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Abstract

Sparse linear regression methods generally have a free hyperparameter
which controls the amount of sparsity, and is subject to a bias-variance
tradeoff. This article considers the use of Aggregated hold-out to aggre-
gate over values of this hyperparameter, in the context of linear regression
with the Huber loss function. Aggregated hold-out (Agghoo) is a proce-
dure which averages estimators selected by hold-out (cross-validation with
a single split). In the theoretical part of the article, it is proved that Ag-
ghoo satisfies a non-asymptotic oracle inequality when it is applied to
sparse estimators which are parametrized by their zero-norm. In par-
ticular, this includes a variant of the Lasso introduced by Zou, Hastié
and Tibshirani [39]. Simulations are used to compare Agghoo with cross-
validation. They show that Agghoo performs better than CV when the
intrinsic dimension is high and when there are confounders correlated with
the predictive covariates.

1 Introduction

From the statistical learning point of view, linear regression is a risk-minimization
problem wherein the aim is to minimize the average prediction error φ(Y −
θTX) on a new, independent data-point (X,Y ), as measured by a loss func-
tion φ. When φ(x) = x2, this yields classical least-squares regression; however,
Lipschitz-continuous loss functions have better robustness properties and are
therefore preferred in the presence of heavy-tailed noise. In general, substract-
ing the risk of the (distribution-dependent) optimal predictor yields a measure
of performance for estimators, called the excess risk, which cöıncides with the
L2 norm in the least-squares case.

In the high-dimensional setting, where X ∈ R
d with potentially d >> n,

minimizing the risk over all θs is impossible; some assumptions must be made.
A popular approach is to suppose that only a small number k∗ of covariates
are relevant to the prediction of Y , so that θ may be sought among the sparse
vectors with less than k∗ non-zero components. Estimators which target such
problems include the Lasso and its variants, LARS, stagewise regression and the
classical greedy procedures of stepwise regression. In the robust setting, variants
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of the Lasso with robust loss functions have been investigated by a number of
authors [14, 23, 7, 33].

Such methods generally introduce a free hyperparameter which regulates the
”sparsity” of the estimator; sometimes this is directly the number of non-zero
components, as in stepwise procedures, sometimes not, as in the Lasso. In any
case, the user is left with the problem of calibrating this hyperparameter.

Several goals are conceivable for a hyperparameter selection method, such
as support recovery or estimation of a ”true” underlying regression coefficient.
From a prediction perspective, hyperparameters should be chosen so as to min-
imize the risk, and a good method should approach this minimum. As a con-
sequence, the proposed data-driven choice of hyperparameter should allow the
estimator to attain all known convergence rates without any a priori knowledge,
effectively adapting to the difficulty of the problem.

For the Lasso and some variants, such as the fused Lasso, Zou, Wang, Tib-
shirani and coauthors have proposed [39] and investigated [32, 28] a method
based on Mallow’s Cp and estimation of the ”degrees of freedom of the Lasso”.
However, consistency of this method has only been proven [32] in an asymptotic
where the dimension is fixed while n grows, hence not the setting considered
here. Moreover, the method depends on specific properties of the Lasso, and
may not be readily applicable to other sparse regression procedures.

A much more widely applicable procedure is to choose the hyperparameter
by cross-validation. For the Lasso, this approach has been recommended by
Tibshirani [26], van de Geer and Lederer [29] and Greenshtein [10], among many
others. More generally, cross-validation is the default method for calibrating
hyperparameters in practice. For exemple, R implementations of the elastic
net (package glmnet), LARS (package lars) and the huberized lasso (package
hqreg) all incorporate a cross-validation subroutine to automatically choose the
hyperparameter.

Theoretically, cross-validation has been shown to perform well in a variety of
settings [1]. For cross-validation with one split, also known as the hold-out, and
for a bagged variant of v-fold cross-validation [16], some general oracle inequali-
ties are available in least squares regression [18, Corollary 8.8] [36] [16]. However,
they rely on uniform boundedness assumptions on the estimators which may not
hold in high-dimensional linear regression. For the more popular V-fold proce-
dure, results are only available in specific settings. Of particular interest here
is the article [21] which proves oracle inequalities for linear model selection in
least squares regression, since linear model selection is very similar to sparse
regression (the main difference being that in sparse regression, the ”models” are
not fixed a priori but depend on the data). This suggests that similar results
could hold for sparse regression.

However, in the case of the Lasso at least, no such theoretical guarantees
exist, to the best of my knowledge. Some oracle inequalities [16, 20] and also
fast rates [11, Theorem 1] have been obtained, but only under very strong as-
sumptions: [16] assumes that X is log-concave, [20] that X is a gaussian vector,
and [11, Theorem 1] assumes that there is a true model and that the variance-
covariance matrix is diagonal dominant. In contrast, there are also theorems
[6, 8] [11, Theorem 2] which make much weaker distributional assumptions but

only prove convergence of the risk at the ”slow” rate O(
√

s∗ log p
n ) or slower.

Though this rate is minimax [6], a hyperparameter selection method should
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adapt also to the favorable cases where the Lasso converges faster; these results
do not show that CV has this property.

Thus, the theoretical justification for the use of standard CV in sparse re-
gression is somewhat lacking. In fact, two of the articles mentioned above do
not study standard CV applied to the Lasso but introduce a variant; a bagged
CV in [16] and the aggregation of two hold-out predictors in [6]. In practice
too, there is reason to consider alternatives to CV-based hyperparameter selec-
tion in sparse regression: sparse estimators are unstable, and selecting only one
estimator can result in arbitrarily ignoring certain variables among a correlated
group with similar predictive power [37]. For the Lasso, these difficulties have
motivated researchers to introduce several aggregation schemes, such as the Bo-
lasso [3], stability selection [19], the lasso-zero [9] and the random lasso [34],
which are shown to have some better properties than the standard Lasso.

Since aggregating the Lasso seems to be advantageous, it seems logical to
consider aggregation rather than cross-validation to handle the free hyperpa-
rameters. In this article, I consider the application to sparse regression of the
aggregated hold-out procedure. Aggregated hold-out (agghoo) is a general ag-
gregation method which mixes cross-validation with bagging. It is an alternative
to cross-validation, with a comparable level of generality. In a previous article
with Sylvain Arlot and Matthieu Lerasle [17], we formally defined and studied
Agghoo, and showed empirically that it can improve on cross-validation when
calibrating the level of regularization for kernel regression. Though we came
up with the name and the general mathematical definition, Agghoo has already
appeared in the applied litterature in combination with sparse regression pro-
cedures [12], among others [31], under the name ”CV + averaging” in this case.

In the present article, the aim is to study the application of Agghoo to sparse
regression with a robust loss function. Theoretically, assuming an L∞−L2 norm
inequality to hold on the set of sparse linear predictors, it is proven that Agghoo
satisfies an asymptotically optimal oracle inequality. This result applies also to
cross-validation with one split (the so-called hold-out), yielding a new oracle
inequality which allows norms of the sparse linear predictors to grow polynomi-
ally with the sample size. Empirically, Agghoo is compared to cross-validation
in a number of simulations, which investigate the impact of correlations in the
design matrix and sparsity of the ground truth on the performance of aggre-
gated hold-out and cross-validation. Agghoo appears to perform better than
cross-validation when the number of non-zero coefficients to be estimated is not
much smaller than the sample size. The presence of confounders correlated to
the predictive variables also favours Agghoo relative to cross-validation.

2 Setting and Definitions

The problem of non-parametric regression is to infer a predictor t : X → R

from a dataset (Xi, Yi)1≤i≤n of pairs, where Xi ∈ X and Yi ∈ R. The pairs will
be assumed to be i.i.d, with joint distribution P . The prediction error made
at a point (x, y) ∈ X × R is measured using a non-negative function of the
residual φ(y− t(x)). The global performance of a predictor is assessed on a new,
independent data point (X,Y ) drawn from the same distribution P using the
risk L(t) = E[φ(Y −t(X))]. The optimal predictors s are characterized by s(x) ∈
argminu E[φ(Y −u)|X = x] a.s. The risk of any optimal predictor is (in general)
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a non-zero quantity which characterizes the intrinsic amount of “noise” in Y
unaccounted for by the knowledge of X . A predictor t can be compared with
this benchmark by using the excess risk ℓ(s, t) = L(t)−L(s). Taking φ(x) = x2

yields the usual least-squares regression, where s(x) = E[Y |X = x] and ℓ(s, t) =

‖s− t‖2L2(X). However, the least-squares approach is known to suffer from a
lack of robustness. For this reason, in the field of robust statistics, a number
of alternative loss functions are used. One popular choice was introduced by
Huber [13].

Definition 2.1 Let c > 0. Huber’s loss function is φc(u) =
u2

2 I|u|≤c+c
(
|u| − c

2

)
I|u|>c.

When c → +∞, φc converges to the least-squares loss. When c → 0, 1
cφc

converges to the absolute value loss x → |x| of median regression. Thus, the c
parameter allows a trade-off between robustness and approximation of the least
squares loss.

The rest of the article will focus on sparse linear regression with the loss
function φc. Thus, notations s, ℓ(s, t) and L are to be understood with respect
to φc.

2.1 Sparse linear regression

With finite data, it is impossible to solve the optimization problem minL(t)
over the set of all predictors t. Some modeling assumptions must be made to
make the problem tractable. A popular approach is to build a finite set of
features (ψj(X))1≤j≤d and consider predictors that are linear in these features:

∃θ ∈ R
d, ∀x ∈ X , t(x) = ∑d

j=1 θjψj(x). This is equivalent to replacing X ∈ X
with X̃ = (ψj(X))1≤j≤d ∈ R

d and regressing Y on X̃ . For theoretical purposes,
it is thus equivalent to assume that X = R

d for some d and predictors are linear:
t(x) = θTx.

As the aim is to reduce the average prediction error L(t), a logical way to
choose θ is by empirical risk minimization:

θ̂ ∈ argmin
θ∈Rd

1

n

n∑

i=1

φc(Yi − θTXi).

Empirical risk minimization works well when d << n but will lead to overfitting
in large dimensions [30]. Sparse regression attempts instead to locate a “good”
subset of variables in order to optimize risk for a given model dimension. Lasso
penalization [26] is now a standard method of achieving sparsity. The specific
version of the Lasso which we consider here is given by the following Definition.

Definition 2.2 Let n ∈ N and let Dn = (Xi, Yi)1≤i≤n be a dataset such that
Xi ∈ R

d and Yi ∈ R for all i ∈ [|1;n|] and some d ∈ N. Let φc be the huber loss
defined in Definition 2.1. For any λ > 0, let

Ĉ(λ) = argmin
(q,θ)∈Rd+1:‖θ‖

1
≤nα

1

n

n∑

i=1

φc
(
Yi − q − θTXi

)
+ λ ‖θ‖1 and

(q̂(λ), θ̂(λ)) ∈ argmin
(q,θ)∈Ĉ(λ)

∣∣q+ < θ,
1

n

n∑

i=1

Xi >
∣∣. (1)
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Now let
A(λ)(Dn) : x→ q̂(λ) + θ̂(λ)Tx.

The restriction ‖θ‖1 ≤ nα ensures that the solution does not become too large
when the design matrix is ill-conditioned. It can be seen that the effect of
this restriction is, potentially, to truncate the Lasso solution path at the value
of λ at which the bound is attained (i.e, θ̂(·) becomes constant for smaller
values of λ). Without this, the ℓ1 norm of Lasso solutions is upper bounded
by the minimal ℓ1 norm ĉ of an empirical risk minimizer on the whole set of
variables. Hence, if ĉ ≤ nα, Definition 2.2 cöıncides with the huberized lasso
along the whole regularization path. In the least squares case, [11] discuss

conditions under which ‖ĉ‖L4 ≤ n
1
4 , which ensures that for α > 1

4 , ĉ < nα with
high probability. It seems reasonable to expect a similar result to hold true in
the case of the huberized lasso. However, rather than make further technical
assumptions on the design to make sure of this, it seems simpler to introduce this
slight modification to the standard definition of the huberized lasso, which may
even be statistically beneficial, since it diminishes the variance by restricting
the hypothesis space.

A suitable choice of α should guarantee that an optimal excess risk E [ℓ(s, q + 〈θ, ·〉)]
can be obtained for some θ such that ‖θ‖1 ≤ nα. For example, if the fea-
tures X form an orthonormal set and Y ∈ L2, then the least-squares optimal

coefficient θ∗ belongs to
{
θ : ‖θ‖2 ≤

√
E[Y 2]

}
. Assume that only sparse pre-

dictors θT , with less than n non-zero components, are considered. Since for
such θ, ‖θ‖1 ≤ √

n ‖θ‖2, it is reasonable to restrict the optimization to the set
{θ : ‖θ‖1 ≤ nα} for some α > 1

2 .
The intercept q is left unpenalized in definition 2.2, as is usually the case in

practice [38]. Equation (1) is a tiebreaking rule which is required for the proof
to work.

2.2 Hyperparameter tuning

The zero-norm of a vector θ is the integer ‖θ‖0 = |{i : θi 6= 0}|. Many sparse
estimators, such as best subset or forward stagewise, are directly parametrized
by their desired zero-norm, which must be chosen by the practitioner. It controls
the “complexity” of the estimator, and hence the bias-variance tradeoff. In the
case of the standard Lasso (Definition 2.2 with φ(x) = x2), Zou, Hastie and

Tibshirani [39] showed that
∥∥∥θ̂(λ)

∥∥∥
0
is an unbiased estimator of the “degrees of

freedom” of the estimatorA(λ). As a consequence, [39] suggests reparametrizing
the lasso by its zero-norm. Applying their definition to the present setting yields
the following.

Definition 2.3 For any dataset Dn, let (q̂, θ̂) be given by Definition 2.2, equa-
tion (1) . Let M ∈ N and (λm)1≤m≤M be the finite decreasing sequence at which

the sets {i : θ̂(λ)i 6= 0} change. Let λ0 = +∞. For any k ∈ N let

m̂last
k = max

{
m ∈ N|

∥∥θ̂(λm)
∥∥
0
= k

}
,

with the convention max ∅ = 0. Let then

Ak(Dn) = A
(
λm̂last

k

)
(Dn) . (2)
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More generally, consider sequences (Ak)k∈N
of linear regression estimators Ak :

Dn →
(
x→ q̂k(Dn) + 〈θ̂k(Dn), x〉

)
, such that the following hypothesis holds.

Hypothesis 2.1 For any n ∈ N, let Dn ∼ P⊗n denote a dataset of size n.
Assume that

1. Almost surely, for all k ∈ [|1;n|],
∥∥∥θ̂k(Dn)

∥∥∥
0
≤ k.

2. There exist L, α such that ∀n ∈ N,E
[
sup1≤k≤n

∥∥∥θ̂k(Dn)
∥∥∥
1

]
≤ Lnα.

3. For all k ∈ [|1;n|], q̂k(Dn) ∈ argminq∈Q̂(Dn,θ̂k(Dn))

∣∣∣q + 〈θ̂k(Dn),
1
n

∑n
i=1Xi〉

∣∣∣,

where Q̂(Dn, θ) = argminq∈R

1
n

∑n
i=1 φc (Yi − 〈θ,Xi〉 − q) .

These hypotheses hold for the reparametrized Lasso given by definition 2.2 and
2.3, by construction.

Moreover, Condition 1. is naturally satisfied by such sparse regression meth-
ods as forward stepwise and best subset. Condition 2 can be enforced by re-
stricting the set of θs over which the optimization is conducted, similarly to
Definition 2.2. Condition 3 states that the intercept q is chosen by empirical
risk minimization, with a specific tie-breaking rule in case the minimum is not
unique.

2.3 Aggregated hold out applied to the zero-norm param-

eter

The tuning of the zero-norm k is important to ensure good prediction per-
formance by optimizing the bias-variance tradeoff. For the Lasso and other
methods based on empirical risk minimization, such as forward stepwise, there
is little interest in considering values of k > n, since n non-zero coefficients
suffice for perfect interpolation of the (Xi, Yi) and yield an empirical risk of 0.
Practicioners may also want to impose additional limitations on the zero-norm
in order to reduce the computational load or improve interpretability. For this
reason, we consider the problem of selecting the zero-norm among the Kn first
values, where Kn ≤ n. This article investigates the use of Agghoo in this con-
text, as an alternative to cross-validation. Agghoo is a general hyperparameter
aggregation method which was defined in [17], in a general statistical learning
context. Let us briefly recall its definition in the present setting. For a more de-
tailed introductory discussion of this procedure, we refer the reader to [17]. To

simplify notations, fix a collection (q̂k, θ̂k)1≤k≤K of linear regression estimators.
First, we need to define hold-out selection of the zero-norm parameter.

Definition 2.4 Let Dn = (Xi, Yi)1≤i≤n be a dataset. For any T ⊂ {1, . . . , n},
denote DT

n = (Xi, Yi)i∈T . Let then

k̂T (Dn) = min argmin
1≤k≤K

1

|T c|
∑

i/∈T

φc

(
Yi − q̂k(D

T
n )− 〈θ̂k(DT

n ), Xi〉
)
.

Using the hyperparameter k̂T (Dn) together with the dataset DT
n to train a linear

regressor yields the hold-out predictor

f̂ ho
T (Dn) : x→ q̂k̂T (Dn)

(DT
n ) + 〈θ̂k̂T (Dn)

(DT
n ), x〉.
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Aggregation of hold-out predictors is performed in the following manner.

Definition 2.5 Let T ⊂ P ({1, . . . , n}). Let:

θ̂agT =
1

|T |
∑

T∈T
θ̂k̂T (Dn)

(DT
n )

q̂agT =
1

|T |
∑

T∈T
q̂k̂T (Dn)

(DT
n ).

The Agghoo predictor is the linear regressor:

f̂ ag
T (Dn) : x→ q̂agT + 〈θ̂agT , x〉.

Thus, Agghoo also yields a linear predictor, which means that it can be
efficiently evaluated on new data. If the θ̂k̂T (Dn)

have similar support, θ̂agT will
also be sparse: this will happen if the hold-out reliably identifies a true model.
On the other hand, if the supports have little overlap, the Agghoo coefficient will
lose sparsity, but it can be expected to be more stable and to perform better.

The linear regressors x → q̂k̂T (Dn)
(DT

n ) + 〈θ̂k̂T (Dn)
(DT

n ), x〉 aggregated by

Agghoo are only trained on part of the data. This subsampling (typically)
decreases the performance of each individual estimator, but combined with ag-
gregation, it may stabilize an unstable procedure and improve its performance,
similarly to bagging.

An alternative would be to retrain each regressor on the whole data-set Dn,
yielding the following procedure, which we call ”Aggregated cross-validation”
(Agcv).

Definition 2.6 Let T ⊂ P ({1, . . . , n}). Let:

θ̂acvT =
1

|T |
∑

T∈T
θ̂k̂T (Dn)

(Dn)

q̂acvT =
1

|T |
∑

T∈T
q̂k̂T (Dn)

(Dn).

The Agcv predictor is the linear regressor:

f̂ acv
T (Dn) : x→ q̂acvT + 〈θ̂acvT , x〉.

Agghoo is easier to study theoretically than Agcv due to the conditional in-

dependence:
(
θ̂k
(
DT

n

))
1≤k≤nt

⊥⊥ k̂T (Dn)
∣∣∣DT

n . For this reason, the theoretical

section will focus on Agghoo, while in the simulation study, both Agghoo and
Agcv will be considered.

3 Theoretical results

Let n ∈ N and Dn = (Xi, Yi)1≤i≤n denote an i.i.d dataset with common distri-
bution P . In this section, we make the following assumption on T : there is an
integer nt < n such that

T ⊂ {T ⊂ {1, . . . , n} : |T | = nt}
T independent from Dn .

(3)
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Independence of T from Dn ensures that for T ∈ T , DT
n is also iid with distribu-

tion P . The assumption that T contain sets of equal size ensures that the pairs
q̂k̂T (Dn)

(DT
n ), θ̂k̂T (Dn)

(DT
n ) are equidistributed for T ∈ T . Most of the data par-

titioning procedures used for cross-validation satisfy hypothesis (3), including
leave-p-out, V -fold cross-validation (with n−nt = nv = n/V ) and Monte-Carlo
cross-validation [1].

In the following, we will use the notion of support of a random variable, for
which we introduce the following definition.

Definition 3.1 Let X be a random variable belonging to R
d for some d ∈ N.

Then the support of X is

supp(X) = {x ∈ R
d : ∀ε > 0,P (‖x−X‖ ≤ ε) > 0.}

The support is closed and has full measure: P(X ∈ supp(X)) = 1.

When Agghoo is used on a collection (Ak)1≤k≤K of linear regression estima-
tors satisfying Hypothesis (2.1), such as the Lasso parametrized by the number
of non-zero coefficients, as in Definition 2.3, the following Theorem applies.

Theorem 3.2 Let X ∈ R
d and Y ∈ R be random variables with joint distribu-

tion P . Let Dn = (Xi, Yi)1≤i≤n ∼ P⊗n be a dataset of size n. Let nv = n− nt,
where nt is given by assumption (3).

Assume that for a bayes regressor s there exists η > 0 such that

∀x,P
[
|Y − s(x)| ≤ c

2

∣∣∣X = x
]
≥ η. (4)

Let X̄ = X − E[X ] and let supp(X̄) be its support (in the sense of Definition
3.1). Let R = supx∈supp(X̄) ‖x‖∞. For any K ∈ {1, . . . , nt}, let

κ(K) = sup
θ 6=0,‖θ‖

0
≤2K

∥∥〈X̄, θ〉
∥∥
L∞∥∥〈X̄, θ〉
∥∥
L2

. (5)

If b0 > 1 and K ∈ {1, . . . , nt} are such that

κ(K) ≤ η

8

√
nv

8b0 lognt
, (6)

applying Agghoo to a collection (Ak)1≤k≤K of linear regression estimators which
satisfies hypothesis (2.1) yields the following oracle inequality.

For any θ ∈
[

1√
b0
; 1
]
,

(1−θ)E
[
ℓ(s, f̂ ag

T )
]
≤ (1+θ)E

[
min

1≤k≤K
ℓ(s,Ak(Dnt

))
]
+24θb0

c lognt

ηnv

[
c+

cK

nθ2b0
t

+
16KLR

nθ2b0−α
t

]
.

(7)

Theorem 3.2 is proved in appendix A. It is, to the best of my knowledge,
the first theoretical guarantee on hyperparameter selection for the huberized
Lasso. Theorem 3.2 compares the excess risk of Agghoo to that of the best
linear predictor in the collection Ak(Dnt

), trained on a subset of the data of
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size nt. That nt appears in the oracle instead of n is a limitation, but it is
logical, since estimators aggregated by Agghoo are only trained on samples of
size nt. Typically, the excess risk increases at most by a constant factor when
a dataset of size n is replaced by a subset of size τn, and this constant tends to
1 as τ → 1. This allows to take nv of order n (nv = (1− τ)n), while losing only
a constant factor in the oracle term.

Taking |T | = 1 in Theorem 3.2 yields an oracle inequality for the hold-out,
which is also cross-validation with one split. Compared to previously known
oracle inequalities for the hold-out, Theorem 3.2 distinguishes itself by only
requiring some polynomial upper bound on ‖θ‖1 and

∥∥X̄
∥∥
∞, instead of a uniform

upper bound on some norm independent of n. Indeed, the prevailing approach
to proving oracle inequalities for the hold-out (applied to the Lasso by Lecué
[16]) uses a margin assumption which requires a uniform upper bound on the

loss function [16, Assumption (A)], leading to a bound on 〈θ̂k, X̄〉. Theorem 3.2
relaxes this constraint by exploiting an L∞−L2 norm inequality (equation(6)).

In order to fulfill its purpose, Theorem 3.2 should imply that Agghoo per-
forms as well as the best of the sparse estimators Ak(Dnt

), at least asymp-
totically. Here, we are interested in the high-dimensional, non-parametric case
where the dimension grows with the amount of data n as a power of n. More
precisely, consider a sequence of problems (Y, ψn(X0)) where X0 ∈ X and
ψn : X → R

dn , where dn > nβ for some β > 0. Assume that R = 1, which
can be achieved by renormalizing ψn - as long as ‖ψn(X0)‖∞,L∞ grows at most
polynomially in n, this simply yields an increase in L and α. If additionally,

equation (6) holds with b0 > α+1, choosing θ ∈
(√

1+α
b0

; 1
)
yields a remainder

term of order O( log n
n ) in equation (7). By comparison, in the least squares set-

ting the minimax excess risk for sparse regression with kn predictive covariates

among a total of dn is of order
kn log( dn

kn
)

n [35]. For large c, the huber loss ap-
proximates the least squares loss, so it is reasonable to expect this lower bound
to apply also in huber regression. Assuming that the minimax is attained, the
remainder term of equation (7) is negligible compared to the oracle whenever
kn → +∞, i.e when the problem is non-parametric.

Now if for any n, assumption (6) holds with X = ψn(X0) and b0 = b1,n →
+∞ , then Theorem 3.2 yields an asymptotically optimal oracle inequality.

More precisely, applying Theorem 3.2 with b0 = b0,n = b1,n ∧
√

kn

1+α (for which

assumption (6) also holds) and θ = θn =
√

1+α
b0,n

∧ 1 yields a bounded term in

the square brackets of equation (7). Moreover, θnb0,n ≤
√
kn. This implies that

lim sup
n→+∞

E

[
ℓ(s, f̂ ag

T )
]

E

[
min1≤k≤Knt

ℓ(s,Ak(Dnt
))
] ≤ 1

since
√
kn logn

n = o
(
E

[
min1≤k≤Knt

ℓ(s,Ak(Dnt
))
])

.

To summarize, Theorem 3.2 proves an asymptotically optimal oracle inequal-
ity whenever

• Equation (4) holds.

• ‖‖ψn(X0)‖∞‖L∞
grows at most polynomially in n.
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• The problem is non-parametric, i.e the risk converges slower than log n
n .

• For any b0 > 1, equation (6) holds for all n large enough.

Equation (4) is specific to the Huber loss: it requires the conditional dis-
tribution of the residual Y − s(x) to put sufficient mass in a region where the
huber function is quadratic. If Y = s0(X0) + σε , with ε independent of X0

and if ψn is injective, then s(X) = s0(X0) and η depends only on c, σ and the
distribution of ε. In particular, it is constant with respect to n. Moreover, if
the Huber parameter c is proportional to σ, then η is independent also of σ
and the remainder term of equation (7) is proportional to σ2, as in least-squares
regression. Injectivity of ψn will typically hold for nonparametric function bases
(trigonometric, splines of degree greater than 1) as soon as n is large enough.

The norm inequality (Equation (6)) requires more clarification. It is worth
giving some background on such hypotheses, which are relatively classical in the
model selection litterature. They were introduced by Birgé and Massart in the
context of least-squares density estimation [4, Section 3.1], where loosely speak-
ing, it is assumed that κ(K) = O(

√
K). A similar assumption was made by

Arlot and Lerasle [2, Section 3.3, hypothesis (H1)] to prove oracle inequalities
for cross-validation, also in least squares density estimation. In the regres-
sion setting, [22] proves an oracle inequality for cross-validation based on the
assumption that the models have a ”strongly localized basis”, which implies
in particular that κ(K) = O(

√
K) when the model collection consists of all{

〈θ, (X̄i)i∈I〉 : θ ∈ R
|I|} for I ⊂ [|1;n|].

These assumptions have been shown to hold for several standard model
collections. In particular, in the regression setting, [25, Lemma 7] implies that
linear models m consisting of piecewise-polynomial functions on an interval par-
tition (Ii)1≤i≤d satisfy ‖·‖L∞(X) ≤ C

√
d ‖·‖L2(X), provided that mini P(X ∈

Ii) ≥ a
d for some constant a and that the distribution of X has a lower-bounded

density with respect to the Lebesgue measure.
The assumption (6) differs from its analogs in the model selection litterature

in two ways: first, because of the sparse variable selection setting, the ”models”
which give rise to κ(K) are the

{
〈θ, (X̄i)i∈I〉 : θ ∈ R

|I|} for I ⊂ [|1; d|] of car-
dinality |I| = K. Second, because an additional intercept term is included, the
feature vector X has to be replaced by its centered version X̄ in the definition
of κ(K).

We give below two simple examples where the hypotheses of Theorem 6 hold.
In the case where the variables are independent and binary valued, we have the
following.

Corollary 3.3 Let X = (X1, . . . , Xp) where the Xi are independent Bernoulli
random variables with parameters pi ∈ [0; 1] Then

κ(K) ≤
√

2K

min1≤i≤p pi(1− pi)
.

Corollary 3.3 is proved in appendix B.1. In the setting it describes, Assump-
tion (6) is equivalent to choosing K of order nt

lognt
or less, provided that the

classes are well-balanced (pi ∈ [ε, 1− ε]).
Despite the fact that Theorem 3.2 is formulated in the setting of sparse linear

regression, it can also be applied to other regression problems, such as adaptive
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piecewise constant regression. In that case, the equivalent of the zero-norm of a
vector is the number of discontinuities of a piecewise constant function, as can
be seen from the following definition.

Definition 3.4 Let (Ij)1≤j≤d denote a partition of R into disjoint intervals,
indexed such that ∀j, sup Ij = inf Ij+1. For any u ∈ R

d, let tu =
∑

j ujIIj .
Then the number of jumps of the piecewise constant function tu is

k(u) = |{j ∈ [|1; d|] : uj+1 6= uj}| ,

and we say that tu has k jumps if and only if k(u) = k. Let (jr(u))0≤r≤k(u)

denote the ordered sequence of jump indices, i.e (jr(u))1≤r≤k(u) is increasing,
j0(u) = 0 and

{jr(u)|1 ≤ r ≤ k(u)} = {j ∈ [|1; d|] : uj+1 6= uj} .

For any r ≤ k(u), let Ar(u) = ∪jr(u)
i=jr−1(u)+1Ii be the largest intervals on which tu

is constant. Let Dn = (Ui, Yi)1≤i≤n denote a dataset, with Ui ∈ R and Yi ∈ R.
Let now (ûk)0≤k≤d−1 denote a sequence of estimators such that ûk(Dn) has

k jumps, and such that its coefficients ûk,j are obtained by empirical risk mini-

mization on the minimal partition (Ar(ûk))1≤r≤k, i.e ûk ∈ Ĉt(Dn, ûk) where

Ĉt(Dn, u) =
{
u′ s.t. k(u′) = k and ∀r ∈ [|1; k|], jr(u′) = jr(u)

and u′jr(u′) ∈ argmin
q∈R

∑

i:Xi∈Ar(u)

φc(Yi − q)
}
,

Assume also that the following tie-breaking rule applies:

ûk ∈ argmin
u∈Ĉt(Dn,ûk)

∣∣∣∣∣∣

d∑

j=1

Pn(Ij)uj

∣∣∣∣∣∣
. (8)

Estimators ûk which meet definition 3.4 can be obtained by a variety of
model selection methods, including wavelet thresholding, empirical risk min-
imization over the set {u : k(u) = k} [15] and the fused lasso [27] or total
variation penalties [24, 5] (if the penalty is used only for estimating the change
points).

Applied to such estimators, Theorem 3.2 allows to prove the following.

Proposition 3.5 Consider the problem of tuning k so as to minimize the risk of
the one-dimensional regression problem: E[φc(Y −tu(U))], where U is a random
variable with distribution P . Assume that

∀x,P
[
|Y − tu∗

(x)| ≤ c

2

∣∣∣X = x
]
≥ η, (9)

where u∗ ∈ argminu∈Rd E [φc(Y − tu(X))]. Using the notations of definition 3.4,
assume that:

min
1≤j≤d

P (Ij) ≥
1536 log2 nt

η2nv
. (10)
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Then, assuming that nt ≥ nv,

(
1− 1√

lognt

)
E

[
ℓ
(
tu∗
, f̂ ag

T
)]

≤
(
1 +

1√
lognt

)
E

[
inf

1≤k≤d
ℓ
(
tu∗
, tûk(Dnt

)

)]

+ 72
c log

3
2 nt

ηnv

[
c+

3c

nt
+

4E[|Y |]
nt

]
. (11)

Proposition 3.5 is proved in appendix B.2. The specific setting of Proposi-
tion 3.5 allows to state a fairly explicit oracle inequality for Agghoo under few
conditions. Assuming as before that nt and nv are both of order n, the remain-

der term in equation (3.5) is of order log
3
2 n
n . This is negligible compared to the

minimax rates achievable under regularity assumptions (eg. Hölder or Besov
balls), which are of order n−α with α ∈ (0; 23 ]. Hence, Proposition 3.5 shows
that Agghoo adapts to the unknown level of regularity, achieving the correct
convergence rate.

Three assumptions are made to obtain this oracle inequality. The distri-
butional assumption on the residuals (equation (9)) is identical to the one
made in Theorem 3.2, and has already been discussed. The moment condi-
tion E[|Y |] < +∞, without which inequality (11) becomes vacuous, is self-
explanatory.

Finally, hypothesis (10) requires that the intervals of the partition contain at
least cst×log2 nt points, on average. This is a mild requirement, since partitions
finer than this cannot be expected to perform well anyway due to high variance
of the empirical average.

Though hypothesis (10) involves the unknown distribution P , Bernstein’s

inequality shows that if min1≤j≤d Pnt
(Ij) ≥ C log2 nt

η2nv
, where C > 1536 and Pnt

denotes the empirical measure on a sample of size nt, then equation (10) holds
with high probability. Thus, provided a lower bound on η is known, it is possible
to guarante empirically that (10) holds, with a high degree of confidence.

3.1 Effect of V

The upper bound given by Theorem 3.2 only depends on T through nv and nt.
The purpose of this section is to show that for a given value of nv, increasing
V = |T | always decreases the risk. This is proved in the case of monte carlo
subset generation defined below.

Definition 3.6 For τ ∈
[
1
n ; 1
]
and V ∈ N

∗, let T mc
τ,V be generated independently

of the data Dn by drawing V elements independently and uniformly in the set

{T ⊂ [|1;n|] : |T | = ⌊τn⌋} .

For fixed τ , the excess risk of Agghoo is a non-increasing function of V .

Proposition 3.7 Let U ≤ V be two non-zero integers. Let τ ∈
[
1
n ; 1
]
. Then:

E

[
ℓ(s, f̂ ag

T mc
τ,V

)
]
≤ E

[
ℓ(s, f̂ ag

T mc
τ,U

)
]
.
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Proof Let (Ti)i=1,...,V = T mc
τ,U . Let I = {I ⊂ [|1;V |] : |I| = U}. Then

f̂ ag
T mc
τ,U

=

V∑

i=1

1

V
f̂ ho
Ti

=

V∑

i=1

(
V −1
U−1

)

U
(
V
U

) f̂ ho
Ti

=
1

U

V∑

i=1

∑
I∈I Ii∈I

|I| f̂ ho
Ti

=
1

|I|
∑

I∈I

1

U

∑

i∈I

f̂ ho
Ti
.

It follows by convexity of f 7→ ℓ(s, f) that

E

[
ℓ(s, f̂ ag

T mc
τ,U

)
]
≤ 1

|I|
∑

I∈I
E

[
ℓ(s,

1

U

∑

i∈I

f̂ ho
Ti

)

]
.

For any I ∈ I, (Ti)i∈I ∼ T mc
τ,U and is independent ofDn, therefore

1
U

∑
i∈I f̂

ho
Ti

∼
f̂ ag
T mc
τ,U

. This yields the result.

It can be seen from the proof that the proposition also holds for Agcv.
Therefore, increasing V always decreases the risk of both methods. On the
other hand, no such theoretical result is known for CV, even though increasing
the number of CV splits (for given τ) almost always improves performance in
practice.

4 Simulation study

This section focuses on hyperparameter selection for the Lasso with huber loss,
either using a fixed grid or using the reparametrization from Definition 2.3. The
methods considered for this task are Aggregated hold-out given by Definition
2.5, Aggregated cross-validation given by Definition 2.6 and standard cross-
validation. In all cases, the subsamples are generated independently from the
data and uniformly among subsets of a given size τn, as in Definition 3.6. Thus,
all three methods share the same two hyperparameters: τ , the fraction of data
used for training the Lasso, and V , the number of subsets used by the method.

For the huberized Lasso with a fixed grid, the hqreg raw function from the R
package hqreg is used with a fixed grid designed to emulate the default choice:
a geometrically decreasing sequence of length 100, with maximum value λmax

and minimum value λmin = 0.05λmax. The fixed value of λmax is obtained
by averaging the (data-dependent) default value chosen by hqreg raw over 10
independent datasets. To compute the reparametrization given by Definition
2.3, I implemented the LARS-based algorithm described by Rosset and Zhu
[23], which allows to compute the whole regularization path.

I.i.d training samples of size n = 100 are generated according to a dis-
tribution (X,Y ), where X ∈ R

1000 and Y = wT
∗ X + ε, with ε independent

from X . To illustrate the robustness of the estimators, Cauchy noise is used:
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ε ∼ Cauchy(0, σ). The performance of Agghoo and cross-validation may de-
pend on the presence of correlations between the covariates X and the sparsity
of the ground truth w∗. To investigate these effects, three parametric families
of distribution are considered for X , in sections 4.1, 4.2 and 4.3.

The risk of each method is evaluated on an independent training set of size
500, and results are averaged over 1000 repetitions of the simulation. More
precisely, 1000 training sets Dj of size n = 100 are generated, along with 1000
test sets (X ′

i,j , Y
′
i,j)1≤i≤500, each of size 500. For each simulation j and any

learning rule Aτ,V among the six obtained by combining Agghoo, monte carlo
CV and AGCV with either a fixed grid or the zero-norm parametrization, the
average excess risk

R̂j(A, τ, V ) =
1

500

500∑

i=1

[
φc
(
Y ′
i,j −Aτ,V (Dj)(X

′
i,j)
)
− φc

(
Y ′
i,j − s(X ′

i,j)
)]

is computed on the test set for all values of V ∈ {1, 2, 5, 10} and τ ∈
{

i
10 : 1 ≤ i ≤ 9

}
.

4.1 Experimental setup 1

X is generated using the formula Xi =
1

‖u‖
2

∑d
j=1 ui−jZj, where Zj are inde-

pendent standard Gaussian random variables, ui = I|i|≤core
− 2.332i2

2cor2 and cor ∈ N

is a parameter regulating the strength of the correlations. The regression coef-
ficient has a support of size r = 3 ∗ k drawn at random from [|1; 1000|], and is
defined by w∗,j = u∗,g(j), where g is a uniform random permutation, u∗,j = b

if 1 ≤ j ≤ k and u∗,j = b
4 if 2k + 1 ≤ j ≤ 3k, with b calibrated so that

‖Xw∗‖L2 = 1. The noise parameter is σ = 0.08, while the huber loss parameter
c is set to 2 – a suboptimal choice in this setting, but convenient for computing
the huberized Lasso regularization path.

Choice of τ parameter For all methods, in most cases the optimal value of
τ is 0.8 or 0.9, similarly to what was observed in the rkhs case, where τ = 0.8
was recommended. Table 1 displays the quantity

Ĝ(A, τ, V ) =
Mean

[
(R̂j(A, τ, V )− R̂j(A, τ∗, V ))1≤j≤1000

]

Sd
[
(R̂j(A, τ, V )− R̂j(A, τ∗, V ))1≤j≤1000

] ,

where Sd denotes the (empirical) standard deviation and τ∗ the optimal choice

of τ , τ∗ = argminτ∈{0.1,...,0.9} Mean
[
(R̂j(A, τ, V ))1≤j≤1000

]
. Thus, values of

Ĝ(A, τ, V ) bigger than a few units suggest that τ is suboptimal to a statistically
significant degree. When τ∗ = 0.9, Ĝ(A, 0.8, V ) is displayed in black on table
1. When τ∗ = 0.8, Ĝ(A, 0.9, V ) is displayed in blue on table 1. Exceptions where

τ∗ /∈ {0.8, 0.9} are highlighted in red, with the value min
(
Ĝ(A, 0.8, V ), Ĝ(A, 0.9, V )

)
.

Most of the exceptions τ∗ /∈ {0.8, 0.9} occur on the column r = 150, cor = 1,
while most of the others are of low statistical significance, with values less than
1.1 on the fourth column (r = 60 and cor = 1). Thus, table 1 confirms the claim
that τ∗ ∈ {0.8, 0.9} for all methods, in most cases. For grid agghoo, 0−norm
agghoo, grid agcv and V ≥ 5, τ∗ ∈ {0.8, 0.9} for all simulations. Comparing
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r = 150 r = 60 r = 24
method V 15 1 15 1 15 1

1 grid agghoo 1 2.2 2.7 3.0 2.7 0.5 5.6
2 grid agghoo 2 2.5 2.1 3.1 1.4 1.0 7.9
3 grid agghoo 5 2.5 6.8 3.5 0.6 0.6 11.9
4 grid agghoo 10 0.7 7.2 3.7 1.1 4.5 16.7
5 grid cv 1 1.0 3.9 1.6 0.1 1.2 1.5
6 grid cv 2 0.8 5.0 2.6 0.5 1.4 1.1
7 grid cv 5 1.4 2.8 1.5 0.8 0.5 3.7
8 grid cv 10 2.0 2.6 2.9 1.1 1.6 5.9
9 grid agcv 1 1.0 3.9 1.6 0.1 1.2 1.5
10 grid agcv 2 0.3 2.0 1.4 1.9 0.3 0.8
11 grid agcv 5 0.3 2.2 0.5 0.7 0.5 1.1
12 grid agcv 10 0.5 0.4 0.0 0.3 0.8 1.0
13 0−norm agghoo 1 1.3 4.1 2.0 0.3 0.5 5.6
14 0−norm agghoo 2 3.0 1.4 3.2 1.3 1.9 9.2
15 0−norm agghoo 5 4.0 6.7 5.1 3.3 4.0 13.7
16 0−norm agghoo 10 4.6 7.3 7.0 3.7 5.2 18.5
17 0−norm cv 1 4.3 9.4 4.3 1.1 2.0 3.9
18 0−norm cv 2 1.9 7.2 1.8 4.4 4.8 2.7
19 0−norm cv 5 2.7 5.3 2.4 3.3 1.5 0.7
20 0−norm cv 10 6.1 4.6 5.4 3.5 0.6 0.1
21 0−norm agcv 1 4.3 9.4 4.3 1.1 2.0 3.9
22 0−norm agcv 2 1.9 5.8 2.4 4.5 5.9 3.5
23 0−norm agcv 5 2.1 1.9 1.0 4.0 5.7 3.7
24 0−norm agcv 10 4.5 1.0 3.3 3.6 7.3 3.9

Table 1: Ĝ(A, τ, V ) for sub-optimal τ ∈ {0.8, 0.9} and various distributions.
Colours show optimal τ∗: blue for τ∗ = 0.8, black for 0.9, red when τ∗ /∈
{0.8, 0.9}.

now τ = 0.8 and τ = 0.9, grid agghoo and 0−norm agghoo with V ≥ 5 show
a clear pattern: τ = 0.9 is better or as good as τ = 0.8 in all cases except
r = 150, cor = 1 where τ = 0.8 is significantly better. For other methods,
results are not so clear and the difference in risk between the two values of τ is
often insignificant.

Choice of V For all methods considered, performance is expected to improve
when V is increased, but by how much? If the performance increase is too slight,
it may not be worth the additional computational cost. In figure 1, the mean
excess risk for the optimal value of τ is displayed as a function of V , with error
bars corresponding to one standard deviation. The scale used for the vertical
axis in each graph is the average excess risk of the oracle with respect to the
fixed grid over the λ parameter. Quantifying performance as a percentage of
the oracle risk, when cor = 15, Agghoo improves by roughly 20% from V = 1
to V = 2, by roughly 10% from V = 2 to V = 5 and by a few percent more
from V = 5 to V = 10. CV with the standard grid behaves similarly in these
two simulations, while CV with the zero-norm parametrization shows much
less improvement when V is increased. Thus, taking V ≥ 5 is advantageous,
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but there are clearly diminishing returns to choosing V much larger than this.
For CV with the zero-norm parametrization, V = 2 seems sufficient in these
simulations .

Comparison between methods From figure 1, it appears that grid agcv is
a very poor choice, being worse than both grid agghoo and grid cv for all values
of V when r = 150, cor = 15 , and being the worst of all the methods for V ≥ 2
when r = 24, as well as highly unstable, as the size of the error bars clearly
shows.

Interestingly, 0−norm agcv behaves much better, being the second best
method when cor = 1, and very close to the best when r = 24 and cor = 15.

Generally speaking, of the two types of parametrization of the Lasso, the
zero-norm parametrization appears to perform better than the standard grid
when correlations are small (cor = 1), while the performance is significantly
worse when r = 150 and cor = 15.

Comparing now Agghoo and CV, Agghoo appears to be better than CV
when V ≥ 2 in situations where r is larger (r = 150). This seems to hold
for both the standard parametrization (grid agghoo) and the zero-norm one
(0−norm agghoo). The relation is reversed for small r, with CV performing
better than Agghoo for all values of V when r = 24.

Further studies The previous simulations suggest that Agghoo performs bet-
ter than CV in the case of high intrinsic dimension. However, the effect of cor-
relations is unclear. Experimental setup 1 mixes different types of correlations:
correlations between predictive variables, correlations between predictive and
non-predictive variables, and correlations among non-predictive variables. It is
possible that one type of correlation favours Agghoo while another favours CV.

To gain a more accurate idea of when Agghoo is advantageous over CV, two
more settings are studied, considering separately correlations among predictive
variables, and between predictive and non-predictive variables. Since previous
simulations showed that τ = 0.8, 0.9 and V = 10 were the optimal parameters,
only those parameters will be considered in the following.

Since the choice of lasso parametrization did not seem to affect the relative
performance of Agghoo and CV, we only consider the standard parametrization,
as it is more popular and also easier to use in our simulations. Agcv is not con-
sidered either, since it was discovered to be unreliable in previous simulations.

4.2 Experimental setup 2: correlations between predictive

and noise variables

Let r be the number of predictive variables and let each predictive covariate
have s ”noise” covariates which are correlated with it at level ρ = 0.8. As-
sume that rs ≤ d, where d is the total number of variables. Let (Z0

i )1≤i≤r,
(Zi,j)1≤i≤r,1≤j≤s and (Wk)1≤k≤d−rs be independent standard gaussian vari-
ables. For any j ∈ [|0 : r−1|] and any i ∈ [|1; s|], let Zjr+i =

√
0.8Y 0

j +
√
0.2Zi,j

and for rs < i ≤ d, let Xi = Wi−rs. For the regression coefficient, choose
w∗ = 3∗u

‖Xu‖L2

, where u = (Ir|(j−1)Ij≤rs)1≤j≤d. Let then Y be distributed condi-

tionnally on X as Cauchy(〈w∗, X〉, 0.3). The loss function used here is φc with
c = 2.
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Figure 1: Performance relative to the oracle, as a function of V
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Figure 2: Relative risk in experimental setup 2 (section 4.2)

Results Figure 4.2 shows a bar plot of the average excess risk of CV and
Agghoo as a fraction of the average risk of the oracle. 90 % error bars were
estimated using asymptotic theory. Parameters used for Agghoo and CV were
τ = 0.9 and V = 10 (τ = 0.8 yields similar result).

Overall, Agghoo’s risk relative to the oracle significantly decreases as the
zero-norm of w∗ increases from r = 10 to r = 50 , as was observed in section 4.1
. For r = 25 and r = 50 separately, the risk relative to the oracle significantly
decreases as s increases from 2 to 10. For r = 10, this trend is unclear due to
the random errors.

In contrast, CV’s performance relative to the oracle shows no clear trend
either as a function of r or as as function of s, and could be constant when
taking error bars into accounts.

As a result of these trends, Agghoo performs significantly worse than CV
for r = 10 and significantly better when r = 50, especially when s ≥ 5. When
r = 25, CV performs significantly better than Agghoo for s = 2 and s = 5 and
they perform similarly when s = 10 and s = 20.
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Figure 3: Relative risk in experimental setup 3 (section 4.3)

4.3 Experimental setup 3: correlations between predictive

variables

We consider now predictive covariates which are correlated between them, and
independent from the unpredictive covariates. As above, let r denote the number
of predictive variables and ρ > 0 be the level of correlations. Let Z0, (Zi)1≤i≤r

and (Wi)1≤i≤d−r be standard Gaussian random variables. The random variable
X is then defined by Xi =

√
ρZ0 +

√
1− ρZi for 1 ≤ i ≤ r and Xi = Wi−r

for r + 1 ≤ i ≤ d. As in section 4.2, the regression coefficient w∗ is a constant
vector of the form 3∗u

‖Xu‖
L2

, where this time u = (I1≤i≤r)1≤i≤d.

Y is distributed conditionnally on X as Cauchy(〈X,w∗〉, 0.3) and the loss
function used is the Huber loss φ2.

Results Figure 4.3 shows a barplot generated in the same way as in section
4.2. Parameters used for Agghoo and CV were V = 10 and τ = 0.8, which is
optimal in this case for both Agghoo and CV.
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As in previous simulations, Agghoo’s performance relative to the oracle im-
proves significantly when the intrinsic dimension r grows from 25 to 200, for a
given value of ρ. The decrease in relative risk is faster for small values of ρ. As
a result, Agghoo performs best, relative to the oracle, when ρ = 0.2 for r = 200,
whereas best performance seems to occur at ρ = 0.5 for smaller values of r, up
to random errors.

For cross-validation, the relative risk seems more or less unaffected by the
dimension r, but shows an increasing trend as a function of ρ for all values of r.

As a result, Agghoo performs better than CV for r = 200 and for r = 100
and ρ = 0.2, 0.5. For r = 200 and ρ = 0.2, Agghoo even performs significantly
better than the oracle! This is possible, since the Agghoo regression coefficient
θ̂agT does not itself belong to the Lasso regularization path.

5 Conclusion

Aggregated hold-out (Agghoo) satisfies an oracle inequality (Theorem 3.2) in
sparse linear regression with the huber loss. This oracle inequality is asymptot-
ically optimal in the non-parametric case where the intrinsic dimension tends to
+∞ with the sample size n, provided that an L∞(X)−L2(X) norm inequality
holds on the set of sparse linear predictors, where X is the random vector of
covariates. When X is a vector of independent Bernoulli variables, this condi-
tion amounts to restricting the zero-norm of the coefficients to be less than a
constant times n

logn . Theorem 3.2 also applies to adaptive piecewise constant

regression, yielding an oracle inequality in that setting (Proposition 3.5).
When Monte-Carlo subsampling is used (Definition 3.6), Agghoo has two

parameters, τ and V . Theoretically, it is shown that Agghoo’s performance
always improves when V grows for a fixed τ . Simulations show a large improve-
ment from V = 1 to V = 5 in some cases, but diminishing returns for V > 5.
With respect to τ , simulations show that τ = 0.8 or τ = 0.9 is optimal or near
optimal in most cases. In particular, a default choice of V = 10, τ = 0.8 seems
reasonable.

Compared to cross-validation with the same number of splits V , simulations
show that Agghoo performs better when the intrinsic dimension r is large enough
(r = 150 in section 4.1, r = 50 in section 4.2 and r = 100 in 4.3) for n = 100
observations and d = 1000 covariates. Correlations between predictive and non-
predictive covariates, which increase the number of covariates correlated with
the response Y , clearly favour Agghoo relative to CV and the oracle, whereas
the effect of correlations between predictive covariates is ambiguous.

A Proof of Theorem 3.2

The idea is to apply [17, Theorem A.3] using suitable functions (ŵi,j)(i,j)∈{1;2}2 .

Fix a dataset Dnt
, K ∈ {1, . . . , nt} and for any k ∈ [|1;K|]2, let t̂k = Ak(Dnt

) :

x → q̂k(Dnt
) + 〈θ̂k(Dnt

), x〉. More precisely, to apply [17, Theorem A.3], one
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must show inequalities of the form H(w1, w2, (t̂k)1≤k≤K): for all r ≥ 2,

E

(∣∣φc(t̂k(X)− Y )− φc(t̂l(X)− Y )− ckl
∣∣r
)
≤ k!

[
w1

(√
ℓ(s, t̂k)

)
+ w1(

√
ℓ(s, t̂l))

]2

×
[
w2

(√
ℓ(s, t̂k)

)
+ w2

(√
ℓ(s, t̂l)

)]r−2

,

(12)

where w1, w2 are non-decreasing functions. Since φc is Lipschitz, it is enough to
control

∥∥t̂k − t̂l
∥∥
L∞(X)

and
∥∥t̂k − t̂l

∥∥
L2(X)

by functions of ℓ(s, t̂k) and ℓ(s, t̂l).

A.1 Controlling the supremum norm
∥∥t̂k − t̂l

∥∥
L∞(X)

First, let us bound the supremum norm by the L2 norm.

Claim A.0.1 For any k ∈ {1, . . . ,K}, recall that t̂k = Ak(Dnt
). Then:

∀(k, l) ∈ {1, . . . ,K}2,
∥∥t̂k − t̂l

∥∥
L∞(X)

≤
√
2κ(K)

∥∥t̂k − t̂l
∥∥
L2(X)

a.s. .

Proof Let X be independent from Dn and observe that for any k,

t̂k(X) = b̂k + θ̂Tk (X − EX),

where b̂k = q̂k + θ̂Tk EX (using the notations of hypothesis 2.1). Hence,

∥∥t̂k(X)− t̂l(X)
∥∥
L∞

≤ |b̂k − b̂l|+
∥∥∥(θ̂k − θ̂l)

T (X − EX)
∥∥∥
L∞

.

By hypothesis 2.1,
∥∥θ̂k
∥∥
0
= k. Thus, if K ≥ max(k, l),

∥∥∥θ̂k − θ̂l

∥∥∥
0
≤ k+ l ≤ 2K.

The definition of κ (equation (5)) implies that

∥∥t̂k(X)− t̂l(X)
∥∥
L∞

≤ |b̂k − b̂l|+ κ(K)
∥∥∥(θ̂k − θ̂l)

T (X − EX)
∥∥∥
L2

≤ κ(K)
[
|b̂k − b̂l|+

∥∥∥(θ̂k − θ̂l)
T (X − EX)

∥∥∥
L2

]
(κ(K) ≥ 1 by definition)

≤
√
2κ(K)

√
|b̂k − b̂l|2 +

∥∥∥(θ̂k − θ̂l)T (X − EX)
∥∥∥
2

L2

=
√
2κ(K)

∥∥t̂k(X)− t̂l(X)
∥∥
L2 .

A uniform bound on the supremum norm is also required.

Definition A.1 Let

β̂ = max
(k,l)∈[|1;nt|]2

∥∥t̂k − t̂l
∥∥
L∞(X)

E[β̂] can be bounded as follows.

Claim A.1.1 The β̂ of definition A.1 is such that

E[β̂] ≤ 8LRnα
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Proof Let (k, l) ∈ [|1;nt|]2. Defining X̃i = Xi − 1
n

∑n
i=1Xi and changing

variables in hypothesis 2.1 from (q, θ) to
(
b = q+ < θ, 1

n

∑n
i=1Xi >, θ

)
, we can

rewrite t̂k as

t̂k(x) = b̂k(Dn) + θ̂k(Dn)
T

(
x− 1

n

n∑

i=1

Xi

)

where

b̂k(Dn) ∈ argmin
b∈Q̂′(Dn,θ̂k(Dn))

|b|

Q̂′(Dn, θ) = argmin
b∈R

1

n

n∑

i=1

φc

(
Yi − b− θT X̃i

)
.

Therefore, differentiating with respect to b,

1

n

n∑

i=1

φ′c
(
Yi − b̂k − θ̂Tk X̃i

)
= 0.

Assume by contradiction that

∃b > 0, ∀i ∈ [|1;nt|], b̂k + b+ θ̂Tk X̃i ≤ b̂l + θ̂Tl X̃i. (13)

Let b be such that (13) holds. Then by monotony of φ′c, for all ε in [0; b
2 ],

0 =
1

n

n∑

i=1

φ′c
(
Yi − b̂k − θ̂Tk X̃i

)

≥ 1

n

n∑

i=1

φ′c
(
Yi − b̂k − ε− θ̂Tk X̃i

)

≥ 1

n

n∑

i=1

φ′c
(
Yi − b̂k −

b

2
− θ̂Tk X̃i

)

≥ 1

n

n∑

i=1

φ′c
(
Yi − b̂l +

b

2
− θ̂Tl X̃i

)

≥ 1

n

n∑

i=1

φ′c
(
Yi − b̂l + ε− θ̂Tl X̃i

)

≥ 1

n

n∑

i=1

φ′c
(
Yi − b̂l − θ̂Tl X̃i

)

= 0.

It follows that

∀ε ∈ [0;
b

2
],
1

n

n∑

i=1

φ′c
(
Yi−b̂k−ε−θ̂Tk X̃i

)
=

1

n

n∑

i=1

φ′c
(
Yi−b̂l+ε−θ̂Tl X̃i

)
= 0. (14)

By integration, this implies that for all ε ∈ [0; b
2 ],

(b̂k + ε) ∈ Q̂′
(
Dn, θ̂k(Dn)

)
, (15)

(b̂l − ε) ∈ Q̂′
(
Dn, θ̂l(Dn)

)
. (16)
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If b̂l > 0, then for small enough ε, (16) contradicts the minimality of |b̂l|.
On the other hand, if b̂l ≤ 0, then averaging (13) over i ∈ {1, . . . , n} yields

b̂k + b ≤ b̂l ≤ 0.

Then for ε ∈ [0; b
2 ], (15) contradicts the minimality of |b̂k|. Thus, (13) leads to

a contradiction. Let i be such that b̂k + θ̂Tk X̃i ≥ b̂l + θ̂Tl X̃i. Then

b̂l − b̂k ≤
(
θ̂k − θ̂l

)T
X̃i ≤ max

i=1,...,nt

∣∣(θ̂k − θ̂l
)T
X̃i

∣∣.

Exchanging k and l yields

|b̂l − b̂k| ≤ max
1≤i≤nt

∣∣(θ̂k − θ̂l
)T
X̃i

∣∣.

Therefore, for any k, l,

∥∥t̂k − t̂l
∥∥
L∞

(X) ≤ |b̂l − b̂k|+ sup
x∈supp(X)

∣∣(θ̂k − θ̂l)
T (x− 1

n

n∑

i=1

Xi)
∣∣

≤ 2 sup
x∈supp(X)

∣∣(θ̂k − θ̂l)
T (x− 1

n

n∑

i=1

Xi)
∣∣

≤ 2
∥∥θ̂k − θ̂l

∥∥
1

sup
(x,y)∈supp(X)2

‖x− y‖∞

≤ 4
∥∥θ̂k − θ̂l

∥∥
1

sup
x∈supp(X)

‖x− EX‖∞

≤ 8 sup
1≤k≤nt

∥∥∥θ̂k
∥∥∥ sup

x∈supp(X)

‖x− EX‖∞ .

Thus, by definition A.1, β̂ ≤ 8 sup1≤k≤nt

∥∥∥θ̂k
∥∥∥ supx∈supp(X̄) ‖x‖∞ .

Hence, by hypothesis 2.1,

E[β̂] ≤ 8LRnα.

A.2 Proving hypotheses H
(
ŵi,1, ŵi,2, (t̂k)1≤k≤K

)

The following lemma will be useful.

Lemma A.2 Let r, s, x be positive real numbers. Let

Ir,s(x) = {v ∈ R+ : v ≤ (r ∨ s√v)x}

and hr,s(x) = (
√
rx) ∨ sx2. Then for all x, y ≥ 0,

sup Ir,s(x + y) ≤ (hr,s(
√
x) + hr,s(

√
y))2.
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Proof Let v ∈ Ir,s(x). Then if s
√
v ≤ r, by definition of Ir,s(x), v ≤ rx.

Otherwise s
√
v > r. Therefore by definition of Ir,s(x),

v ≤ s
√
vx

v ≤ s2x2.

In all cases, v ≤ (rx) ∨ s2x2. Therefore,
√
sup Ir,s(x+ y) ≤

(√
r(x + y)

)
∨ s(x+ y) ≤

(√
rx
)
∨ sx+ (

√
ry) ∨ sy,

using the elementary inequalities:

∀(x, y, a, b) ∈ R
3
+,√

x+ y ≤ √
x+

√
y

(x + y) ∨ (a+ b) ≤ x ∨ a+ y ∨ b

We now relate the L2 norm to the excess risk in the following Proposition.

Proposition A.3 Let (X,Y ) ∈ X × R be random variables. Let φc be the
Huber loss with parameter c > 0. Assume that there exists η > 0 such that
almost everywhere,

P

(
|Y − s(X)| ≤ c

2
|X
)
≥ η.

Then for any measurable functions (f1, f2) : X → R
2,

c2 ‖f1 − f2‖2L2(X) ≤
4c

η

[
c ∨ 2 ‖f1 − f2‖L∞(X)

]
[ℓ(s, f1) + ℓ(s, f2)] . (17)

Proof Recall that

φc(x) =
x2

2
I|x|≤c + c

(
|x| − c

2

)
I|x|>c.

In the rest of the proof, for any x ∈ X , let ℓx(u) = E [φc(Y − u)− φc(Y )|X = x].
Let s : x 7→ argminu∈R ℓx(u); s is a risk minimizer. Then φ′c(x) = sgn(x)(|x|∧c)
and φ′′c (x) = I|x|≤c. By differentiating under the expectation, for any u such
that |u− s(x)| ≤ c

2 ,

ℓ′′x(u) = ∂2uE [φc(Y − u)− φc(Y )|X = x]

= E [φ′′c (Y − u)|X = x]

= P [|Y − u| ≤ c|X = x]

≥ P [|Y − s(x)|+ |u− s(x)| ≤ c|X = x]

≥ P

[
|Y − s(x)| ≤ c

2
|X = x

]

≥ η
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Since s(x) is a local minimum, it follows that, for any u ∈
[
s(x)− c

2 ; s(x) +
c
2

]
,

|ℓ′x(u)| =
∣∣ℓ′x(u)− ℓ′x(s(x))

∣∣

=

∣∣∣∣∣

∫ u

s(x)

ℓ′′x(t)dt

∣∣∣∣∣
≥ η|u− s(x)|

By [17, Lemma C.2], it follows that for any (u, v) ∈ R
2,

(u− v)2 ≤
(
4

η
∨
(

8

cη
|u− v|

))
(ℓx(u) + ℓx(v) − 2ℓx(s(x))) . (18)

Now using equation (18) with u = f1(X), v = f2(X), x = X and taking
expectations, we have:

c2 ‖f1 − f2‖2L2(X) ≤
4c

η

[
c ∨ 2 ‖f1 − f2‖L∞(X)

]
[ℓ(s, f1) + ℓ(s, f2)] . (19)

We are now ready to obtain functions (ŵi,j)(i,j)∈{1;2}2 such thatH
(
ŵi,1, ŵi,2, (t̂k)1≤k≤K

)

holds. In the following, fix K ∈ [|1;nt|] and write κ = κ(K) for short.
By Proposition A.3, for all (k, l) ∈ [|1;K|]2,

c2
∥∥t̂k − t̂l

∥∥2
L2(X)

≤ 4c

η

[
c ∨ (2

∥∥t̂k − t̂l
∥∥
L∞(X)

)
] [
ℓ(s, t̂k) + ℓ(s, t̂l)

]
. (20)

Hence, by claim A.0.1, for all (k, l) ∈ [|1;K|]2,

c2
∥∥t̂k − t̂l

∥∥2
L2(X)

≤ 4c

η

[
c ∨ (2

√
2κ
∥∥t̂k − t̂l

∥∥
L2(X)

)
] [
ℓ(s, t̂k) + ℓ(s, t̂l)

]
(21)

By lemma A.2 with v = c2
∥∥t̂k − t̂l

∥∥2
L2(X)

, r = 4c2

η and s = 8
√
2κ
η ,

c2
∥∥t̂k − t̂l

∥∥2
L2(X)

≤
(
ŵA(

√
ℓ(s, t̂k)) + ŵA(

√
ℓ(s, t̂l))

)2

, (22)

where

ŵA(x) =

(
2c√
η
x

)
∨ 8

√
2κ

η
x2. (23)

Now,

c2
∥∥t̂k − t̂l

∥∥2
L∞(X)

≤ 2c2κ2
∥∥t̂k − t̂l

∥∥2
L2(X)

≤ 8cκ2

η

[
c ∨ 2

∥∥t̂k − t̂l
∥∥
L∞(X)

] [
ℓ(s, t̂k) + ℓ(s, t̂l)

]
by Proposition A.3.

By lemma A.2 with v = c2
∥∥t̂k − t̂l

∥∥2
L∞(X)

, s = 16κ2

η , r = 8c2κ2

η ,

c2
∥∥t̂k − t̂l

∥∥2
L∞(X)

≤
(
ŵ2,2(

√
ℓ(s, t̂k)) + ŵ2,2(

√
ℓ(s, t̂k))

)2

(24)
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where

ŵ2,2(x) =
2c
√
2κ√
η

x ∨ 16κ2

η
x2 =

√
2κŵA. (25)

Because the Huber loss φc is c−Lipschitz,

∀u, v ∈ R
d, |φc(Y − u)− φc(Y − v)| ≤ c|u− v|

Therefore by (22) and (24),

E

[(
φc(Y − t̂k(X))− φc(Y − t̂l(X))

)k] ≤
(
c2
∥∥t̂k − t̂l

∥∥2
L2(X)

)(
c
∥∥t̂k − t̂l

∥∥
L∞(X)

)k−2

≤
(
ŵA(

√
ℓ(s, t̂k)) + ŵA(

√
ℓ(s, t̂l))

)2

×
(√

2κŵA(

√
ℓ(s, t̂k)) +

√
2κŵA(

√
ℓ(s, t̂l))

)k−2

,

which proves H
(
ŵA,

√
2κŵA, (t̂k)1≤k≤K

)
. Now going back to equation (17), by

Definition A.1,

c2
∥∥t̂k − t̂l

∥∥2
L2(X)

≤ 4c

η

[
c ∨ 2β̂

] [
ℓ(s, t̂k) + ℓ(s, t̂l)

]

≤
(
ŵB(

√
ℓ(s, t̂k)) + ŵB(

√
ℓ(s, t̂l))

)2

(26)

where

ŵB(x) =


 2c√

η
∨ 2

√
2cβ̂

η


 x. (27)

Moreover,

c2
∥∥t̂k − t̂l

∥∥2
L∞(X)

≤ 2κ2c2
∥∥t̂k − t̂l

∥∥2
L2(X)

≤ 2κ2
(
ŵB(

√
ℓ(s, t̂k)) + ŵB(

√
ℓ(s, t̂l))

)2

by (26)

Therefore, by (26),

P |γ(t̂k)− γ(t̂l)|k ≤ E

[(
φc(Y − t̂k(X))− φc(Y − t̂l(X))

)2] ∥∥φc(Y − t̂k(X))− φc(Y − t̂l(X))
∥∥k−2

∞

≤
(
c2
∥∥t̂k − t̂l

∥∥2
L2(X)

)(
c
∥∥t̂k − t̂l

∥∥
L∞(X)

)k−2

≤
(
ŵB(

√
ℓ(s, t̂k)) + ŵB(

√
ℓ(s, t̂l))

)2

×
(√

2κŵB(

√
ℓ(s, t̂k)) +

√
2κŵB(

√
ℓ(s, t̂l))

)k−2

,

which proves H
(
ŵB,

√
2κŵB, (t̂k)1≤k≤K

)
.
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A.3 Conclusion of the proof

We have proved thatH
(
ŵB ,

√
2κŵB , (t̂k)1≤k≤K

)
andH

(
ŵA,

√
2κŵA, (t̂k)1≤k≤K

)

hold, where ŵB is given by equation (27) and ŵA is defined by equation (23).
It remains to apply [17, Theorem A.3] and to express the remainder term as
a simple function of c, nv, nt, κ, L,R,K and α. We recall here the definition of
the operator δ used in the statement of that theorem.

Definition A.4 For any function h : R+ 7→ R+ and any ξ > 0, let

δ(h, ξ) = inf{x ∈ R+ : ∀u ≥ x, h(u) ≤ ξu2}.
The following lemma will facilitate the computation of δ(ŵA, ·).

Lemma A.5 Let r > 0, s > 0 and hr,s(x) = (
√
rx) ∨ sx2. Then δ(hr,s, ξ) <∞

if and only if ξ ≥ s and then δ(hr,s, ξ) =
√
r
ξ .

Proof To find δ(hr,s, ξ), notice that given the definition of δ(hr,s, ξ), the con-
dition s ≤ ξ is obviously necessary for the infimum to be finite. Assume now

that ξ ≥ s. For any u ≥
√
r
ξ , then ξu2 ≥ √

ru as well as ξu2 ≥ su2 (since

we assumed ξ ≥ s), therefore ξu2 ≥ hr,s(u). Thus by definition, δ(hr,s, ξ) ≤√
r
ξ (in particular, δ(hr,s, ξ) is finite). Furthermore, by definition of δ(hr,s, ξ),√
rδ(hr,s, ξ) ≤ ξδ(hr,s, ξ)

2, that is δ(hr,s, ξ) ≥
√
r
ξ .

The following claim can now be proved.

Claim A.5.1 If K ∈ [|1;nt|] and b > 1 are such that

κ(K) ≤ η

8

√
nv

8b logK
, (28)

then applying Agghoo to the collection (Ak)1≤k≤K yields the following oracle
inequality.

(1− θ)E[ℓ(s, f̂ ag
T )] ≤ (1 + θ)E[ min

1≤k≤K
ℓ(s, t̂k)] + 24θb

c logK

ηnv

[
c+

c+ 2LRnα
t

Kθ2b−1

]
.

Proof Theorem [17, TheoremA.3] applies with ŵ1,1 = ŵB , ŵ1,2 =
√
2κŵB, ŵ2,1 =

ŵA, ŵ2,2 =
√
2κŵA, x = (θ2b− 1) logK and it remains to bound the remainder

terms (R2,i)1≤i≤4. Now assume that equation (28) holds.

Bound on R2,1(θ) =
√
2θE

[
δ2
(
ŵA,

θ
2

√
nv

θ2b logK

)]

By (23), we can apply lemma A.5 with s = 8
√
2κ
η , r = 4c2

η and ξ = 1
2

√
nv

b logK .

By (28),

s =
8

η

√
2κ ≤

√
nv

4b logK
= ξ.

It follows by lemma A.5 that

δ

(
ŵA,

√
nv

4b logK

)
=

2c√
η

√
4b logK

nv
.

Hence,

R2,1(θ) ≤
√
2θ

4c2

η

4b logK

nv
≤ 23θb

c2 logK

ηnv
(29)
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Bound on R2,2(θ) =
θ2

2 E

[
δ2
(√

2κŵA,
θ2

4
nv

θ2b logK

)]

By (23), we can apply lemma A.5 with s = 16κ2

η , r = 8c2κ2

η and ξ = nv

4b logK .

By (28) and since η ≤ 1,

s =
16κ2

η
≤ 16

η

η2
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nv

4b logK
≤ nv

4b logK
= ξ.

Therefore

δ

(√
2κŵA,

θ2

4

nv

θ2b logK

)
≤ 2c

√
2κ√
η

4b logK

nv
by lemma A.5

≤ c

2

√
ηb logK

nv
by (28).

Hence, since θ, η ∈ [0; 1],

R2,2(θ) ≤
θ2

2

c2

4

ηb logK

nv
≤ θb

8

c2 logK

nv
. (30)

Bound on R2,3(θ) =
1

Kθ2b−1

(
θ +

2
[
1+log(K)

]
θ

)
E
[
δ2
(
ŵB,

√
nv

)]

By (27), x→ ŵB(x)
x is constant and, in particular, non-increasing. Therefore,

δ
(
ŵB ,

√
nv

)
is the unique nonnegative solution to the equation

ŵB(x) =
√
nvx

2 ⇐⇒


 2c√

η
∨ 2

√
2cβ̂

η


x =

√
nvx

2.

It follows that

δ
(
ŵB ,

√
nv

)
=


 2c√

η
∨ 2

√
2cβ̂

η


 1√

nv
. (31)

and

δ2
(
ŵB ,

√
nv

)
=

(
4c2

η
∨ 8cβ̂

η

)
1

nv

= 4
c(c ∨ 2β̂)

ηnv
. (32)

As nt ≥ 3, we can assume that K ≥ 3, hence logK ≥ 1 and

θ +
2(1 + logK)

θ
≤ 5 logK

θ
.

Since θ ≥ 1√
b
, 1

θ ≤ θb and therefore

θ +
2(1 + logK)

θ
≤ 5θb logK. (33)

By equations (32) and (33),

R2,3(θ) ≤ 20θb
c logK

ηnv

c+ 2E[β̂]

Kθ2b−1
(34)
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Bound on R2,4(θ) =
1

Kθ2b−1

(
θ + 2(1+logK)+log2 K

θ

)
E
[
δ2
(√

2κŵB , nv

)]

δ2
(√

2κŵB,
√
nv

)
is the unique nonnegative solution to the equation

√
2κŵB(x) =

√
nvx

2 ⇐⇒


 2c√

η
∨ 2

√
2cβ̂

η


√

2κx = nvx
2,

which yields

δ
(√

2κŵB , nv

)
=


 2c√

η
∨ 2

√
2cβ̂

η




√
2κ

nv

≤ 1

8

√
η

bnv logK

(
c ∨
√

2cβ̂

)
by (28) .

Since η ≤ 1 and b ≥ 1, it follows that

δ2
(√

2κŵB, nv

)
≤ η

64

c2 ∨ 2cβ̂

bnv logK
(35)

(36)

By equation (33), and since 1
θ ≤ θb,

θ +
2(1 + logK) + log2K

θ
≤ 5θb logK + θb log2K

≤ 6θb log2K since K ≥ 3.

Therefore, since b ≥ 1 and η ∈ [0; 1],

R2,4(θ) ≤
6θη

64

c logK

nv

c+ 2E[β̂]

Kθ2b−1
≤ 3θb

32

c logK

ηnv

c+ 2E[β̂]

Kθ2b−1
. (37)

Conclusion Summing up equations (29), (30), (34) and (37), [17, Theorem

A.3] implies that assuming equation (28) holds for K, for all θ ∈
[

1√
b
; 1
]
,

(1− θ)E[ℓ(s, f̂ ag
T )] ≤ (1 + θ)E[ min

1≤k≤K
ℓ(s, t̂k)] + 24θb

c logK

ηnv

[
c+

c+ 2E[β̂]

Kθ2b−1

]
.

(38)
It follows by claim A.1.1 that

(1− θ)E[ℓ(s, f̂ ag
T )] ≤ (1 + θ)E[ min

1≤k≤K
ℓ(s, t̂k)] + 24θb

c logK

ηnv

[
c+

c+ 16LRnα
t

Kθ2b−1

]
.

Let K satisfy assumption (6) from Theorem 3.2. Take now b = b0
log nt

logK .

Then equation (28) holds for this value of b. Moreover, since K ≤ nt, b0 ≥ b
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and therefore θ ∈
[

1√
b0
; 1
]

=⇒ θ ∈
[

1√
b
; 1
]
. Thus, claim A.5.1 implies that for

any θ ∈
[

1√
b0
; 1
]
,

(1−θ)E[ℓ(s, f̂ ag
T )] ≤ (1+θ)E[ min

1≤k≤K
ℓ(s, t̂k)]+24θb0

c lognt

ηnv

[
c+

cK

nθ2b0
t

+
16KLR

nθ2b0−α
t

]
.

This proves Theorem 3.2.

B Applications of Theorem 3.2

B.1 Proof of corollary 3.3

Let x̄ ∈ supp(X − EX). Let θ ∈ R
p be such that ‖θ‖0 ≤ 2K and let I =

{i : θi 6= 0}. For all i ∈ [|1; p|], x̄i ∈ [−1; 1], hence

∣∣∣∣∣

p∑

i=1

θix̄i

∣∣∣∣∣ =
∣∣∣∣∣
∑

i∈I

θix̄i

∣∣∣∣∣

≤
√∑

i∈I

x̄2i

√∑

i∈I

θ2i

≤
√
2K

√∑

i∈I

θ2i . (39)

On the other hand, let X̄i = Xi − EXi. Then by independence of the Xi,

E



(

p∑

i=1

θiX̄i

)2

 =

p∑

i=1

θ2iVar(Xi)

=

p∑

i=1

θ2i pi(1 − pi)

≥ min
1≤i≤p

{pi(1 − pi)} ×
∑

i∈I

θ2i . (40)

Combining inequalities (39) and (40) yields

sup
x̄∈supp(X−EX)

∣∣∣∣∣

p∑

i=1

θix̄i

∣∣∣∣∣ ≤
√

2K

min1≤i≤p pi(1 − pi)

√
E
[
〈θ, X̄〉2

]
.

B.2 Proof of Proposition 3.5

We associate to the original piecewise constant regression problem an ordinary
sparse regression problem. Define the linear operator

S : Rd → R
d

(xj)1≤j≤d 7→
(

j∑

i=1

xi

)

1≤j≤d
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and:

∆ : Rd → R
d−1

(xj)1≤j≤d 7→ ((xj − xj−1)j≥2) .

Fo any k ∈ [|1; d|], let also Ek = ∪d
j=kIj . Then tu has k jumps if and only if

‖∆(u)‖0 = k, moreover we have the representation:

tu = u1I+
d∑

j=2

∆(u)jIEj
. (41)

Equivalently,

tS(u) =

d∑

j=1

ujIEj
(42)

It follows that the original jump detection problem is equivalent to a sparse
regression problem with covariate vector Xi =

(
IEj

(Ui)
)
2≤j≤d

, where the non-

penalized intercept corresponds to the component u1 of the original problem.
The set of X−measurable functions cöıncides with the set of linear functions on
the finite set supp(X), hence a Bayes estimator is s : x 7→ u∗,1 + 〈∆(u∗), x〉),
where u∗ = argminu∈Rd E [φc(Y − tu(X)]. Let θ̂k = ∆(ûk) be the sparse es-
timator associated to ûk. This allows to apply Theorem 3.2, provided that
(θ̂k)1≤k≤d satisfies also the two last points of hypothesis 2.1. Let us now prove

this. Write θ̂k, ûk for ˆθk(Dnt
), ûk(Dnt

) to simplify notation. Using the notation
of Definition 3.4, we have:

∥∥∥θ̂k
∥∥∥
1
= ‖∆(ûk)‖1 =

k∑

r=2

|ûk,jr(ûk) − ûk,jr−1(ûk)| ≤ 2

k∑

r=1

|ûk,jr(ûk)|.

Hence, by the triangular inequality,

∥∥∥θ̂k
∥∥∥
1
≤ 2

k∑

r=0

min
i:Xi∈Ar(ûk)

|Yi|+ |Yi − ûjr(ûk)|.

Using the inequality |x| ≤ c+ 1
cφc(x) yields

∥∥∥θ̂k
∥∥∥
1
≤ 2

k∑

r=0

min
i:Xi∈Ar(ûk)

|Yi|+ c+
1

c
φc
(
Yi − ûjr(ûk)

)

≤ 2

k∑

r=0

c+
∑

i:Xi∈Ar(ûk)

|Yi|+
1

c
φc
(
Yi − ûjr(ûk)

)
.

Hence, by Definition 3.4,

∥∥∥θ̂k
∥∥∥
1
≤ 2

k∑

r=0

c+
∑

i:Xi∈Ar(ûk)

|Yi|+
1

c
φc (Yi)

≤ 2kc+ 4

nt∑

i=1

|Yi|.
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It follows that

E

[
sup

1≤k≤d−1

∥∥∥θ̂k
∥∥∥
1

]
≤ 2dc+ 4ntE[|Y |], (43)

so since d ≤ nv ≤ nt, the second point of hypothesis 2.1 is satisfied with α = 1
and L = 2c+ 4E[|Y |]. Let u ∈ R

d. For any y ∈ R, by convexity of φc,

y ∈ argmin
q∈R

1

n

n∑

i=1

φc(Yi − tu(Ui)− q) ⇐⇒ 1

n

n∑

i=1

φ′c (Yi − y − tu(Ui)) = 0

⇐⇒ 1

n

n∑

i=1

φ′c


Yi − y − u1 −

d∑

j=2

∆(u)jIEj
(Ui)


 = 0

⇐⇒ u1 + y ∈ argmin
x

1

n

n∑

i=1

φc (Yi − x− 〈∆(u), X〉) .

Hence, using the notations of hypothesis 2.1, for any u ∈ R
d,

Q̂
(
(Xi, Yi)1≤i≤n,∆(u)

)
= u1 + argmin

q∈R

1

n

n∑

i=1

φc(Yi − tu(Ui)− q). (44)

By Definition 3.4, ûk ∈ Ĉt(Dn, ûk), therefore

n∑

i=1

φ′c(Yi − tûk
(Ui)) =

k∑

r=1

∑

i:Xi∈Ar(ûk)

φ′c
(
Yi − ûk,jr(ûk)

)

= 0,

therefore 0 ∈ argminq∈R

1
n

∑n
i=1 φc(Yi − tûk

(Ui)− q) by convexity of φc. Hence,

by equation (44), ûk,1 ∈ Q̂
(
(Xi, Yi)1≤i≤n, θ̂k

)
. Let now u′1 ∈ Q̂

(
(Xi, Yi)1≤i≤n, θ̂k

)
,

and let y = u′1−ûk,1. Assume by contradiction that (ûk,j + y)1≤j≤d /∈ Ĉt(Dn, ûk).

Then there exists l ∈ [|1; k|] such that

∑

i:Xi∈Al(ûk)

φc
(
Yi − ûk,jl(ûk) − y

)
>

∑

i:Xi∈Al(ûk)

φc
(
Yi − ûk,jl(ûk)

)
,

while for all r 6= l, since by assumption ûk ∈ Ĉt(Dn, ûk),

∑

i:Xi∈Ar(ûk)

φc
(
Yi − ûk,jr(ûk) − y

)
≥

∑

i:Xi∈Ar(ûk)

φc
(
Yi − ûk,jr(ûk)

)
.

It follows that:

n∑

i=1

φc(Yi − tûk
(Ui)− y) =

k∑

r=1

∑

i:Xi∈Ar(ûk)

φc
(
Yi − ûk,jr(ûk) − y

)

>

k∑

r=1

∑

i:Xi∈Ar(ûk)

φc
(
Yi − ûk,jr(ûk)

)

=

d∑

i=1

φc(Yi − tûk
(Ui)).
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Yet by equation (44), y ∈ argminq∈R

1
n

∑n
i=1 φc(Yi − tûk

(Ui)− q), which yields

a contradiction. Therefore, (ûk,j + y)1≤j≤d ∈ Ĉt(Dn, ûk).
Thus,

∣∣∣∣∣u
′
1 + 〈θ̂k,

1

n

n∑

i=1

Xi〉
∣∣∣∣∣ =

∣∣∣∣∣∣
ûk,1 + y +

1

n

n∑

i=1

d∑

j=2

∆(ûk)jIEj
(Ui)

∣∣∣∣∣∣

=

∣∣∣∣∣y +
1

n

n∑

i=1

tûk
(Ui)

∣∣∣∣∣

=

∣∣∣∣∣∣

d∑

j=1

Pn(Ij) [ûk,j + y]

∣∣∣∣∣∣

≥

∣∣∣∣∣∣

d∑

j=1

Pn(Ij)ûk,j

∣∣∣∣∣∣
by Definition 3.4, equation (8)

=

∣∣∣∣∣
1

n

n∑

i=1

tûk
(Ui)

∣∣∣∣∣

=

∣∣∣∣∣ûk,1 + 〈θ̂k,
1

n

n∑

i=1

Xi〉
∣∣∣∣∣ .

This shows that the linear regressor Dn → x → ûk,1 + 〈∆(ûk), x〉 satisfies also
the last point of hypothesis 2.1.

It remains to check the assumptions of Theorem 3.2. We first remark that
R ≤ supx∈R maxj |IEj

(x) − P (Ej)| ≤ 1. We now bound κ(K). For any θ ∈ R
d,

d∑

j=k

θkX̄k =

d∑

k=1

θk (IEk
(U)− P (Ek))

=

d∑

k=1

θk

d∑

j=1

Ij≥k

(
IIj (U)− P (Ij)

)

=

d∑

j=1

(
j∑

k=1

θk

)
(
IIj (U)− P (Ij)

)

Thus, for any θ ∈ R
d, 〈X̄, θ〉 is in span

(
IIj (U)

)
1≤j≤d

(constant functions also

belong to this space). Now, for any Z =
∑d

j=1 zjIIj (U) ∈ span
(
IIj (U)

)
1≤j≤d

,

by assumption (10) of Proposition 3.5,

‖Z‖∞ ≤ max
1≤j≤d

|zj| ≤

√√√√
d∑

j=1

z2j ≤ 1√
min1≤j≤d P (Ij)

√√√√
d∑

j=1

z2jP (Ij) ≤
√

η2nv

1536 log2 nt

E[Z2]
1
2 .

This yields κ(d) ≤
√

η2nv

1536 log2 nt
. Let b0 = 3 lognt, then κ(d) ≤ η

8 lognt

√
nv

24 =

η
8

√
nv

8b0 lognt
. Finally, applying Theorem 3.2 with K = d, R = 1, L = 2c +

4E[|Y |], α = 1 (by equation (43)), b0 = 3 lognt and θ =
1√

lognt
yields equation

(11), proving Proposition 3.5.

33



References

[1] Sylvain Arlot and Alain Celisse. A survey of cross-validation procedures
for model selection. Statistics Surveys, 4:40–79, 2010.

[2] Sylvain Arlot and Matthieu Lerasle. Choice of V for V -fold cross-validation
in least-squares density estimation. Journal of Machine Learning Research
(JMLR), 17(208):1–50, 2016.

[3] Francis Bach. Bolasso: Model consistent lasso estimation through the boot-
strap. Proceedings of the 25th international conference on Machine learn-
ing, 33-40, 05 2008.
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