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a b s t r a c t 

The main issue of the extended finite element method (XFEM) is the numerical integration of the system 

of equilibrium equations. Indeed, in order to have a correct displacement jump vector, the integration 

needs to be achieved on both sides of the discontinuity and thus requires the existence of integration 

points on both sides of the discontinuity. A volume averaging based integration method is developed in 

the present work alleviating this constraint and applied to XFEM coupled with cohesive zone model in 

a three-dimensional formulation. Moreover, unlike other widely used integration methods, the proposed 

method does not require the a priori knowledge of the position of the discontinuity inside the finite 

element nor the projection of the state variables. 
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. Introduction 

The main issue of the extended finite element method (XFEM)

s the numerical integration of the system of equilibrium equa-

ions, in particular when XFEM is coupled with a cohesive zone

odel (CZM). Indeed, CZM is generally governed by a relation-

hip between the displacement jump vector across the disconti-

uity and the cohesive traction forces that prevent the crack from

pening. If there is no integration point on one of the two sides

f the crack, classic Gauss quadrature does not provide an accurate

nough integration leading to wrong calculations of the stiffness

atrix, the internal forces and then the displacement jump vector.

n literature there exist several approaches aiming at palliating this

eficiency. 

The most commonly used technique is the subdivision of ele-

ents, with examples in [1–3] , wherein the element sub-volumes

 

+ and V 

−, separated by the crack, are triangulated into subdo-

ains, viz. triangles (if R 

2 ) or tetrahedra (if R 

3 ), each containing

ne or more Gauss points. The standard Gauss quadrature is then

pplied for the integration of the weak form in every subdomain.

his method should not be confused with the mesh modification

echniques, see [4] , as the said partitioning is realized only for the

ntegration and thus does not introduce any supplementary de-

rees of freedom. The element subdivision based technique is well
∗ Corresponding author. 

E-mail address: jean-philippe.crete@supmeca.fr (J.-P. Crete). 

t  

l  

e  

a  

ttps://doi.org/10.1016/j.mechrescom.2020.103485 
dapted for elastic materials or for structures with initial defects.

t implies the projection of state variables on the new integration

oints. This procedure can be both computationally cumbersome

nd leads to errors, especially in the case of elasto-plastic materi-

ls whose response is path-dependent. 

To address the aforementioned issue, Elguedj et al. [5] instead

roposed to raise significantly the number of Gauss points (64 in

D), as a means to ensure that there is always at least one inte-

ration point on both sides of the discontinuity (if the discontinu-

ty crosses the element near a node, the discontinuity is slightly

hifted without substantial modification of the discontinuity path).

ith this technique, there is no projection requirement but the ex-

ension in 3D requires 512 integration points, increasing drastically

he cost and the time of calculation. 

Martin et al. [6] proposed the substitution of the discontinuous

eaviside function, in the elements cut by the discontinuity, by a

ew continuous enrichment function. Using this technique, there

s no issue of projection of the state variables and no modification

f the crack path, for a number of Gauss point of 27 for a linear

exahedron, which also leads to an increase in the computation

ime. Moreover, the authors do not discuss the use of the B-Bar

pproach (see [7] ) to prevent volumetric locking in the case of a

trongly nonlinear behavior material. 

The volume averaging based integration method developed in

he present work is inspired from the approach developed in Be-

ytschko [8] . The method allows for alleviating the need for the

xistence of integration points on both sides of the discontinuity

nd is applied to XFEM coupled with cohesive zone model in a

https://doi.org/10.1016/j.mechrescom.2020.103485
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Fig. 1. Bi-linear cohesive law. 
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three-dimensional formulation. Moreover, unlike other widely used

integration methods, the proposed method does not require the a

priori knowledge of the position of the discontinuity inside the fi-

nite element nor the projection of the state variables. 

In Section 2 the formulation of the X-FEM and the coupling

with a cohesive zone model are recalled. The numerical integration

of the equilibrium equations, including the B-Bar approach, is de-

tailed in Section 3 . Two applications, viz. with and without initial

discontinuity, are presented in Section 4 , in view of comparing the

proposed technique with classical approaches. Concluding remarks

are given in Section 5 . 

2. X-FEM – CZM coupling 

The eXtended Finite Element Method [1 , 9] has become one of

the most widely used methods for the simulation of crack prop-

agation in engineering structures. It is based on the idea of em-

bedding the crack within the finite element. The kinematics of

the crack is accounted for by enriching the regular displacement

field of the finite element with additional degrees of freedom. One

of its most important advantages is that the crack can propagate

independently of the meshing, without the need for the a priori

knowledge of the crack path. XFEM has demonstrated its perfor-

mances for brittle and quasi-brittle materials, see [3 , 10] . Now, in

the case of strongly non-linear elastoplastic materials subject to

ductile damage, this method may lead to unrealistic results, see

[11] . Indeed, the activation of the enriched dofs in an element leads

to a sudden (traction free) crack opening. Yet, in these materials,

the failure should be gradual. To tackle this problem, the concept

of combining XFEM with a cohesive segment [2] is adopted in the

present work. 

2.1. X-FEM formulation 

In this work, the “shifted basis” formulation of the X-FEM

[12] without singular functions is used. The discretized total dis-

placement field u(x) accordingly reads 

u ( x ) = 

∑ 

n 

N i a i + 

∑ 

m 

(
H ( x ) − H j 

)
N j b j (1.1)

where Ni is the i th standard FE shape function, n the number of

nodes, a i the i th standard displacement degree of freedom, m the

number of enriched nodes and b j the j th additional degree of free-

dom associated to the j th node. H is the Heaviside function, which

equals to + 0.5 if a point is located at the “positive” side of the dis-

continuity and −0.5 else and H j the value of the Heaviside function

at each node. 

The coupling between XFEM and CZM [13] consists in inserting

a cohesive segment in the strong discontinuity in order to form a

“cohesive strong discontinuity”. The XFEM formulation is adopted

and the system to be solved reduces to the following linear form:

[ K ] 

{
da 
db 

}
= −

⎧ ⎨ 

⎩ 

∫ 
V e 

B 

T σdV 

∫ 
V e 

B 

∗T σd V + ∫ 
�D 

N 

T T loc d �

⎫ ⎬ 

⎭ 

, (1.2)

where 

[ K ] = 

⎡ 

⎣ 

∫ 
V e 

B 

T D 

t B dV ∫ 
V e 

B 

T D 

t B 

∗dV 

∫ 
V e 

B 

∗T D 

t B dV ∫ 
V e 

B 

∗T D 

t B 

∗d V + 4 ∫ 
�D 

N 

T C loc Nd �

⎤ 

⎦ (1.3)

Where σ is the stress vector, D 

t the elastic-plastic tangent op-

erator, T loc the cohesive tractions vector, C loc the cohesive stiffness

matrix, B the spatial derivatives matrix of the shape functions, B 

∗

the spatial derivatives matrix of the ( H ( x ) − H j ) N j functions and �D 

the discontinuity. The subscript loc refers to the local frame of the

localization band. 
.2. Adopted CZM approaches 

As can be seen in Eqs. (1.2) and ( 1.3 ), the coupling of CZM with

he XFEM implies the incorporation of the cohesive tractions vec-

or T loc and the cohesive stiffness matrix C loc , in the finite ele-

ent formulation. The method of calculation of the above physical

uantities, via the traction separation law (TSL), strongly depends

n the material and engineering application under consideration

14] . In the present work, two different applications are considered

 Sections 4.1 and 4.2 ), leading to the use of two different cohesive

aws ( Sections 2.2.1 and 2.2.2 ). 

Both laws are activated as soon as the deterioration criterion

s met. Their common basis is inspired from the approach in Ca-

anho [15] where the evolution of the softening branch of the co-

esive law is governed by a de-cohesion variable D ∈ [0,1], where

 denotes a healthy element and 1 a fully damaged element. The

rgument � of the function D = f ( �) is an equivalent displacement

hat takes into account the displacement jump vector δ, with δ1 

he normal component and δ2,3 the shear components (expressed

n the local frame of the localization band): 

= 

√ 

〈 〈 δ1 〉 〉 2 + δ2 
2 

+ δ2 
3 
, where 〈 〈 δ1 〉 〉 = max ( 0 , δ1 ) (1.4)

For the sake of simplicity, contact is not treated here. 

The evolution law of the de-cohesion variable is assumed

erein of the form 

 = 

{ 

0 , i f � ≤ �0 
�−�0 

�c 
, i f �0 < � < �0 + �c 

1 , i f else 

(1.5)

0 is the equivalent displacement at the degradation occurrence

nd �0 +�c the critical value of the equivalent displacement at the

omplete fracture of the element. 

.2.1. Pre-existing discontinuity in the structure 

Adhesively joined assemblies and laminate composites contain

re-existing discontinuities. The numerical analysis of such bonded

tructures at the meso–scale is generally conducted by means of

ohesive interfaces/elements whose behavior obeys a TSL gener-

lly characterized by a linear ascending branch, possibly a plateau,

nd then a linear or nonlinear softening branch. Depending on the

uthors, the criteria for the loss of (initial) linearity (deterioration

nset) and ultimate failure (complete de-cohesion) are expressed

ostly as a combination of two material parameters, e.g. in terms

f critical displacement and critical traction force [16] or critical

raction force and energy release rate [17] . For simplicity, we are

ere considering a bi-linear cohesive law as depicted in Fig. 1 . This

ohesive law will be used later in Section 4.1 . 

The cohesive tractions vector corresponding to Fig. 1 is ex-

ressed as: 

 loc = [ C loc ] × δ (1.6)



Fig. 2. Linear/plateau cohesive law. 

w

C

w  

c  

t

 

b  

t

2

 

m  

b  

d  

c  

c  

t  

O  

t  

s  

(  

m  

s

 

c  

d

 

c  

G

T

T  

m  

o  

b

T

 

i

C

w

 

s

 

r  

i  

l  

w

3

 

c

3

 

s

I

w  

n  

c  

t  

t

3

 

m  

n  

t  

r  

a  

e

3

 

i  

s  

m  

t  

o  

V

I

 

c  

a  

w  

v  

r  

i

 

b  

[  

n  

i  

t  

w  

t  

p

 

B  

o  

d  
ith 

 loc ( i, j ) = ( 1 − D ) P k ( i, j ) (1.7) 

here P k ( i,i ) = E coh , the value of the cohesive law slope. The other

omponents of the matrix are zero, leading to a non-coupling of

he normal and shear effects. 

The deterioration and complete failure onsets are here defined

y critical displacements. The cohesive law accordingly requires

hree independent constant quantities, viz. E coh , �0 , �c . 

.2.2. No pre-existing discontinuity in the structure 

In continuous bodies initially exempt of defects, the crack for-

ation is generally preceded by a strain/damage localization possi-

ly induced by microvoid/microcrack coalescence. The progressive

eterioration of the mechanical properties of the localization band

ontaining material may be described via a cohesive law. In this

ase the elastic response is the one of the bulk material [18] , and

he cohesive law possesses only a plateau and a softening branch.

nce again, criteria are needed to trigger the cohesive law and ul-

imate fracture. A particular attention must be paid to ensure the

tress continuity at the cohesive law onset. For example, the initial

maximum) traction can be a fixed value or a value that is deter-

ined in the element at the onset as a function of the current

tress state. 

In Fig. 2 is depicted an example of a plateau/linear softening

ohesive law; as used in this work in the case of no pre-existing

iscontinuity in Section 4.2 . 

The initial traction at localization occurrence in the element is

alculated through the use of a stress tensor ˜ σ averaged over all

auss points of the element as follows 

 0 = 

〈
˜ σ n 

〉
loc 

(1.8) 

 0 is thus not a constant quantity and is different for each ele-

ent since it results from its current stress state at the moment

f localization. It may also be defined arbitrarily or result from a

ifurcation analysis. 

The cohesive tractions vector is expressed as: 

 loc = ( 1 − D ) T 0 (1.9) 

The tangent matrix of the cohesive law in the softening regime

s obtained by 

 loc ( i, j ) = 

∂ T loc ( i ) 

∂ δ j 

= − ∂D 

∂ δ j 

T 0 ( i ) = − 1 

�c 

δ j 

�
T 0 ( i ) (1.10) 

ith C loc ( i ,1) = 0 if δ1 < 0 

The cohesive law accordingly requires two independent con-

tant quantities, viz. �0 , �c . 

As soon as the critical value of the de-cohesion variable D is

eached the cohesive tractions are automatically set to zero, lead-

ng to a traction free crack. The value D c at failure can thus be

ower than 1 depending on the material behavior. In the present

ork it is taken equal to 0.5. 
. Numerical integration 

In the following are outlined the three integration techniques

onsidered in the present work. 

.1. Standard Gauss integration 

It is reminded that the discrete standard Gauss integration con-

ists in computing 

 = 

nint ∑ 

i =1 

f 
(
H 

(
ξ

i 

)
, ξ

i 
, . . . 

)
w i J 

(
ξ

i 

)
(1.11) 

here I can be the stiffness matrix or the internal forces vector,

int the number of Gauss points, ξ
i 

the vector containing the local

oordinates of the Gauss point, w i the weight of the Gauss point, J

he determinant of the Jacobian and f a function of the position of

he integration point with respect to the discontinuity. 

.2. Sub-division technique 

As was stated in Section 1 the subdivision of hexahedral ele-

ents into tetrahedra is the most widely used technique for the

umerical integration of elements crossed by discontinuities. Af-

er the subdivision, the field variables are projected from the cur-

ent integration points onto new ones belonging to the tetrahedra,

nd then a standard Gauss integration rule is applied on each sub-

lement. 

.3. Volume averaging integration (VAI) 

The volume of the element crossed by the discontinuity is split

nto two sub-volumes V 

+ and V 

− separated by the discontinuity,

ee Fig. 3 left. The proposed volume averaging integration method

akes use of a modified quadrature rule that performs the integra-

ion twice over the standard Gauss points of the element by means

f an averaging of the contributions of the two sub-volumes V 

+ and

 

−: 

 = 

V 

−

V 

e 

nint ∑ 

i =1 

f 
(
−0 . 5 , ξ

i 
, . . . 

)
w i J 

(
ξ

i 

)

+ 

V 

+ 

V 

e 

nint ∑ 

i =1 

f 
(
+0 . 5 , ξ

i 
, . . . 

)
w i J 

(
ξ

i 

)
(1.12) 

According to ( 1.12 ), the contribution of a given sub-volume to I

onsists in a sum over all integration points of the element while

ssigning the value + 0.5 ( V 

+ ) or −0.5 ( V 

−) to H in ( 1.11 ) and

eighting the result by the ratio of the sub-volume over the total

olume of the element. VAI principle is depicted in the visual rep-

esentation of a cut element with 8 integration points (red marks)

n Fig. 3 . 

It is noteworthy that this method has been originally proposed

y Belytschko [8] and has been very recently applied by Jin et al.

19] within an embedded-band based approach. The authors do

ot, however, address the case where the band crosses the element

n such a way that one sub-volume does not contain any integra-

ion points, a case that will be precisely addressed in the present

ork. The VAI technique is applied here in a different context, i.e.

o XFEM coupled with a cohesive strong discontinuity and com-

ared to other integration methods. 

The proposed scheme must be completed by the use of the B-

ar approach in order to deal with incompressibility. Indeed, in

rder to alleviate volumetric locking in nearly-incompressible me-

ia the B-bar approach is employed (see Hughes [7] ). The matrix B



Fig. 3. Visual representation of the “volume averaging” integration scheme. 

Fig. 4. Single lap specimen dimensions [22] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Visualization of the two different single lap models. 

[  

i  

i

 

V  

s

4

 

f  

s  

i  

t

 

i  

m  

t  

o  

e

 

d  

(  

l

 

a  

p  

 

w  

d

σ  
containing the spatial derivatives of the shape functions can be de-

composed into a deviatoric and a dilatational component, i.e. B dev 

and B dil respectively: 

B = 

[ 

B dil 

− − −
B de v 

] 

(1.13)

The dilatational part is responsible for an over-stiff response.

To palliate this deficiency, the component B dil in ( 1.13 ) is replaced

by a new B̄ dil component in a way that volume growth is each

integration point is replaced by a value averaged over all points:

B̄ = 

[
B̄ dil 

B de v 

]
⇒ (1.14)

B̄ i = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

N i,x + 

˜ N̄ i,x 
˜ N̄ i,y 

˜ N̄ i,z 

˜ N̄ i,x N i,y + 

˜ N̄ i,y 
˜ N̄ i,z 

˜ N̄ i,x 
˜ N̄ i,y N i,z + 

˜ N̄ i,z 

N i,y N i,x 0 

N i,z 0 N i,x 

0 N i,z N i,y 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(1.15)

where 

˜ N̄ i,x = 

1 

3 

( 〈 N i,x 〉 − N i,x ) (1.16)

〈 N i,x 〉 is the averaged value of N i,x over all integration points. 

For the enriched nodes, the B-bar matrix takes the form B̄ ∗
i 

=
( H( x ) − H i ) ̄B i . For more details about the implementation of the B-

bar approach in the framework of ABAQUS the reader can refer to

Shi et al. [20] . 

4. Application 

The methodology coupling XFEM and CZM outlined in

Section 2.1 has been implemented as a user element subroutine

(UEL) in the commercial finite element computation code ABAQUS.

In order to verify the ability of VAI to perform an accurate integra-

tion in the case of embedded cohesive strong discontinuities, two

different applications are taken into consideration: (i) the single

lap adhesive joint in Fig. 4 and (ii) the tensile specimen in Fig. 7 . 

In both numerical tests the infinitesimal strain theory is as-

sumed and the tetrahedral elements created during the subdivision

stage have one integration point. As shown in 2D in Seabra et al.
21] , by choosing a single point integration rule, more incompress-

ble modes are reproducible, which can alleviate volumetric lock-

ng. 

In the sequel, the developed ‘volume averaging integration’ or

AI technique described in Section 3.2 is notably assessed with re-

pect to the subdivision technique above. 

.1. Single lap joint test – Pre-existing discontinuity 

The single lap specimen, see Fig. 4 , used in this work was taken

rom Tsai [22] . Two different finite element models were created,

ee Fig. 5 . The first model, designated SL.1, contained an explic-

tly given surface of zero-thickness ABAQUS cohesive elements be-

ween the adherents, see Fig. 5 left. 

For the second model, designated SL.2, the discontinuity was

ntroduced as the level-set of a cohesive pre-crack crossing the ele-

ents in a way that one of the created sub-volumes does not con-

ain any integration points, see Fig. 5 right. This choice is made in

rder to verify the accuracy of the proposed scheme in the most

xtreme conditions. 

Both models were discretized using a structured three-

imensional meshing of full integration hexahedral elements

C3D8 ABAQUS elements) of 1 mm length, therefore for “SL.1 ′′ the

ength of each cohesive element is also of 1 mm. 

The material considered for the adherents is a rate and temper-

ture independent mild steel with E = 210 GPa and v = 0.33. The

lastic flow condition is defined via the Von Mises yield criterion:

f 
(
σ , σY 

)
= σeq − σY = 0 (1.17)

here σ is the Cauchy stress tensor and σ eq the equivalent stress

efined by 

eq = 

√ 

3 

2 

s : s ; s = σ − 1 

3 

T r σ I (1.18)



Table 1 

Hardening law & cohesive laws properties. 

R 0 ( MPa ) R ∞ ( MPa ) k β
400 300 4.4 1 

E coh (MPa) �0 (mm) �0 + �c (mm) D c ε̄ p c 

Bi-lin. 10 0.1 1 0.5 –

Lin/plat. – 0.1 2 0.2 

Fig. 6. Single lap test reaction force graph. 
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Fig. 7. Traction specimen dimensions. 

Fig. 8. Tensile specimen cut by 0 °, 45 ° and 54.7 ° cracks (cumulated plastic strain 

distribution). 
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here s is the deviatoric part of the stress tensor and I the identity

ensor. The yield stress σ Y in ( 1.17 ) accounts for isotropic hardening

nd takes the form of Voce law: 

Y = R 0 + R ∞ 

[ 1 − exp ( −k ̄ε p ) ] 
β

(1.19) 

here R 0 , R ∞ 

, k , β are material constants describing the isotropic

ardening behavior (see Table 1 ) and ε̄ p the cumulated plastic

train. 

The linear cohesive law used in this part of the study is de-

cribed in Section 2.2.1 and is similar to the cohesive law govern-

ng the behavior of the ABAQUS cohesive elements. The properties

f the cohesive law are indicated in Table 1 . Since the cohesive

rack is inserted in the structure from the very beginning of the

nalysis, the law is activated within the elements containing the

eso–crack from the first time increment. 

In the following are conducted four numerical simulations (see

ig. 5 for SL1 and SL2): 

• zero-thickness ABAQUS cohesive elements SL.1 
• 8-Gauss point standard integration technique SL.2 
• sub-division integration technique SL.2 
• volume averaging integration (VAI) technique SL.2 

SL.1 is used here as a reference solution since ABAQUS cohesive

lements are a tool of known accuracy for crack propagation in

nterfaces. 

The numerical results for the four numerical simulations are su-

erimposed in Fig. 6 in terms of reaction force vs. displacement. 

According to Fig. 6 , the standard Gauss quadrature (8 GPs) is

nable to provide a correct prediction of the reaction force (lead-

ng to 0 N all along the loading), as expected. On the other hand,

he VAI and subdivision schemes give the same response as the

ohesive zone model. 

.2. Tensile test – No pre-existing discontinuity 

For the tensile test the specimen of Fig. 7 is used. It is dis-

retized using a structured three-dimensional meshing of com-

lete integration hexahedral elements (C3D8 ABAQUS elements) of

.5 × 0.5 × 0.5 mm 

3 (in the area of interest). 

The material taken into consideration here is the same as the

ne of the adherents in Section 4.1 , see ( 1.17 - 1.19 ) and Table 1 . 

The critical value to be attained by an element for localization

activation of XFEM enriched degrees of freedom) is tentatively an

rbitrary critical cumulated strain ε̄ p c , see Table 1 , giving the value

f T 0 in ( 1.8 ). 
The linear/plateau cohesive law presented in Section 2.2.2 is

hen used to describe the meso–crack deterioration effect. 

In the following are conducted three numerical simulations: 

• elasto-plastic response (FEM only) 
• sub-division integration technique 
• volume averaging integration (VAI) technique 

For the last configurations involving the formation and devel-

pment of a cohesive strong discontinuity, three through-thickness

rientations (with respect to the loading direction) of the disconti-

uity are considered, i.e. 0 ° (brittle-like fracture), 54.7 ° (ductile-like

racture [23] ) and 45 ° (worst numerical case). For the 0 ° case, the

rack is forced to appear extremely close to the localized elements’

ide, ensuring again that one of the created sub-volumes does not

ontain any integration points. For the two other cases, the crack

osition within the elements is not imposed since the number of

ut elements ensures the existence of multiple sub-volumes that

ill satisfy the above mentioned extreme condition. The angle of

5 ° is the most critical numerical case in the sense that, for reg-

lar meshing, it guarantees that one out of two elements will not

ave Gauss points on one side of the crack. The 54.7 ° case does not

ecessarily imply the aforementioned problem but it is addressed

or physical reasons. The fractured specimens are shown in Fig. 8 . 

The two integration procedures are detailed below. 

• Volume averaging integration (VAI) technique 

The localization band propagates throughout the whole width

f the specimen (with the chosen angle) when one element attains

he critical cumulated strain in one increment. This increment de-

oted kinc LOC is saved for later use. 

• Sub-division integration technique 

A band is defined at the very beginning of the analysis with the

ame path as the one created considering the previous integration

echnique, resulting in a subdivision in tetrahedra (whose number

epends on the way the element is cut into the two sub-volumes)

nd a distribution of Gauss points from the first increment of the

nalysis, although the enriched dofs of the localized elements are

ctivated only when the analysis reaches kinc . 



Fig. 9. Tensile specimen reaction force graph (0 ° case). 

Fig. 10. Tensile specimen reaction force graph (45 ° case). 

Fig. 11. Tensile specimen reaction force graph (54.7 ° case). 
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Indeed, in order to make a successful and pertinent comparison

between VAI and the sub-division schemes it is important to con-

trol the localization in terms of (i) time of occurrence, (ii) path and

(iii) tetrahedra created. It is noted here that in order to calculate

the sub-volume values in VAI a triangulation technique is used,

dividing the volume into tetrahedra whose volumes can be easily

calculated and then summed (these tetrahedra have no other par-

ticipation in the integration procedure). For both cases, by forcing

the band to appear throughout the whole width of the specimen

in one increment (kinc LOC ) and on the same path, it is possible to

control (i), (ii) and (iii) in a way that they are exactly the same for

the two schemes. Having isolated these three factors we can com-

pare the schemes solely on their ability to integrate the system of

equilibrium equations. 

The numerical results for the three numerical simulations are

superimposed in Figs. 9 , 10 and 11 for the three discontinuity ori-

entations in terms of reaction force vs. displacement. According to

Figs. 9 , 10 and 11 , VAI and subdivision techniques give similar re-

sponses. A very slight divergence can be seen in the cases of 45 °
and 54.7 °, but this can be attributed to a difference in the last time

step of the analysis. 
It should be noted that the standard 8 Gauss point scheme is

ot presented in any of the two cases because when it was used no

nalysis was capable to converge after the onset of the localization,

o it is omitted. 

.3. Discussion 

It is reminded that the subdivision of elements consists in trian-

ulating the sub-volumes V 

+ and V 

−, separated by the discontinuity

n several tetrahedra and projecting the state variables known at

he current integration points onto the newly formed integration

oints of the tetrahedra. These operations are costly in terms of

omputation time and potential sources of numerical errors. 

The volume averaging integration (VAI) technique does need

imply the values of the sub-volumes V 

+ and V 

−. The cost in this

ase is very low and even negligible. 

The numerical examples treated in Sections 4.1 and 4.2 have ev-

denced that both techniques lead to the same results, demonstrat-

ng the interest of using the volume averaging integration tech-

ique. 

It is noteworthy that for tension loading the softening part of

he CZM law gives the shape of the overall response in the soften-

ng regime. The apparent similarity in the brittle and ductile-like

esponses in Section 4.2 is due to the fact that the same law was

tilized for the sake of simplicity and must not be considered as a

enerality. 

. Concluding remarks 

A volume averaging integration technique or VAI is proposed

or the integration of the equilibrium equations when using the

FEM coupled with cohesive zone model. Two different numerical

ests, i.e. a single lap joint test and a tensile test, have been real-

zed in order to verify the accuracy of the proposed scheme. It has

een shown that the proposed VAI scheme leads to the same level

f accuracy as the well-known subdivision technique, while being

uch simpler to implement and less costly to use. 
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