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1 Poisson processes

1.1 Definition and main properties

In this section we study the principal properties of the Poisson
process. Let (7j)»; be i.i.d. exponential random variables with

some parameter A > 0. Weset T, = Z?:1 7; forn > 1 and Tj, = 0.

Definition 1.1. The random R, — N function

N=Y 1 < (1.1)
n=1

1s called the homogeneous Poisson process of the intensity A > 0.

Proposition 1.1. If (7;);>, is i.i.d. ezponential random variables
with a parameter X > 0, then the vector (Ty,...,T,,) has the distri-
bution density with respect to the Lebesgue measure in R™ defined

as

folzr,.ooxy,) = A" e N Lo <.<a,} - (1.2)

Proposition 1.2. If (N;);~q is a homogeneous Poisson process with
an intensity A > 0, then for any t > 0 the random variable N, has

the Poisson distribution, i.e. for any integer n >0

P(N,=n) = e . (1.3)



Now we study the main properties of the Poisson processes.

Proposition 1.3. Let (N,);>o be a homogeneous Poisson process

of an intensity A > 0. Then

1. almost sure the function (N,);>q is increasing, with integer

values and right continuous;

2. conditionally with respect to N, = n, the vector (1y,...,T,,)
has the same distribution as n order statistics uniformly dis-

tributed on the interval [0,¢];

8. the Poisson process (N;);>q has homogeneous increments, i.e.

for all 0 < s <t and any integer n > 0

P(N, = Ny =n) = P(N,_y = n);

4. the Poisson process (Nt)tzo has independent increments, i.e.
for any time moments 0 =ty <t, <...<t,, and any integer

numbers ny,...,n,,

P (Nt1 =n,N,~N, =ny,...,N, -N, = nm>
m

- H P (th N th—l - le> ’
j=1



5. the Poisson process (N;)y>q is a process of rare events, i.e. for

anyt >0 and A >0

P(Noa— N, =1) = XA + o(A),

P (Nya— N, > 1) = o(A), (1.4)

as A — 0.

Remark 1.1. As we will see later all these properties are very use-
ful in the actuarial mathematics for the constructing the principal
insurance models. Indeed, the Poisson process is used to model the
number of claims on the time interval [0, t]. Especially, the indepen-
dent increments and rare events properties are very natural for the

insurance models.

1.2 Principal features

Proposition 1.4. Let (N,);>( be a stochastic process that satisfies

the following conditions:

e for almost every w, the trajectory (Ny(w));>q is zero in 0, in-

creasing, right continuous and with integer values;



e the process (N;);>o has independent and homogeneous incre-

ments;

. (Nt)tzo 1S a process of rare events, i.e. there exists A\ > 0, for

which the asymptotic properties (1.4) hold.
Then (N;);>o is the Poisson process of the intensity A > 0.

Proof. Firstly, we show that
P(N, =0) = e . (1.5)

We denote by f(t) = P(N, = 0). Indeed, due to the independence
N, and N;,, — N; we obtain

ft+s) =P(Nyy, =0)=P(Ny, =0, N, =0)
=P(Nyyo =N, =0, N, =0) = f(t) f(s).
Using here the rare events property, we get (1.5). Now we find
the distribution of N, for arbitrary fixed ¢ > 0. To this end, we set
G(t) = Ez™t for 0 < z < 1. Taking into account that the increments

are independence and homogeneous, we can represent the function

G(t+s) as

G(t+s) = EzNees™Ne 2N — Q(1)G(s) .



Moreover, for all t > 0
G(t) Z EZNt 1{Nt=O} = €>\t > 0.

Therefore, G(t) = €'9(*) and

g(z) = lim Glt) — 1 .

t—0

Then the rare events property directly implies that for ¢ — 0
G(t) = P(N, = 0)+2P(N, = )+EzN 1y 5o, = e M 42Xt +o(t) .

Therefore, g(z) = A(t — 1) and

o0

Gty =e Mt =Y on <e’\t “3”) .

n=0

This directly implies that for all ¢ > 0

Next, note that we can represent the process (IV;);>q as

o
Ny=> Lr<y
n=1



where T,, = inf{t > 0 : N, > n}. From here it follows that

n—1
P(T, >t)=P(N,<n—1)= Y P(N, = j)
j=0
n—1 ()\t)j e
= Z e M — =" / (v" ) do.
=0 I t

This implies that the distribution of T}, coincides with the distribu-
tion of a sum i.i.d. exponential random variables of the parameter
A > 0. Thus, in view of the definition (1.1), the random function

(N¢)i>0 is a homogeneous Poisson process. [

1.3 The last jump of the Poisson process

Let’s study the properties of the delay between the present time
moment ¢ > 0 and the last jumping moment Ty,. Putting 7y = 0,

we get

o
Ty = > Tty
k=0

Therefore, Ty, is a random variable. We will study the properties

of the two random variables V; = Ty, 1 —t and V* =t — Ty,.

Proposition 1.5. The random variable V; is independent of the o-
field, generated by the variables {N,, s < t} and has the exponential

distribution with the parameter A > 0.

10



Proof. We note that for u > 0

Vi< u} = {Typr — t<u} = U2 {Tppy —t < u, Ny = )
= UZOZO{NHM >n+1, Ny=n}
= U?:O{Nt+u — Nt 2 l,Nt:TL}

= {Nipy — Ne 2 1}

This immediately implies Proposition 1.5. O

Proposition 1.6. For any Borelian sets A C R and for any t > 0

PV e A) = e M lyeay +A / e M dv. (1.6)
AN[0,4]

Proof. It is clear that for this proposition it suffices to show (1.6)

for the sets of the form A = [0, u[ with u > 0. We note that V,;* <t

11



a.s., i.e. for u >t the equation (1.6) is true. For u < t we get that

PV € A) =PV <u) =» PEt-T,<u, N, =n)
n=0
=Y P(N,_,<n, N, =n)
n=0
:ZP N, , >0, N, = n)

=P(N, — N,_, >0) =P(N, > 0).
Therefore,
P(VieA) = 1—e M = /\/ e Mdu.
AN[0,4]

To finish this proof we note that

Hence Proposition 1.6. ]

Propositions 1.5 and 1.6 imply that

B(Typ — Ty) = (01— e, (1.7)

12



Remark 1.2. The equation (1.7) is called the "bus paradoz". If
we associate the jump moments of a Poisson process with the time
moments of passages of a bus through a station, then according to
(1.7) for sufficiently large t the bus waiting time interval [Ty, , Ty, 1]
is twice as long on average as an interval [T,,,T, ] since E(T, ,, —

T,) =1/

1.4 Exercises I

1. Let (N;);>o be a Poisson process of an intensity A > 0 and
(T,,)n>1 be his jumping moments.
(a) Calculate EN, and Var(N,) for ¢ > 0.
(b) Calculate the distribution of 7, for n > 1.

(c) Show that for all A € B(R")

P (T}, - ,Ty) € A|N, = n)

n!

= tTL /A 1{0<sl<sz<-~~<sn§t}d51 -+ dsy,. (1-8)

(d) Let Xi,...,X, beiid. random variables uniformly dis-
tributed on the interval [0,t]. Let Z,, ..., Z, be the ordi-

13



nal statistics of Xi,...,X,. Show that for all A € B(R")

P((Zy, - ,%Zy) €A
n!

= tTL " 1{0<81<82<-~-<sn§t}d51 ce dSn . (1.9)

Deduce that conditionally with respect to {IV, = n} the
random variables (77,...,7},) has same distribution as
the order statistics of n uniform independent random

variables on the interval [0, t].

Show that for 0 < s < ¢
s\ k s\ N~k
P (N, = kIN;) = ) (-3 tpen

Show that (V;);>¢ is a process with homogeneous incre-
ments in the sense that for all 0 < s < ¢ the increment

N, — N, has the same distribution as N,_,.

Show that (V;);>o has independent increments, i.e. for
any increasing time moments 0 =g < t; < --- < t; the

random variables
Ntl :Ntl _Nt07 Ntz _Ntla"'7 Ntk _Ntk 1

14



are independent.

(h) Show that (N;);>( is a rare events process, i.e. for any

t>0and A >0
P(Niya—N, =1) = AA+0(A) ,P(Nya—N, > 1) = 0(A)

as A — 0.

2. Let (Ntl)tzo and (NtQ)tzo be two independent Poisson pro-
cesses of the intensities A and p. Denote by (7},),>; the re-

newal moments of (N}');>.

(a) Calculate the distribution of the random variable N2 o
N7 .
(b) Extend the result of (a) to random variables N2 —N2 |
n+k n

k> 1.

3. Let 6 be positive a.s. random variable with the finite variance

o7 > 0 and independent of (N,);>¢. It is said that the process

N, = Ny, t2>0,

is mized Poisson process of the mized variable 6.

(a) Calculate P(N, = n). Deduce that N, has not usually

15



Poisson distribution.

(b) Shaw that Var(N,) > EN, for all t > 0, while we have

the equality for the Poisson processes.

(c) Calculate the distribution of N,, when A\ = 1 and 6 has

the Gamma distribution.

16



2 Asymptotic theory

2.1 Renewal equation

Let (7;);>1 be ii.d. positive random variables with a distri-
bution function G. Now we consider the counting process for this

sequence defined as
(o @]

Nt = Z 1{Sj§t}7 (21)

j=1
where Sy = 0 and 5; = 2{21 m, for 7 > 1. Note that if the distri-

bution G is exponential, then (N;);~( is the Poisson process. Using

the large numbers law (Theorem A.1), one can establish that
lim —t = — as. (2.2)

Definition 2.1. We say that a random wvariable £ is arithmetic if

there exists d > 0 such that
Pely =1,

where T'y = {(kd)_o oo} 15 the grid of size d > 0. A random

variable & is called non-arithmetic if P(§ € I'y) < 1 for any d > 0.

In this section we need the Blackwell Renewal Theorem (see, for

17



example, in [3]):

Theorem 2.1. Assume that 1, is non-arithmetic and 0 < En; <
00. Then the expectation of the counting function has the following

asymptotic properties:

and for any h > 0

lim E (N — N,) = —.
tggo (t+h +) En,

We will use this theorem to study the renewal function

Z 1{5 <t}» (2-3)

7=0

where V' : R, — R is bounded over all the finite intervals function.
One can check directly that this function satisfies the following re-

newal equation

Q(u) = V(u) + /Ou Q(u— z)dG(z). (2.4)

Now we study this equation.

Theorem 2.2. Assume that the distribution G is non-arithmetic

18



and the function V is bounded over all finite intervals. Then the
renewal function @Q is the unique solution of the renewal equation

(2.4) among the functions which are bounded over all finite intervals.

Proof. Note that the Blackwell theorem implies that EN, < oo
for any ¢ > 0. Thus, if V is bounded on each finite interval, then

the renewal function is bounded by

sup |Q(u)] < sup |[V(u)|(EN, + 1) < o0
0<u<t 0<u<t

on each finite interval [0, ¢].

Moreover, let B(R,) be a linear space of R, — R bounded on
each finite interval functions. We will introduce the following linear

B(R,) — B(R,) operator

t
T(Hw) = [ flu=2)dG(:).
0
In this case we can rewrite the renewal equation as

f=V+T(f).

19



This implies that for all n > 1
f=Y_TIV)+T(f). (2.5)

To study this equation one needs to know how to calculate the n-th

power of T'. Let’s show by induction that for each n > 1

T"(f)(u) = E f(u—5,)15 <uy- (2.6)

For n = 1 this is the definition. Assume now that this equality holds

for some fixed n > 1. We set

flu) = T"(f)(u) = Eflu—>5,)1s, <uy

+oo
- /0 D1y dFs (1),

where Fg (y) = P(S,, < y). Using this function, we can represent
the (n + 1)-th power as

) = TR = [ B2 = 5,) 15, 0)d6C)

=E f(u —NMp+1 — Sn) 1{Sn§u—ﬂn+1}

= E f(u-— Sn—l—l) 1{Sn+1§"} '

20



It means that equality (2.6) is true for any n > 1. Using it in (2.5),

we get that
fw) = S BV(u-8)1g e+ Bf(u—S,1) (s, <u - (27)
j=0

According to our condition, we try to solve the equation (2.4) among
the functions which are bounded on each finite interval. So, the last

term in (2.7) is bounded by

[Eflu=51) L, <uy | < S [F(8)[P(Sy41 <)

and, by the large numbers law (Theorem A.1), for any fixed u > 0
this term tends to zero as n — 0o. So, taking the limit in (2.7) as
n — 00, we obtain that any solution of the equation (2.4) which

is bounded on every finite interval is equal to the renewal function

(2.3). O

2.2 Smith theorem

Now we study the asymptotic properties of the function (2.3).

To this end one needs the following definition.

Definition 2.2. We say that a R, — R function V is directly

21



integrable by Riemann on [0, 00[ if

sup |V(z)| < 0. (2.8)

i k—1<z<k

Using this definition, we will study the asymptotic properties of the

function (2.3) as t — oo.

Theorem 2.3. Let F' be a right or left continuous R, — R function
directly integrable by Riemann and on each finite interval it has a
finite number of discontinuity points. Moreover we suppose that 1,
is non-arithmetic and 0 < En; < oo. Then the function (2.3) has
the following limit
1 oo

lim Qu) = =— V(z)dz. (2.9)

U—00 ET]l 0
Proof. First, we show this theorem for linear combinations of

indicator functions, i.e. we assume that

m

V(z) = a1y, (2) + > anly (@), (2.10)
k—2

where 0 = tp < t; < ... < t, < oo. It’s easy to see that this

m

22



function for u > t¢,,

Qu) = E Z 1{u t,<S;<u} + Z oy, B Z 1{u 1 <Sj<u—t,_;}

7=0 k=2 7=0
m
=Y wEWN,, - N,,) - «aEAN,,
k=1
m
- Z akE(ANu—tk_l - ANu—tk)a
k=2

where AN, = Zj’;l 1;g,—¢- Note that for any h >0

ANy < Ny = Niy,

and, by the Blackwell theorem,

2h
limsup EAN, < —.
t—o00 E771
Therefore,
lim EAN, =0
t—o00
and
1 & 1 [~
1 — —t = — V(z)dz.
Jim Q) = g Yot = g [ Vs

23



Let now V be a function that satisfies the conditions of this theorem,
i.e. it is directly integrable by Riemann and has a finite number of
the jumps on all finite intervals. In this case, for each L > 0 we can

find a sequence of functions (V,,,),,>; of the form (2.10) such that

lim sup |V(z)—-V,(x) =0.
m—0o0 0S$§L
So, we can represent the function @ as

where Il(u) =E Z] =0 m( SJ) 1{u—L§Sj§u}7

= Z = Vin(u—55)) Lyu_r<s,<u}

and

Mg

1{5 <u—L}*
7=0

Taking into account that V,,(z) = 0 for z > L, we find

o0

=E Z Vm(u - Sjlsjgu} )

24



and, therefore,

U—00

Moreover,

1 [ I
lim I,(u) = E771/ V., (2)dz = E771/ V., (z)dz.
0 0

’12(u)‘ S sup ‘V(Z) - Vm(z)’ (E (Nu - Nu—L) + EANu—L) .

0<z<L

And we get that

limsup |[Iy(u)] < sup |V(2) = V,,(2)] =—.

U—00 0<z<L E771

This implies that for any L > 0
lim limsup |Iy(u)] = 0.

m—o0 400

Now we consider the last term in (2.11). Setting

25
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we can estimate it from above as

[I3(w)| < E Z Z |1{u k<Sj<u—Fk+1}
j=0 k=L+1
e} o
< EZ Z Uk Liu—k<s;<u—k+1}
§=0 k=L+1
o0
< Z Uk (1 + E(Nwk), 41 = Nwny,) + EANufk)Jr)
k=L+1
oo
<sup (1 + E(N, ., —N,) + EAN,) Y ;.
220 k=L+1
Thus,
lim limsup |I5(u)] = 0. (2.14)
=0 y—oo
From here, taking into account (2.11), we have
=g [T v < 0w - g [ v
U) — —— y)ay u) — o~ — y)ay
En Jo ! EnJo "
1 L
+ = Vin(y) — V(y)|dy
B [ 1Valt) = V)
1 (o)
t B V(y)ldy + [Iy(u)] + [L3(u)].
T JL

26



Taking in this inequality the limit as

lim sup lim sup lim sup,
L—oco m—oo  u—00

we get (2.11). Hence Theorem 2.3. [

2.3 Exercises 11

1. Let (NVy);>0 be counting function, that is

Ny = Z Lo +otm, <ty

n>1

where (7;),>1 arei.i.d. random variables uniformly distributed
on the interval [0, z] with a fixed z > 0. Calculate the follow-
ing limits

(a)
EN,

lim ;
t—oo 1 + 2t

tliglo E (N3 — Nayi4) 5

EN,,
im :
t—oo \/1 + t2

27



lim E (Nt N, /3) :

t—o00

lim sin(1/t) E Ny ;

t—o00

lim (1 - el/t) EN,,.

t—o00

2. Are the following functions directly integrable by Riemann

1 _» sin(z)
1422’ I

?

Y

3. Calculate the limit

t—o00

1 > 1
m [ —— +EY — 1
mlire " le—i—(t—Tj)Q =0 |
J:

where T; = Zgzl ¢ and (§5)j>1 are iid. Gaussian random

variables with the parameters (0,1).

28



3 Cramér - Lundberg models

3.1 Main definitions and results

In this section we consider non-life insurance models in which the
claim sizes are defined by i.i.d. positive random variables (Y});>,
with

w=EY <oo. (3.1)

Moreover, we assume that the claims number on the time interval
[0,] is a homogeneous Poisson process (N¢);»( of intensity A > 0
defined in (1.1). This means that the time moments for claims
occurrence (7),),>; are the jumps of the Poisson process (IV¢);>q

and the inter-arrival times
leTl’ Tk::Tk‘_Tk—17 k22, (32)

are i.i.d. exponentially distributed random variables with Er; =

1/X. We define the total claim amount process as
Ny
X, =) Y (3.3)
j=1

and X, = 0 for N, = 0. In the theory of stochastic processes such

process is called a compound Poisson process. Moreover we assume

29



that a continuous stream of revenue brings in ct during the time
interval [0,t], where ¢ > 0 is the premium income rate. In this case

the risk process is defined as
U =u+ct —X,, (3.4)

where u > 0 is the initial endowment of the insurance company.

Definition 3.1. The event
A7 = {3t >0 suchthat Uy < 0} = U o{Ur <0} (3.5)

1s called the ruin.

The definition of the risk process (3.4) immediately implies that

This means that this set is measurable. The moment 7* when the

risk process goes below zero is called the ruin time:

™ =inf{t>0: U < 0}. (3.7)

30



The ruin probability or ruin function is given by
Y(u) = P(A™ |[Uy=u) = P(7" < o0). (3.8)
Setting
o' = inf{k>1: Uy < 0} (3.9)

and taking into account the definition (3.8), we obtain
Y(u) = Plo" < 00). (3.10)

Firstly, we study the properties of the total claim amount process

(3.3).

Theorem 3.1. For the process (3.3) the following law of large num-
bers holds

1
lim ;Xt = A a.s. (3.11)

t—o00

Moreover, if EY? < oo, then for the process (3.3) the limit theorem

holds also, 1i.e.

7 — N(0, \EY?) as t— . (3.12)

Proof. To show (3.11) we note that, in view of the definition of

31



the Poisson process in (1.1), for any ¢t > 0
Ty, <t <Ty . (3.13)

Therefore, taking into account that N, — oo a.s. as t — oo, we

obtain through the large numbers law that

Therefore, from the inequalities (3.13) it follows that

N,
lim —t =)\ a.s.
t—o0

and, using again the large numbers law given in Theorem A.1, we
come to the limit (3.11). As to the second equality, note that the

deviation X, — Aut can be represented as

X, — At = SNt + )\,u(TNt —1), (3.14)
where
Sn:an and n; =Y; —p+p(l - A1)).
j=1
Note that

En; =0 and En?=EY?,

32



and, in view of (3.13),
0<t—Ty <7y

Moreover, we have

00 +o0
ETNt-‘rl - Z ETk—I—l 1{Nt=k} < ETl + )‘/ z T(ta Z) e—)\z dz,

k=0 0
(3.15)

where
Y(t,2)=> P(T, <t <T+2)=At—(t—2),),
k=1
and (z), = max(0,z). Therefore, the bound (3.15) yields
1 t o]
Ery 1 < X + )\2/ 22e M dz + )\275/ e M dz
0 t

i.e.

sup E7y ) < o0

>0
and, therefore,
Ty —t
P — lim ! =0
t—o0 ﬁ

Using this equality in (3.14), we obtain the asymptotic representa-
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tion
Xy — At SN,
Vit Vit

where 0p(1) is a term going to zero in probability as ¢ — co. More-

+op(1), (3.16)

over, let now m = [\¢] and [z] be the integer part of the number x.

Then
2
E (sNt - sm) —E5% —2ESy S, + ES% =En’E|N, - m|,

i.e.

E (sNt - Sm>2
t

<1y =
_t -

Using this in (3.16), we get

X, =t S,
Dt A Pmoy ().
Vit Vit or(l)

Now, applying to the sequence (S,,),>; the central limit Theorem
A4, we come to the limit property (3.12). Hence Theorem 3.1.
0

Now we come back to the ruin problem, i.e. we study the prop-

erties for the ruin probability (3.10).

Proposition 3.1. (Almost sure ruin) If ¢ < pX, then ¥(u) =1
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for all u > 0.

Proof. Let ¢ < Au. We can represent the sequence (Ug, )>1 as

k
Up, =u— Y &, (3.17)
j=1

where §; = Y; — c7;. In this case, by applying the strong large

numbers law (Theorem A.1) for S;, = 2521 §; in the equality (3.10),

we find that
U S,
im 1 — — lim 2" = _E& =S4 <0 as
n—oo N n—oo N A

So, taking into account (3.9) and (3.10), we obtain that ¢(u) = 1
for all w > 0. Let now ¢ = Ay, i.e. E& = 0. In this case note that

forany k> 1and € >0

P([&] > €) = P([&1] > €) > 0.

Using Kolmogorov three-series theorem and Kolmogorov zero-one

law (Theorems A.2 - A.3), we obtain that

limsup S, = 400 as.
k—ro0
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From the equalities (3.9) and (3.10) it follows that

1 =P(limsup S, = +o0) < P(o" < 0).

k—o0

Thus, ¥(u) = 1. Hence Proposition 3.1. [

Remark 3.1. Proposition 3.1 means that insurance companies have
to choose the premium rate ¢ > 0 such that EE, < 0. This s the
only possibility to avoid being bankrupt almost sure in the framework
of the Cramér - Lundberg model. So, if E& < 0, then we can hope
that the ruin function ¥ (u) will be less then 1.

Definition 3.2. The Cramér-Lundberg model satisfies "net profit

condition” if

1
Egle(Yl—CTl):/L—CX<O. (3.18)

In the sequel we will assume that the premium rate is equal to
¢ = (1+p)An, (3.19)

where p is a positive constant, which provides the net profit condi-

tion.
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3.2 Exercises II1

Let (Y;);>1 be i.i.d. random variables with values in R, and with

the finite on a neighborhood around 0 generator function defined as
my (h) = Ee"i .

Let (NV;);> be a homogeneous Poisson process of an intensity A > 0
independent of (Y});>;. For any t > 0 we set

Nt

X,=> Y, and U, =u+ct—X,

j=1

with u > 0 and ¢ > 0.
1. Calculate expectation and variance of U,.

2. Calculate the generator function for X,.

3. Let @ > 0. Show that there is only one solution ¢, for the
equation

Ee %) — 1 for any ¢t > 0.

4. Show that EU, > u for ¢ = ¢,. What is the limit of ¢, as

a— 07
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3.3 Lundberg inequality

In this section we will study the behavior of the function 1 (u)
under the condition (3.18). Moreover, we assume that the sequence
of claims amounts (Y});, satisfies the following condition, called

the Lundberg condition,

H,) There exists § > 0 such that
EeV1 < 0. (3.20)
Also we define the Lundberg function as
L(z) = In Ee® . (3.21)

The condition Hj ) implies that the function L(x) is finite in absolute

value for any 0 < z < 4.

Proposition 3.2. We assume that the condition Hy) holds. If
the equation L(x) = 0 has a strictly positive root, then this root

1S unique.

Proof. First, we note that the function L is convex. Indeed, by

Holder’s inequality for 0 < o« < 1 and for 0 < z,y < & we obtain
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that

L(oz + (1 — a)y) = In (E e e(1-0)vér)
<In ((Eexfl)a (Eeygl)1*a>
= In(Ee™) + In(Ee¥é)i—2
= aL(z) + (1-a)L(y).

We assume that there is 0 < r; < ry such that L(r;) = L(ry) = 0.

Then for all z € [ry,ry] we obtain
L(z) = L(ar, + (1 = a)ry) < aL(ry) + (1 - a)L(ry) = 0,

where a = (ro — 2)/(ry —7r1). If L(2) = 0 (ie. Ee* = 1) for
all 1, < 2z < 7y, then we would have E &7 e*t = 0 and, so & =
Y| —ecr = 0 a.s. But this is not possible since the random variables
Y, and 7 are independent. Therefore, it exists 0 < r; < 2z < 1y
such that L(z;) < 0. Similar, as L(0) = 0, we get that it exists
2y € [0, 7] such that L(z,) < 0. Setting oo = (2 — 1) /(21 — %), we
find that

0 = L(ry) = Lazg + (1 —a)z;) < aL(z,) + (1 —a)L(z;) < 0.
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This implies the uniqueness of the positive root. Hence Proposition

3.2. O

Definition 3.3. If the equation L(x) = 0 admits a root r > 0, then

this root is called the Lundberg coefficient.

We will assume the following condition.

Hy) The equation L(xz) = 0 admits a root r > 0.

Remark 3.2. It is easy to see that the assumptions Hy)-Ha) imply
the net profit condition (3.18). Indeed, if E& > 0, then by Jensen

imequality we obtain that
L(z) = In Ee® > In e*B8 > 0

for any x > 0. So, the function L has no strictly positive root.

Theorem 3.2. (Lundberg inequality) Under the conditions Hy)-
Hy) for all w > 0 the ruin function admits the exponential upper
bound

Yu) < e . (3.22)

Proof. First, one notes that according to (3.10), we can represent

the ruin probability as the distribution tail of the extreme value for
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a sequence of sums of i.i.d. random variables:

Y(u) = P(,icrzlf1 Up, <0) = P(I}ggg Sy > u),

where S = 25:1 §; and §; =Y, — c7;. Let now

Un(u) = P(lrgnl?%{n Sp > u).

It’s obvious that

Blu) = lim o, (u).

So, for this theorem it suffices to show the inequality (3.22) for the
functions v, (u) for all n > 1. We will do it by the induction. We

start with n = 1. In this case S7 = £; and by the Markov inequality
Pi(u) =P > u) < EBeSe™™ = e,

Moreover, if the inequality (3.22) holds for some fixed n > 1, then
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for n + 1 we get

Vi1 (u) = P(1§I1?§31{+1 Sy > u, & >u)

P( max S, >u,& <wu
+ (1§k§3z(+1 k &1 < u)

= <
P& >u) + P <2<r]£1<ar>1<+1 S >u, & < u) . (3.23)

We estimate now the first term in (3.23) more precisely, i.e.
P(& > u) < e ™Ee™ Lie,su - (3.24)

Taking into account that S), is the sum of i.i.d. random variables
and using the inequality (3.22) for 1,,(-), we can estimate the second

term in (3.23) as

P< max Sk>u,§1§u>

2<k<n+1

n

=P max ; > u— <u
L0 D &6 <

Jj=1

= Elg oy ¥(u—6) < e "Bl g€’

Using this inequality and the upper bound (3.24) in (3.23), we ob-
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tain that

Y (u) <e ™ (E eré Ligsuy + Ecé! l{glgu})

— ¢ TUR er£1 — Y

So, for all n > 1 the functions ,,(u) < e~ ™. Taking here the limit

as n — 0o, we get the bound (3.22). Hence Theorem 3.2. O

Example 3.1. We consider the Cramér-Lundberg model in which
the random variables (Yj)jzl are exponential with a parameter v >

0. In this case the net profit condition (3.19) takes the form

c=(1+p)A/7,

where p is a positive constant. Note, that the condition Hy) holds
for & < . Moreover, it is easy to see that the Lundberg coefficient
in this case is

A P

TEYT T Ty

So, in view of the Lundberg inequality, we get for all u > 0

P(u) < e VT, (3.25)
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3.4 Exercises IV

We consider the risk process U; = u + ct — X, for a reinsurance

N, . .
company, where X, = ZZZfJ(Y] — K), with K > 0, (N);>0 is a
homogeneous Poisson process of intensity A > 0 independent of the
iid. sequence (Y});>; random exponential variables of parameter

v > 0. We choose the premium rate as
c=1+pAE(Y; -K), with p>0.

1. Calculate c.

2. Show that

3. Show that X, has the same distribution as Xt = Z;EIYJ-,

where (N,);~o is a homogeneous Poisson process of the inten-

sity A= )e K7 independent of (Y}),;>.

3.5 Fundamental equation for the non-ruin

probability

Denote by ¢(u) = 1 —1(u) the non-ruin probability.
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Theorem 3.3. We assume that the Cramér-Lundberg model sat-
isfies the net profit condition (3.18) and the distribution function
Fy () of the random amounts (Y;) has a density fy. Then the non-
ruin probability ¢(u) satisfies the following integral equation

0w = T+ / ou—y)dFy,(y).  (3.26)
where

Fy () = /0 " Fy(2)dz and Fy(y) = 1 - Fy(y) = P(Y; > ).

==

Proof. Taking into account that S, = Z?:1 §; and (§;);>; are

i.i.d. random variables, one has

¢(u) =P(sup S, <u) =P(§ <u,sup S, < u)
n>1 n>2

P& <u SUPZ§ <u—&)=Elg o yo(u—£&)

n>2

=E 1{Y1—C’rl§u} ¢(u -+ CTl) )
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i.e.

[e%¢] u-+cv
o =2 [ [ syt dpm) e

0 0

= e [T [Tot -y aryty) de.
u 0

c
Taking the derivatives in this equality, we find that

o) =20 -2 [ ou-)dry )
0

C

and, therefore,

o(t)—p(0) = /0 o(u) du—2 /0 /0 b(u—y) dFy (y) du. (3.27)

Cc

o

Moreover, the integration by parts yields

/Ot /Ou d(u —y) dFy (y) du
-/ t (600 Fy) + [ Fy )¢/ (u =) dy) du

—o0) [ Py (u)du + / F(w) < / " y)du> day

= /Ot Fy (y)o(t — y)dy .-
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Using now the condition (3.19), we obtain from (3.27) that
1 ’ —
¢t—¢0=/¢t—yF y)dy
(t) — ¢(0) T+ Jy (t—y) Fy(y)

1+p/ ot -y dFy (). (3.28)

It should be noted now that ¢(oo) = 1. Therefore, the passing here

to the limit as ¢ — oo yields

and we obtain from (3.28) the equality (3.26). Hence Theorem 3.3.
O

Note that (3.26) immediately implies the equation for the ruin prob-
ability ¥ (u) =1 — ¢(u):

FY,I(U) 1
+
1+p 1+p

blu) = /0 Cbu—y) By ), (3.29)

where FY,I(@/) =1-Fy;(y).

Example 3.2. In the case, when distribution of (Y;);>, is exponen-

tial, as in the example 3.1, i.e. Fy-(y) = 1—e™ Y, this equation has
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the following form

B e~ U ~y u B
P(u) = 15, + 1—1-,0/0 Y(u—y)e dy. (3.30)

We can resolve this equation directly and get that the solution is
(u) = —— e TV, (3.31)

Remark 3.3. Note that, if we compare the form (3.31) with the
upper bound (3.25), then one can see that the Lundberg inequality

gives sharp upper bound for the coefficient (1 + p)~*.

3.6 Exercises V

Let (Y});>; be ii.d. random variables with values in N and
N a random variable with values in N independent of (Y;); whose

distribution is of the form
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where ¢qg = P(N = 0), for a < 1 and b € R are fixed constants.

Moreover let

N
X:ZYj and pp:=PX =k).
j=1

1. Show that the Poisson and binomial distributions verify the

previous hypotheses on N.

2. Let S, = >7_, Y;. Show that for i > 1

Y, 1
E(Zls)=-.
(3hs)=
3. Show that
E (a + bﬁ S, = n)
n
= k\ P(Y; =k)P(S,_, =n—Fk)
= a+ —_
n P(S,=n)
k=0
4. Show that
90 5 if P(Y;=0)=0;
Po =
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5. Show that forn > 1
o0
=3P, -
i=1

6. Show that the probabilities p; can be calculated recursively

(Panjer’s algorithm):

Pr =

Mw

Y, = Dpp_sy k> 1.
1—aPY1—0 _1<a+ ) 1= Pk

3.7 Cramér bound

In this section we will study the limit of 1(u) when u — oo for

small claims, i.e. for claims that verify the condition Hy).
Theorem 3.4. We assume that the conditions Hy)-Ha) hold with
0 < r < ¢ and the random variable Y| has a density fy. Then

lim e"™(u) = ¢, >0, (3.32)

UuU—00

where

pu
rf ze?P(Y; > z)dz

Py =

and the parameter p > 0 is given in the net profit condition (3.19).
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Proof. First, note that Remark 3.2 implies the condition (3.19).

Moreover, by the Theorem 3.3, we can write the equation for v

() = qFy(u) + g / Y-y dFy),  (333)

where ¢ = (14 p)~!. From here we directly get the equation for the

function Q(u) = e"™(u), i.e.

where V(u) = ge"*Fy (u) and

G(u) = q/ e P(Y] > z)dz.
K Jo

Now let us to show that G is a distribution function, i.e. G(4+00) =

1. Indeed, the integrating by parts yields

G(+o00) = % / e P(Y, > z)dz
0

= ierZP(Yl > 2) ‘oo—l—iEe’"Yl .
T 0 ru

Taking into account that 0 < r < §, we obtain
P(Y,>2) <EeMe 072 5 0 when z— . (3.35)
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Therefore,

G(+o0) = —L 4 %Ee’“yl.
T T

Note here that the definition of r and (3.19) imply
A+re an

Ee™ = =1+ =,
A q

i.e. G(+0o0) = 1. This means that the equation (3.34) is a renewal
equation and the solution @ is a renewal function for i.i.d. random
variables (n;);-, with the distribution function G. Let’s study now
the function V. We note that the inequality (3.35) implies the

following upper bound for V'

q o0
V(u) = = / e P(Y, > z)dz
KTy

q E €6Y1 e—(é—r)u ’
o

IN

i.e. the function V satisfies the Riemann direct integrability condi-

tion. This means that we can apply Smith theorem to the function

Q, i.e.

1 o0

where



/ V(z)dz = q/ e Fy r(z)dz
0 0

q . q o0
_ rz 00 rz
= e Fy(2) 57 + r /0 e P(Y, > z)dz

1—gq

1
=-14 - G(+0) =
roor

<

This directly implies (3.32). Hence Theorem 3.32. [

3.8 Exercises VI

1. We consider a Cramér-Lundberg model with the risk process
U =u+ct—X,;,

where the total claim amount process X, = Z;V:tl Y.

(a) Show that the random variables X, — X, and X, are

independent for 0 < s < t.

(b) Show that the random variables X, — X, and X,_, have

the same distribution for 0 < s < t.

(c) Calculate
E(e”"|X,).
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(d) Assuming that the Lundberg coefficient r > 0 exists,
show that
E(e VX)) =e"Vs,

(e) Show that Ee~"Ut independent of t.

2. Assume that in a Cramér-Lundberg model the distribution of

the claim amounts Y; is given by the density
fo(@) =a"——z""e ™™ forz>0 (a>0,n>1).

(a) Calculate the generator function Ee™1. For which values

h > 0 this function is well defined? Calculate EY;.
(b) Find the net profit condition for this model.
(c) Calculate the Lundberg coefficient for n =1 and n = 2.

(d) Write the integral equation for the ruin function v, (u).

Find this function for n = 1.

3.9 Large claims

In this section we study the problem of ruin for the claims
(Y;);>1 which do not hold the condition Hy), i.e., Ee'"t = +oo
for all § > 0. We replace the condition Hy) by a weaker condition,

i.e. we assume that the distribution of (Y});-, is subexponential.
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Definition 3.4. We say that a random variable Y is subexponential
if i.i.d. random variables (Y});>, having the same distribution asY
for all n > 1 satisfy the following condition
n
P(Y, Y, > 2)

li =n. .
I =55 = n (3.36)

Example 3.3. Let Y a positive random variable such that for any

z>0

1

Let’s show, by the induction, that Y satisfies the condition (3.36).
Assuming that the property (3.36) holds for n—1, we will check this

condition for n. To this end we set
F,(2) =P(S, > 2),

where S, = Z?Zl Y;. We have
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where F is the distribution function of Y and F(z) = F(z). So,

we obtain that

Fn(z) _ z Fn—l(z _t)
F = 1 +/0 Tdm&). (3.37)

Then we can represent the last term in this equality as

R Ca)) *F, (2 —t)
/0 e dF(t) + / T dF(t)

= Il,r(z) + I2,r(z)7

where 0 < r < 1. Note that for the function F(z) =1—(1+2)"¢
for all t > 0 we have

Thus, in view of the induction hypothesis for all t > 0

F —t
lim 7"i(z )

=n—1.
2—00 F(z)

Moreover, for t < rz with 0 < r < 1 we obtain the following upper

bound

Fn—l(z —t

P12 _ n-1
MWD Ty S s e T S i e
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Therefore, by the dominated convergence theorem,

lim [, ,(2) =n—-1
z—00

for all 0 <r < 1. As to the function I, (z), we obtain that for any

z>0

= ((1 +1m)a - (1+12)a> (L+2)%.

This means that for any 0 <r <1

limsup Iy, (z) < r % — 1

Z—00

and, passing here to the limit as r — 1, we find

limsup limsup I, ,.(2) = 0.
r—1 2Z2—00 ’

Therefore, the equality (3.37) implies directly (3.36).

Proposition 3.3. Let Y be a subexponential random variable. Then
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for any € > 0 it exists K = K(g) > 0 such that for any n > 1

n(?)

sup —
>0 F(2)

< K(1+¢)", (3.38)

|

where F,(2) = P(S, > 2), F(2) = Fi(2), S, = Z?Zl Y; and

(Y;);>1 are i.i.d. random variables of the same distribution as'Y.

Proof. We set

then we get

M — 14 Iy P(S”iz_t)dF(t)
F) F(2)
g1+%Pm+%@?nsa
. P(S:>2) _
=1+ a, < F(z) 1> )

Note here that for any € > 0 there exists 7' = T'(¢) > 0 such that

—1) < (1+¢).
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Therefore,

Qppp < Sup = + sup —

< an(l+e) + Ko,

where
1

Ko=14— .
0 TPy >

This inequality means that for n > 1
i1 = (L+e)a, + B (3.39)

with a1 = 1 and §,,; = o, — (1 +€)a,, < Ky. We can resolve

this equation and find that
n .
an =1+ ar + Y (1+e) B,
j=2
n .
< Q4"+ KoY (L4e)
j=2

< K(1+e)",

where K =1+ Kpy/e. From here we obtain (3.38). O

In Section 3.5 we have shown that the probability of non-ruin
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¢(u) satisfies the equation (3.26). Now one needs to resolve this

equation.

Proposition 3.4. We assume that in the Cramér-Lundberg model
the distribution function Fy (+) for the random amounts (Y;),>, has
a density fy and p = EY, < co. Moreover, we assume that this
model satisfies the net profit condition (3.18), i.e. ¢ = Au(1+p) with
p > 0. Then the solution of the equation (3.26) has the following

form
p(u) = p Z ¢ P(S; <u), (3.40)
j=0
where p = p/(1+p), ¢ = 1/(L+p), S =0, §; = 32/, Y; and

(}7)]-21 are i.1.d. random wvariables with the distribution function

Fy;(-) defined in (3.26).

Proof. Let us denote the right part in equality (3.40) by g, i.e.

g(u)=p > ¢P(S;<u).
=0

It is clear that this function is bounded, i.e.
- p
< I = 2 =1.
gW)_pigq .
]:

Moreover, one can see that this function satisfies the equation (3.26).
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o0 i
g(u) = p + pgP (Y1 < u) +quJP<ZYl§u—Y1>
j=2 1=2

= p + pgP(Y1 <u)
s . u ] ~
+pzqa/ P(Zylgu—t> dFy ;(t)
j=2 0 =2
u

=p+q /o g(u—t)dFy ().

We show now that g(u) = ¢(u). To this end we set d(u) = g(u) —
¢(u). We have already seen that |[0(u)| < 2 for all u > 0. Let now u
be a fixed positive number. Denote by M, = supy,, [6(¢)|. Then
there exists 0 < tg < u such that M,, = |d(uo)| because the function

0(+) is continuous on the interval [0, u]. Therefore,

M, = 16(t0)] = g / " S(uo — 1) dFy, (1)

IN

q / 16(ug — 1)] dFy., (1)
0
< qM,P(Y1 <up) < qM,.

Taking into account that ¢ < 1, we get that M,, = 0 for all v > 0.
Therefore, ¢(u) = g(u) for any v > 0. O
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Theorem 3.5. We assume that all the conditions in Proposition 3.4

hold and the distribution function Fy ;(-) is subexponential. Then

lim ¥(w) :pfl.

U060 FY,I(U)

(3.41)

Proof. The equality (3.41) implies directly that

blu) = 1— 6w =p > @ P(S; = u).

J=1

Thus, taking into account that

o0
pY id =pt,
j=1

we have
_ (u) _ -1 o }
Au) = Fy 1 (0) p =D jz:; ¢’ oj(u),
where }
_ PS>
Uj(U) B FY,I(U) a

Now we fixe € > 0 such that § = g(1 +¢) < 1. Then, by Proposi-

tion 3.3, we obtain that there is a positive constant K such that for
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any j > 1 and for all u > 0
¢ oj(u)] < K6 + ¢/ j.
Moreover, for any 7 > 1

ulg)(r)lo o;(u) = 0.

Then the dominated convergence theorem directly implies that

U— 00 U—00

lim A(u) = p Z ¢ lim o;(u) = 0.
j=1

Hence Theorem 3.5. O

Example 3.4. We consider the Cramér-Lundberg model in which
the positive random variables (Y;);>; are distributed according to

the Pareto distribution function F(-) defined as

1
F(z):P(YSz):l—W

for z > 0. In this case p = 1/« and, therefore, for all z >0

1

Fy(z) =1 - (S
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We have seen already that this distribution function is subexponen-

tial. Therefore, in this case, in view of Theorem 3.5, we obtain that

1

u®P(u) = p~* as u — oo.

3.10 Exercises VII

Let F' be some distribution function for the claim Y > 0. We
denote F(x) = 1 — F(z). We say that F is light tailed if there exist

a and b > 0 such that

F(z) < ae™

for all = (or that F' is heavy-tailed). Let
x; = inf{z|F(z) >0} and =z, =sup{z|F(z) <1}.
We set
ep(u) =EY —u|Y >u) for wue€ (x,z,).

1. Show that ep(u) can be written as

1 oo
ep(u) = F(u)/u F(z)dz.

2. Show that if F(x) > 0 for all z > 0 and that F' is continuous,
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then we have for any « > 0

Fo= et am)

. Show that if lim, 4 €p(u) = +00, then F' is heavy tailed.

. Show that if F' is heavy tailed, then the generator function of

Y is infinite for any z > 0.

. Calculate ep(u) when Y is an exponential random variable of

a parameter A > 0.

. Calculate ep(u) when Y has the Pareto distribution

o= (i)

of parameters Kk > 0 and o > 1.

. Show that if Y has the Gamma distribution of order m > 1

and a parameter v > 0, i.e.

then I is light-tailed.

. Show that if Y has the Weibull distribution with parameters
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c>0and 7>0,ie.
F(z) = exp{—cz"},
then F is light or heavy tailed depending on the value of 7.

3.11 Ruin problem with investment

In this section we consider an insurance company that invests its
capital in a Black-Scholes market with the two assets B = (B;);>
and S = (5,)>o defined as

dB, =rB,dt, By=1,;
(3.42)
dS, =aS,dt+ oS, dw;, Sy>0,

where (w);> is a Brownian motion, r, a and o are non-negative

constants. Let (F;);>o be filtration on this model defined as
F,=oc{w,, X,, s <t}, (3.43)

where (X;);> is the total claim amount process defined in (3.3).

We assume that in each time moment ¢ > 0 the insurance company

has 3, of the assets (B) and ~; of the assets (S). So, the wealth (the
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risk process) at the instant ¢ > 0 is equal to
Ut == /BtBt + ’YtSt . (34:4)

We denote by 7, = (8;,7,) and assume that the process ™ = ()~
is adapted to the filtration (F);>o. In this case 7 is said a financial

strategy.

Definition 3.5. Financial strategy m = (7,);>¢ with 7, = (8;,7,) is

said to be admissible if for any t >0
t
/ (18] +42)ds < 00 aus.
0
and, for anyy t > 0,
t t
U, =B,B,+ 7S, =u +/ BydBg + / Yo dS, + Z,,  (3.45)
0 0

where u > 0 is an initial endowment and Z;, = ct — X,.

Proposition 3.5. Let u > 0 and v = (7,);>0 be a square integrated

process, i.e. for all t >0

t
/'yfdv <00 a.s.
0
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We set
t ~ ~ ~
By =u+ / Yo Sy — Sy + 2y, (3.46)
0

where §t = S,/B, and Z = fot B 1dZ,. Then the financial strategy

(Bis W)iso ts admissible.

Proof. First of all note that the process (3.46) is integrable, i.e.
for any t > 0

¢
/]ﬂvldv <00 as.
0

The definition (3.46) implies that the discounted wealth process

~ U, ~
Ut:ézﬁt"’_'ytst

admits the following stochastic differential:
AU, = ~,dS, + dZ, .
Therefore, Ito formula implies that

AU, = dB,U, = B,dU, + U,dB,

= B,dB, +, <§tdBt n Btd§t) + B,dZ, .
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Taking into account here that
dZ, = B,dZ, and dS,=dS,B, = S,dB, + B,dS,,

we get the equality (3.45). O
We denote by ¢ = (¢;);>( proportional strategy, i.e.

_ Ve S _ VeS¢ _ VeS¢
BiBi+ 1S Bi+7S,  u+ f(f Y, dS, + Z,

St
For this strategy we can rewrite the equation (3.45) as
t t
Ut:u—}-/o (r+(a—r)g,) Ugds + 0'/0 G Ugdw, + ct — X;.
In this section we assume that
G =9, (3.47)
where § > 0 is a fixed nonrandom constant. In view of
ds, = (a — r)S,dt + o S,dw, ,
we obtain for V, = v, S, the following stochastic differential equation
AV, = 6(a — r)V,dt + doV,dw, + 6dZ,, V, = bu.
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Through Ito formula we can represent the process V, in the follow-

ing form
t
V, = ¢ <5u +(5c/ et Bs_leS> ,
0

where § = a;t + o;w,, a; = 6(a —r) — 03 /2 and o5 = do. So, to
get the property (3.47) we set
eft <5u +dc f; e & B;les>

¥, = — , 0<t<T.
t g,

For this strategy the risk process can be written as
t t
U =u+ a5/ Usds + o5 / U dw, + Z, , (3.48)
0 0

where u > 0 is the initial capital, as =+ é(a — r) and o5 = do.

The ruin probability is

¥(u) = P(inf U, <0). (3.49)

t>0

We start to study this function for any v > 0.

Proposition 3.6. The function ¢(u) = 1 — (u) satisfies for all
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u > 0 the following differential equation

2,2 4" u
T g ) agu k)~ 2ot + 1 [ ou - )aF) =0
0
(3.50)
with the boundary conditions
¢ (0) = A\p(0) and P(4o0)=1. (3.51)

Proof. We denote by (7,),>( the solution of the following stochastic
equation

dn; = (agn; + ) dt + ogndw,,  ng = u.

By Ito formula, we can resolve it, i.e.
t
n, = wes + c/ ¢S ds and ¢ =at + osw,, (3.52)
0

where a = a5 — U§/2. Now we fixe some h > 0 and then, in view of

the definition of ¢, we can represent this function as

¢(u) =E (1{inft20 Utzo})

=E (l{infogtgh v,>0} E (l{infch U,>0} |]:h>) :
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It should be noted that the process (3.48) is Markovian, i.e.

E (l{infch U, >0} |]:h) = ¢(Uy)
and, therefore,
$(u) =E <1{infogt§h U,>0} ¢>(Uh)> :

Moreover, we can represent this function in the form
d(u) = Ay (u) + Ay(u) + Ag(u)
where A, (1) = E (Lqx, —oy 6(m) ).

Ay(w) = B (Lpue,_, o, 0,50} L -139(U) )

and

As(u) =E <1{inf0§t§h U, >0} 1{Nh22}¢(Uh)> .

We rewrite the equation (3.53) as
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It is clear that

Ay(uw) = ¢(u) = e M E (6(n,) — d(u)).

In addition, it is well known (see, for example, in [8]) that the
function ¢ is two times continuously differentiable. So, by the Ito

formula

2,2

h
B (e + 06 )+ 26" ) ) ao

+
s

and, therefore,

2,2
Illl_rﬂ) Al(u)h_ ¢(u) _ (a5u+ C) ¢’(u) + 062u

0" (u) = Ap(u).
Then we can represent the term A,(u) as

Ay(u) =E (1{%1 >Y,} 1{Nh:1}¢(Uh)> :
Note here that on the set {IN,, =1}

h
U, = <77T1 — Y1> eShlry 4 c/ eh S ds,
Tl
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where the process ((;);>¢ is given in (3.52). So, on the set
{Ny=13n{¥; <np,} (3.55)
we get

Up —u+ Y1 < (utmp)

2 — 1‘ + che®n +

where

772 = Ssup |775 - ’LL| and C}t = Ssup |<s| :
0<s<h 0<s<h

From the definition of (1)~ it follows that
77;; < u|e<2 -1+ chen .
Therefore, on the set (3.55)
Up —u+Y1| < B,(G),
where
B*

“(z) = (u+ule” — 1] + che®™) [e** — 1| 4+ 2che*” + ule” —1].

Taking into account that the process ({;);>g is continuous, we obtain
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that

lim =0 a.s.
h—0 Ch

Moreover, using the properties of a Brownian motion, one can check

directly that for all v > 0 and 0 <t < o0
Ee < oco.
So, by the dominated convergence theorem
lim EB;((;)=0.
hli% h(Ch)

In view of the independence of the processes ({;);>o and (IV;);>o,

we obtain that

lim Ax(w) = )\/u o(u—1y)dF(y). (3.56)

h—0 h 0

Finally, for the last term in (3.54) it’s easy to see that

As(u) < P (N, >2)

3 i -0, as h—0.

So, taking the limit in (3.54) as h — 0 we get the equation (3.50).

Hence Proposition 3.6. [

To study the asymptotic properties of the ruin probability (3.49)
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as u — 00, we set

v="20 1. (3.57)

The following theorem gives us the asymptotic behavior of the ruin
probability in the depending of this parameter (see, for example, [4]
and [9]).

Theorem 3.6. For the proportional strategy (3.47) the ruin proba-
bility (3.49) has the following asymptotic (as uw — oo) properties

1. if v <0, then Y(u) =1 for all u > 0.

2. if v >0 and EY)” < 0o, then there is a constant 0 < 1, < oo

such that
lim w”¢(u) = 1, .

U— 00

Now one needs to choose the proportional investment coefficient
0 > 0 in the strategy (3.47) such that the power parameter v defined
in (3.57) will be positive, i.e. 0 < < ¢, where

(a—r)2+2r—r+a

= 5

g

Therefore, if there exists 0 < § < 6" for which EY}” < oo, then
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according to Theorem 3.6 for some constant 0 < ¢, < oo

lm w”¢(u) = 9, .

U—r 00

Remark 3.4. This result means that in the case where the net profit
condition (3.18) does not hold true, i.e. ¢ < Au, to avoid being
bankrupt almost sure, the company is obliged to invest its capital in
a Black-Scholes market through the strategy (3.47) with 0 < § < 6*

and EY{’ < 00.

3.12 Exercises VIII

1. Give the definition of an admissible strategy. Show that the

set of admissible strategies is not empty.

2. Is there an admissible strategy with initial endowment u = 20

euros and v, = (1 + S;)~2? Clarify the answer.

3. Is there an admissible strategy with initial endowment u =
25, and
v, =1/4/8, with S, = S,/B,? Clarify the answer.
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A Appendix

In this section we announce main limit results of the probability

theory which can be found, for example, in [10].

A.1 Strong large numbers law

Theorem A.1. Let (§;);51 be i.i.d. random variables with E[§| <

00. Then
n

. 1
Jm = > & =B
J:

A.2 Kolmogorov zero-one law

Theorem A.2. Let (fj)j21 be a sequence of independent random

variables and

X =M1 0{(&)j5n}-

Then for any A € X the probability P(A) =0 or P(A) = 1.

A.3 Three series theorem

Theorem A.3. Let (fj)j21 be a sequence of independent random

variables. For almost sure convergence of the series neces-

n>1 gj
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sary that for any c > 0 the following series are convergent

Y EE, D E(E-EL?, Y P(gl>0),

n>1 n>1 n>1

and sufficiently that these series are convergent for some fived c > 0,

where 50 = 61{\£]|§c}

A.4 Central limit theorem

First, we recall the weak convergence for random variables.

Definition A.1. The sequence of random variable is called conver-
gent weakly to a random variable &, i.e. £, = & as n — oo, if for

any bounded continuous R — R function g

lim Eg(§,) =Eg(S) .

n—o0

Theorem A.4. Let (§;);> be i.i.d. random variables with E§; = 0
and ng =02, Then

n
Zj:lgj
—— = ¢ as n— 00,

NG

where & is a Gaussian random variable with the parameters (0,02).
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A.5 Tterated logarithm law

Theorem A.5. Let (§;);>1 be i.i.d. random variables with E; =0
and E{% =02, Then

. E?:l §j
lim sup

n—oo y/nin(lnn)

= O'\/§ a.s.
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