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We investigate the use of different variational principles in quantum Monte Carlo, namely energy and variance
minimization, prompted by the interest in the robust and accurate estimate of electronic excited states. For two
prototypical, challenging molecules, we readily reach the accuracy of the best available reference excitation
energies using energy minimization in a state-specific or state-average fashion for states of different or equal
symmetry, respectively. On the other hand, in variance minimization, where the use of suitable functionals is
expected to target specific states regardless of the symmetry, we encounter severe problems for a variety of wave
functions: as the variance converges, the energy drifts away from that of the selected state. This unexpected
behavior is sometimes observed even when the target is the ground state, and generally prevents the robust
estimate of total and excitation energies. We analyze this problem using a very simple wave function and
infer that the optimization finds little or no barrier to escape from a local minimum or local plateau, eventually
converging to the unique lowest-variance state instead of the target state. While the loss of the state of interest
can be delayed and possibly avoided by reducing the statistical error of the gradient, for the full optimization of
realistic wave functions, variance minimization with current functionals appears to be an impractical route.

I. INTRODUCTION

Light-induced processes are at the heart of a variety of phe-
nomena and applications which range from harnessing the re-
sponse to light of biological systems to improving the tech-
nologies for renewable energies. The contribution of elec-
tronic structure theory in this field hinges on its ability to ef-
ficiently and accurately compute excited-state properties. In
this context, the use of quantum Monte Carlo (QMC) meth-
ods is relatively recent and quite promising [1–9]: QMC
approaches provide an accurate (stochastic) solution of the
Schrödinger equation and benefit from a favorable scaling
with system size and great ease of parallelization [10–12]. Im-
portantly, recent methodological advancements [13–16] en-
able the fast calculation of energy derivatives and the opti-
mization of many thousands of parameters for the internally
consistent computation of QMC wave functions and geome-
tries in the ground and excited states [9, 17].

Here, we investigate the use of two different variational
principles for ground and excited states in QMC, namely, vari-
ance and energy minimization, to assess whether they allow
us to fully capitalize on the increased power of minimization
algorithms and availability of accurate wave functions. Vari-
ance minimization techniques [18–22] have been extensively
employed in QMC for the last 30 years but their potential for
the computation of excited states has only recently been re-
visited and exploited to compute vertical excitation energies
of various small molecules [23, 24]. Different functionals for
the optimization of the variance [19, 22, 23] have also been
put forward with the common attractive feature of the built-
in possibility to target a specific state and avoid in principle
the complications encountered in energy minimization where,
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without constraints, one would generally collapse to lower-
energy states.

For our study, we select two molecules, a small cyanine dye
and a retinal model, because of the difficulties they pose in the
computation of the lowest vertical excitation energy [4, 25–
28], and the different requirements in the procedure adopted
in energy minimization: while the ground and excited states of
the cyanine belong to different symmetries and can therefore
be treated in a state-specific manner, this is not the case for the
retinal model, where energy minimization must be performed
in a state-average fashion. For both molecules and therefore
regardless of the nature of the optimization, we find that en-
ergy minimization leads to the stable and fast convergence
of the total energies of the states of interest. Furthermore,
with the use of compact and balanced energy-minimized wave
functions constructed through a selected configuration inter-
action (CI) approach, we recover vertical excitation energies
which are already at the variational Monte Carlo (VMC) level
within chemical accuracy (about 0.04 eV) of the reference
coupled cluster or extrapolated CI values. On the other hand,
for both molecules and for nearly all wave functions inves-
tigated, the optimization of all parameters in variance mini-
mization is problematic since it results in the apparent loss of
the state of interest over sufficiently long optimization runs,
precluding the estimate of the excitation energy. This occurs
for the different functionals originally proposed to stabilize
the optimization and, surprisingly, in some cases also when
targeting the ground state. This finding is unexpected, es-
pecially considering that variance minimization has been the
method of choice in QMC for decades and is still routinely
used, albeit for wave functions with a small number of pa-
rameters or where the optimization is limited either to few
optimization steps or to the Jastrow factor.

To understand these newly-found issues, we examine how
variance minimization behaves when optimizing the linear co-
efficients of a very simple wave function. Working in the lin-
ear sub-space spanned by a few approximate eigenvectors, we
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discover that the optimization of the CI parameters in vari-
ance minimization does not converge to the target eigenstate
but to a different one: for approximate wave functions, the
multiple minima of the variance have generally different val-
ues and, during the minimization, the system slowly reaches
the eigenstate corresponding to the absolute minimum of the
variance, no matter what the starting state is. We show that
a similar behavior can be inferred also for more complicated
wave functions and, while the process can be slowed down by
reducing the statistical error on the gradient of the variance
driving the minimization, it severely limits the use of variance
minimization for the optimization of realistic wave functions.

In Section II, we recap the equations used for energy and
variance optimization, discuss the procedure employed for the
state-average case, and introduce the ingredients for a stable
version of the Newton method in variance minimization. In
Section III, we summarize the computational details and, in
Section IV, present the accurate vertical excitation energies
obtained in energy minimization and the difficulties encoun-
tered in variance minimization for both molecules. We eluci-
date these findings and conclude in Section V.

II. METHODS

We briefly introduce below the variance and energy mini-
mization approaches used to optimize the wave functions in
variational Monte Carlo. While we employ variance mini-
mization as a state-specific approach to target a given state, we
must distinguish between a state-specific and a state-average
route for energy optimization when the excited state of inter-
est is of different or equal symmetry, respectively, than other
lower-lying states.

A. Wave function form

The wave functions employed in this work are of the
Jastrow-Slater type, namely, the product of a determinantal
expansion and a Jastrow correlation function, J , as

Ψ = J
Ndet∑
i=1

ciDi , (1)

where the determinants are expressed on single-particle or-
bitals and the Jastrow factor includes an explicit dependence
on the electron-electron distances. Here, the Jastrow factor is
chosen to include electron-electron and electron-nucleus cor-
relation terms [29]. For the determinantal component, we se-
lect the relevant determinants according to different recipes:
i) very simple ansatzes such as Hartee-Fock (HF) or a CI
singles (CIS) expansion recently put forward as a computa-
tionally cheap and sufficiently accurate wave function for ex-
cited states in QMC [8, 30]; ii) complete-active-space (CAS)
expansions where small sets of important active orbitals are
manually identified; iii) CI perturbatively selected iteratively
(CIPSI) expansions generated to yield automatically balanced
multiple states. All expansions are expressed in terms of

spin-adapted configuration state functions (CSF) to reduce the
number of variational parameters.

B. Energy minimization

For state-specific optimization in energy minimization, we
employ the stochastic reconfiguration (SR) method [14, 31]
in a low-memory conjugate-gradient implementation [14].
Given a starting wave function Ψ depending on a set of pa-
rameters p, we denote the derivatives of Ψ with respect to a
parameter pi as Ψi = ∂iΨ. At every step of the SR optimiza-
tion, the parameter variations, ∆pi, are computed according
to the equation:

S̄∆p = −τ
2
g , (2)

where τ is a positive quantity chosen small enough to guaran-
tee the convergence. The vector g is the gradient of the energy
with components:

gi =
∂E

∂pi
= 2

[
〈Ψi|Ĥ|Ψ〉
〈Ψ|Ψ〉

− E 〈Ψ|Ψi〉
〈Ψ|Ψ〉

]

= 2

[〈
Ψi

Ψ
EL

〉
− 〈EL〉

〈
Ψi

Ψ

〉]
, (3)

where EL = ĤΨ/Ψ is the so-called local energy and 〈.〉 de-
notes the Monte Carlo average of the quantity in brackets over
the electron configurations sampled from Ψ2/ 〈Ψ|Ψ〉. The
matrix S̄ has components:

S̄ij =
〈Ψi|Ψj〉
〈Ψ|Ψ〉

− 〈Ψ|Ψi〉
〈Ψ|Ψ〉

〈Ψ|Ψj〉
〈Ψ|Ψ〉

=

〈
Ψi

Ψ

Ψj

Ψ

〉
−
〈

Ψi

Ψ

〉〈
Ψj

Ψ

〉
≡
〈

Ψ̄i

Ψ

Ψ̄j

Ψ

〉
, (4)

which is expressed in the last equality as the overlap matrix in
the semi-orthogonal basis, Ψ̄i = Ψi − [〈Ψ|Ψi〉 / 〈Ψ|Ψ〉]Ψ.

When the state of interest is energetically not the lowest in
its symmetry class, we start from a set of wave functions for
the multiple states which share the same Jastrow factor and or-
bitals but are characterized by different linear CI coefficients
as

ΨI = J
Ndet∑
i=1

cIiDi , (5)

where the superscript I indicates a particular state. To obtain a
balanced description of the states of interest, we optimize the
non-linear parameters of the orbitals and the Jastrow factor by
minimizing the state-average energy [1]:

ESA =
∑
I

wI
〈ΨI |Ĥ|ΨI〉
〈ΨI |ΨI〉

, (6)

where the weights wI are kept fixed and
∑

I wI = 1. To this
aim, we follow the SR scheme (Eq. 2) and use the gradient of
the state-average energy

gSAi =
∑
I

wIg
I
i , (7)
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where gIi is the gradient with respect to a parameter pi of the
energy of state I , which is computed from the wave func-
tion ΨI and its derivatives as in Eq. 3. Moreover, in anal-
ogy to the single-state optimization, we introduce a weighted-
average overlap matrix defined as

S̄SA
ij =

∑
I

wI S̄
I
ij , (8)

where the overlap matrix for each state is computed from the
corresponding wave function as in Eq. 4. We stress that, while
the state-average SR procedure is defined simply by analogy
with the single-state case, it does lead to the minimization of
the state-average energy since we employ the appropriate gSA.

We alternate a number of optimization steps of the non-
linear parameters with the optimization of the linear coeffi-
cients cIi , whose optimal values are the solution of the gener-
alized eigenvalue equations

HCIcI = EIS
CIcI , (9)

where the Hamiltonian and overlap matrix elements are de-
fined in the basis of the functions {JDi} and estimated
through Monte Carlo sampling. After diagonalization of
Eq. 9, orthogonality between the individual states is automati-
cally enforced. To solve the eigenvalue equation with a mem-
ory efficient algorithm, we use the Davidson diagonalization
scheme in which the lowest energy eigenvalues are computed
without the explicit construction of the entire Hamiltonian and
overlap matrices [14]. A similar procedure was recently fol-
lowed in Ref. [32].

C. Variance minimization

To perform variance minimization, we can directly mini-
mize the variance of the state of interest,

σ2 =
〈Ψ|(Ĥ − E)2|Ψ〉

〈Ψ|Ψ〉
, (10)

or follow a somewhat more stable optimization procedure by
minimizing the expression

σ2
ω =

〈Ψ|(Ĥ − ω)2|Ψ〉
〈Ψ|Ψ〉

, (11)

where the energy ω is fixed during the optimization step and
then appropriately modified to follow the current value of the
energy as originally proposed in Ref. [19]. Recently, a func-
tional Ω has been put forward,

Ω =
〈Ψ|(ω − Ĥ)|Ψ〉
〈Ψ|(ω − Ĥ)2|Ψ〉

, (12)

whose minimization is equivalent to variance minimization if
ω is eventually updated to the running value of E − σ [23].

Because of its simplicity, we choose here the functional σ2
ω

but also compare the convergence behavior obtained with the

functional Ω. To this aim, we use the Newton optimization
method as in Ref. [22] and update the parameters as

∆p = −τh−1g , (13)

where g is here the gradient of σ2
ω and h its Hessian matrix,

and the parameter τ is introduced to damp the size of the vari-
ations.

The components of the gradient are given by

gi = 2

[〈
ĤΨi

Ψ
EL

〉
−
〈

Ψi

Ψ

〉
〈E2

L〉 (14)

− ω

(〈
Ψi

Ψ
EL

〉
+

〈
ĤΨi

Ψ

〉
− 2

〈
Ψi

Ψ

〉
〈EL〉

)]
,

and we discuss other possible equivalent expressions and their
relative fluctuations in the SI. The Hessian matrix elements re-
quire the second derivatives of the wave function and, to avoid
their computation, we follow the same approximation strategy
of the Levenberg-Marquardt algorithm [33] and manipulate
the expression of the variance in a somewhat different way
than proposed in Refs. [20, 22, 34], to obtain the approximate
expression of the Hessian matrix

hij =

〈[
∂iEL + (EL − ω)

(
Ψi

Ψ
−
〈

Ψi

Ψ

〉)]
(15)

×
[
∂jEL + (EL − ω)

(
Ψj

Ψ
−
〈

Ψj

Ψ

〉)]〉
,

Details of the derivation and alternative expressions for the
Hessian are given in the SI.

We use the Newton method and the Hessian h (Eq. 15)
when optimizing both σ2

ω and the Ω functional in combina-
tion with the corresponding gradient. Furthermore, we follow
Ref. [23] in keeping ω fixed to an appropriate guess energy
for an initial number of minimization steps, upgrading it lin-
early to the running energy (or E − σ in the case of Ω) over
some intermediate iteration steps, and then setting it equal to
the current energy estimate for the rest of the run.

III. COMPUTATIONAL DETAILS

All QMC calculations are carried out with the program
package CHAMP [35]. We employ scalar-relativistic energy-
consistent HF pseudopotentials and the correlation-consistent
Gaussian basis sets specifically constructed for these pseu-
dopotentials [36, 37]. Unless otherwise specified, we use a
double-ζ basis set minimally augmented with s and p diffuse
functions on the heavy atoms and denoted here as maug-cc-
pVDZ. Basis-set convergence tests are performed with the
fully augmented double (aug-cc-pvDZ) and triple (aug-cc-
pvTZ) basis sets. In all cases, the exponents of the diffuse
functions are taken from the corresponding all-electron Dun-
ning’s correlation-consistent basis sets [38].

In the state-specific (energy and variance) optimization
runs, we sample a guiding wave function that differs from
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the current wave function close to the nodes [39] to guaran-
tee finite variances of the estimators of the gradient, over-
lap, and Hessian matrix elements. In the state-average en-
ergy minimizations, we employ equal weights for the multi-
ple states and sample a guiding wave function constructed as
Ψ2

g =
∑

I |ΨI |2, to ensure that the distribution sampled has
a large overlap with all states of interest [1]. All wave func-
tion parameters (Jastrow, orbital, and CI coefficients) are op-
timized and the damping factor, τ , in the SR and the Newton
method is set to 0.05 and 0.1, respectively, unless otherwise
specified. In the DMC calculations, we treat the pseudopoten-
tials beyond the locality approximation using the T-move al-
gorithm [40] and employ an imaginary time-step of 0.05 a.u.
which yields excitation energies converged to better than 0.01
eV as shown in the SI.

The HF, CIS, and complete-active-space self-consistent-
field (CASSCF) calculations are carried out with the program
GAMESS(US) [41, 42]. For the cyanine dye, we consider
different CAS expansions: a CAS(6,5) and CAS(6,10) corre-
lating 6 π electrons in the orbitals constructed from the 2pz
and 3pz atomic orbitals; a truncated CAS(14,13) consisting of
6 π and 8 σ electrons in 13 bonding and antibonding orbitals.
For the retinal model, we employ a minimal CAS(6,6) active
space of 6 π electrons in the orbitals constructed from the 2pz
atomic orbitals.

The CIPSI calculations are performed with Quantum Pack-
age [43] and the determinantal expansions are constructed to
be eigenstates of Ŝ2. For the cyanine dye where ground and
excited states have different symmetry, we follow two paths
to construct the CIPSI expansions: i) we perform separate
expansions for the two states starting from the correspond-
ing CASSCF(6,10) orbitals, and match the variances of the CI
wave functions to obtain a balanced description of the states.
We find that this procedure leads to an automatic match of
the second-order perturbation theory (PT2) energy contribu-
tions as shown in Table S1. ii) We perform the expansion of
the two states simultaneously, using a common set of orbitals
(the excited-state CASSCF(6,10) orbitals), and obtain auto-
matically matched PT2 energy corrections during the expan-
sion [9]. For the retinal model where the ground and excited
states have the same symmetry, we have only one set of or-
bitals for the CIPSI expansions. In this case, we perform a
simultaneous expansion with a selection scheme that matches
the CI variances and also attempts to balance the PT2 energy
contributions of the two states (see SI) [44].

All total energies are computed on the PBE0/cc-pVQZ
ground-state geometry of the cyanine [45] and retinal
molecules. The DFT geometry optimization of the retinal
model is performed with the program Gaussian [46]. The cou-
pled cluster results are obtained with Psi4 [47].

IV. RESULTS

We compute the lowest π → π∗ vertical excitation energy
of the cyanine dye (C3H3(NH2)+2 ) and the minimal model
of the retinal protonated Schiff base (C5H6NH+

2 ) depicted in
Fig. 1 and denoted as CN5 and PSB3, respectively. As already

FIG. 1. Schematic representations of the CN5 (left) and PSB3 (right)
molecules. White, gray, and blue denote hydrogen, carbon, and ni-
trogen, respectively.

mentioned, while being generally challenging for electronic
structure methods [4, 25–28], these examples are representa-
tive of the two cases of a ground (S0) and an excited (S1) state
of different (CN5) and equal (PSB3) symmetry. Correspond-
ingly, the energy minimization scheme is state-specific for
CN5 and state-average for PSB3, while variance minimiza-
tion affords a state-specific optimization for both molecules,
at least in principle.

Ground and excited states of different symmetry

In Table I, we list the ground- and excited-state energies,
and corresponding excitation energies of CN5 computed in
VMC and DMC with different wave functions optimized by
(state-specific) energy minimization. The simplest case con-
sists of a single determinant (HF) and a HOMO-LUMO (HL)
two-determinant wave function for the ground and the excited
state, respectively. We then consider configuration interaction
singles (CIS) expansions, CAS expansions with increasing
active spaces, and balanced CIPSI expansions with different
choices of the starting orbitals, namely, independent sets for
the two states (CIPSI-SS) or a common set of orbitals (CIPSI-
B1). The excitation energies are displayed in Fig. 2.

The general trend is a decrease of the excitation energy to-
wards the extrapolated full CI (exFCI) and approximate cou-
pled cluster singles, doubles and triples model (CC3) refer-
ence values for better wave functions. As an exception, when
we move from the HF/HL to CIS wave functions, the VMC
energies of both states decrease but the corresponding exci-
tation energy becomes worse. With increasingly large CAS
expansions, both the total and the excitation energies improve
but the convergence is very slow. For all these wave functions,
the DMC excitation energy is lower than the VMC value and
becomes within 0.1 eV of the reference results for the largest
active spaces with about 50,000 and 70,000 determinants for
the ground and the excited state, respectively. By comparison,
the errors of TDDFT and CASPT2 can be as large as 0.4 and
−0.2 eV, respectively [4, 45].

The quality of the results exhibits a further, dramatic im-
provement with the use of CIPSI expansions. The VMC and
DMC energies obtained with the smallest CIPSI wave func-
tion are lower than the corresponding values obtained with
the largest CAS considered here. Furthermore, construct-
ing ground- and excited-state CIPSI expansions with similar
PT2 corrections leads to a balanced description of both states
and to VMC excitation energies which change very little with
increasing expansion size, being irregularly scattered over a
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TABLE I. VMC and DMC total energies (a.u.) and excitation energies (∆E, eV) of CN5 obtained for different wave functions optimizing all
parameters (Jastrow, orbital, and CI coefficients) in energy minimization.

WF No. det No. parm EVMC ∆EVMC EDMC ∆EDMC

S0 S1 S0 S1 S0 S1 S0 S1
HF/HL 1 2 516 529 -40.8372(4) -40.6460(3) 5.202(14) -40.9378(3) -40.7509(3) 5.086(11)
HF/CIS 1 980 516 4751 -40.8372(4) -40.6505(3) 5.080(14) -40.9378(3) -40.7533(3) 5.020(11)
CIS 999 980 5260 4751 -40.8444(4) -40.6505(3) 5.278(14) -40.9393(3) -40.7533(3) 5.061(11)
CAS(6,5) 52 48 567 561 -40.8468(4) -40.6583(4) 5.130(15) -40.9433(3) -40.7582(2) 5.038(10)
CAS(6,10) 7232 7168 3134 3064 -40.8498(4) -40.6628(4) 5.090(15) -40.9439(3) -40.7594(3) 5.022(11)
CAS(14,13) 48206 72732 9480 11727 -40.8583(3) -40.6713(3) 5.091(10) -40.9442(7) -40.7611(7) 4.983(26)
CIPSI-SS 376 1094 1567 2609 -40.8646(3) -40.6842(3) 4.908(12) -40.9467(3) -40.7665(3) 4.905(10)

1344 4382 2478 4531 -40.8798(3) -40.7013(3) 4.857(13) -40.9502(2) -40.7711(2) 4.872(09)
2460 8782 3555 6561 -40.8896(3) -40.7099(3) 4.890(12) -40.9532(2) -40.7748(2) 4.856(09)
3913 14114 4842 8312 -40.8941(2) -40.7167(3) 4.828(11) -40.9559(2) -40.7775(2) 4.856(08)

CIPSI-B1 2456 6120 3971 5466 -40.8847(2) -40.7053(2) 4.880(09) -40.9521(2) -40.7727(2) 4.881(09)
4829 13130 5737 8021 -40.8945(3) -40.7150(3) 4.889(13) -40.9560(2) -40.7766(2) 4.882(08)

exFCI/aug-cc-pVDZ [48] 4.89
CC3/aug-cc-pVDZ 4.851
CC3/aug-cc-pVTZ 4.844

4.8

4.9

5.0

5.1

5.2

5.3

 HF/HL CIS (6,5) (6,10) (14,13)  1k 6k 11k 18k
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FIG. 2. VMC and DMC excitation energies of CN5 calculated
with different wave functions optimized in energy minimization. The
exFCI/aug-cc-pVDZ [48] and CC3/aug-cc-pVTZ reference values
are also shown. The approximate total number of determinants for
the CIPSI-SS wave functions of the ground and excited states is in-
dicated.

small energy range of 0.08 eV. Importantly, the DMC excita-
tion energies are compatible with the VMC ones and in ex-
cellent agreement with the CC3 and exFCI values. Finally,
employing two different sets of orbitals to generate the CIPSI
expansions leads to marginal differences, namely, to DMC ex-
citation energies of 4.856(8) and 4.882(8) eV, which are both
bracketed by the reference values.

Having verified that state-specific energy optimization in
combination with accurate wave functions allows the ro-
bust treatment of CN5, we now employ variance minimiza-
tion with the σ2

ω functional to optimize the CAS(6,5) and

CAS(6,10) wave functions of the ground and excited states.
The convergence of the corresponding VMC variances and
energies is shown in Fig. 3. For the smaller CAS(6,5), we ob-
serve that, while the variance converges rather quickly, the en-
ergy appears to do so more slowly and only after undershoot-
ing to a value which generally depends on the statistical error
and initial conditions of the run. As reported in Table II, the
optimal ground- and excited-state energies are higher by about
30 mHartree than the corresponding values obtained in energy
minimization but the resulting excitation energy is compatible
within statistical error.

If we move to the larger CAS(6,10) determinantal expan-
sion, we find however that, while the variance reaches a sta-
ble value and the ground-state energy has a similar behavior
to the CAS(6,5) case, the energy of the excited state grows
steadily and it is therefore not possible to estimate the verti-
cal excitation energy of the system. Surprisingly, even in the
simplest case of the one-configuration (HF/HL) wave func-
tions, the energy of the excited state keeps slowly rising even
after 600 iterations as shown in Fig. 4, while the ground-state
energy behaves similarly to the corresponding CAS cases.

We stress that, for most wave functions of Table I, we ob-
serve a steady growth of the excited-state energy in variance
minimization and, therefore, wonder whether optimizations
which appear converged are not simply affected by a much
slower drift in the energy, which would become evident only
in longer runs. Importantly, the apparently unstable behav-
ior is independent of the initial value of ω and the number of
steps over which we keep ω fixed (see Section S6). The use
of a smaller or larger damping factors (i.e. τ = 0.04 and 0.2)
leads to the same pathological growth of the excited-state en-
ergy, characterized by the same slope as a function of time
as shown in Fig. S4. Moreover, we recover the same behavior
also when using a gradient-only-based optimizer (see Fig. S7).
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TABLE II. VMC energies and variances (a.u.) and vertical excitation energies (eV) of CN5 obtained with energy and variance minimization.

Energy min. Variance min.
E(S0) E(S1) ∆E σ2(S0) σ2(S1) E(S0) E(S1) ∆E σ2(S0) σ2(S1)

CAS(6,5) -40.8468(4) -40.6583(4) 5.13(1) 0.928 0.940 -40.8170(5) -40.6270(5) 5.17(2) 0.856 0.862
CAS(6,10) -40.8498(4) -40.6628(4) 5.09(1) 0.928 0.930 -40.8163(4) – – 0.855 –
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FIG. 3. Convergence of the VMC energy (top) and variance (bottom)
of the ground (left) and excited (right) states of CN5 in the optimiza-
tion of the CAS(6,5) and CAS(6,10) wave functions in variance min-
imization.

Finally, minimizing the Ω functional instead of σ2
ω yields an

excited-state energy which ultimately rises with iterations as
shown for the excited-state HL wave function in Fig. 4.
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FIG. 4. Convergence of VMC energy of the ground (left) and excited
(right) states of CN5 in the optimization of the HF/HL wave func-
tions within variance minimization with the σ2

ω (our default) and the
Ω functional.

Ground and excited states of the same symmetry

For PSB3, we optimize the wave functions in energy min-
imization in a state-average fashion and report the resulting
VMC and DMC total energies and vertical excitation energies
in Table III. As in the CN5 case, CIPSI wave functions are su-
perior to CAS expansions of similar size and, with only about
400 determinants, the use of CIPSI yields not only lower to-
tal energies but also a VMC vertical excitation energy in good

agreement with the CC3 reference, largely correcting the er-
ror of 0.25 eV obtained with the CAS(6,6) wave function.
For all CIPSI expansions, the DMC excitation energies are
always quite close to the correspondent VMC results and, for
the larger expansions, within 0.05 eV of the CC3 value.
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FIG. 5. Convergence of the VMC energy of the ground (red) and
excited (blue) states of PSB3 in the optimization of the RHF/HL and
CAS(6,6) wave functions within variance minimization.

When we perform state-specific variance minimization, we
encounter great difficulties in the convergence of the energies
as we show for the HF/HL and CAS(6,6) wave functions in
Fig. 5. Differently from CN5, we find in general that not only
the energy of the excited state but also that of the ground state
grows steadily with iteration number. We only obtain a seem-
ingly stable energy for the HF wave function.

V. DISCUSSION AND CONCLUSIONS

While our results confirm the high accuracy reachable in
QMC with energy minimization, they evidence severe prob-
lems in variance minimization which, in most cases, preclude
the estimation of the excitation energy. To gain a better un-
derstanding of the troublesome behavior of the energy during
variance minimization, we further investigate the simple case
of the HL wave function of CN5 (Fig. 4) and find that the en-
ergy of the state drifts to higher values during variance min-
imization also when one optimizes only the LUMO orbital.
Therefore, since optimization of an orbital can be achieved
by mixing it with the unoccupied ones of the same symmetry,
we can recast the LUMO optimization into the linear varia-
tion of the CI coefficients of the single excitations out of the
LUMO orbital, which amount to only twelve additional CSFs
in our basis set. With such a small expansion, we can then di-
agonalize the Hamiltonian in the basis of the CSFs times the
Jastrow factor to estimate its thirteen eigenvalues and eigen-
vectors, and work directly in the basis of the eigenstates to
assess the behavior of variance minimization when starting
from the states which are optimal for energy minimization.
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TABLE III. VMC and DMC total energies (a.u.) and vertical excitation energies (eV) of PSB3 obtained with different wave functions optimized
in energy minimization.

WF No. det No. param VMC DMC
E(S0) E(S1) ∆E E(S0) E(S1) ∆E

CAS(6,6) 400 1645 -42.8091(2) -42.6471(2) 4.409(9) -42.9118(2) -42.7541(2) 4.293(6)
CIPSI 422 4011 -42.8174(2) -42.6623(2) 4.221(9) -42.9133(2) -42.7578(2) 4.233(6)

1158 5968 -42.8297(2) -42.6735(2) 4.252(9) -42.9160(2) -42.7609(2) 4.221(6)
2579 8106 -42.8357(2) -42.6796(2) 4.247(9) -42.9169(2) -42.7621(2) 4.214(6)

CC3/aug-cc-pVDZ 4.19
CC3/aug-cc-pVTZ 4.16
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FIG. 6. Convergence of the VMC variance (top) and energy (bottom)
of CN5 in the CI optimization of a small expansion (see text) with
variance minimization. The horizontal lines in the energy plot corre-
spond to the eigenvalues in this reduced space, and the colored ones
are the eigenstates used as starting point in four optimization runs.
The damping factor used in the Newton method is τ = 0.2.

In Fig. 6, we show the evolution of the VMC variance and
energy for four variance minimization runs in which we start
from different eigenvectors, taking the corresponding eigen-
values as initial target energies ω. In particular, we consider
the lowest state in B1 symmetry as well as the second, fourth,
and thirteenth (corresponding to the highest energy) states.
We note that, since our states are not exact eigenstates of the

full Hamiltonian, the corresponding variances of the local en-
ergy are non zero and are spread over about 0.5 a.u. with the
lowest value in correspondence of the second state. In princi-
ple, one would expect to find a feature of the variance land-
scape –ideally a local minimum– near each of the approximate
eigenstates since the functionals σ2

ω or Ω are designed to select
a particular state through the initial value of ω, and minimize
the variance of that state. Here, the selection of the state is
further facilitated starting each run precisely from the chosen
eigenstate, and variance minimization should perform minor
adjustments of the initial parameters from their optimal values
for the energy.

The behavior illustrated in Figs. 6 is totally different,
with all optimization runs leaking down to successive lower-
variance states and eventually converging to the absolute min-
imum corresponding to the second eigenstate. The staircase
shape of the variance evolution points to the presence of flat
regions of the variance landscape close to the eigenstates,
from which the optimization can eventually escape. This is
further corroborated if we follow the evolution of the CI co-
efficients as shown starting from the highest-energy state in
Fig. 7: the initial coefficient quickly decreases to zero and
other eigenstates become populated until convergence on the
second state. In proximity of some eigenstates, the variance
displays a more pronounced plateau, where the system spends
enough time to acquire the full character of that particular
state. It is also interesting to note that the states are pop-
ulated sequentially with the order determined by decreasing
energies. We stress that we observe a similar behavior of the
variance also when using the Ω functional starting from the
same set of approximate eigenstates (see Fig. S8).

In Fig. 8, we investigate the impact of the statistical er-
ror on the loss of the selected state. In particular, we fo-
cus on the evolution of the variance and the energy starting
from the 4th eigenvector for different lengths of the VMC
runs used to compute the gradient and Hessian matrix. The
shortest run (larger statistical error) looses the target state in
a slightly smaller number of steps. However the intermediate
and the longest run give very similar results, suggesting that
even longer VMC runs would not stabilize the target state.

Finally, to verify that the understanding gained here also
applies to more complicated wave functions, we revisit the
very problematic optimization of the excited-state CAS(6,10)
wave function (Fig. 3) and perform a much longer calcula-
tion, finding that the energy eventually converges as shown in
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FIG. 7. Evolution of the square of the CI coefficients c2i (offset by i
for clarity) of the small expansion of CN5 during variance minimiza-
tion, for the run starting from the 13th eigenvector; in the inset, the
evolution of the energy is replicated to emphasize flat regions in the
energy landscape close to an eigenstate (i.e. when the corresponding
ci ∼ 1).
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ent and Hessian matrix during the optimization, starting from the 4th

eigenvector. NMC is the number of Monte Carlo steps used in Fig. 6.

-40.6

-40.5

-40.4

0 500 1500 2500 3500

En
er

gy
 (a

.u
.)

Optimization iteration

Excited state of CAS(6,10) wf

0.85

0.86

0.87

0 500 1500 2500 3500

Va
ria

nc
e 

(a
.u

.)

Optimization iteration

Excited state of CAS(6,10) wf

FIG. 9. Variance (left) and energy (right) convergence for the opti-
mization of the excited state of the CAS(6,10) wave function. The
horizontal lines in the energy plot correspond to the firsts eigenvalue
roots obtained with the Davidson optimization.

Fig. 9. For the final set of Jastrow and orbital parameters, we
determine the eigenvalues in the linear space of the determi-
nants times the Jastrow factor and recover a similar behavior
to what observed in the simple example: the minimization of
σ2
ω brings the system approximately to an eigenstate with a

lower variance, which is in this case the 4th one.
In summary, we have shown that the combination of en-

ergy minimization with an appropriate choice of the ground-
and excited-state wave functions via a balanced CIPSI proce-
dure leads to excitation energies that are in excellent agree-
ment already at the VMC level with the reference values.
In particular, we obtained a robust convergence of the total
ground- and excited-state energies, and a very accurate ex-
citation energy not only in the easier state-specific case of
CN5 but also when employing energy minimization in a state-
average fashion for PSB3. On the other hand, we encoun-
tered severe problems when employing variance minimization
since, over sufficiently long optimization runs, one may loose
the state of interest in favor of a state with lower variance, as
we clearly demonstrated with a simple but realistic example.
Even though, theoretically, the functionals σ2

ω and Ω have a
built-in possibility to target the energy of a specific state, in
practice, this is generally not sufficient to maintain the pa-
rameters close to the desired local minimum of the variance.
Therefore, these considerations lead to the conclusion that,
with the present functionals and no a priori knowledge of the
parameter landscape of the variance for the system of interest,
energy minimization is a safer and more stable procedure.
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