−2
r−1

2,P ≤ 2κ
r
r−1
r

(
8

ηc
P [Z]

) r−2
r−1

⇐⇒ ‖f1 − f2‖2
2,P ≤ 4

r−1
r−2κ

2r
r−2
r

(
8

ηc
P [Z]

)2

⇐⇒ ‖f1 − f2‖2
2,P ≤ 4

r−1
r−2κ

2r
r−2
r

(
8

ηc

)2

[`(s, f1) + `(s, f2)]2

In either case,

‖f1 − f2‖2
2,P ≤ max

(
8

η
[`(s, f1) + `(s, f2)] , 4

r−1
r−2κ

2r
r−2
r

(
8

ηc

)2

[`(s, f1) + `(s, f2)]2
)
.

Finally, by lemma B.7,

‖f1 − f2‖2
2,P ≤

(
w0(r, κr,

√
`(s, f1)) + w0(r, κr,

√
`(s, f2))

)2

, (28)

where w0(r, κr, x) = max
(

2
√

2√
η
x, 8

ηc
2
r−1
r−2κ

r
r−2
r x2

)
. This proves the first equa-

tion. Let now r = 3 + log(κ) ≥ 3. By lemma B.3,

2
r−1
r−2κ

r
r−2
r ≤ 2

r−1
r−2 2

1
r−2 r

r
r−2κ

r
r−2

≤ 8rκr
2
r−2κ

2
r−2

≤ 8(3 + log κ)κr
2
r−2 exp

(
log(κ)

2

1 + log κ

)
≤ 72(3 + log κ)κe2

since r 7→ r
2
r−2 decreases on [3; +∞[, as shown in the proof of lemma B.5.

Let µ3 = 576e2 ×
(

1 + 3
| log log 2|

)
. Then for all κ ≥ 2,

2
r−1
r−2κ

r
r−2
r ≤ µ3

8
κ log(κ).

It follows from equation (28) that

c2 ‖f1 − f2‖2
2,P ≤

(
w1(κ,

√
`(s, f1)) + w1(κ,

√
`(s, f2))

)2

,
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where w1(κ, x) = max
(

2
√

2c√
η
x, µ3

η
κ log(κ)x2

)
.

We are now ready to obtain functions (ŵi,j)(i,j)∈{1;2}2 such thatH
(
ŵi,1, ŵi,2, (t̂k)1≤k≤K

)
holds. In the following, fix K ∈ [|1;nt|] and write κ = κ(K) for short. Be-
cause the Huber loss φc is c−Lipschitz,

∀u, v ∈ R, |φc(Y − u)− φc(Y − v)| ≤ c|u− v|.

Therefore, for all r ≥ 2,

P
[(
φc(Y − t̂k(X))− φc(Y − t̂l(X))

)r] ≤ crP
(∣∣t̂k(X)− t̂l(X)

∣∣r) .
Let µ4 = 4

log 2
+ 4. By claim B.5.1,

∥∥t̂k − t̂l∥∥ψ1,P
≤
√

2κ
∥∥t̂k − t̂l∥∥2,P

, hence

by lemma B.4, since κ ≥ 1
log 2
≥
√

2,

P
[(
φc(Y − t̂k(X))− φc(Y − t̂l(X))

)r]
≤ r!

(
c2
∥∥t̂k − t̂l∥∥2

2,P

)(
µ4c log(

√
2κ)

∥∥t̂k − t̂l∥∥ψ1,P

)r−2

≤ r!
(
c2
∥∥t̂k − t̂l∥∥2

2,P

)(
µ4c log(

√
2κ)
√

2κ
∥∥t̂k − t̂l∥∥2,P

)r−2

.

Using the notation of Proposition B.8, let

wA(x) = w1(
√

2κ(K), x) = max

(
2
√

2c
√
η
x,
µ3

η

√
2κ log(

√
2κ)x2

)
. (29)

By Proposition B.8,

P
[(
φc(Y − t̂k(X))− φc(Y − t̂l(X))

)r]
≤
(
wA(

√
`(s, t̂k)) + wA(

√
`(s, t̂l))

)2

×
(
µ4

√
2κ log(

√
2κ)
(
wA(

√
`(s, t̂k)) + wA(

√
`(s, t̂l))

))r−2

,

which proves H
(
wA, µ4

√
2κ log(

√
2κ)wA, (t̂k)1≤k≤K

)
. Now by Definition B.6

and lemma B.3,

P
[(
φc(Y − t̂k(X))− φc(Y − t̂l(X))

)r] ≤ crP
[
|t̂k − t̂l|r

]
≤ 2r!cr

∥∥t̂k − t̂l∥∥rψ1,P

≤ 2r!crβ̂r,

which proves H
(
cβ̂√

2
, cβ̂

2
, (t̂k)1≤k≤K

)
.

51



B.4 Conclusion of the proof

We have proved thatH
(
wA, µ4

√
2κ log(

√
2κ)wA, (t̂k)1≤k≤K

)
andH

(
cβ̂√

2
, cβ̂

2
, (t̂k)1≤k≤K

)
hold, where wA is defined in Proposition B.8. It remains to apply [25,
Theorem 17] and to express the remainder term as a simple function of
c, nv, nt, κ, L,K and α. We recall here the definition of the operator δ used
in the statement of that theorem.

Definition B.9 For any function h : R+ 7→ R+ and any ξ > 0, let

δ(h, ξ) = inf{x ∈ R+ : ∀u ≥ x, h(u) ≤ ξu2}.

The following lemma will facilitate the computation of δ(wA, ·).

Lemma B.10 Let r > 0, s > 0 and hr,s(x) = (
√
rx)∨ sx2. Then δ(hr,s, ξ) <

∞ if and only if ξ ≥ s and then δ(hr,s, ξ) =
√
r
ξ

.

Proof To find δ(hr,s, ξ), notice that given the definition of δ(hr,s, ξ), the con-
dition s ≤ ξ is obviously necessary for the infimum to be finite. Assume now
that ξ ≥ s. For any u ≥

√
r
ξ

, then ξu2 ≥
√
ru as well as ξu2 ≥ su2 (since we

assumed ξ ≥ s), therefore ξu2 ≥ hr,s(u). Thus by definition, δ(hr,s, ξ) ≤
√
r
ξ

(in particular, δ(hr,s, ξ) is finite). Furthermore, by definition of δ(hr,s, ξ),√
rδ(hr,s, ξ) ≤ ξδ(hr,s, ξ)

2, that is δ(hr,s, ξ) ≥
√
r
ξ

.

The following claim can now be proved.

Claim B.10.1 Assume that hypotheses (Reg-T ) and (Lcs) hold. If K ∈
{3, . . . , e

√
nv} and b > 1 are such that

√
2κ(K) log

(√
2κ(K)

)
≤ η

µ3 ∨ µ4

√
nv

8b logK
, (30)

then applying Agghoo to the collection (Ak)1≤k≤K yields the following oracle
inequality.

(1− θ)E[`(s, f̂ ag
T )] ≤ (1 + θ)E[ min

1≤k≤K
`(s, t̂k)] + 54θb

c2 logK

ηnv
+

7 logK

θKθ2b−1

µ1cLn
1+α
t√

nv
.

Proof Theorem [25, Theorem 17] applies with ŵ1,1 = cβ̂√
2
, ŵ1,2 = cβ̂

2
, ŵ2,1 =

wA, ŵ2,2 = µ4

√
2κ log(

√
2κ)wA, x = (θ2b− 1) logK and it remains to bound

the remainder terms (R2,i)1≤i≤4. Now assume that equation (30) holds.
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Bound on R2,1(θ) =
√

2θE
[
δ2

(
wA,

θ
2

√
nv

θ2b logK

)]
By (29), we can apply lemma B.10 with s = µ3

η

√
2κ log(

√
2κ), r = 8c2

η

and ξ = 1
2

√
nv

b logK
. By (30),

s =
µ3

η

√
2κ log(

√
2κ) ≤

√
nv

4b logK
= ξ.

It follows by lemma B.10 that

δ

(
wA,

√
nv

4b logK

)
=

2
√

2c
√
η

√
4b logK

nv
.

Hence,

R2,1(θ) ≤
√

2θ
8c2

η

4b logK

nv
≤ 46θb

c2 logK

ηnv
(31)

Bound on R2,2(θ) = θ2

2
E
[
δ2
(
µ4

√
2κ log(

√
2κ)wA,

θ2

4
nv

θ2b logK

)]
By (29), we can apply lemma B.10 with s = µ3µ4(

√
2κ log(

√
2κ))2

η
, r =

8µ2
4c

2

η
(
√

2κ log(
√

2κ))2 and ξ = nv
4b logK

. By (30) and since η ≤ 1,

s =
µ3µ4(

√
2κ log(

√
2κ))2

η

≤ η

(
µ3 ∨ µ4

η

√
2κ log(

√
2κ)

)2

≤ nv
4b logK

.

Therefore,

δ

(
(µ4

√
2κ log(

√
2κ))wA,

θ2

4

nv
θ2b logK

)
≤ 2
√

2cµ4√
η

√
2κ log(

√
2κ)

4b logK

nv
by lemma B.10

≤ 4cµ4

µ3 ∨ µ4

√
ηb logK

nv
by (30).

Hence, since θ, η ∈ [0; 1],

R2,2(θ) ≤ θ2

2
16c2ηb logK

nv
≤ 8θb

c2 logK

nv
. (32)
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Bound on R2,3(θ) = 1

Kθ2b−1

(
θ +

2
[

1+log(K)
]

θ

)
E
[
δ2
(
cβ̂√

2
,
√
nv
)]

x→ cβ̂√
2x

is non-increasing, therefore, δ
(
cβ̂√

2
,
√
nv
)

is the unique nonnega-
tive solution to the equation

cβ̂√
2

=
√
nvx

2 ⇐⇒ x2 =
cβ̂√
2nv

.

It follows that

δ2
( cβ̂√

2
,
√
nv
)

=
cβ̂√
2nv

. (33)

Since K ≥ 3 by assumption, logK ≥ 1 and

θ +
2(1 + logK)

θ
≤ 5 logK

θ
.

By equation (33),

R2,3(θ) ≤ 4 logK

θKθ2b−1

cE[β̂]
√
nv

. (34)

Bound on R2,4(θ) = 1

Kθ2b−1

(
θ + 2(1+logK)+log2 K

θ

)
E
[
δ2
(
cβ̂
2
, nv
)]

δ2
(
cβ̂
2
, nv
)

is the unique nonnegative solution to the equation

cβ̂

2
= nvx

2 ⇐⇒ x2 =
cβ̂

2nv
,

which yields

δ2
(cβ̂

2
, nv
)

=
cβ̂

2nv
.

Moreover,

θ +
2(1 + logK) + log2K

θ
≤ 5

θ
logK +

log2K

θ

≤ 6 log2K

θ
since K ≥ 3.

Therefore, since by assumption K ≤ nt ≤ e
√
nv ,

R2,4(θ) ≤ 6 log2K

θKθ2b−1

cE[β̂]

2nv
≤ 3 logK

θKθ2b−1

cE[β̂]
√
nv

. (35)
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Conclusion Summing up equations (31), (32), (34) and (35), [25, Theorem

17] implies that assuming equation (30) holds for K, for all θ ∈
[

1√
b
; 1
]
,

(1− θ)E[`(s, f̂ ag
T )] ≤ (1 + θ)E[ min

1≤k≤K
`(s, t̂k)] + 54θb

c2 logK

ηnv
+

7 logK

θKθ2b−1

cE[β̂]
√
nv

.

(36)
By hypothesis (30) and since nt ≥ nv by hypothesis (Reg-T ),

κ(K) log(κ(K)) ≤
√
nv

4(µ3 ∨ µ4)
≤

√
nt

4(µ3 ∨ µ4)
,

hence claim B.6.1 applies with λ = 1
4(µ3∨µ4)

. Thus,

E[β̂] ≤ µ1Ln
1+α
t where µ1 =

2

log 2
+

µ0

8(µ3 ∨ µ4)2| log log 2|
.

It follows that

(1− θ)E[`(s, f̂ ag
T )] ≤ (1 + θ)E[ min

1≤k≤K
`(s, t̂k)] + 54θb

c2 logK

ηnv
+

7 logK

θKθ2b−1

µ1cLn
1+α
t√

nv

This proves Claim B.10.1.

Theorem 3.2 can now be derived from claim B.10.1. Let θ be such that
θ ≥ µ2

√
α + 3ν0

η
for some numerical constant µ2, to be determined later.

Then ν0 ≤ θη
µ2
√
α+3

, so by hypothesis (Ni),

κ(K) log(κ(K)) ≤ θη

µ2

√
α + 3

√
nv

log(nt ∨K)
.

Letting b = 3+α
θ2

(
lognt
logK

∨ 1
)

, we can rewrite the above equation as

κ(K) log(κ(K)) ≤ η

µ2

√
nv

b logK
.

Since for any x ≥
√

2,
√

2x log(
√

2x)
x log x

=
√

2
[
1 + log

√
2

log x

]
≤ 2
√

2, and κ(K) ≥
1

log 2
≥
√

2 by definition,

√
2κ(K) log(

√
2κ(K)) ≤ 2

√
2η

µ2

√
nv

b logK
.
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Let now µ2 = 8(µ3 ∨ µ4), so that equation (30) holds. By claim B.10.1,

(1−θ)E[`(s, f̂ ag
T )] ≤ (1+θ)E[ min

1≤k≤K
`(s, t̂k)]+54θb

c2 logK

ηnv
+

7 logK

θKθ2b−1

µ1cLn
1+α
t√

nv
.

Since b = 3+α
θ2

(
lognt
logK

∨ 1
)

, Kθ2b−1 ≥ n2+α
t and θb logK ≤ 3+α

θ
log(nt ∨ K),

which proves Theorem 3.2.

C Applications of Theorem 3.2

C.1 Gaussian vectors

Proof For any θ ∈ Rd, Z = 〈θ,X − PX〉 is a centered gaussian random

variable. By homogeneity of norms, the quotient
‖Z‖

Lψ1

‖Z‖L2
does not depend on

the scale parameter σ; it is therefore a numerical constant; moreover one can

check that for Z ∼ N (0; 1),
‖Z‖

Lψ1

‖Z‖L2
= ‖Z‖Lψ1 =

√
2 log 2 ≤ 1

log 2
. Thus, we

can choose κ(K) = 1
log 2

so that

κ(K) log(κ(K)) < 0.6. (37)

It remains to prove point 2 of hypothesis 2.1 for some constant α. Let
k ∈ {1, . . . , K}. Let q̂k,R, θ̂k,R be such that Alassok,R (Dnt)(x) = q̂k,R + 〈θ̂k,R, x〉.
By the inequality c|u| ≤ c2

2
+ φc(u), for any q ∈ R,

1

nt

nt∑
i=1

|q̂k,R − q + 〈θ̂k,R, Xi〉| ≤
1

nt

nt∑
i=1

|Yi − q|+
1

nt

nt∑
i=1

|Yi − q̂k,R − 〈θ̂k,R, Xi〉|

≤ 1

nt

nt∑
i=1

|Yi − q|+
c

2
+

1

cnt

nt∑
i=1

φc(Yi − q̂k,R − 〈θ̂k,R, Xi〉).

It follows by definition of q̂k,R, θ̂k,R that

1

nt

nt∑
i=1

|q̂k,R − q + 〈θ̂k,R, Xi〉| ≤
1

nt

nt∑
i=1

|Yi − q|+
c

2
+

1

cnt

nt∑
i=1

φc(Yi − q)

≤ 2

nt

nt∑
i=1

|Yi − q|+
c

2
. (38)
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On the other hand, letting X̄nt = 1
nt

∑nt
i=1Xi,

1

nt

nt∑
i=1

|q̂k,R − q + 〈θ̂k,R, Xi〉| ≥
1

nt

√√√√ nt∑
i=1

|q̂k,R − q + 〈θ̂k,R, Xi〉|2

≥ 1

nt

√√√√ nt∑
i=1

〈θ̂k,R, Xi − X̄nt〉2

≥ 1

nt
max

i∈{1,...,nt}

∣∣∣〈θ̂k,R, Xi − X̄nt〉
∣∣∣ . (39)

For all θ ∈ Rd, let N̂(θ) = maxi∈{1,...,nt}
∣∣〈θ,Xi − X̄nt〉

∣∣. Clearly, N̂ is a
semi-norm. Let Σ = P [XXT ] be the covariance matrix of X. For all I ⊂
{1, . . . , d}, let EI denote the vector space {θ ∈ Rd : ∀i /∈ I, θi = 0}. Let

γ̂I = min
θ∈EI :θTΣθ=1

N̂(θ).

Let finally γ̂ = minI⊂{1,...,d},|I|≤ nt
log d

γ̂I . Since by construction,∥∥∥θ̂k,R∥∥∥
0
≤ k ≤ K ≤ nt

log d
,

it follows from equations (38), (39) and the definition of γ̂ that√
θ̂Tk,RΣθ̂k,R ≤

1

γ̂

(
2

nt∑
i=1

|Yi − q|+
ntc

2

)
. (40)

By Hölder’s inequality, for any u > 0,

E
[

max
1≤k≤K

E
[∣∣〈θ̂k,R, X − PX〉∣∣]] ≤ E

[
max

1≤k≤K

√
θ̂Tk,RΣθ̂k,R

]
≤ nt

∥∥∥∥1

γ̂

∥∥∥∥
L1+ 1

u

(
2 ‖Y1 − q‖L1+u +

c

2

)
.

If nt ≥ 4 + 3
u
, then by lemma C.1 below,

E
[

max
1≤k≤K

E
[∣∣〈θ̂k,R, X − PX〉∣∣]] ≤ µ7nt(‖Y1 − q‖L1+u ∨ c). (41)

for some numerical constant µ7. For any i ∈ {1, . . . , nt}, the vector Xi has
components Xi,1, . . . , Xi,p. For any J ⊂ {1, . . . , d},let Xi,J = (Xi,j)j∈J ∈ RJ
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and ΣJJ = (Σj,j′)j∈J,j′∈J . By the Cauchy-Schwarz inequality, equation (40)

and since
∥∥∥θ̂k,R∥∥∥

0
≤ K,

max
1≤k≤K

max
1≤i≤nt

∣∣〈θ̂k,R, Xi − PXi〉
∣∣

≤ max
1≤k≤K

√
θ̂Tk,RΣθ̂k,R × max

1≤i≤nt
max

J⊂{1,...,d}:|J |≤K

∥∥∥Σ
− 1

2
JJ (Xi,J − PXi,J)

∥∥∥
2

≤ 1

γ̂

(
2

nt∑
i=1

|Yi − q|+
ntc

2

)
× max

1≤i≤nt
max

J⊂{1,...,d}:|J |≤K

∥∥∥Σ
− 1

2
JJ (Xi,J − PXi,J)

∥∥∥
2
.

Let r = 1 + u
2
, r′ = 1 + 2

u
, p = 1+u

r
, p′ = 1

1− 1
p

. Let

R̂K = max
1≤i≤nt

max
J⊂{1,...,d}:|J |≤K

∥∥∥Σ
− 1

2
JJ (Xi,J − PXi,J)

∥∥∥
2
. (42)

Then, by two applications of Hölder’s inequality,

E
[

max
1≤k≤K

max
1≤i≤nt

∣∣〈θ̂k,R, Xi − PXi〉
∣∣]

≤

∥∥∥∥∥2

γ̂

nt∑
i=1

|Yi − q|+
ntc

2γ̂

∥∥∥∥∥
Lr

∥∥∥R̂K

∥∥∥
Lr′

≤ nt

∥∥∥∥1

γ̂

∥∥∥∥
Lp′r

(
2 ‖Y1 − q‖Lpr +

c

2

)∥∥∥R̂K

∥∥∥
Lr′
.

By definition, pr = 1 + u,

p′r =
r

1− r
1+u

=
1 + u

2

1− 1+u
2

1+u

=
2
(
1 + u

2

)
(1 + u)

u

≤ 4 +
2

u
.

Therefore, if nt ≥ 13 + 6
u
, then by lemma C.1 below, for some constant µ7,

E
[

max
1≤k≤K

max
1≤i≤nt

∣∣〈θ̂k,R, Xi − PXi〉
∣∣] ≤ ntµ7 (‖Y1 − q‖L1+u ∨ c)

∥∥∥R̂K

∥∥∥
Lr′
.

(43)
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Let us now bound
∥∥∥R̂K

∥∥∥
Lr′

, where we recall that R̂K is given by equation

(42). Since for any i ∈ {1, . . . , nt}, J ⊂ {1, . . . , d}, Σ
− 1

2
JJ (Xi,J − PXi,J) is a

standard normal vector of size |J |, by the gaussian concentration inequality,
there exists some constant µ such that

∥∥∥R̂K

∥∥∥
Lr′
≤ max

J⊂{1,...,d}:|J |≤K
P
[∥∥∥Σ

− 1
2

JJ (Xi,J − PXi,J)
∥∥∥

2

]
+

√√√√µ

(
log nt + log

∑
j≤K

(
d

j

))
+
√
µr′

≤
√
K +

√
µ log nt +

√
µ(1 +K log d) +

√
µ(1 + 2

u
).

Since by assumption nt ≥ 13 + 6
u

and K ≤ nt
log d

and since log nt ≤ nt,∥∥∥R̂K

∥∥∥
Lr′
≤ (1 +

√
µ)
√
nt +

√
µ(1 + nt) +

√
µ
u+ 2

13u+ 6

√
nt

≤ (1 + 3
√
µ)
√
nt.

From equation (43), we can conclude that for some constant µ′7 ≥ µ7,

E
[

max
1≤k≤K

max
1≤i≤nt

∣∣〈θ̂k,R, Xi − PXi〉
∣∣] ≤ µ′7 (‖Y1 − q‖L1+u ∨ c)n

3
2
t .

Together with (41), this proves point 2. of hypothesis 2.1. with α = 3
2

and
L = µ′7(‖Y1 − q‖L1+u ∨ c).

By equation (37), hypothesis (Ni) holds with ν0 = 0.6
√

lognt
nv

. Let µ5 =

0.6µ2

√
4.5 ≥ 0.6µ2

√
α + 3, so that θ ≥ µ5

η

√
lognt
nv

implies θ ≥
√
α + 3µ2ν0

η
.

Then, by Theorem 3.2 and since K logK ≤ nt (by equation (10)), we obtain
Corollary 3.3 with µ8 = 7µ1µ

′
7.

Lemma C.1 There exists a constant µ6 such that for any subset I such that

|I| ≤ min
(

nt
lognt

, 2
5
(nt − 1)

)
and for all ε ∈ (0; 1],

P (γ̂I ≤ ε) ≤ 2
√
e(µ6ε)

nt−1
2 .

Moreover, if in addition |I| ≤ nt
log d

, then for all ε ∈ (0; 1],

P (γ̂ ≤ ε) ≤ 2e
5
2 (µ6e

2ε)
nt−1

2 .

As a result, for any r ∈
[
0, nt−1

3

]
,∥∥∥∥1

γ̂

∥∥∥∥
Lr
≤ 2µ6e

2
[
2(1 + 2e

5
2 )
] 1
r
.
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Proof By restricting to a subspace, we can always assume that M(θ) =√
θΣθ is a norm. Let SΣ = {θ ∈ EI :

√
θΣθ = 1} be the unit sphere in norm

M . Let ε > 0. By changing coordinates, it is easy to see that the metric
entropy of SΣ in norm M is the same as that of the euclidean sphere S in
the euclidean norm. Therefore, for any δ > 0, there exists a finite set SΣ,δ, of

cardinality less than
(

6
δ

)d
and such that for any u ∈ SΣ, there exists v ∈ SΣ,δ

such that M(u− v) ≤ δ
2
. Therefore,

P
(
γ̂I ≤

ε

2

)
= P

(
inf
θ∈SΣ

N̂(θ) ≤ ε

2

)
≤ P

(
inf

θ∈SΣ,δ

N̂(θ) ≤ ε

)
+ P

(
sup

θ∈EI :M(θ)≤δ
N̂(θ) ≥ ε

2

)
. (44)

By definition,

sup
θ∈EI :M(θ)≤δ

N̂(θ) = sup
θ∈EI :

√
θTΣθ≤δ

max
1≤i≤nt

|〈θ,Xi − X̄nt〉|

= δ max
1≤i≤nt

√
(Xi,I − X̄nt,I)

TΣ−1
I,I(Xi,I − X̄nt,I)

≤ 2δ max
1≤i≤nt

∥∥∥Σ
− 1

2
I,I (Xi,I − PXi,I)

∥∥∥
2
.

As Σ
− 1

2
I,I (Xi,I−PXi,I) is a standard normal vector, P

[∥∥∥Σ
− 1

2
I,I (Xi,I − PXi,I)

∥∥∥
2

]
≤√

|I|. Hence, by the union bound and the Gaussian concentration inequality,

P

(
sup

θ∈EI :M(θ)≤δ
N̂(θ) ≥ ε

2

)
≤ ntP

(∥∥∥Σ
− 1

2
I,I (Xi,I − PXi,I)

∥∥∥
2
≥ ε

4δ

)
≤ nt exp

(
−1

2

(
ε
4δ
−
√
|I|
)2
)
. (45)

On the other hand, for any θ ∈ SΣ, 〈θ,Xi−PXi〉 is standard normal, therefore

P
(
N̂(θ) ≤ ε

)
= P

(
max

1≤i≤nt
|〈θ,Xi − X̄nt | ≤ ε

)
≤ P

(
inf
m∈R

max
1≤i≤nt

|〈θ,Xi − PXi〉 −m| ≤ ε

)
≤ P

(
max

1≤i≤nt
|〈θ,Xi − PXi〉 − 〈θ,X1 − PX1〉| ≤ 2ε

)
≤
(

2ε√
2π
∧ 1

)nt−1

. (46)
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By the union bound, it follows from equations (44), (45) and (46) that

P
(
γ̂I ≤

ε

2

)
≤
(

6

δ

)|I|(
2ε√
2π
∧ 1

)nt−1

+ nt exp

(
−1

2

(
ε
4δ
−
√
|I|
)2
)
.

Let now δ = ε

4
(√
|I|+
√

2(lognt+nt log 1
ε

)
) . Then

nt exp

(
−1

2

(
ε
4δ
−
√
|I|
)2
)
≤ εnt .

Moreover, there exists a constant µ such that(
6

δ

)|I|(
2ε√
2π
∧ 1

)nt−1

≤ µ|I|max

(√
|I|
|I|
,
√

log nt
|I|
,
√
nt log 1

ε

|I|)
εnt−1−|I|.

Because |I| ≤ nt
lognt

,
√
|I||I| = exp

(
1
2
|I| log(|I|)

)
≤ e

nt
2 . Using the inequality

log nt ≤
√
nt, it follows by the same argument that

√
log nt

|I| ≤ e
nt
4 . Since

log 1
ε
≤ 1√

ε
,√

nt log 1
ε

|I|
≤ exp

(1

2
|I| log nt +

1

4
|I| log 1

ε

)
≤ e

nt
2 ε
−|I|

4 .

It follows that (
6

δ

)|I|(
2ε√
2π
∧ 1

)nt−1

≤ e
nt
2 µ|I|εnt−1− 5

4
|I|.

Finally, since |I| ≤ 2
5
(nt − 1),(

6

δ

)|I|(
2ε√
2π
∧ 1

)nt−1

≤ e
1
2

(
eµ

4
5 ε
)nt−1

2 ,

which yields the first inequality for some constant µ6. The second inequality
then follows from the union bound:

P(γ̂ ≤ ε) ≤
∑

I⊂{1,...,d}:|I|≤K

P(γ̂I ≤ ε)

≤ 2
√
e
(
µ6ε
)nt−1

2 ×
K∑
k=1

(
K

k

)

≤ 2
√
e
(
µ6ε
)nt−1

2 ×
K∑
k=1

dk

k!

≤ 2edK
√
e
(
µ6ε
)nt−1

2 .
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By assumption, dK = eK log d ≤ ent , which yields the second equation. As a
result, for any r ≤ nt−1

3

E
[

1

γ̂r

]
=

∫ +∞

0

P
(

1

γ̂r
≥ t

)
dt

≤ (µ6e
2)r +

∫ +∞

(µ6e2)r
P
(

1

γ̂r
≥ t

)
dt

= (µ6e
2)r + (µ6e

2)r
∫ +∞

1

P

(
γ̂ ≤ 1

(µ6e2)t
1
r

)
dt

≤ (µ6e
2)r + (µ6e

2)r × 2e
5
2

∫ +∞

1

(
1

t
1
r

)nt−1
2

= (1 + 2e
5
2 )(µ6e

2)r
1

nt−1
2r
− 1

≤ 2(1 + 2e
5
2 )(µ6e

2)r.

C.2 Fourier series

C.2.1 Proof of Corollary 3.6

Let I ⊂ {1, . . . , d} and θ ∈ RI . Since ψj(R) ⊂ [−
√

2;
√

2], for any x ∈ Rd,
by the Cauchy Schwarz inequality,

|〈θ, x− PX〉| =

∣∣∣∣∣∑
j∈I

θj(ψj(x)− E[ψj(U)])

∣∣∣∣∣
≤
√∑

j∈I

θ2
j

√
8|I|.

Therefore,

‖〈θ,X − PX〉‖Lψ1 ≤
1

log 2
‖〈θ,X − PX〉‖L∞ ≤

√
8|I|

log 2
‖θ‖`2 .

On the other hand, for all j, ψj(U) = ψj(U−bUc), where the variable U−bUc
has density

∑
j∈Z pU(·+ j) on [0; 1], which by assumption is greater than p0.
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Therefore, by orthonormality of the trigonometric basis,

P
(
〈θ,X − PX〉2

)
≥ p0

∫ 1

0

(∑
j∈I

θj(ψj(u)− Pψj)

)2

du

≥ p0 ‖θ‖2
`2 .

Thus, for any I ⊂ {1, . . . , d} and θ ∈ RI ,

‖〈θ,X − PX〉‖Lψ1 ≤
1

log 2

√
8|I|
p0

‖〈θ,X − PX〉‖L2 ,

which proves that κ(K) ≤
√

8 K
p0 log2 2

. Take µ9 = µ2

√
40

2 log 2
≥ 4 in equation (15),

so that, since nt ≥ 3 and nv ≤ nt,

κ(K) ≤ 2θη

µ2

√
5

√
nv

log
3
2 nt

<
√
nv ≤

√
nt.

Then equation (8) of Theorem 3.2 holds with ν0 = θη

µ2

√
5
.

Moreover, since the support Ik of θ̃k has cardinality |Ik| ≤ K, by the
Cauchy-Schwarz inequality,

max
1≤k≤K

∣∣∣〈θ̃k, X − PX〉∣∣∣ ≤ √8K max
1≤k≤K

∥∥∥θ̃k∥∥∥
`2

≤
√

8Kn
3
2
t

max
1≤k≤K

max
1≤i≤nt

∣∣∣〈θ̃k, Xi − PXi〉
∣∣∣ ≤ √8K max

1≤k≤K

∥∥∥θ̃k∥∥∥
`2

≤
√

8Kn
3
2
t .

Since by assumption (equation (15)), K ≤ nv
µ2

9 lognt
≤ nt

16
, hypothesis (Uub)

holds with L = 1√
2

and α = 2. As a result, applying Theorem 3.2 yields

equation (16).

C.2.2 Proof of proposition 3.5

Let t̃k : x 7→ q̃k + 〈θ̃k, x〉 and t̂k : x 7→ q̂k + 〈θ̂k, x〉. By lemma B.7.1,

`(s, t̂k) ≥ P
[ηc

4
|t̂k(X)− s(X)|I|t̂k(X)−s(X)|≥ c

2

]
≥ ηc

4

∥∥t̂k(X)− s(X)
∥∥
L1 −

ηc2

8

≥ ηc

4

∥∥t̂k(X)− q̃
∥∥
L1 −

ηc

4
‖s(X)− q̃‖L1 −

ηc2

8
. (47)
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Let I be the support of θ̂k, and θ̂k,j denote the jth component of the vector

θ̂k. By the Cauchy-Schwarz inequality and orthogonality of the trigonometric
basis,

∥∥t̂k − q̃∥∥∞ = sup
x∈R

∣∣∣∣∣q̂k − q̃ +
∑
j∈I

θ̂k,jψj(x)

∣∣∣∣∣
≤
√

(q̂k − q̃)2 +
∥∥∥θ̂k∥∥∥2

`2

√
2|I|+ 1

≤
√

2K + 1
∥∥t̂k − q̃∥∥L2 .

Since
∥∥t̂k − q̃∥∥2

L2 ≤
∥∥t̂k − q̃∥∥∞ ∥∥t̂k(X)− q̃

∥∥
L1 , it follows that

∥∥t̂k(X)− q̃
∥∥
L1 ≥

∥∥t̂k − q̃∥∥L2√
2K + 1

≥

∥∥∥θ̂k∥∥∥
`2√

2K + 1
,

therefore by equation (15), on the event
∥∥∥θ̂k∥∥∥

`2
≥ n

3
2
t ,

∥∥t̂k(X)− q̃
∥∥
L1 ≥

n
3
2
t√

η2 nt
8

+ 1

=
nt√

η2

8
+ 1

nt

≥ 3nt
2η

since nt ≥
4

η2
by equation (12).

On the event
∥∥∥θ̂k∥∥∥

`2
≥ n

3
2
t , `(s, t̃k) = `(s, q̃) ≤ c ‖s(X)− q̃‖L1 , therefore

by equation (47),

`(s, t̂k)− `(s, t̃k) ≥
3cnt

8
− 5c

4
‖s(X)− q̃‖L1 −

ηc2

8

≥ 3cnt
8
− 5c

4
‖s(X)− q∗‖L1 −

5c

4
|q̃ − q∗| −

ηc2

8

≥ cnt
4
− 5c

4
|q̃ − q∗| by assumption (12).

Let k̂ ∈ argmin1≤k≤K `(s, t̂k). Thus, on the event that
∥∥∥θ̂k̂∥∥∥

`2
> n

3
2
t ,

min
1≤k≤K

`(s, t̂k)− min
1≤k≤K

`(s, t̃k) ≥ `(s, t̂k̂)− `(s, t̃k̂) ≥
cnt
4
− 5c

4
|q̃ − q∗|.
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On the other hand, if
∥∥∥θ̂k̂∥∥∥

`2
≤ n

3
2
t , t̃k̂ = t̂k̂ by definition, so

min
1≤k≤K

`(s, t̂k)− min
1≤k≤K

`(s, t̃k) ≥ `(s, t̂k̂)− `(s, t̃k̂) ≥ 0.

Let δ0 = P
(∥∥∥θ̂k̂∥∥∥

`2
> n

3
2
t

)
. By Hölder’s inequality,

E
[

min
1≤k≤K

`(s, t̂k)

]
− E

[
min

1≤k≤K
`(s, t̃k)

]
≥ δ0

cnt
4
− 5c

4
δ

3
4
0 E[(q̃ − q∗)4]

1
4

≥ inf
δ∈(0,1]

δ
cnt
4
− 5c

4
δ

3
4E[(q̃ − q∗)4]

1
4 .

Hence, by lemma C.2 with α = 3
4

, there exists a constant µ such that

E
[

min
1≤k≤K

`(s, t̂k)

]
− E

[
min

1≤k≤K
`(s, t̃k)

]
≥ −µcE[(q̃ − q∗)4]

n3
t

. (48)

Moreover, by lemma C.3 below, for all nt ≥ 16
α

,

E[|q̃ − q∗|4]
1
4 ≤ c+ 1.4× 2

2
αP (|Y − q∗|α)

1
α .

Thus, equation (13) follows from equation (48) and the additional assumption
that nt ≥ 16

α
.

Lemma C.2 Let a, b be positive real numbers and let α ∈ [0, 1). Then

inf
δ>0

aδ − bδα ≥
[
α

1
1−α − α

α
1−α

] b 1
1−α

a
α

1−α
.

Proof The function f : δ → aδ−bδα is continuous, tends to +∞ at +∞ and
f(0) = 0, so f reaches a global minimum δ∗ on [0,+∞). As f is differentiable,

0 = f ′(δ∗) ⇐⇒ a− αb

δ1−α
∗

= 0

⇐⇒ aδ1−α
∗ = αb

⇐⇒ δ∗ =

(
αb

a

) 1
1−α

.

Thus, for all δ ∈ [0,+∞),

aδ − bδα ≥ a

(
αb

a

) 1
1−α

− b
(
αb

a

) α
1−α

≥
[
α

1
1−α − α

α
1−α

] b 1
1−α

a
α

1−α
.
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Lemma C.3 Let nt ≥ 4 be an integer and Y1, . . . , Ynt be iid random variables

such that, for some q∗ ∈ R and α ∈
[

4
nt
, 1
]
, E[|Y1 − q∗|α] < +∞. Let

q̃ ∈ argmin
q∈R

nt∑
i=1

φc(Yi − q).

Then for all r ∈
[
1, αnt

4

]
,

E[|q̃ − q∗|r]
1
r ≤ c+ 2

2
α3

1
rE[|Y1 − q∗|α]

1
α .

Proof Remark first that for any x ∈ R,

φ′c(x) =


−c if x ≤ −c
x if |x| ≤ c

c if x ≥ c.

For any q ∈ R, let I+(q) = {i : Yi > q + c}, I−(q) = {i : Yi < q − c} and
I0(q) = {i : |Yi − q| ≤ c}. Thus,

nt∑
i=1

φ′c(Yi − q) = c|I+(q)| − c|I−(q)|+
∑
i∈I0(q)

Yi − q,

so that

c (|I+(q)| − |I−(q)| − |I0(q)|) ≤
nt∑
i=1

φ′c(Yi−q) ≤ c (|I+(q)|+ |I0(q)| − |I−(q)|) .

Let qg be such that |I+(qg)| > nt
2

and let qd be such that |I−(qd)| > nt
2

. By
monotony of φ′c, for all q ≤ qg,

∑nt
i=1 φ

′
c(Yi − q) > 0 and for all q ≥ qd,∑nt

i=1 φ
′
c(Yi − q) < 0. Since by definition of q̃,

1

nt

nt∑
i=1

φ′c(Yi − q̃) = 0,

it follows that q̃ ∈ [qg, qd].

Let σ = E[|Y − q∗|α]
1
α . By the union bound and Markov’s inequality, for

all u > 0,

P
(
|I+(q∗ − c− uσ)| ≤ nt

2

)
= P

(
|{i : Yi ≥ q∗ + σu}| > nt

2

)
≤
(
nt
dnt

2
e

)
P(Yi ≥ q∗ + σu)

nt
2

≤ 2nt

u
αnt

2

.
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Symetrically,

P
(
|I−(q∗ + c+ uσ)| ≤ nt

2

)
≤ 2nt

u
αnt

2

,

so that one can take qg = q∗ − c− uσ and qd = q∗ + c+ uσ with probability

greater than 1− 2nt+1

u
αnt

2
. It follows that, for any u > 0,

P(|q̃ − q∗| > c+ uσ) ≤ 2nt+1

u
αnt

2

. (49)

For any r ≥ 1, E [|q̃ − q∗|r]
1
r ≤ c+ E

[
(|q̃ − q∗| − c)r+

] 1
r , where

E
[
(|q̃ − q∗| − c)r+

]
≤ σr

∫ +∞

0

P
(

(|q̃ − q∗| − c)r+
σr

≥ u

)
du

≤ σr
∫ +∞

0

P
(

(|q̃ − q∗| ≥ c+ σu
1
r

)
du

≤ σr
∫ +∞

0

min

(
1,

2nt+1

u
αnt
2r

)
by equation 49

≤ 2
2r
α σr + 2σr

∫ +∞

2
2r
α

(
2

2r
α

v

)αnt
2r

dv

≤ 2
2r
α σr + 2 · 2

2r
α σr

∫ +∞

1

dx

x
αnt
2r

≤ 2
2r
α

(
1 +

2
αnt
2r
− 1

)
σr.

This yields the result under the condition that r ≤ αnt
4

.

C.3 Proof of proposition 3.9

For any i ∈ {1, . . . , V }, denote f̂ ho
Ti

by f̂i(X) for simplicity. For any u ∈ R,
let

`X(u) = P [φc(Y − u)− φc(Y − s(X))|X] .

Let also
Î =

{
i ∈ {1, . . . , V } : |(f̂ ho

Ti
− s)(X)| ≤ c

2

}
.
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By Jensen’s inequality,

`X

( 1

V

V∑
i=1

f̂i

)
≤ |Î|

V
`X

( 1

|Î|

∑
i∈Î

f̂i

)
+
V − |Î|
V

`X

( 1

V − |Î|

∑
i/∈Î

f̂i

)
≤ |Î|

V
`X

( 1

|Î|

∑
i∈Î

f̂i

)
+

1

V

∑
i/∈Î

`X(f̂i). (50)

Let now f̄Î = 1

|Î|

∑
i∈Î f̂

ho
Ti

. By claim B.7.1, for any i ∈ Î,

`X(f̂i) ≥ `X(f̄Î) + `′X(f̄Î)(f̂i − f̄Î) +
η

2

(
f̂i − f̄Î

)2

.

Averaging over i ∈ Î yields

1

|Î|

∑
i∈Î

`X(f̂i) ≥ `X

( 1

|Î|

∑
i∈Î

f̂ ho
Ti

)
+

η

4|Î|2
∑
i∈Î

∑
j∈Î

(f̂i − f̂j)2.

Combining this bound with equation (50) yields

`X

( 1

V

V∑
i=1

f̂i

)
≤ 1

|Î|

∑
i∈Î

`X(f̂i)−
η

4V |Î|

∑
i∈Î

∑
j∈Î

(f̂i − f̂j)2 +
1

V

∑
i/∈Î

`X(f̂i)

≤ 1

V

V∑
i=1

`X(f̂i)−
η

4V 2

∑
i∈Î

∑
j∈Î

(f̂i − f̂j)2.

Taking expectations yields equation (17) by exchangeability of the f̂i. As-

sume now that E[`(s, f̂1)] ≤ ηc2

64
. By claim B.7.1,

E[`(s, f̂1)] ≥ ηc2

8
P
(∣∣(f̂1 − s)(X)

∣∣ ≥ c

2

)
=
ηc2

8
P(E1(c)).

It follows that P(E1(c)) ≤ 1
8
. Since the f̂i have the same distribution,

P(E2(c)) ≤ 1
8

also. Thus, by definition of the median,

P
(
E1(c) ∩ E2(c) ∩

{
(f̂1 − f̂2)2(X) ≥ Med

[
(f̂1 − f̂2)2(X)

]})
≥ 1

4
.

Equation (18) then follows from equation (17).
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2020. Thèse de doctorat dirigée par Arlot, Sylvain et Lerasle, Matthieu
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