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1 Poisson processes

1.1 De�nition and main properties

In this section we study the principal properties of the Poisson

process. Let (τj)≥1 be i.i.d. exponential random variables with

some parameter λ > 0. We set Tn =
∑n

j=1
τj for n ≥ 1 and T0 = 0.

De�nition 1.1. The random R+ → N function

Nt =
∞∑
n=1

1(Tn≤t) (1.1)

is called the homogeneous Poisson process of the intensity λ > 0.

Proposition 1.1. If (τj)j≥1 is i.i.d. exponential random variables

with a parameter λ > 0, then the vector (T1, . . . , Tn) has the distri-

bution density with respect to the Lebesgue measure in Rn de�ned

as

fn(x1, . . . xn) = λn e−λxn 1{0<x1<...<xn} . (1.2)

Proposition 1.2. If (Nt)t≥0 is a homogeneous Poisson process with

an intensity λ > 0, then for any t > 0 the random variable Nt has

the Poisson distribution, i.e. for any integer n ≥ 0

P(Nt = n) =
(λt)n

n!
e−λt . (1.3)
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Now we study the main properties of the Poisson processes.

Proposition 1.3. Let (Nt)t≥0 be a homogeneous Poisson process

of an intensity λ > 0. Then

1. almost sure the function (Nt)t≥0 is increasing, with integer

values and right continuous;

2. conditionally with respect to Nt = n, the vector (T1, . . . , Tn)

has the same distribution as n order statistics uniformly dis-

tributed on the interval [0, t];

3. the Poisson process (Nt)t≥0 has homogeneous increments, i.e.

for all 0 < s < t and any integer n ≥ 0

P(Nt −Ns = n) = P(Nt−s = n);

4. the Poisson process (Nt)t≥0 has independent increments, i.e.

for any time moments 0 = t0 < t1 < . . . < tm and any integer

numbers n1, . . . , nm

P
(
Nt1

= n1 , Nt2 −Nt1
= n2 , . . . , Ntm

−Ntm−1
= nm

)
=

m∏
j=1

P
(
Ntj

−Ntj−1
= nj

)
;
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5. the Poisson process (Nt)t≥0 is a process of rare events, i.e. for

any t ≥ 0 and ∆ > 0

P
(
Nt+∆ −Nt = 1

)
= λ∆ + o(∆) ,

P
(
Nt+∆ −Nt > 1

)
= o(∆) , (1.4)

as ∆ → 0.

Remark 1.1. As we will see later all these properties are very use-

ful in the actuarial mathematics for the constructing the principal

insurance models. Indeed, the Poisson process is used to model the

number of claims on the time interval [0, t]. Especially, the indepen-

dent increments and rare events properties are very natural for the

insurance models.

1.2 Principal features

Proposition 1.4. Let (Nt)t≥0 be a stochastic process that satis�es

the following conditions:

• for almost every ω, the trajectory (Nt(ω))t≥0 is zero in 0, in-

creasing, right continuous and with integer values;
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• the process (Nt)t≥0 has independent and homogeneous incre-

ments;

• (Nt)t≥0 is a process of rare events, i.e. there exists λ > 0, for

which the asymptotic properties (1.4) hold.

Then (Nt)t≥0 is the Poisson process of the intensity λ > 0.

Proof. Firstly, we show that

P(Nt = 0) = e−λt . (1.5)

We denote by f(t) = P(Nt = 0). Indeed, due to the independence

Nt and Nt+s −Nt we obtain

f(t+ s) = P(Nt+s = 0) = P(Nt+s = 0 , Nt = 0)

= P(Nt+s −Nt = 0 , Nt = 0) = f(t)f(s) .

Using here the rare events property, we get (1.5). Now we �nd

the distribution of Nt for arbitrary �xed t > 0. To this end, we set

G(t) = EzNt for 0 < z < 1. Taking into account that the increments

are independence and homogeneous, we can represent the function

G(t+ s) as

G(t+ s) = E zNt+s−Nt zNt = G(t)G(s) .
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Moreover, for all t > 0

G(t) ≥ EzNt 1{Nt=0} = eλt > 0 .

Therefore, G(t) = etg(z) and

g(z) = lim
t→0

G(t)− 1

t
.

Then the rare events property directly implies that for t→ 0

G(t) = P(Nt = 0)+zP(Nt = 1)+EzNt 1{Nt≥2} = e−λt+zλt+o(t) .

Therefore, g(z) = λ(t− 1) and

G(t) = e−λt eλzt =
∞∑
n=0

zn
(
e−λt (λt)

n

n!

)
.

This directly implies that for all t > 0

P(Nt = n) =
(λt)n

n!
e−λt .

Next, note that we can represent the process (Nt)t≥0 as

Nt =
∞∑
n=1

1{Tn≤t} ,
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where Tn = inf{t ≥ 0 : Nt ≥ n}. From here it follows that

P(Tn > t) = P(Nt ≤ n− 1) =

n−1∑
j=0

P(Nt = j)

=

n−1∑
j=0

e−λt (λt)
j

j!
= λn

∫ ∞

t

(
vn−1 eλv

)
dv .

This implies that the distribution of Tn coincides with the distribu-

tion of a sum i.i.d. exponential random variables of the parameter

λ > 0. Thus, in view of the de�nition (1.1), the random function

(Nt)t≥0 is a homogeneous Poisson process.

1.3 The last jump of the Poisson process

Let's study the properties of the delay between the present time

moment t > 0 and the last jumping moment TNt
. Putting T0 = 0,

we get

TNt
=

∞∑
k=0

Tk 1{Nt=k} .

Therefore, TNt
is a random variable. We will study the properties

of the two random variables Vt = TNt+1 − t and V ∗
t = t− TNt

.

Proposition 1.5. The random variable Vt is independent of the σ-

�eld, generated by the variables {Ns , s ≤ t} and has the exponential

distribution with the parameter λ > 0.
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Proof. We note that for u > 0

{Vt ≤ u} = {TNt+1 − t ≤ u} = ∪∞
n=0 {Tn+1 − t ≤ u , Nt = n}

= ∪∞
n=0 {Nt+u ≥ n+ 1 , Nt = n}

= ∪∞
n=0 {Nt+u − Nt ≥ 1 , Nt = n}

= {Nt+u − Nt ≥ 1 } .

This immediately implies Proposition 1.5.

Proposition 1.6. For any Borelian sets A ⊆ R and for any t > 0

P(V ∗
t ∈ A) = e−λt 1{t∈A} + λ

∫
A∩[0,t]

e−λv dv . (1.6)

Proof. It is clear that for this proposition it su�ces to show (1.6)

for the sets of the form A = [0, u[ with u > 0. We note that V ∗
t ≤ t
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a.s., i.e. for u ≥ t the equation (1.6) is true. For u < t we get that

P(V ∗
t ∈ A) = P(V ∗

t < u) =

∞∑
n=0

P(t− Tn < u , Nt = n)

=
∞∑
n=0

P(Nt−u < n , Nt = n)

=

∞∑
n=0

P(Nt − Nt−u > 0 , Nt = n)

= P(Nt − Nt−u > 0) = P(Nu > 0) .

Therefore,

P(V ∗
t ∈ A) = 1− e−λu = λ

∫
A∩[0,t]

e−λv dv .

To �nish this proof we note that

P(V ∗
t = t) = P(Nt = 0) = e−λt .

Hence Proposition 1.6.

Propositions 1.5 and 1.6 imply that

E (TNt+1 − TNt
) =

2

λ
(1 − e−λt) . (1.7)
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Remark 1.2. The equation (1.7) is called the "bus paradox" . If

we associate the jump moments of a Poisson process with the time

moments of passages of a bus through a station, then according to

(1.7) for su�ciently large t the bus waiting time interval [TNt
, TNt+1]

is twice as long on average as an interval [Tn, Tn+1] since E(Tn+1−

Tn) = 1/λ.

1.4 Exercises I

1. Let (Nt)t≥0 be a Poisson process of an intensity λ > 0 and

(Tn)n≥1 be his jumping moments.

(a) Calculate ENt and Var(Nt) for t > 0.

(b) Calculate the distribution of Tn for n ≥ 1.

(c) Show that for all A ∈ B(Rn)

P ((T1, · · · , Tn) ∈ A |Nt = n)

=
n!

tn

∫
A
1{0<s1<s2<···<sn≤t}ds1 · · · dsn. (1.8)

(d) Let X1, . . . , Xn be i.i.d. random variables uniformly dis-

tributed on the interval [0, t]. Let Z1, . . . , Zn be the ordi-
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nal statistics of X1, . . . , Xn. Show that for all A ∈ B(Rn)

P ((Z1, · · · , Zn) ∈ A)

=
n!

tn

∫
A

1{0<s1<s2<···<sn≤t}ds1 · · ·dsn . (1.9)

Deduce that conditionally with respect to {Nt = n} the

random variables (T1, . . . , Tn) has same distribution as

the order statistics of n uniform independent random

variables on the interval [0, t].

(e) Show that for 0 < s < t

P (Ns = k|Nt) =

 Nt

k

 (s
t

)k (
1− s

t

)Nt−k
1{k>Nt} .

(f) Show that (Nt)t≥0 is a process with homogeneous incre-

ments in the sense that for all 0 < s < t the increment

Nt −Ns has the same distribution as Nt−s.

(g) Show that (Nt)t≥0 has independent increments, i.e. for

any increasing time moments 0 = t0 < t1 < · · · < tk the

random variables

Nt1 = Nt1 −Nt0 , Nt2 −Nt1 , . . . , Ntk −Ntk−1
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are independent.

(h) Show that (Nt)t≥0 is a rare events process, i.e. for any

t ≥ 0 and ∆ > 0

P(Nt+∆−Nt = 1) = λ∆+o(∆) ,P(Nt+∆−Nt > 1) = o(∆)

as ∆ → 0.

2. Let (N1
t )t≥0 and (N2

t )t≥0 be two independent Poisson pro-

cesses of the intensities λ and µ. Denote by (Tn)n≥1 the re-

newal moments of (N1
t )t≥0.

(a) Calculate the distribution of the random variableN2
Tn+1

−

N2
Tn
.

(b) Extend the result of (a) to random variablesN2
Tn+k

−N2
Tn
,

k > 1.

3. Let θ be positive a.s. random variable with the �nite variance

σ2θ > 0 and independent of (Nt)t≥0. It is said that the process

Ñt = Nθt, t ≥ 0,

is mixed Poisson process of the mixed variable θ.

(a) Calculate P(Ñt = n). Deduce that Ñt has not usually

15



Poisson distribution.

(b) Shaw that Var(Ñt) > EÑt for all t > 0, while we have

the equality for the Poisson processes.

(c) Calculate the distribution of Ñt, when λ = 1 and θ has

the Gamma distribution.
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2 Asymptotic theory

2.1 Renewal equation

Let (ηj)j≥1 be i.i.d. positive random variables with a distri-

bution function G. Now we consider the counting process for this

sequence de�ned as

Nt =

∞∑
j=1

1{Sj≤t} , (2.1)

where S0 = 0 and Sj =
∑j

l=1
ηl for j ≥ 1. Note that if the distri-

bution G is exponential, then (Nt)t≥0 is the Poisson process. Using

the large numbers law (Theorem A.1), one can establish that

lim
t→∞

Nt

t
=

1

Eη1
a.s. (2.2)

De�nition 2.1. We say that a random variable ξ is arithmetic if

there exists d > 0 such that

P(ξ ∈ Γd) = 1 ,

where Γd = {(kd)−∞<k<∞} is the grid of size d > 0. A random

variable ξ is called non-arithmetic if P(ξ ∈ Γd) < 1 for any d > 0.

In this section we need the Blackwell Renewal Theorem (see, for
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example, in [3]):

Theorem 2.1. Assume that η1 is non-arithmetic and 0 < E η1 <

∞. Then the expectation of the counting function has the following

asymptotic properties:

lim
t→∞

ENt

t
=

1

E η1

and for any h > 0

lim
t→∞

E (Nt+h − Nt) =
h

E η1
.

We will use this theorem to study the renewal function

Q(t) = E
∞∑
j=0

V (t− Sj)1{Sj≤t} , (2.3)

where V : R+ → R is bounded over all the �nite intervals function.

One can check directly that this function satis�es the following re-

newal equation

Q(u) = V (u) +

∫ u

0

Q(u− z) dG(z) . (2.4)

Now we study this equation.

Theorem 2.2. Assume that the distribution G is non-arithmetic
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and the function V is bounded over all �nite intervals. Then the

renewal function Q is the unique solution of the renewal equation

(2.4) among the functions which are bounded over all �nite intervals.

Proof. Note that the Blackwell theorem implies that ENt < ∞

for any t ≥ 0. Thus, if V is bounded on each �nite interval, then

the renewal function is bounded by

sup
0≤u≤t

|Q(u)| ≤ sup
0≤u≤t

|V (u)| (ENt + 1) < ∞

on each �nite interval [0, t].

Moreover, let B(R+) be a linear space of R+ → R bounded on

each �nite interval functions. We will introduce the following linear

B(R+) → B(R+) operator

T (f)(u) =

∫ t

0

f(u− z) dG(z) .

In this case we can rewrite the renewal equation as

f = V + T (f) .
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This implies that for all n ≥ 1

f =
n∑

j=0

T j(V ) + Tn+1(f) . (2.5)

To study this equation one needs to know how to calculate the n-th

power of T . Let's show by induction that for each n ≥ 1

Tn(f)(u) = E f(u− Sn)1{Sn≤u} . (2.6)

For n = 1 this is the de�nition. Assume now that this equality holds

for some �xed n > 1. We set

f̃(u) = Tn(f)(u) = E f(u− Sn)1{Sn≤u}

=

∫ +∞

0

f(u− y)1{y≤u} dFSn
(y) ,

where FSn
(y) = P(Sn ≤ y). Using this function, we can represent

the (n+ 1)-th power as

Tn+1(f)(u) = T (f̃)(u) =

∫ u

0

E f(u− z − Sn)1{Sn≤u−z}dG(z)

= E f(u− ηn+1 − Sn)1{Sn≤u−ηn+1}

= E f(u− Sn+1)1{Sn+1≤u} .
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It means that equality (2.6) is true for any n ≥ 1. Using it in (2.5),

we get that

f(u) =

n∑
j=0

EV (u−Sj)1{Sj≤u}+ E f(u−Sn+1)1{Sn+1≤u} . (2.7)

According to our condition, we try to solve the equation (2.4) among

the functions which are bounded on each �nite interval. So, the last

term in (2.7) is bounded by

|E f(u− Sn+1)1{Sn+1≤u} | ≤ sup
0≤s≤u

|f(s)|P(Sn+1 ≤ u)

and, by the large numbers law (Theorem A.1), for any �xed u > 0

this term tends to zero as n → ∞. So, taking the limit in (2.7) as

n → ∞, we obtain that any solution of the equation (2.4) which

is bounded on every �nite interval is equal to the renewal function

(2.3).

2.2 Smith theorem

Now we study the asymptotic properties of the function (2.3).

To this end one needs the following de�nition.

De�nition 2.2. We say that a R+ → R function V is directly
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integrable by Riemann on [0,∞[ if

∞∑
k=1

sup
k−1≤x≤k

|V (x)| < ∞ . (2.8)

Using this de�nition, we will study the asymptotic properties of the

function (2.3) as t→ ∞.

Theorem 2.3. Let F be a right or left continuous R+ → R function

directly integrable by Riemann and on each �nite interval it has a

�nite number of discontinuity points. Moreover we suppose that η1

is non-arithmetic and 0 < Eη1 < ∞. Then the function (2.3) has

the following limit

lim
u→∞

Q(u) =
1

E η1

∫ ∞

0

V (z) dz . (2.9)

Proof. First, we show this theorem for linear combinations of

indicator functions, i.e. we assume that

V (x) = α1 1[t0,t1](x) +

m∑
k=2

αk 1(tk−1,tk]
(x) , (2.10)

where 0 = t0 < t1 < . . . < tm < ∞. It's easy to see that this
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function for u ≥ tm

Q(u) = α1E
∞∑
j=0

1{u−t1≤Sj≤u} +
m∑
k=2

αk E
∞∑
j=0

1{u−tk≤Sj<u−tk−1}

=

m∑
k=1

αk E (Nu−tk−1
− Nu−tk

) − α1E∆Nu−t1

−
m∑
k=2

αk E (∆Nu−tk−1
− ∆Nu−tk

) ,

where ∆Nt =
∑∞

j=1
1{Sj=t}. Note that for any h > 0

∆Nt ≤ Nt+h − Nt−h

and, by the Blackwell theorem,

lim sup
t→∞

E∆Nt ≤ 2h

Eη1
.

Therefore,

lim
t→∞

E∆Nt = 0

and

lim
u→∞

Q(u) =
1

E η1

m∑
k=1

αk (tk − tk−1) =
1

Eη1

∫ ∞

0

V (z) dz .
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Let now V be a function that satis�es the conditions of this theorem,

i.e. it is directly integrable by Riemann and has a �nite number of

the jumps on all �nite intervals. In this case, for each L > 0 we can

�nd a sequence of functions (Vm)m≥1 of the form (2.10) such that

lim
m→∞

sup
0≤x≤L

|V (x)− Vm(x)| = 0 .

So, we can represent the function Q as

Q(u) = I1(u) + I2(u) + I3(u) , (2.11)

where I1(u) = E
∑∞

j=0
Vm(u− Sj)1{u−L≤Sj≤u},

I2(u) = E
∞∑
j=0

(V (u− Sj) − Vm(u− Sj))1{u−L≤Sj≤u}

and

I3(u) = E
∞∑
j=0

V (u− Sj)1{Sj≤u−L} .

Taking into account that Vm(z) = 0 for z > L, we �nd

I1(u) = E

∞∑
j=0

Vm(u− Sj1Sj≤u} ,
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and, therefore,

lim
u→∞

I1(u) =
1

E η1

∫ ∞

0

Vm(z) dz =
1

E η1

∫ L

0

Vm(z) dz . (2.12)

Moreover,

|I2(u)| ≤ sup
0≤z≤L

|V (z) − Vm(z)|
(
E (Nu − Nu−L) + E∆Nu−L

)
.

And we get that

lim sup
u→∞

|I2(u)| ≤ sup
0≤z≤L

|V (z) − Vm(z)| L

E η1
.

This implies that for any L > 0

lim
m→∞

lim sup
u→∞

|I2(u)| = 0 . (2.13)

Now we consider the last term in (2.11). Setting

v∗k = sup
k−1≤x≤k

|V (x)|,
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we can estimate it from above as

|I3(u)| ≤ E
∞∑
j=0

∞∑
k=L+1

|V (u− Sj)|1{u−k≤Sj≤u−k+1}

≤ E

∞∑
j=0

∞∑
k=L+1

v∗k 1{u−k≤Sj≤u−k+1}

≤
∞∑

k=L+1

v∗k

(
1 + E(N(u−k)++1 −N(u−k)+

) + E∆Nu−k)+

)

≤ sup
x≥0

(
1 + E(Nx+1 −Nx) + E∆Nx

) ∞∑
k=L+1

v∗k .

Thus,

lim
L→∞

lim sup
u→∞

|I3(u)| = 0 . (2.14)

From here, taking into account (2.11), we have

∣∣∣∣Q(u)− 1

Eη1

∫ ∞

0
V (y)dy

∣∣∣∣ ≤ ∣∣∣∣I1(u) − 1

Eη1

∫ L

0
Vm(y)dy

∣∣∣∣
+

1

Eη1

∫ L

0
|Vm(y) − V (y)|dy

+
1

Eη1

∫ ∞

L
|V (y)|dy + |I2(u)| + |I3(u)| .
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Taking in this inequality the limit as

lim sup
L→∞

lim sup
m→∞

lim sup
u→∞

,

we get (2.11). Hence Theorem 2.3.

2.3 Exercises II

1. Let (Nt)t≥0 be counting function, that is

Nt =
∑
n≥1

1{η1+...+ηn≤t} ,

where (ηj)j≥1 are i.i.d. random variables uniformly distributed

on the interval [0, z] with a �xed z > 0. Calculate the follow-

ing limits

(a)

lim
t→∞

ENt

1 + 2t
;

(b)

lim
t→∞

E
(
N3t −N3t+4

)
;

(c)

lim
t→∞

EN2t√
1 + t2

;
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(d)

lim
t→∞

E
(
Nt −Nt−1/3

)
;

(e)

lim
t→∞

sin(1/t)EN10t ;

(f)

lim
t→∞

(
1− e1/t

)
EN4t .

2. Are the following functions directly integrable by Riemann

1

1 + x2
, e−x ,

sin(x)

1 + x4
?

3. Calculate the limit

lim
t→∞

 1

1 + t2
+E

∞∑
j=1

1

1 + (t− Tj)
2
1{Tj≤t}

 ,

where Tj =
∑j

i=1
ξ2i and (ξj)j≥1 are i.i.d. Gaussian random

variables with the parameters (0, 1).
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3 Cram�er - Lundberg models

3.1 Main de�nitions and results

In this section we consider non-life insurance models in which the

claim sizes are de�ned by i.i.d. positive random variables (Yj)j≥1

with

µ = EY1 < ∞ . (3.1)

Moreover, we assume that the claims number on the time interval

[0, t] is a homogeneous Poisson process (Nt)t≥0 of intensity λ > 0

de�ned in (1.1). This means that the time moments for claims

occurrence (Tn)n≥1 are the jumps of the Poisson process (Nt)t≥0

and the inter-arrival times

τ1 = T1 , τk = Tk − Tk−1 , k ≥ 2 , (3.2)

are i.i.d. exponentially distributed random variables with Eτ1 =

1/λ. We de�ne the total claim amount process as

Xt =

Nt∑
j=1

Yj (3.3)

and Xt = 0 for Nt = 0. In the theory of stochastic processes such

process is called a compound Poisson process. Moreover we assume
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that a continuous stream of revenue brings in c t during the time

interval [0, t], where c > 0 is the premium income rate. In this case

the risk process is de�ned as

Ut = u + c t − Xt , (3.4)

where u > 0 is the initial endowment of the insurance company.

De�nition 3.1. The event

A− = { ∃t > 0 such that Ut < 0} = ∪t>0 {Ut < 0} (3.5)

is called the ruin.

The de�nition of the risk process (3.4) immediately implies that

A− = ∪k≥1 {UTk
< 0} . (3.6)

This means that this set is measurable. The moment τu when the

risk process goes below zero is called the ruin time:

τu = inf{ t > 0 : Ut < 0} . (3.7)
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The ruin probability or ruin function is given by

ψ(u) = P(A− |U0 = u) = P( τu < ∞) . (3.8)

Setting

σu = inf{k ≥ 1 : UTk
< 0} (3.9)

and taking into account the de�nition (3.8), we obtain

ψ(u) = P(σu < ∞) . (3.10)

Firstly, we study the properties of the total claim amount process

(3.3).

Theorem 3.1. For the process (3.3) the following law of large num-

bers holds

lim
t→∞

1

t
Xt = λµ a.s. (3.11)

Moreover, if EY 2
1 < ∞, then for the process (3.3) the limit theorem

holds also, i.e.

Xt − λµt√
t

=⇒ N (0, λEY 2
1 ) as t→ ∞ . (3.12)

Proof. To show (3.11) we note that, in view of the de�nition of
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the Poisson process in (1.1), for any t > 0

TNt
≤ t < TNt+1 . (3.13)

Therefore, taking into account that Nt → ∞ a.s. as t → ∞, we

obtain through the large numbers law that

lim
t→∞

TNt

Nt

= Eτ1 =
1

λ
a.s.

Therefore, from the inequalities (3.13) it follows that

lim
t→∞

Nt

t
= λ a.s.

and, using again the large numbers law given in Theorem A.1, we

come to the limit (3.11). As to the second equality, note that the

deviation Xt − λµt can be represented as

Xt − λµt = SNt
+ λµ(TNt

− t) , (3.14)

where

Sn =
n∑

j=1

ηj and ηj = Yj − µ+ µ(1− λτj) .

Note that

E ηj = 0 and E η2j = EY 2
1 ,
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and, in view of (3.13),

0 ≤ t− TNt
≤ τNt+1 .

Moreover, we have

E τNt+1 =

∞∑
k=0

E τk+1 1{Nt=k} ≤ Eτ1 + λ

∫ +∞

0

zΥ(t, z) e−λz dz ,

(3.15)

where

Υ(t, z) =

∞∑
k=1

P(Tk ≤ t < Tk + z) = λ(t− (t− z)+) ,

and (x)+ = max(0, x). Therefore, the bound (3.15) yields

E τNt+1 ≤ 1

λ
+ λ2

∫ t

0

z2e−λz dz + λ2t

∫ ∞

t

z2e−λz dz

i.e.

sup
t≥0

E τNt+1 < ∞

and, therefore,

P− lim
t→∞

TNt
− t

√
t

= 0 .

Using this equality in (3.14), we obtain the asymptotic representa-
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tion
Xt − λµt√

t
=
SNt√
t
+ oP (1) , (3.16)

where oP (1) is a term going to zero in probability as t→ ∞. More-

over, let now m = [λt] and [x] be the integer part of the number x.

Then

E
(
SNt

− Sm

)2
= ES2

Nt
− 2ESNt

Sm +ES2
m = E η21E|Nt −m| ,

i.e.

E
(
SNt

− Sm

)2
t

≤ 1

t
+

√
E(Nt −ENt)

2

t
=

1

t
+

√
λ√
t
.

Using this in (3.16), we get

Xt − λµt√
t

=
Sm√
t
+ oP (1) .

Now, applying to the sequence (Sn)n≥1 the central limit Theorem

A.4, we come to the limit property (3.12). Hence Theorem 3.1.

Now we come back to the ruin problem, i.e. we study the prop-

erties for the ruin probability (3.10).

Proposition 3.1. (Almost sure ruin) If c ≤ µλ, then ψ(u) = 1
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for all u > 0.

Proof. Let c < λµ. We can represent the sequence (UTk
)k≥1 as

UTk
= u −

k∑
j=1

ξj , (3.17)

where ξj = Yj − cτj . In this case, by applying the strong large

numbers law (Theorem A.1) for Sk =
∑k

j=1
ξj in the equality (3.10),

we �nd that

lim
n→∞

UTn

n
= − lim

n→∞

Sn
n

= −E ξ1 =
c

λ
− µ < 0 a.s.

So, taking into account (3.9) and (3.10), we obtain that ψ(u) = 1

for all u ≥ 0. Let now c = λµ, i.e. E ξ1 = 0. In this case note that

for any k ≥ 1 and ϵ > 0

P(|ξk| > ϵ) = P(|ξ1| > ϵ) > 0 .

Using Kolmogorov three-series theorem and Kolmogorov zero-one

law (Theorems A.2 - A.3), we obtain that

lim sup
k→∞

Sk = +∞ a.s.

35



From the equalities (3.9) and (3.10) it follows that

1 = P(lim sup
k→∞

Sk = +∞) ≤ P(σu < ∞) .

Thus, ψ(u) = 1. Hence Proposition 3.1.

Remark 3.1. Proposition 3.1 means that insurance companies have

to choose the premium rate c > 0 such that Eξ1 < 0. This is the

only possibility to avoid being bankrupt almost sure in the framework

of the Cram�er - Lundberg model. So, if Eξ1 < 0, then we can hope

that the ruin function ψ(u) will be less then 1.

De�nition 3.2. The Cram�er-Lundberg model satis�es "net pro�t

condition" if

E ξ1 = E (Y1 − c τ1) = µ − c
1

λ
< 0 . (3.18)

In the sequel we will assume that the premium rate is equal to

c = (1 + ρ)λµ , (3.19)

where ρ is a positive constant, which provides the net pro�t condi-

tion.
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3.2 Exercises III

Let (Yj)j≥1 be i.i.d. random variables with values in R+ and with

the �nite on a neighborhood around 0 generator function de�ned as

mY (h) = E ehYj .

Let (Nt)t≥0 be a homogeneous Poisson process of an intensity λ > 0

independent of (Yj)j≥1. For any t ≥ 0 we set

Xt =

Nt∑
j=1

Yj and Ut = u+ ct−Xt

with u > 0 and c > 0.

1. Calculate expectation and variance of Ut.

2. Calculate the generator function for Xt.

3. Let α > 0. Show that there is only one solution cα for the

equation

E e−α(ct−Xt) = 1 , for any t > 0.

4. Show that EUt > u for c = cα. What is the limit of cα as

α→ 0?
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3.3 Lundberg inequality

In this section we will study the behavior of the function ψ(u)

under the condition (3.18). Moreover, we assume that the sequence

of claims amounts (Yj)j≥1 satis�es the following condition, called

the Lundberg condition,

H1) There exists δ > 0 such that

E eδY1 < ∞ . (3.20)

Also we de�ne the Lundberg function as

L(x) = ln E exξ1 . (3.21)

The conditionH1) implies that the function L(x) is �nite in absolute

value for any 0 ≤ x ≤ δ.

Proposition 3.2. We assume that the condition H1) holds. If

the equation L(x) = 0 has a strictly positive root, then this root

is unique.

Proof. First, we note that the function L is convex. Indeed, by

Holder's inequality for 0 < α < 1 and for 0 ≤ x, y ≤ δ we obtain
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that

L(αx+ (1− α)y) = ln (E eαxξ1 e(1−α)yξ1)

≤ ln
(
(E exξ1)α (E eyξ1)1−α

)
= ln (E exξ1)α + ln (E eyξ1)1−α

= αL(x) + (1− α)L(y) .

We assume that there is 0 < r1 < r2 such that L(r1) = L(r2) = 0.

Then for all z ∈ [r1, r2] we obtain

L(z) = L(αr1 + (1− α)r2) ≤ αL(r1) + (1− α)L(r2) = 0 ,

where α = (r2 − z)/(r2 − r1). If L(z) = 0 (i.e. E ezξ1 = 1) for

all r1 ≤ z ≤ r2, then we would have E ξ21 e
zξ1 = 0 and, so ξ1 =

Y1− cτ1 = 0 a.s. But this is not possible since the random variables

Y1 and τ1 are independent. Therefore, it exists 0 < r1 < z1 < r2

such that L(z1) < 0. Similar, as L(0) = 0, we get that it exists

z0 ∈ [0, r1] such that L(z0) < 0. Setting α = (z1 − r1)/(z1 − z0), we

�nd that

0 = L(r1) = L(αz0 + (1− α)z1) ≤ αL(z0) + (1− α)L(z1) < 0 .
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This implies the uniqueness of the positive root. Hence Proposition

3.2.

De�nition 3.3. If the equation L(x) = 0 admits a root r > 0, then

this root is called the Lundberg coe�cient.

We will assume the following condition.

H2) The equation L(x) = 0 admits a root r > 0.

Remark 3.2. It is easy to see that the assumptions H1)�H2) imply

the net pro�t condition (3.18). Indeed, if E ξ1 ≥ 0, then by Jensen

inequality we obtain that

L(x) = ln E exξ1 > ln exEξ1 ≥ 0

for any x > 0. So, the function L has no strictly positive root.

Theorem 3.2. (Lundberg inequality) Under the conditions H1)�

H2) for all u ≥ 0 the ruin function admits the exponential upper

bound

ψ(u) ≤ e−ru . (3.22)

Proof. First, one notes that according to (3.10), we can represent

the ruin probability as the distribution tail of the extreme value for
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a sequence of sums of i.i.d. random variables:

ψ(u) = P(inf
k≥1

UTk
< 0) = P(max

k≥1
Sk > u) ,

where Sk =
∑k

j=1
ξj and ξj = Yj − cτj . Let now

ψn(u) = P( max
1≤k≤n

Sk > u) .

It's obvious that

ψ(u) = lim
n→∞

ψn(u) .

So, for this theorem it su�ces to show the inequality (3.22) for the

functions ψn(u) for all n ≥ 1. We will do it by the induction. We

start with n = 1. In this case S1 = ξ1 and by the Markov inequality

ψ1(u) = P(ξ1 > u) ≤ E erξ1 e−ru = e−ru .

Moreover, if the inequality (3.22) holds for some �xed n ≥ 1, then
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for n+ 1 we get

ψn+1(u) = P( max
1≤k≤n+1

Sk > u , ξ1 > u)

+P( max
1≤k≤n+1

Sk > u , ξ1 ≤ u)

= P(ξ1 > u) + P

(
max

2≤k≤n+1
Sk > u , ξ1 ≤ u

)
. (3.23)

We estimate now the �rst term in (3.23) more precisely, i.e.

P(ξ1 > u) ≤ e−ruE erξ1 1{ξ1>u} . (3.24)

Taking into account that Sk is the sum of i.i.d. random variables

and using the inequality (3.22) for ψn(·), we can estimate the second

term in (3.23) as

P

(
max

2≤k≤n+1
Sk > u , ξ1 ≤ u

)

= P

 max
2≤k≤n+1

n∑
j=1

ξj+1 > u− ξ1 , ξ1 ≤ u


= E1{ξ1≤u} ψn(u− ξ1) ≤ e−ruE1{ξ1≤u} e

rξ1 .

Using this inequality and the upper bound (3.24) in (3.23), we ob-
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tain that

ψn+1(u) ≤ e−ru (E erξ1 1{ξ1>u} + E erξ1 1{ξ1≤u})

= e−ruE erξ1 = e−ru .

So, for all n ≥ 1 the functions ψn(u) ≤ e−ru. Taking here the limit

as n→ ∞, we get the bound (3.22). Hence Theorem 3.2.

Example 3.1. We consider the Cram�er-Lundberg model in which

the random variables (Yj)j≥1 are exponential with a parameter γ >

0. In this case the net pro�t condition (3.19) takes the form

c = (1 + ρ)λ /γ ,

where ρ is a positive constant. Note, that the condition H1) holds

for δ < γ. Moreover, it is easy to see that the Lundberg coe�cient

in this case is

r = γ − λ

c
= γ

ρ

1 + ρ
.

So, in view of the Lundberg inequality, we get for all u ≥ 0

ψ(u) ≤ e
−γ ρ

1+ρ
u
. (3.25)

43



3.4 Exercises IV

We consider the risk process Ut = u+ ct−Xt for a reinsurance

company, where Xt =
∑Nt

i=j
(Yj − K)+ with K > 0, (Nt)t≥0 is a

homogeneous Poisson process of intensity λ > 0 independent of the

i.i.d. sequence (Yj)j≥1 random exponential variables of parameter

γ > 0. We choose the premium rate as

c = (1 + ρ)λE (Y1 −K)+ with ρ > 0 .

1. Calculate c.

2. Show that

E eit(Y1−K)+ = 1 +
it

γ − it
e−Kγ , t ∈ R.

3. Show that Xt has the same distribution as X̃t =
∑Ñt

i=1
Yj ,

where (Ñt)t≥0 is a homogeneous Poisson process of the inten-

sity λ̃ = λe−Kγ independent of (Yj)j≥1.

3.5 Fundamental equation for the non-ruin

probability

Denote by ϕ(u) = 1− ψ(u) the non-ruin probability.
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Theorem 3.3. We assume that the Cram�er-Lundberg model sat-

is�es the net pro�t condition (3.18) and the distribution function

FY (·) of the random amounts (Yj) has a density fY . Then the non-

ruin probability ϕ(u) satis�es the following integral equation

ϕ(u) =
ρ

1 + ρ
+

1

1 + ρ

∫ u

0

ϕ(u− y) dFY,I(y) , (3.26)

where

FY,I(y) =
1

µ

∫ y

0

F Y (z) dz and F Y (y) = 1− FY (y) = P(Y1 > y) .

Proof. Taking into account that Sn =
∑n

j=1
ξj and (ξj)j≥1 are

i.i.d. random variables, one has

ϕ(u) = P(sup
n≥1

Sn ≤ u) = P(ξ1 ≤ u , sup
n≥2

Sn ≤ u)

= P(ξ1 ≤ u, sup
n≥2

n∑
j=2

ξj ≤ u− ξ1) = E1{ξ1≤u}ϕ(u− ξ1)

= E1{Y1−cτ1≤u} ϕ(u− Y1 + cτ1) ,
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i.e.

ϕ(u) = λ

∫ ∞

0

∫ u+cv

0

ϕ(u− y + cv) dFY (y) e
−λv dv

=
λ

c
euλ/c

∫ ∞

u

e−λz/c

∫ z

0

ϕ(z − y) dFY (y) dz .

Taking the derivatives in this equality, we �nd that

ϕ′(u) =
λ

c
ϕ(u)− λ

c

∫ u

0

ϕ(u− y) dFY (y)

and, therefore,

ϕ(t)−ϕ(0) = λ

c

∫ t

0

ϕ(u) du−λ
c

∫ t

0

∫ u

0

ϕ(u−y) dFY (y) du . (3.27)

Moreover, the integration by parts yields

∫ t

0

∫ u

0

ϕ(u− y) dFY (y) du

=

∫ t

0

(
ϕ(0)FY (u) +

∫ u

0

FY (y)ϕ
′(u− y) dy

)
du

= ϕ(0)

∫ t

0

FY (u)du +

∫ t

0

FY (y)

(∫ t

y

ϕ′(u− y)du

)
dy

=

∫ t

0

FY (y)ϕ(t− y)dy .
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Using now the condition (3.19), we obtain from (3.27) that

ϕ(t)− ϕ(0) =
1

(1 + ρ)µ

∫ t

0

ϕ(t− y)F Y (y) dy

=
1

1 + ρ

∫ t

0

ϕ(t− y) dFY,I(y) . (3.28)

It should be noted now that ϕ(∞) = 1. Therefore, the passing here

to the limit as t→ ∞ yields

ϕ(0) =
ρ

1 + ρ

and we obtain from (3.28) the equality (3.26). Hence Theorem 3.3.

Note that (3.26) immediately implies the equation for the ruin prob-

ability ψ(u) = 1− ϕ(u):

ψ(u) =
F Y,I(u)

1 + ρ
+

1

1 + ρ

∫ u

0

ψ(u− y) dFY,I(y) , (3.29)

where F Y,I(y) = 1− FY,I(y).

Example 3.2. In the case, when distribution of (Yj)j≥1 is exponen-

tial, as in the example 3.1, i.e. FY (y) = 1− e−γy, this equation has
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the following form

ψ(u) =
e−γu

1 + ρ
+

γ

1 + ρ

∫ u

0

ψ(u− y) e−γydy . (3.30)

We can resolve this equation directly and get that the solution is

ψ(u) =
1

1 + ρ
e
−γ ρ

1+ρ
u
. (3.31)

Remark 3.3. Note that, if we compare the form (3.31) with the

upper bound (3.25), then one can see that the Lundberg inequality

gives sharp upper bound for the coe�cient (1 + ρ)−1.

3.6 Exercises V

Let (Yj)j≥1 be i.i.d. random variables with values in N and

N a random variable with values in N independent of (Yj)j whose

distribution is of the form

qn := P(N = n) =

(
a+

b

n

)
qn−1, n = 1, 2, . . . ,
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where q0 = P(N = 0), for a < 1 and b ∈ R are �xed constants.

Moreover let

X =

N∑
j=1

Yj and pk := P(X = k) .

1. Show that the Poisson and binomial distributions verify the

previous hypotheses on N .

2. Let Sn =
∑n

j=1 Yj . Show that for i ≥ 1

E

(
Y1
Si

∣∣∣∣Si) =
1

i
.

3. Show that

E

(
a+ b

Y1
n

∣∣∣∣Si = n

)
=

n∑
k=0

(
a+

k

n

)
P(Y1 = k)P(Si−1 = n− k)

P(Si = n)
.

4. Show that

p0 =


q0 , if P(Y1 = 0) = 0 ;

E (P(Y1 = 0))N , else .
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5. Show that for n ≥ 1

pn =
∞∑
i=1

P(Si = n)qi .

6. Show that the probabilities pk can be calculated recursively

(Panjer's algorithm):

pk =
1

1− aP(Y1 = 0)

k∑
i=1

(
a+

bi

k

)
P(Y1 = i)pk−i, k ≥ 1.

3.7 Cram�er bound

In this section we will study the limit of ψ(u) when u → ∞ for

small claims, i.e. for claims that verify the condition H1).

Theorem 3.4. We assume that the conditions H1)�H2) hold with

0 < r < δ and the random variable Y1 has a density fY . Then

lim
u→∞

eru ψ(u) = ψ∗ > 0 , (3.32)

where

ψ∗ =
ρµ

r
∫∞
0

z erz P(Y1 > z) dz

and the parameter ρ > 0 is given in the net pro�t condition (3.19).
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Proof. First, note that Remark 3.2 implies the condition (3.19).

Moreover, by the Theorem 3.3, we can write the equation for ψ

ψ(u) = q F Y,I(u) + q

∫ u

0

ψ(u− y) dFY,I(y) , (3.33)

where q = (1+ρ)−1. From here we directly get the equation for the

function Q(u) = eruψ(u), i.e.

Q(u) = V (u) +

∫ u

0

Q(u− y) dG(y) , (3.34)

where V (u) = qeruF Y,I(u) and

G(u) =
q

µ

∫ u

0

erz P(Y1 > z) dz .

Now let us to show that G is a distribution function, i.e. G(+∞) =

1. Indeed, the integrating by parts yields

G(+∞) =
q

µ

∫ ∞

0

erz P(Y1 > z) dz

=
q

rµ
erz P(Y1 > z)

∣∣∞
0
+

q

rµ
E erY1 .

Taking into account that 0 < r < δ, we obtain

P(Y1 > z) ≤ E eδY1 e−(δ−r)z → 0 when z → ∞ . (3.35)
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Therefore,

G(+∞) = − q

rµ
+

q

rµ
E erY1 .

Note here that the de�nition of r and (3.19) imply

E erY1 =
λ+ rc

λ
= 1 +

rµ

q
,

i.e. G(+∞) = 1. This means that the equation (3.34) is a renewal

equation and the solution Q is a renewal function for i.i.d. random

variables (ηj)j≥1 with the distribution function G. Let's study now

the function V . We note that the inequality (3.35) implies the

following upper bound for V

V (u) =
q

µ

∫ ∞

u

erz P(Y1 > z) dz

≤ q

δµ
E eδY1 e−(δ−r)u ,

i.e. the function V satis�es the Riemann direct integrability condi-

tion. This means that we can apply Smith theorem to the function

Q, i.e.

lim
u→∞

Q(u) =
1

Eη1

∫ ∞

0

V (z) dz ,

where

Eη1 =
q

µ

∫ ∞

0

z erz P(Y1 > z) dz
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and

∫ ∞

0

V (z) dz = q

∫ ∞

0

erz F Y,I(z)dz

=
q

r
erz F Y,I(z) |∞0 +

q

µr

∫ ∞

0

erz P(Y1 > z) dz

= − q

r
+

1

r
G(+∞) =

1− q

r
.

This directly implies (3.32). Hence Theorem 3.32.

3.8 Exercises VI

1. We consider a Cram�er-Lundberg model with the risk process

Ut = u+ ct−Xt ,

where the total claim amount process Xt =
∑Nt

j=1
Yj .

(a) Show that the random variables Xt − Xs and Xs are

independent for 0 < s < t.

(b) Show that the random variables Xt −Xs and Xt−s have

the same distribution for 0 < s < t.

(c) Calculate

E(e−hUt |Xs) .
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(d) Assuming that the Lundberg coe�cient r > 0 exists,

show that

E(e−rUt |Xs) = e−rUs .

(e) Show that Ee−rUt independent of t.

2. Assume that in a Cram�er-Lundberg model the distribution of

the claim amounts Yj is given by the density

fn(x) = αn 1

Γ(n)
xn−1e−αx for x > 0 (α > 0 , n ≥ 1).

(a) Calculate the generator function EehY1 . For which values

h > 0 this function is well de�ned? Calculate EY1.

(b) Find the net pro�t condition for this model.

(c) Calculate the Lundberg coe�cient for n = 1 and n = 2.

(d) Write the integral equation for the ruin function ψn(u).

Find this function for n = 1.

3.9 Large claims

In this section we study the problem of ruin for the claims

(Yj)j≥1 which do not hold the condition H1), i.e., E e
δY1 = +∞

for all δ > 0. We replace the condition H1) by a weaker condition,

i.e. we assume that the distribution of (Yj)j≥1 is subexponential.
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De�nition 3.4. We say that a random variable Y is subexponential

if i.i.d. random variables (Yj)j≥1 having the same distribution as Y

for all n ≥ 1 satisfy the following condition

lim
z→∞

P(
∑n

j=1
Yj > z)

P(Y1 > z)
= n . (3.36)

Example 3.3. Let Y a positive random variable such that for any

z ≥ 0

P(Y > z) =
1

(1 + z)α
and α > 0 .

Let's show, by the induction, that Y satis�es the condition (3.36).

Assuming that the property (3.36) holds for n−1, we will check this

condition for n. To this end we set

Fn(z) = P(Sn > z) ,

where Sn =
∑n

j=1
Yj. We have

Fn(z) = P(
n−1∑
j=1

Yj > z − Yn)

= EFn−1(z − Yn)1{Yn≤z} + P(Yn > z)

=

∫ z

0

Fn−1(z − t) dF (t) + F (z) ,
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where F is the distribution function of Y and F (z) = F 1(z). So,

we obtain that

Fn(z)

F (z)
= 1 +

∫ z

0

Fn−1(z − t)

F (z)
dF (t) . (3.37)

Then we can represent the last term in this equality as

∫ rz

0

Fn−1(z − t)

F (z)
dF (t) +

∫ z

rz

Fn−1(z − t)

F (z)
dF (t)

= I1,r(z) + I2,r(z) ,

where 0 < r < 1. Note that for the function F (z) = 1 − (1 + z)−α

for all t ≥ 0 we have

lim
z→∞

F (z − t)

F (z)
= 1 .

Thus, in view of the induction hypothesis for all t > 0

lim
z→∞

Fn−1(z − t)

F (z)
= n− 1 .

Moreover, for t ≤ rz with 0 < r < 1 we obtain the following upper

bound

lim sup
z→∞

Fn−1(z − t)

F (z)
≤ lim sup

z→∞

Fn−1((1− r)z)

F (z)
≤ n− 1

(1− r)α
.
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Therefore, by the dominated convergence theorem,

lim
z→∞

I1,r(z) = n− 1

for all 0 < r < 1. As to the function I2,r(z), we obtain that for any

z > 0

I2,r(z) ≤ 1

F (z)
(F (z) − F (rz))

≤
(

1

(1 + rz)α
− 1

(1 + z)α

)
(1 + z)α .

This means that for any 0 < r < 1

lim sup
z→∞

I2,r(z) ≤ r−α − 1

and, passing here to the limit as r → 1, we �nd

lim sup
r→1

lim sup
z→∞

I2,r(z) = 0 .

Therefore, the equality (3.37) implies directly (3.36).

Proposition 3.3. Let Y be a subexponential random variable. Then
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for any ε > 0 it exists K = K(ε) > 0 such that for any n ≥ 1

sup
z≥0

Fn(z)

F (z)
≤ K (1 + ε)n , (3.38)

where Fn(z) = P(Sn > z), F (z) = F 1(z), Sn =
∑n

j=1
Yj and

(Yj)j≥1 are i.i.d. random variables of the same distribution as Y .

Proof. We set

αn = sup
z≥0

Fn(z)

F (z)
,

then we get

Fn+1(z)

F (z)
= 1 +

∫ z

0
P(Sn > z − t) dF (t)

F (z)

≤ 1 + αn
P(Y1 + Y2 > z , Y2 ≤ z)

F (z)

= 1 + αn

(
P(S2 > z)

F (z)
− 1

)
.

Note here that for any ε > 0 there exists T = T (ε) > 0 such that

sup
z≥T

(
P(S2 > z)

F (z)
− 1

)
≤ (1 + ε) .
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Therefore,

αn+1 ≤ sup
0≤z≤T

Fn(z)

F (z)
+ sup

z≥T

Fn(z)

F (z)

≤ αn (1 + ε) + K0 ,

where

K0 = 1 +
1

P(Y > T )
.

This inequality means that for n ≥ 1

αn+1 = (1 + ε)αn + βn+1 (3.39)

with α1 = 1 and βn+1 = αn+1 − (1 + ε)αn ≤ K0. We can resolve

this equation and �nd that

αn = (1 + ε)n−1 α1 +
n∑

j=2

(1 + ε)j βn−j

≤ (1 + ε)n−1 + K0

n∑
j=2

(1 + ε)j

≤ K (1 + ε)n ,

where K = 1 +K0/ε. From here we obtain (3.38).

In Section 3.5 we have shown that the probability of non-ruin
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ϕ(u) satis�es the equation (3.26). Now one needs to resolve this

equation.

Proposition 3.4. We assume that in the Cram�er-Lundberg model

the distribution function FY (·) for the random amounts (Yj)j≥1 has

a density fY and µ = EY1 < ∞. Moreover, we assume that this

model satis�es the net pro�t condition (3.18), i.e. c = λµ(1+ρ) with

ρ > 0. Then the solution of the equation (3.26) has the following

form

ϕ(u) = p
∞∑
j=0

qj P(S̃j ≤ u) , (3.40)

where p = ρ/(1 + ρ), q = 1/(1 + ρ), S̃0 = 0, S̃j =
∑j

i=1
Ỹi and

(Ỹ )j≥1 are i.i.d. random variables with the distribution function

FY,I(·) de�ned in (3.26).

Proof. Let us denote the right part in equality (3.40) by g, i.e.

g(u) = p

∞∑
j=0

qj P(S̃j ≤ u) .

It is clear that this function is bounded, i.e.

g(u) ≤ p

∞∑
j=0

qj =
p

1− q
= 1 .

Moreover, one can see that this function satis�es the equation (3.26).
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Indeed,

g(u) = p + pqP(Ỹ1 ≤ u) + p
∞∑
j=2

qj P

(
j∑

l=2

Ỹl ≤ u− Ỹ1

)

= p + pqP(Ỹ1 ≤ u)

+ p
∞∑
j=2

qj
∫ u

0

P

(
j∑

l=2

Ỹl ≤ u− t

)
dFY,I(t)

= p + q

∫ u

0

g(u− t) dFY,I(t) .

We show now that g(u) = ϕ(u). To this end we set δ(u) = g(u) −

ϕ(u). We have already seen that |δ(u)| ≤ 2 for all u ≥ 0. Let now u

be a �xed positive number. Denote by Mu = sup0≤t≤u |δ(t)|. Then

there exists 0 ≤ t0 ≤ u such thatMu = |δ(u0)| because the function

δ(·) is continuous on the interval [0, u]. Therefore,

Mu = |δ(t0)| = q |
∫ u

0

δ(u0 − t) dFY,I(t)|

≤ q

∫ u

0

|δ(u0 − t)|dFY,I(t)

≤ qMuP(Ỹ1 ≤ u0) ≤ qMu .

Taking into account that q < 1, we get that Mu = 0 for all u > 0.

Therefore, ϕ(u) = g(u) for any u ≥ 0.
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Theorem 3.5. We assume that all the conditions in Proposition 3.4

hold and the distribution function FY,I(·) is subexponential. Then

lim
u→∞

ψ(u)

F Y,I(u)
= ρ−1 . (3.41)

Proof. The equality (3.41) implies directly that

ψ(u) = 1 − ϕ(u) = p
∞∑
j=1

qj P(S̃j ≥ u) .

Thus, taking into account that

p
∞∑
j=1

j qj = ρ−1 ,

we have

∆(u) =
ψ(u)

F Y,I(u)
− ρ−1 = p

∞∑
j=1

qj σj(u) ,

where

σj(u) =
P(S̃j ≥ u)

F Y,I(u)
− j .

Now we �xe ε > 0 such that θ = q(1 + ε) < 1. Then, by Proposi-

tion 3.3, we obtain that there is a positive constant K such that for
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any j ≥ 1 and for all u > 0

qj |σj(u)| ≤ K θj + qj j .

Moreover, for any j ≥ 1

lim
u→∞

σj(u) = 0 .

Then the dominated convergence theorem directly implies that

lim
u→∞

∆(u) = p

∞∑
j=1

qj lim
u→∞

σj(u) = 0 .

Hence Theorem 3.5.

Example 3.4. We consider the Cram�er-Lundberg model in which

the positive random variables (Yj)j≥1 are distributed according to

the Pareto distribution function F (·) de�ned as

F (z) = P(Y ≤ z) = 1 − 1

(1 + z)1+α

for z ≥ 0. In this case µ = 1/α and, therefore, for all z ≥ 0

FY,I(z) = 1 − 1

(1 + z)α
.

63



We have seen already that this distribution function is subexponen-

tial. Therefore, in this case, in view of Theorem 3.5, we obtain that

uαψ(u) → ρ−1 as u→ ∞.

3.10 Exercises VII

Let F be some distribution function for the claim Y > 0. We

denote F (x) = 1−F (x). We say that F is light tailed if there exist

a and b > 0 such that

F (x) ≤ ae−bx

for all x (or that F is heavy-tailed). Let

xl = inf{x|F (x) > 0} and xr = sup{x|F (x) < 1} .

We set

eF (u) = E(Y − u|Y > u) for u ∈ (xl, xr) .

1. Show that eF (u) can be written as

eF (u) =
1

F (u)

∫ +∞

u
F (x)dx .

2. Show that if F (x) > 0 for all x > 0 and that F is continuous,
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then we have for any x > 0

F (x) =
eF (0)

eF (x)
exp

{
−
∫ x

0

1

eF (y)
dy

}
.

3. Show that if limu→+∞ eF (u) = +∞, then F is heavy tailed.

4. Show that if F is heavy tailed, then the generator function of

Y is in�nite for any z > 0.

5. Calculate eF (u) when Y is an exponential random variable of

a parameter λ > 0.

6. Calculate eF (u) when Y has the Pareto distribution

F (x) =

(
κ

κ+ x

)α

of parameters κ > 0 and α > 1.

7. Show that if Y has the Gamma distribution of order m ≥ 1

and a parameter γ > 0, i.e.

F (x) =
γmxm−1

m!
e−γx ,

then F is light-tailed.

8. Show that if Y has the Weibull distribution with parameters
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c > 0 and τ > 0, i.e.

F (x) = exp{−cxτ} ,

then F is light or heavy tailed depending on the value of τ .

3.11 Ruin problem with investment

In this section we consider an insurance company that invests its

capital in a Black-Scholes market with the two assets B = (Bt)t≥0

and S = (St)t≥0 de�ned as


dBt = r Bt dt , B0 = 1 ;

dSt = aStdt+ σSt dwt , S0 > 0 ,

(3.42)

where (wt)t≥0 is a Brownian motion, r, a and σ are non-negative

constants. Let (Ft)t≥0 be �ltration on this model de�ned as

Ft = σ{ws , Xs , s ≤ t} , (3.43)

where (Xt)t≥0 is the total claim amount process de�ned in (3.3).

We assume that in each time moment t ≥ 0 the insurance company

has βt of the assets (B) and γt of the assets (S). So, the wealth (the
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risk process) at the instant t > 0 is equal to

Ut = βtBt + γtSt . (3.44)

We denote by πt = (βt, γt) and assume that the process π = (πt)t≥0

is adapted to the �ltration (Ft)t≥0. In this case π is said a �nancial

strategy.

De�nition 3.5. Financial strategy π = (πt)t≥0 with πt = (βt, γt) is

said to be admissible if for any t ≥ 0

∫ t

0

(
|βs| + γ2s

)
ds < ∞ a.s.

and, for anyy t ≥ 0,

Ut = βtBt + γtSt = u+

∫ t

0

βs dBs +

∫ t

0

γv dSv + Zt , (3.45)

where u > 0 is an initial endowment and Zt = ct−Xt.

Proposition 3.5. Let u > 0 and γ = (γt)t≥0 be a square integrated

process, i.e. for all t > 0

∫ t

0

γ2v dv <∞ a.s.
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We set

βt = u+

∫ t

0

γv dS̃v − γtS̃t + Z̃t , (3.46)

where S̃t = St/Bt and Z̃t =
∫ t

0
B−1

v dZv. Then the �nancial strategy

(βt , γt)t≥0 is admissible.

Proof. First of all note that the process (3.46) is integrable, i.e.

for any t > 0 ∫ t

0

|βv| dv <∞ a.s.

The de�nition (3.46) implies that the discounted wealth process

Ũt =
Ut

Bt

= βt + γtS̃t

admits the following stochastic di�erential:

dŨt = γt dS̃t + dZ̃t .

Therefore, Ito formula implies that

dUt = dBtŨt = BtdŨt + ŨtdBt

= βt dBt + γt

(
S̃tdBt +BtdS̃t

)
+BtdZ̃t .
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Taking into account here that

dZt = BtdZ̃t and dSt = dS̃tBt = S̃tdBt +BtdS̃t ,

we get the equality (3.45).

We denote by ς = (ςt)t≥0 proportional strategy, i.e.

ςt =
γt St

βtBt + γt St
=

γtS̃t

βt + γtS̃t
=

γtS̃t

u+
∫ t

0
γv dS̃v + Z̃t

.

For this strategy we can rewrite the equation (3.45) as

Ut = u+

∫ t

0

(r + (a− r)ςs) Us ds + σ

∫ t

0

ςs Usdws + ct − Xt .

In this section we assume that

ςt ≡ δ , (3.47)

where δ ≥ 0 is a �xed nonrandom constant. In view of

dS̃t = (a− r)S̃tdt+ σS̃tdwt ,

we obtain for Vt = γt St the following stochastic di�erential equation

dVt = δ(a− r)Vtdt+ δσVtdwt + δdZ̃t , V0 = δu .
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Through Ito formula we can represent the process Vt in the follow-

ing form

Vt = eξt
(
δ u + δ c

∫ t

0

e−ξs B−1
s dZs

)
,

where ξt = a1 t + σδ wt, a1 = δ(a− r)− σ2δ/2 and σδ = δσ. So, to

get the property (3.47) we set

γt =
eξt
(
δ u + δ c

∫ t

0
e−ξs B−1

s dZs

)
S̃t

, 0 ≤ t ≤ T .

For this strategy the risk process can be written as

Ut = u+ aδ

∫ t

0

Us ds + σδ

∫ t

0

Usdws + Zt , (3.48)

where u > 0 is the initial capital, aδ = r + δ(a− r) and σδ = δσ.

The ruin probability is

ψ(u) = P(inf
t≥0

Ut < 0) . (3.49)

We start to study this function for any u ≥ 0.

Proposition 3.6. The function ϕ(u) = 1 − ψ(u) satis�es for all
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u ≥ 0 the following di�erential equation

σ2δu
2ϕ

′′
(u)

2
+ ϕ

′
(u)(aδu+ c)− λϕ(u) + λ

∫ u

0

ϕ(u− y)dF (y) = 0

(3.50)

with the boundary conditions

cϕ
′
(0) = λϕ(0) and ϕ(+∞) = 1 . (3.51)

Proof. We denote by (ηt)t≥0 the solution of the following stochastic

equation

dηt = (aδηt + c) dt+ σδηtdwt , η0 = u .

By Ito formula, we can resolve it, i.e.

ηt = u eζt + c

∫ t

0

eζt−ζs ds and ζt = ã t + σδ wt , (3.52)

where ã = aδ − σ2δ/2. Now we �xe some h > 0 and then, in view of

the de�nition of ϕ, we can represent this function as

ϕ(u) = E
(
1{inft≥0 Ut≥0}

)
= E

(
1{inf0≤t≤h Ut≥0}E

(
1{inft≥h Ut≥0} | Fh

))
.
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It should be noted that the process (3.48) is Markovian, i.e.

E
(
1{inft≥h Ut≥0} | Fh

)
= ϕ(Uh)

and, therefore,

ϕ(u) = E
(
1{inf0≤t≤h Ut≥0} ϕ(Uh)

)
.

Moreover, we can represent this function in the form

ϕ(u) = A1(u) +A2(u) +A3(u) (3.53)

where A1(u) = E
(
1{Nh=0} ϕ(ηh)

)
,

A2(u) = E
(
1{inf0≤t≤h Ut≥0} 1{Nh=1}ϕ(Uh)

)
and

A3(u) = E
(
1{inf0≤t≤h Ut≥0} 1{Nh≥2}ϕ(Uh)

)
.

We rewrite the equation (3.53) as

A1(u)− ϕ(u)

h
+
A2(u)

h
+
A3(u)

h
= 0 . (3.54)
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It is clear that

A1(u)− ϕ(u) = e−λhE (ϕ(ηh) − ϕ(u)) .

In addition, it is well known (see, for example, in [8]) that the

function ϕ is two times continuously di�erentiable. So, by the Ito

formula

A1(u)− ϕ(u) = (e−λh − 1)ϕ(u)

+

∫ h

0

E

(
(aδηv + c)ϕ

′
(ηv) +

σ2δ η
2
v

2
ϕ

′′
(ηv)

)
dv

and, therefore,

lim
h→0

A1(u)− ϕ(u)

h
= (aδu+ c)ϕ

′
(u) +

σ2δ u
2

2
ϕ

′′
(u)− λϕ(u) .

Then we can represent the term A2(u) as

A2(u) = E
(
1{ηT1≥Y1} 1{Nh=1}ϕ(Uh)

)
.

Note here that on the set {Nh = 1}

Uh =
(
ηT1

− Y1

)
e
ζh−ζT1 + c

∫ h

T1

eζh−ζs ds ,
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where the process (ζt)t≥0 is given in (3.52). So, on the set

{
Nh = 1} ∩ {Y1 ≤ ηT1

}
(3.55)

we get

|Uh − u+ Y1| ≤ (u+ η∗h)
∣∣∣e2ζ∗h − 1

∣∣∣+ c h e2ζ
∗
h + η∗h ,

where

η∗h = sup
0≤s≤h

|ηs − u| and ζ∗h = sup
0≤s≤h

|ζs| .

From the de�nition of (ηt)t≥0 it follows that

η∗h ≤ u|eζ∗h − 1|+ c h e2ζ
∗
h .

Therefore, on the set (3.55)

|Uh − u+ Y1| ≤ B∗
h(ζ

∗
h) ,

where

B∗
h(x) =

(
u+ u|ex − 1|+ c h e2x

)
|e2x − 1|+ 2c h e2x + u|ex − 1| .

Taking into account that the process (ζt)t≥0 is continuous, we obtain
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that

lim
h→0

ζ∗h = 0 a.s.

Moreover, using the properties of a Brownian motion, one can check

directly that for all γ > 0 and 0 < t <∞

E eγζ
∗
t <∞ .

So, by the dominated convergence theorem

lim
h→0

EB∗
h(ζ

∗
h) = 0 .

In view of the independence of the processes (ζt)t≥0 and (Nt)t≥0,

we obtain that

lim
h→0

A2(u)

h
= λ

∫ u

0

ϕ(u− y) dF (y) . (3.56)

Finally, for the last term in (3.54) it's easy to see that

A3(u)

h
≤ P (Nh ≥ 2)

h
→ 0 , as h→ 0 .

So, taking the limit in (3.54) as h → 0 we get the equation (3.50).

Hence Proposition 3.6.

To study the asymptotic properties of the ruin probability (3.49)
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as u→ ∞, we set

ν =
2aδ
σ2δ

− 1 . (3.57)

The following theorem gives us the asymptotic behavior of the ruin

probability in the depending of this parameter (see, for example, [4]

and [9]).

Theorem 3.6. For the proportional strategy (3.47) the ruin proba-

bility (3.49) has the following asymptotic (as u→ ∞) properties

1. if ν ≤ 0, then ψ(u) = 1 for all u ≥ 0.

2. if ν > 0 and EY ν
1 <∞, then there is a constant 0 < ψ∗ < ∞

such that

lim
u→∞

uν ψ(u) = ψ∗ .

Now one needs to choose the proportional investment coe�cient

δ > 0 in the strategy (3.47) such that the power parameter ν de�ned

in (3.57) will be positive, i.e. 0 < δ < δ∗, where

δ∗ =

√
(a− r)2 + 2r − r + a

σ2
.

Therefore, if there exists 0 < δ < δ∗ for which EY ν
1 < ∞, then
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according to Theorem 3.6 for some constant 0 < ψ∗ <∞

lim
u→∞

uν ψ(u) = ψ∗ .

Remark 3.4. This result means that in the case where the net pro�t

condition (3.18) does not hold true, i.e. c ≤ λµ, to avoid being

bankrupt almost sure, the company is obliged to invest its capital in

a Black-Scholes market through the strategy (3.47) with 0 < δ < δ∗

and EY ν
1 <∞.

3.12 Exercises VIII

1. Give the de�nition of an admissible strategy. Show that the

set of admissible strategies is not empty.

2. Is there an admissible strategy with initial endowment u = 20

euros and γt = (1 + St)
−2? Clarify the answer.

3. Is there an admissible strategy with initial endowment u =

2S0 and

γt = 1/

√
Ŝt with Ŝt = St/Bt? Clarify the answer.
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A Appendix

In this section we announce main limit results of the probability

theory which can be found, for example, in [10].

A.1 Strong large numbers law

Theorem A.1. Let (ξj)j≥1 be i.i.d. random variables with E|ξ1| <

∞. Then

lim
n→∞

1

n

n∑
j=1

ξj = Eξ1 a.s.

A.2 Kolmogorov zero-one law

Theorem A.2. Let (ξj)j≥1 be a sequence of independent random

variables and

X = ∩n≥1 σ{(ξj)j≥n} .

Then for any A ∈ X the probability P(A) = 0 or P(A) = 1.

A.3 Three series theorem

Theorem A.3. Let (ξj)j≥1 be a sequence of independent random

variables. For almost sure convergence of the series
∑

n≥1
ξj neces-
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sary that for any c > 0 the following series are convergent

∑
n≥1

E ξcj ,
∑
n≥1

E (ξcj −E ξcj)
2 ,

∑
n≥1

P
(
|ξj | > c

)
,

and su�ciently that these series are convergent for some �xed c > 0,

where ξc = ξ1{|ξj |≤c}.

A.4 Central limit theorem

First, we recall the weak convergence for random variables.

De�nition A.1. The sequence of random variable is called conver-

gent weakly to a random variable ξ, i.e. ξn =⇒ ξ as n→ ∞, if for

any bounded continuous R → R function g

lim
n→∞

E g(ξn) = E g(ξ) .

Theorem A.4. Let (ξj)j≥1 be i.i.d. random variables with Eξ1 = 0

and Eξ21 = σ2. Then

∑n
j=1

ξj√
n

=⇒ ξ as n→ ∞ ,

where ξ is a Gaussian random variable with the parameters (0, σ2).
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A.5 Iterated logarithm law

Theorem A.5. Let (ξj)j≥1 be i.i.d. random variables with Eξ1 = 0

and Eξ21 = σ2. Then

lim sup
n→∞

∑n
j=1

ξj√
n ln(lnn)

= σ
√
2 a.s.
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