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The goal of this course is to study the main tools of the renewal theory and their applications to some problems of the actuarial analysis for insurance companies in the framework of the Crem er -Lundberg models. We consider such important problems in the renewal theory as limit theorems for the renewal processes and the ruin problems for the insurance companies with investments in the stochastic nancial markets.

1 Poisson processes

Denition and main properties

In this section we study the principal properties of the Poisson process. Let (τ j ) ≥1 be i.i.d. exponential random variables with some parameter λ > 0. We set T n = ∑ n j=1 τ j for n ≥ 1 and T 0 = 0.

Denition 1.1. The random R + → N function

N t = ∞ ∑ n=1 1 (T n ≤t) (1.1)
is called the homogeneous Poisson process of the intensity λ > 0.

Proposition 1.1. If (τ j ) j≥1 is i.i.d. exponential random variables with a parameter λ > 0, then the vector (T 1 , . . . , T n ) has the distribution density with respect to the Lebesgue measure in R n dened as

f n (x 1 , . . . x n ) = λ n e -λx n 1 {0<x 1 <...<x n } . (1.2)
Proposition 1.2. If (N t ) t≥0 is a homogeneous Poisson process with an intensity λ > 0, then for any t > 0 the random variable N t has the Poisson distribution, i.e. for any integer n ≥ 0

P(N t = n) = (λt) n n! e -λt . (1.3)
Now we study the main properties of the Poisson processes.

Proposition 1.3. Let (N t ) t≥0 be a homogeneous Poisson process of an intensity λ > 0. Then 1. almost sure the function (N t ) t≥0 is increasing, with integer values and right continuous;

2. conditionally with respect to N t = n, the vector (T 1 , . . . , T n )

has the same distribution as n order statistics uniformly distributed on the interval [0, t];

3. the Poisson process (N t ) t≥0 has homogeneous increments, i.e. for all 0 < s < t and any integer n ≥ 0

P(N t -N s = n) = P(N t-s = n);
4. the Poisson process (N t ) t≥0 has independent increments, i.e.

for any time moments 0 = t 0 < t 1 < . . . < t m and any integer numbers n 1 , . . . , n m P

( N t 1 = n 1 , N t 2 -N t 1 = n 2 , . . . , N t m -N t m-1 = n m ) = m ∏ j=1 P ( N t j -N t j-1 = n j ) ;
5. the Poisson process (N t ) t≥0 is a process of rare events, i.e. for any t ≥ 0 and ∆ > 0

P ( N t+∆ -N t = 1 ) = λ ∆ + o(∆) , P ( N t+∆ -N t > 1 ) = o(∆) , (1.4) 
as ∆ → 0.

Remark 1.1. As we will see later all these properties are very use- ful in the actuarial mathematics for the constructing the principal insurance models. Indeed, the Poisson process is used to model the number of claims on the time interval [0, t]. Especially, the independent increments and rare events properties are very natural for the insurance models.

Principal features

Proposition 1.4. Let (N t ) t≥0 be a stochastic process that satises the following conditions:

• for almost every ω, the trajectory (N t (ω)) t≥0 is zero in 0, increasing, right continuous and with integer values;

• the process (N t ) t≥0 has independent and homogeneous increments;

• (N t ) t≥0 is a process of rare events, i.e. there exists λ > 0, for which the asymptotic properties (1.4) hold.

Then (N t ) t≥0 is the Poisson process of the intensity λ > 0.

Proof. Firstly, we show that P(N t = 0) = e -λt .

(1.5)

We denote by f (t) = P(N t = 0). Indeed, due to the independence N t and N t+s -N t we obtain f (t + s) = P(N t+s = 0) = P(N t+s = 0 , N t = 0)

= P(N t+s -N t = 0 , N t = 0) = f (t)f (s) .

Using here the rare events property, we get (1.5). Now we nd the distribution of N t for arbitrary xed t > 0. To this end, we set

G(t) = Ez N t for 0 < z < 1.
Taking into account that the increments are independence and homogeneous, we can represent the function

G(t + s) as G(t + s) = E z N t+s -N t z N t = G(t)G(s) .
Moreover, for all t > 0

G(t) ≥ Ez N t 1 {N t =0} = e λt > 0 .
Therefore, G(t) = e tg (z) and

g(z) = lim t→0 G(t) -1 t .
Then the rare events property directly implies that for t → 0 G(t) = P(N t = 0)+zP(N t = 1)+Ez N t 1 {N t ≥2} = e -λt +zλt+o(t) .

Therefore, g(z) = λ(t -1) and

G(t) = e -λt e λzt = ∞ ∑ n=0 z n ( e -λt (λt) n n!
) .

This directly implies that for all t > 0

P(N t = n) = (λt) n n! e -λt .
Next, note that we can represent the process (N t ) t≥0 as

N t = ∞ ∑ n=1 1 {T n ≤t} ,
where T n = inf{t ≥ 0 : N t ≥ n}. From here it follows that

P(T n > t) = P(N t ≤ n -1) = n-1 ∑ j=0 P(N t = j) = n-1 ∑ j=0 e -λt (λt) j j! = λ n ∫ ∞ t ( v n-1 e λ v ) dv .
This implies that the distribution of T n coincides with the distribution of a sum i.i.d. exponential random variables of the parameter λ > 0. Thus, in view of the denition (1.1), the random function

(N t ) t≥0 is a homogeneous Poisson process.

The last jump of the Poisson process

Let's study the properties of the delay between the present time moment t > 0 and the last jumping moment T Nt . Putting T 0 = 0, we get

T Nt = ∞ ∑ k=0 T k 1 {Nt=k} .
Therefore, T Nt is a random variable. We will study the properties of the two random variables V t = T Nt+1 -t and V * t = t -T Nt .

Proposition 1.5. The random variable V t is independent of the σeld, generated by the variables {N s , s ≤ t} and has the exponential distribution with the parameter λ > 0.

Proof. We note that for u > 0

{V t ≤ u} = {T Nt+1 -t ≤ u} = ∪ ∞ n=0 {T n+1 -t ≤ u , N t = n} = ∪ ∞ n=0 {N t+u ≥ n + 1 , N t = n} = ∪ ∞ n=0 {N t+u -N t ≥ 1 , N t = n} = {N t+u -N t ≥ 1 } .
This immediately implies Proposition 1.5.

Proposition 1.6. For any Borelian sets A ⊆ R and for any t > 0

P(V * t ∈ A) = e -λt 1 {t∈A} + λ ∫ A∩[0,t]
e -λv dv .

(1.6)

Proof. It is clear that for this proposition it suces to show (1.6) for the sets of the form A = [0, u[ with u > 0. We note that V * t ≤ t a.s., i.e. for u ≥ t the equation (1.6) is true. For u < t we get that

P(V * t ∈ A) = P(V * t < u) = ∞ ∑ n=0 P(t -T n < u , N t = n) = ∞ ∑ n=0 P(N t-u < n , N t = n) = ∞ ∑ n=0 P(N t -N t-u > 0 , N t = n) = P(N t -N t-u > 0) = P(N u > 0) .
Therefore,

P(V * t ∈ A) = 1 -e -λu = λ ∫ A∩[0,t]
e -λv dv .

To nish this proof we note that

P(V * t = t) = P(N t = 0) = e -λt .
Hence Proposition 1.6.

Propositions 1.5 and 1.6 imply that is twice as long on average as an interval (c) Show that for all A ∈ B(R n ) 

E (T Nt+1 -T Nt ) = 2 λ (1 -e -λt
[T n , T n+1 ] since E(T n+1 - T n ) = 1/λ.
P ((T 1 , • • • , T n ) ∈ A | N t = n) = n! t n ∫ A 1 {0<s 1 <s 2 <•••<sn≤t} ds 1 • • • ds n . (1.8) (d) Let X 1 , .
P ((Z 1 , • • • , Z n ) ∈ A) = n! t n ∫ A 1 {0<s 1 <s 2 <•••<sn≤t} ds 1 • • • ds n . (1.9)
Deduce that conditionally with respect to {N t = n} the random variables (T 1 , . . . , T n ) has same distribution as the order statistics of n uniform independent random variables on the interval [0, t].

(e) Show that for 0 < s < t

P (N s = k|N t ) =    N t k    ( s t ) k ( 1 - s t ) N t -k 1 {k>N t } .
(f) Show that (N t ) t≥0 is a process with homogeneous increments in the sense that for all 0 < s < t the increment N t -N s has the same distribution as N t-s .

(g) Show that (N t ) t≥0 has independent increments, i.e. for any increasing time moments

0 = t 0 < t 1 < • • • < t k the random variables N t 1 = N t 1 -N t 0 , N t 2 -N t 1 , . . . , N t k -N t k-1
are independent.

(h) Show that (N t ) t≥0 is a rare events process, i.e. for any t ≥ 0 and ∆ > 0

P(N t+∆ -N t = 1) = λ∆+o(∆) , P(N t+∆ -N t > 1) = o(∆)
as ∆ → 0. 

Let (N

N t = ∞ ∑ j=1 1 {S j ≤t} , ( 2.1) 
where S 0 = 0 and S j = ∑ j l=1 η l for j ≥ 1. Note that if the distribution G is exponential, then (N t ) t≥0 is the Poisson process. Using the large numbers law (Theorem A.1), one can establish that

lim t→∞ N t t = 1 Eη 1 a.s. (2.2)
Denition 2.1. We say that a random variable ξ is arithmetic if there exists d > 0 such that

P(ξ ∈ Γ d ) = 1 ,
where

Γ d = {(kd) -∞<k<∞ } is the grid of size d > 0. A random variable ξ is called non-arithmetic if P(ξ ∈ Γ d ) < 1 for any d > 0.
In this section we need the Blackwell Renewal Theorem (see, for example, in [3]):

Theorem 2.1. Assume that η 1 is non-arithmetic and

0 < E η 1 < ∞.
Then the expectation of the counting function has the following asymptotic properties:

lim t→∞ E N t t = 1 E η 1
and for any h > 0

lim t→∞ E (N t+h -N t ) = h E η 1 .
We will use this theorem to study the renewal function

Q(t) = E ∞ ∑ j=0 V (t -S j )1 {S j ≤t} , ( 2.3) 
where V : R + → R is bounded over all the nite intervals function.

One can check directly that this function satises the following renewal equation 

Q(u) = V (u) + ∫ u 0 Q(u -z) dG(z) . ( 2 
sup 0≤u≤t |Q(u)| ≤ sup 0≤u≤t |V (u)| (E N t + 1) < ∞ on each nite interval [0, t].
Moreover, let B(R + ) be a linear space of R + → R bounded on each nite interval functions. We will introduce the following linear

B(R + ) → B(R + ) operator T (f )(u) = ∫ t 0 f (u -z) dG(z) .
In this case we can rewrite the renewal equation as

f = V + T (f ) .
This implies that for all n ≥ 1

f = n ∑ j=0 T j (V ) + T n+1 (f ) . (2.5)
To study this equation one needs to know how to calculate the n-th power of T . Let's show by induction that for each n ≥ 1

T n (f )(u) = E f (u -S n ) 1 {S n ≤u} . (2.6)
For n = 1 this is the denition. Assume now that this equality holds for some xed n > 1. We set

f (u) = T n (f )(u) = E f (u -S n ) 1 {S n ≤u} = ∫ +∞ 0 f (u -y)1 {y≤u} dF S n (y) ,
where F S n (y) = P(S n ≤ y). Using this function, we can represent the (n + 1)-th power as

T n+1 (f )(u) = T ( f )(u) = ∫ u 0 E f (u -z -S n ) 1 {S n ≤u-z} dG(z) = E f (u -η n+1 -S n ) 1 {S n ≤u-η n+1 } = E f (u -S n+1 ) 1 {S n+1 ≤u} .
It means that equality (2.6) is true for any n ≥ 1. Using it in (2.5), we get that

f (u) = n ∑ j=0 E V (u -S j ) 1 {S j ≤u} + E f (u -S n+1 ) 1 {S n+1 ≤u} . (2.7)
According to our condition, we try to solve the equation (2.4) among the functions which are bounded on each nite interval. So, the last term in (2.7) is bounded by

| E f (u -S n+1 ) 1 {S n+1 ≤u} | ≤ sup 0≤s≤u |f (s)| P(S n+1 ≤ u)
and, by the large numbers law (Theorem A.1), for any xed u > 0 this term tends to zero as n → ∞. So, taking the limit in (2.7) as n → ∞, we obtain that any solution of the equation (2.4) which is bounded on every nite interval is equal to the renewal function

(2.3).

Smith theorem

Now we study the asymptotic properties of the function (2.3).

To this end one needs the following denition.

Denition 2.2. We say that a 

R + → R function V is directly integrable by Riemann on [0, ∞[ if ∞ ∑ k=1 sup k-1≤x≤k |V (x)| < ∞ . ( 2 
lim u→∞ Q(u) = 1 E η 1 ∫ ∞ 0 V (z) dz . (2.9)
Proof. First, we show this theorem for linear combinations of indicator functions, i.e. we assume that

V (x) = α 1 1 [t 0 ,t 1 ] (x) + m ∑ k=2 α k 1 (t k-1 ,t k ] (x) , ( 2.10) 
where

0 = t 0 < t 1 < . . . < t m < ∞. It's easy to see that this function for u ≥ t m Q(u) = α 1 E ∞ ∑ j=0 1 {u-t 1 ≤S j ≤u} + m ∑ k=2 α k E ∞ ∑ j=0 1 {u-t k ≤S j <u-t k-1 } = m ∑ k=1 α k E (N u-t k-1 -N u-t k ) -α 1 E ∆N u-t 1 - m ∑ k=2 α k E (∆N u-t k-1 -∆N u-t k ) ,
where

∆N t = ∑ ∞ j=1 1 {S j =t} . Note that for any h > 0 ∆N t ≤ N t+h -N t-h
and, by the Blackwell theorem,

lim sup t→∞ E ∆N t ≤ 2h Eη 1 .
Therefore,

lim t→∞ E ∆N t = 0 and lim u→∞ Q(u) = 1 E η 1 m ∑ k=1 α k (t k -t k-1 ) = 1 Eη 1 ∫ ∞ 0 V (z) dz .
Let now V be a function that satises the conditions of this theorem, i.e. it is directly integrable by Riemann and has a nite number of the jumps on all nite intervals. In this case, for each L > 0 we can nd a sequence of functions (V m ) m≥1 of the form (2.10) such that

lim m→∞ sup 0≤x≤L |V (x) -V m (x)| = 0 .
So, we can represent the function Q as

Q(u) = I 1 (u) + I 2 (u) + I 3 (u) , ( 2.11) 
where

I 1 (u) = E ∑ ∞ j=0 V m (u -S j ) 1 {u-L≤S j ≤u} , I 2 (u) = E ∞ ∑ j=0 (V (u -S j ) -V m (u -S j )) 1 {u-L≤S j ≤u}
and

I 3 (u) = E ∞ ∑ j=0 V (u -S j ) 1 {S j ≤u-L} .
Taking into account that V m (z) = 0 for z > L, we nd

I 1 (u) = E ∞ ∑ j=0 V m (u -S j 1 S j ≤u} ,
and, therefore,

lim u→∞ I 1 (u) = 1 E η 1 ∫ ∞ 0 V m (z) dz = 1 E η 1 ∫ L 0 V m (z) dz . (2.12) Moreover, |I 2 (u)| ≤ sup 0≤z≤L |V (z) -V m (z)| ( E (N u -N u-L ) + E ∆ N u-L
) .

And we get that

lim sup u→∞ |I 2 (u)| ≤ sup 0≤z≤L |V (z) -V m (z)| L E η 1 .
This implies that for any L > 0

lim m→∞ lim sup u→∞ |I 2 (u)| = 0 . (2.13)
Now we consider the last term in (2.11). Setting

v * k = sup k-1≤x≤k |V (x)|,
we can estimate it from above as

|I 3 (u)| ≤ E ∞ ∑ j=0 ∞ ∑ k=L+1 |V (u -S j )|1 {u-k≤S j ≤u-k+1} ≤ E ∞ ∑ j=0 ∞ ∑ k=L+1 v * k 1 {u-k≤S j ≤u-k+1} ≤ ∞ ∑ k=L+1 v * k ( 1 + E(N (u-k) + +1 -N (u-k) + ) + E ∆N u-k) + ) ≤ sup x≥0 ( 1 + E(N x+1 -N x ) + E ∆N x ) ∞ ∑ k=L+1 v * k .
Thus,

lim L→∞ lim sup u→∞ |I 3 (u)| = 0 . (2.14)
From here, taking into account (2.11), we have

Q(u) - 1 Eη 1 ∫ ∞ 0 V (y)dy ≤ I 1 (u) - 1 Eη 1 ∫ L 0 V m (y)dy + 1 Eη 1 ∫ L 0 |V m (y) -V (y)|dy + 1 Eη 1 ∫ ∞ L |V (y)|dy + |I 2 (u)| + |I 3 (u)| .
Taking in this inequality the limit as

lim sup L→∞ lim sup m→∞ lim sup u→∞ ,
we get (2.11). Hence Theorem 2.3.

Exercises II

1. Let (N t ) t≥0 be counting function, that is

N t = ∑ n≥1 1 {η 1 +...+η n ≤t} ,
where (η j ) j≥1 are i.i.d. random variables uniformly distributed on the interval [0, z] with a xed z > 0. Calculate the following limits (a)

lim t→∞ EN t 1 + 2t ; (b) lim t→∞ E ( N 3t -N 3t+4 ) ; (c) lim t→∞ EN 2t √ 1 + t 2 ; (d) lim t→∞ E ( N t -N t-1/3
) ;

(e)

lim t→∞ sin(1/t) E N 10t ; (f) lim t→∞ ( 1 -e 1/t ) E N 4t .
2. Are the following functions directly integrable by Riemann

1 1 + x 2 , e -x , sin(x) 1 + x 4 ? 3. Calculate the limit lim t→∞   1 1 + t 2 + E ∞ ∑ j=1 1 1 + (t -T j ) 2 1 {T j ≤t}   ,
where T j = ∑ j i=1 ξ 2 i and (ξ j ) j≥1 are i.i.d. Gaussian random variables with the parameters (0, 1).

3 Cram er -Lundberg models

Main denitions and results

In this section we consider non-life insurance models in which the claim sizes are dened by i.i.d. positive random variables (Y j ) j≥1 and the inter-arrival times

with µ = E Y 1 < ∞ . ( 3 
τ 1 = T 1 , τ k = T k -T k-1 , k ≥ 2 , ( 3.2) 
are i.i.d. exponentially distributed random variables with Eτ 1 = 1/λ. We dene the total claim amount process as

X t = Nt ∑ j=1 Y j (3.3)
and X t = 0 for N t = 0. In the theory of stochastic processes such process is called a compound Poisson process. Moreover we assume that a continuous stream of revenue brings in c t during the time interval [0, t], where c > 0 is the premium income rate. In this case the risk process is dened as

U t = u + c t -X t , ( 3.4) 
where u > 0 is the initial endowment of the insurance company.

Denition 3.1. The event

A -= { ∃t > 0 such that U t < 0} = ∪ t>0 { U t < 0} (3.5)
is called the ruin.

The denition of the risk process (3.4) immediately implies that

A -= ∪ k≥1 { U T k < 0} . (3.6)
This means that this set is measurable. The moment τ u when the risk process goes below zero is called the ruin time:

τ u = inf{ t > 0 : U t < 0} . (3.7)
The ruin probability or ruin function is given by

ψ(u) = P(A -| U 0 = u) = P( τ u < ∞) . ( 3.8) 
Setting

σ u = inf{k ≥ 1 : U T k < 0} (3.9)
and taking into account the denition (3.8), we obtain

ψ(u) = P( σ u < ∞) . (3.10)
Firstly, we study the properties of the total claim amount process

(3.3).
Theorem 3.1. For the process (3.3) the following law of large num- bers holds

lim t→∞ 1 t X t = λ µ a.s. (3.11)
Moreover, if E Y 2 1 < ∞, then for the process (3.3) the limit theorem holds also, i.e.

X t -λ µt √ t =⇒ N (0, λ E Y 2 1 ) as t → ∞ . (3.12)
Proof. To show (3.11) we note that, in view of the denition of the Poisson process in (1.1), for any t > 0

T N t ≤ t < T N t +1 . (3.13)
Therefore, taking into account that N t → ∞ a.s. as t → ∞, we obtain through the large numbers law that

lim t→∞ T N t N t = Eτ 1 = 1 λ a.s.
Therefore, from the inequalities (3.13) it follows that

lim t→∞ N t t = λ a.s.
and, using again the large numbers law given in Theorem A.1, we come to the limit (3.11). As to the second equality, note that the deviation X t -λµt can be represented as

X t -λµt = S N t + λµ(T N t -t) , (3.14) 
where

S n = n ∑ j=1 η j and η j = Y j -µ + µ(1 -λτ j ) .
Note that

E η j = 0 and E η 2 j = E Y 2 1 ,
and, in view of (3.13),

0 ≤ t -T N t ≤ τ N t +1 .
Moreover, we have

E τ N t +1 = ∞ ∑ k=0 E τ k+1 1 {N t =k} ≤ Eτ 1 + λ ∫ +∞ 0 z Υ(t, z) e -λz dz , (3.15)
where

Υ(t, z) = ∞ ∑ k=1 P(T k ≤ t < T k + z) = λ(t -(t -z) + ) ,
and (x) + = max(0, x). Therefore, the bound (3.15) yields

E τ N t +1 ≤ 1 λ + λ 2 ∫ t 0 z 2 e -λz dz + λ 2 t ∫ ∞ t z 2 e -λz dz i.e. sup t≥0 E τ N t +1 < ∞
and, therefore,

P -lim t→∞ T N t -t √ t = 0 .
Using this equality in (3.14), we obtain the asymptotic representa-tion

X t -λµt √ t = S N t √ t + o P (1) , (3.16)
where o P (1) is a term going to zero in probability as t → ∞. Moreover, let now m = [λt] and [x] be the integer part of the number x.

Then

E ( S N t -S m ) 2 = E S 2 N t -2E S N t S m + E S 2 m = E η 2 1 E|N t -m| , i.e. E ( S N t -S m ) 2 t ≤ 1 t + √ E(N t -E N t ) 2 t = 1 t + √ λ √ t .
Using this in (3.16), we get

X t -λµt √ t = S m √ t + o P (1) .
Now, applying to the sequence (S n ) n≥1 the central limit Theorem

A.4, we come to the limit property (3.12). Hence Theorem 3.1. for all u > 0.

Proof. Let c < λµ. We can represent the sequence (U T k ) k≥1 as

U T k = u - k ∑ j=1 ξ j , ( 3.17) 
where ξ j = Y j -cτ j . In this case, by applying the strong large numbers law (Theorem A.1) for S k = ∑ k j=1 ξ j in the equality (3.10), we nd that

lim n→∞ U Tn n = -lim n→∞ S n n = -E ξ 1 = c λ -µ < 0 a.s.
So, taking into account (3.9) and (3.10), we obtain that ψ(u) = 1 for all u ≥ 0. Let now c = λµ, i.e. E ξ 1 = 0. In this case note that for any k ≥ 1 and ϵ > 0

P(|ξ k | > ϵ) = P(|ξ 1 | > ϵ) > 0 .
Using Kolmogorov three-series theorem and Kolmogorov zero-one law (Theorems A.2 -A.3), we obtain that

lim sup k→∞ S k = +∞ a.s.
From the equalities (3.9) and (3.10) it follows that

1 = P(lim sup k→∞ S k = +∞) ≤ P(σ u < ∞) .
Thus, ψ(u) = 1. Hence Proposition 3.1.

Remark 3.1. 

E ξ 1 = E (Y 1 -c τ 1 ) = µ -c 1 λ < 0 . (3.18)
In the sequel we will assume that the premium rate is equal to

c = (1 + ρ) λ µ , (3.19)
where ρ is a positive constant, which provides the net prot condition.

Exercises III

Let (Y j ) j≥1 be i.i.d. random variables with values in R + and with the nite on a neighborhood around 0 generator function dened as

m Y (h) = E e hY j .
Let (N t ) t≥0 be a homogeneous Poisson process of an intensity λ > 0 independent of (Y j ) j≥1 . For any t ≥ 0 we set

X t = N t ∑ j=1 Y j and U t = u + ct -X t
with u > 0 and c > 0.

1. Calculate expectation and variance of U t .

2. Calculate the generator function for X t .

3. Let α > 0. Show that there is only one solution c α for the equation E e -α(ct-X t ) = 1 , for any t > 0.

4. Show that E U t > u for c = c α . What is the limit of c α as α → 0?

Lundberg inequality

In this section we will study the behavior of the function ψ(u)

under the condition (3.18). Moreover, we assume that the sequence of claims amounts (Y j ) j≥1 satises the following condition, called the Lundberg condition,

H 1 )
There exists δ > 0 such that Proof. First, we note that the function L is convex. Indeed, by Holder's inequality for 0 < α < 1 and for 0 ≤ x, y ≤ δ we obtain that

E e δY 1 < ∞ . ( 3 
L(αx + (1 -α)y) = ln (E e αxξ 1 e (1-α)yξ 1 )
≤ ln

( (E e xξ 1 ) α (E e yξ 1 ) 1-α ) = ln (E e xξ 1 ) α + ln (E e yξ 1 ) 1-α = α L(x) + (1 -α) L(y) .
We assume that there is 0 < r 1 < r 2 such that L(r 1 ) = L(r 2 ) = 0.

Then for all z ∈ [r 1 , r 2 ] we obtain

L(z) = L(αr 1 + (1 -α)r 2 ) ≤ αL(r 1 ) + (1 -α)L(r 2 ) = 0 ,
where α = (r 2 -z)/(r 2 -r 1 ). If L(z) = 0 (i.e. E e zξ 1 = 1) for all r 1 ≤ z ≤ r 2 , then we would have E ξ 2 1 e zξ 1 = 0 and, so ξ 1 = Y 1 -cτ 1 = 0 a.s. But this is not possible since the random variables Y 1 and τ 1 are independent. Therefore, it exists 0 < r 1 < z 1 < r 2 such that L(z 1 ) < 0. Similar, as L(0) = 0, we get that it exists

z 0 ∈ [0, r 1 ] such that L(z 0 ) < 0. Setting α = (z 1 -r 1 )/(z 1 -z 0 ), we nd that 0 = L(r 1 ) = L(αz 0 + (1 -α)z 1 ) ≤ αL(z 0 ) + (1 -α)L(z 1 ) < 0 .
This implies the uniqueness of the positive root. Hence Proposition 3.2. Denition 3.3. If the equation L(x) = 0 admits a root r > 0, then this root is called the Lundberg coecient.

We will assume the following condition.

H 2 )
The equation L(x) = 0 admits a root r > 0.

Remark 3.2. It is easy to see that the assumptions H 1 )H 2 ) imply the net prot condition (3.18). Indeed, if E ξ 1 ≥ 0, then by Jensen inequality we obtain that Proof. First, one notes that according to (3.10), we can represent the ruin probability as the distribution tail of the extreme value for a sequence of sums of i.i.d. random variables:

ψ(u) = P(inf k≥1 U T k < 0) = P(max k≥1 S k > u) ,
where S k = ∑ k j=1 ξ j and ξ j = Y j -cτ j . Let now

ψ n (u) = P( max 1≤k≤n S k > u) .
It's obvious that

ψ(u) = lim n→∞ ψ n (u) .
So, for this theorem it suces to show the inequality (3.22) for the functions ψ n (u) for all n ≥ 1. We will do it by the induction. We start with n = 1. In this case S 1 = ξ 1 and by the Markov inequality

ψ 1 (u) = P(ξ 1 > u) ≤ E e rξ 1 e -ru = e -ru .
Moreover, if the inequality (3.22) holds for some xed n ≥ 1, then for n + 1 we get

ψ n+1 (u) = P( max 1≤k≤n+1 S k > u , ξ 1 > u) + P( max 1≤k≤n+1 S k > u , ξ 1 ≤ u) = P(ξ 1 > u) + P ( max 2≤k≤n+1 S k > u , ξ 1 ≤ u ) . (3.23)
We estimate now the rst term in (3.23) more precisely, i.e.

P(ξ

1 > u) ≤ e -ru E e rξ 1 1 {ξ 1 >u} . ( 3.24) 
Taking into account that S k is the sum of i.i.d. random variables and using the inequality (3.22) for ψ n (•), we can estimate the second term in (3.23) as

P ( max 2≤k≤n+1 S k > u , ξ 1 ≤ u ) = P   max 2≤k≤n+1 n ∑ j=1 ξ j+1 > u -ξ 1 , ξ 1 ≤ u   = E 1 {ξ 1 ≤u} ψ n (u -ξ 1 ) ≤ e -ru E 1 {ξ 1 ≤u} e rξ 1 .
Using this inequality and the upper bound (3.24) in (3.23), we ob-tain that

ψ n+1 (u) ≤ e -ru (E e rξ 1 1 {ξ 1 >u} + E e rξ 1 1 {ξ 1 ≤u} ) = e -ru E e rξ 1 = e -ru .
So, for all n ≥ 1 the functions ψ n (u) ≤ e -ru . Taking here the limit as n → ∞, we get the bound (3.22). Hence Theorem 3.2.

Example 3.1. We consider the Cram er-Lundberg model in which the random variables (Y j ) j≥1 are exponential with a parameter γ > 0. In this case the net prot condition (3.19) takes the form

c = (1 + ρ) λ /γ ,
where ρ is a positive constant. Note, that the condition H 1 ) holds for δ < γ. Moreover, it is easy to see that the Lundberg coecient in this case is

r = γ - λ c = γ ρ 1 + ρ .
So, in view of the Lundberg inequality, we get for all u ≥ 0

ψ(u) ≤ e -γ ρ 1+ρ u .
(3.25)

Exercises IV

We consider the risk process U t = u + ct -X t for a reinsurance company, where X t = ∑ N t i=j (Y j -K) + with K > 0, (N t ) t≥0 is a homogeneous Poisson process of intensity λ > 0 independent of the i.i.d. sequence (Y j ) j≥1 random exponential variables of parameter γ > 0. We choose the premium rate as

c = (1 + ρ)λE (Y 1 -K) + with ρ > 0 . 1. Calculate c.

Show that

E e it(Y 1 -K) + = 1 + it γ -it e -Kγ , t ∈ R.
3. Show that X t has the same distribution as Xt = ∑ Ñt i=1 Y j , where ( Ñt ) t≥0 is a homogeneous Poisson process of the intensity λ = λe -Kγ independent of (Y j ) j≥1 .

Fundamental equation for the non-ruin probability

Denote by ϕ(u) = 1 -ψ(u) the non-ruin probability. Theorem 3.3. We assume that the Cram er-Lundberg model satises the net prot condition (3.18) and the distribution function (•) of the random amounts (Y j ) has a density f Y . Then the nonruin probability ϕ(u) satises the following integral equation

F Y
ϕ(u) = ρ 1 + ρ + 1 1 + ρ ∫ u 0 ϕ(u -y) dF Y,I (y) , ( 3.26) 
where

F Y,I (y) = 1 µ ∫ y 0 F Y (z) dz and F Y (y) = 1 -F Y (y) = P(Y 1 > y) .
Proof. Taking into account that S n = ∑ n j=1 ξ j and (ξ j ) j≥1 are i.i.d. random variables, one has

ϕ(u) = P(sup n≥1 S n ≤ u) = P(ξ 1 ≤ u , sup n≥2 S n ≤ u) = P(ξ 1 ≤ u, sup n≥2 n ∑ j=2 ξ j ≤ u -ξ 1 ) = E1 {ξ 1 ≤u} ϕ(u -ξ 1 ) = E 1 {Y 1 -cτ 1 ≤u} ϕ(u -Y 1 + cτ 1 ) , i.e. ϕ(u) = λ ∫ ∞ 0 ∫ u+cv 0 ϕ(u -y + cv) dF Y (y) e -λv dv = λ c e uλ/c ∫ ∞ u e -λz/c ∫ z 0 ϕ(z -y) dF Y (y) dz .
Taking the derivatives in this equality, we nd that

ϕ ′ (u) = λ c ϕ(u) - λ c ∫ u 0 ϕ(u -y) dF Y (y)
and, therefore,

ϕ(t)-ϕ(0) = λ c ∫ t 0 ϕ(u) du- λ c ∫ t 0 ∫ u 0 ϕ(u-y) dF Y (y) du . (3.27)
Moreover, the integration by parts yields

∫ t 0 ∫ u 0 ϕ(u -y) dF Y (y) du = ∫ t 0 ( ϕ(0) F Y (u) + ∫ u 0 F Y (y) ϕ ′ (u -y) dy ) du = ϕ(0) ∫ t 0 F Y (u)du + ∫ t 0 F Y (y) ( ∫ t y ϕ ′ (u -y)du ) dy = ∫ t 0 F Y (y)ϕ(t -y)dy .
Using now the condition (3.19), we obtain from (3.27) that

ϕ(t) -ϕ(0) = 1 (1 + ρ)µ ∫ t 0 ϕ(t -y) F Y (y) dy = 1 1 + ρ ∫ t 0 ϕ(t -y) dF Y,I (y) .
(3.28)

It should be noted now that ϕ(∞) = 1. Therefore, the passing here to the limit as t → ∞ yields

ϕ(0) = ρ 1 + ρ
and we obtain from (3.28) the equality (3.26). Hence Theorem 3.3.

Note that (3.26) immediately implies the equation for the ruin prob-

ability ψ(u) = 1 -ϕ(u): ψ(u) = F Y,I (u) 1 + ρ + 1 1 + ρ ∫ u 0 ψ(u -y) dF Y,I (y) , (3.29)
where

F Y,I (y) = 1 -F Y,I (y).
Example 3.2. In the case, when distribution of (Y j ) j≥1 is exponen- tial, as in the example 3.1, i.e. F Y (y) = 1 -e -γy , this equation has the following form

ψ(u) = e -γu 1 + ρ + γ 1 + ρ ∫ u 0 ψ(u -y) e -γy dy . (3.30)
We can resolve this equation directly and get that the solution is 

ψ(u) = 1 1 + ρ e -γ ρ 1+ρ u . ( 3 

Exercises V

Let (Y j ) j≥1 be i.i.d. random variables with values in N and N a random variable with values in N independent of (Y j ) j whose distribution is of the form

q n := P(N = n) = ( a + b n ) q n-1 , n = 1, 2, . . . ,
where q 0 = P(N = 0), for a < 1 and b ∈ R are xed constants.

Moreover let

X = N ∑ j=1
Y j and p k := P(X = k) .

1. Show that the Poisson and binomial distributions verify the previous hypotheses on N .

Let S

n = ∑ n j=1 Y j . Show that for i ≥ 1 E ( Y 1 S i S i ) = 1 i .

Show that

E ( a + b Y 1 n S i = n ) = n ∑ k=0 ( a + k n ) P(Y 1 = k)P(S i-1 = n -k) P(S i = n) .

Show that

p 0 =      q 0 , if P(Y 1 = 0) = 0 ; E (P(Y 1 = 0)) N , else . 
5. Show that for n ≥ 1

p n = ∞ ∑ i=1 P(S i = n)q i .
6. Show that the probabilities p k can be calculated recursively (Panjer's algorithm):

p k = 1 1 -aP(Y 1 = 0) k ∑ i=1 ( a + bi k ) P(Y 1 = i)p k-i , k ≥ 1.

Cram er bound

In this section we will study the limit of ψ(u) when u → ∞ for small claims, i.e. for claims that verify the condition H 1 ).

Theorem 3.4. We assume that the conditions H 1 )H 2 ) hold with 0 < r < δ and the random variable Y 1 has a density f Y . Then

lim u→∞ e ru ψ(u) = ψ * > 0 , (3.32)
where

ψ * = ρ µ r ∫ ∞ Therefore, G(+∞) = - q rµ + q rµ E e rY 1 .
Note here that the denition of r and ( 

V V (u) = q µ ∫ ∞ u e rz P(Y 1 > z) dz ≤ q δµ E e δY 1 e -(δ-r)u ,
i.e. the function V satises the Riemann direct integrability condition. This means that we can apply Smith theorem to the function

Q, i.e. lim u→∞ Q(u) = 1 Eη 1 ∫ ∞ 0 V (z) dz ,
where

Eη 1 = q µ ∫ ∞ 0 z e rz P(Y 1 > z) dz and ∫ ∞ 0 V (z) dz = q ∫ ∞ 0 e rz F Y,I (z)dz = q r e rz F Y,I (z) | ∞ 0 + q µr ∫ ∞ 0 e rz P(Y 1 > z) dz = - q r + 1 r G(+∞) = 1 -q r .
This directly implies (3.32). Hence Theorem 3.32.

Exercises VI

1. We consider a Cram er-Lundberg model with the risk process

U t = u + ct -X t ,
where the total claim amount process

X t = ∑ N t j=1 Y j .
(a) Show that the random variables X t -X s and X s are independent for 0 < s < t.

(b) Show that the random variables X t -X s and X t-s have the same distribution for 0 < s < t.

(c) Calculate

E(e -hU t |X s ) .

(d) Assuming that the Lundberg coecient r > 0 exists,

show that E(e -rU t |X s ) = e -rU s .

(e) Show that Ee -rU t independent of t.

2. Assume that in a Cram er-Lundberg model the distribution of the claim amounts Y j is given by the density Find this function for n = 1.

f n (x) = α n 1 Γ(n) x n-1 e -αx for x > 0 (α > 0 , n ≥ 1). (a) 

Large claims

In this section we study the problem of ruin for the claims (Y j ) j≥1 which do not hold the condition H 1 ), i.e., E e δY 1 = +∞ for all δ > 0. We replace the condition H 1 ) by a weaker condition, i.e. we assume that the distribution of (Y j ) j≥1 is subexponential.

Denition 3.4. We say that a random variable Y is subexponential if i.i.d. random variables (Y j ) j≥1 having the same distribution as Y for all n ≥ 1 satisfy the following condition

lim z→∞ P( ∑ n j=1 Y j > z) P(Y 1 > z) = n . (3.36)
Example 3.3. Let Y a positive random variable such that for any

z ≥ 0 P(Y > z) = 1 (1 + z) α and α > 0 .
Let's show, by the induction, that Y satises the condition (3.36).

Assuming that the property (3.36) holds for n -1, we will check this condition for n. To this end we set

F n (z) = P(S n > z) ,
where S n = ∑ n j=1 Y j . We have

F n (z) = P( n-1 ∑ j=1 Y j > z -Y n ) = E F n-1 (z -Y n ) 1 {Yn≤z} + P(Y n > z) = ∫ z 0 F n-1 (z -t) dF (t) + F (z) ,
where F is the distribution function of Y and F (z) = F 1 (z). So, we obtain that

F n (z) F (z) = 1 + ∫ z 0 F n-1 (z -t) F (z) dF (t) . (3.37)
Then we can represent the last term in this equality as

∫ rz 0 F n-1 (z -t) F (z) dF (t) + ∫ z rz F n-1 (z -t) F (z) dF (t) = I 1,r (z) + I 2,r (z) ,
where 0 < r < 1. Note that for the function

F (z) = 1 -(1 + z) -α
for all t ≥ 0 we have

lim z→∞ F (z -t) F (z) = 1 .
Thus, in view of the induction hypothesis for all t > 0 lim z→∞

F n-1 (z -t) F (z) = n -1 .
Moreover, for t ≤ rz with 0 < r < 1 we obtain the following upper bound

lim sup z→∞ F n-1 (z -t) F (z) ≤ lim sup z→∞ F n-1 ((1 -r)z) F (z) ≤ n -1 (1 -r) α .
Therefore, by the dominated convergence theorem,

lim z→∞ I 1,r (z) = n -1
for all 0 < r < 1. As to the function I 2,r (z), we obtain that for any

z > 0 I 2,r (z) ≤ 1 F (z) (F (z) -F (rz)) ≤ ( 1 (1 + rz) α - 1 (1 + z) α ) (1 + z) α .
This means that for any

0 < r < 1 lim sup z→∞ I 2,r (z) ≤ r -α -1
and, passing here to the limit as r → 1, we nd

lim sup r→1 lim sup z→∞ I 2,r (z) = 0 .
Therefore, the equality (3.37) implies directly (3.36).

Proposition 3.3. Let Y be a subexponential random variable. Then 57 for any ε > 0 it exists K = K(ε) > 0 such that for any n ≥ 1

sup z≥0 F n (z) F (z) ≤ K (1 + ε) n , ( 3.38) 
where

F n (z) = P(S n > z), F (z) = F 1 (z), S n = ∑ n j=1 Y j and (Y j ) j≥1 are i.i.d. random variables of the same distribution as Y .
Proof. We set

α n = sup z≥0 F n (z) F (z) ,
then we get

F n+1 (z) F (z) = 1 + ∫ z 0 P(S n > z -t) dF (t) F (z) ≤ 1 + α n P(Y 1 + Y 2 > z , Y 2 ≤ z) F (z) = 1 + α n ( P(S 2 > z) F (z) -1 
) .

Note here that for any ε > 0 there exists

T = T (ε) > 0 such that sup z≥T ( P(S 2 > z) F (z) -1 ) ≤ (1 + ε) .
Therefore,

α n+1 ≤ sup 0≤z≤T F n (z) F (z) + sup z≥T F n (z) F (z) ≤ α n (1 + ε) + K 0 ,
where

K 0 = 1 + 1 P(Y > T )
.

This inequality means that for n ≥ 1

α n+1 = (1 + ε) α n + β n+1 (3.39)
with α 1 = 1 and β n+1 = α n+1 -(1 + ε)α n ≤ K 0 . We can resolve this equation and nd that

α n = (1 + ε) n-1 α 1 + n ∑ j=2 (1 + ε) j β n-j ≤ (1 + ε) n-1 + K 0 n ∑ j=2 (1 + ε) j ≤ K (1 + ε) n ,
where K = 1 + K 0 /ε. From here we obtain (3.38).

In Section 3. Proof. Let us denote the right part in equality (3.40) by g, i.e.

g(u) = p ∞ ∑ j=0 q j P( Sj ≤ u) .
It is clear that this function is bounded, i.e.

g(u) ≤ p ∞ ∑ j=0 q j = p 1 -q = 1 .
Moreover, one can see that this function satises the equation (3.26).

Indeed,

g(u) = p + pq P( Ỹ1 ≤ u) + p ∞ ∑ j=2 q j P ( j ∑ l=2 Ỹl ≤ u -Ỹ1 ) = p + pq P( Ỹ1 ≤ u) + p ∞ ∑ j=2 q j ∫ u 0 P ( j ∑ l=2 Ỹl ≤ u -t ) dF Y,I (t) = p + q ∫ u 0 g(u -t) dF Y,I (t) .
We show now that g(u) = ϕ(u). To this end we set δ(u) = g(u) - 

M u = |δ(t 0 )| = q | ∫ u 0 δ(u 0 -t) dF Y,I (t)| ≤ q ∫ u 0 |δ(u 0 -t)| dF Y,I (t) ≤ q M u P( Ỹ1 ≤ u 0 ) ≤ qM u .
Taking into account that q < 1, we get that M u = 0 for all u > 0.

Therefore, ϕ(u) = g(u) for any u ≥ 0. Proof. The equality (3.41) implies directly that

ψ(u) = 1 -ϕ(u) = p ∞ ∑ j=1 q j P( Sj ≥ u) .
Thus, taking into account that

p ∞ ∑ j=1 j q j = ρ -1 ,
we have

∆(u) = ψ(u) F Y,I (u) -ρ -1 = p ∞ ∑ j=1 q j σ j (u) ,
where

σ j (u) = P( Sj ≥ u) F Y,I (u) -j .
Now we xe ε > 0 such that θ = q(1 + ε) < 1. Then, by Proposition 3.3, we obtain that there is a positive constant K such that for any j ≥ 1 and for all u > 0 q j |σ j (u)| ≤ K θ j + q j j .

Moreover, for any j ≥ 1 lim u→∞ σ j (u) = 0 .

Then the dominated convergence theorem directly implies that

lim u→∞ ∆(u) = p ∞ ∑ j=1 q j lim u→∞ σ j (u) = 0 .
Hence Theorem 3.5. 

F (z) = P(Y ≤ z) = 1 - 1 (1 + z) 1+α
for z ≥ 0. In this case µ = 1/α and, therefore, for all z ≥ 0

F Y,I (z) = 1 - 1 (1 + z) α .
We have seen already that this distribution function is subexponential. Therefore, in this case, in view of Theorem 3.5, we obtain that

u α ψ(u) → ρ -1 as u → ∞.

Exercises VII

Let F be some distribution function for the claim Y > 0. We denote F (x) = 1 -F (x). We say that F is light tailed if there exist a and b > 0 such that F (x) ≤ ae -bx for all x (or that F is heavy-tailed). Let x l = inf{x|F (x) > 0} and x r = sup{x|F (x) < 1} .

We set e F (u) = E(Y -u|Y > u) for u ∈ (x l , x r ) .

1. Show that e F (u) can be written as

e F (u) = 1 F (u) ∫ +∞ u F (x)dx .
2. Show that if F (x) > 0 for all x > 0 and that F is continuous, then we have for any x > 0

F (x) = e F (0) e F (x) exp { - ∫ x 0 1 e F (y) dy } .
3. Show that if lim u→+∞ e F (u) = +∞, then F is heavy tailed. 4. Show that if F is heavy tailed, then the generator function of Y is innite for any z > 0.

5. Calculate e F (u) when Y is an exponential random variable of a parameter λ > 0.

6. Calculate e F (u) when Y has the Pareto distribution

F (x) = ( κ κ + x ) α
of parameters κ > 0 and α > 1.

7. Show that if Y has the Gamma distribution of order m ≥ 1 and a parameter γ > 0, i.e.

F (x) = γ m x m-1 m! e -γx ,
then F is light-tailed.

8. Show that if Y has the Weibull distribution with parameters c > 0 and τ > 0, i.e.

F (x) = exp{-cx τ } ,
then F is light or heavy tailed depending on the value of τ .

Ruin problem with investment

In this section we consider an insurance company that invests its capital in a Black-Scholes market with the two assets B = (B t ) t≥0

and S = (S t ) t≥0 dened as

     dB t = r B t dt , B 0 = 1 ; dS t = aS t dt + σS t dw t , S 0 > 0 , ( 3.42) 
where (w t ) t≥0 is a Brownian motion, r, a and σ are non-negative constants. Let (F t ) t≥0 be ltration on this model dened as

F t = σ{w s , X s , s ≤ t} , ( 3.43) 
where (X t ) t≥0 is the total claim amount process dened in (3.3).

We assume that in each time moment t ≥ 0 the insurance company has β t of the assets (B) and γ t of the assets (S). So, the wealth (the risk process) at the instant t > 0 is equal to (3.45) where u > 0 is an initial endowment and Z t = ct -X t .

U t = β t B t + γ t S t . ( 3 
U t = β t B t + γ t S t = u + ∫ t 0 β s dB s + ∫ t 0 γ v dS v + Z t ,
Proposition 3.5. Let u > 0 and γ = (γ t ) t≥0 be a square integrated process, i.e. for all t > 0

∫ t 0 γ 2 v dv < ∞ a.s.
We set We denote by ς = (ς t ) t≥0 proportional strategy, i.e.

β t = u + ∫ t 0 γ v d S v -γ t S t + Z t , ( 3 
ς t = γ t S t β t B t + γ t S t = γ t S t β t + γ t S t = γ t S t u + ∫ t 0 γ v d S v + Z t .
For this strategy we can rewrite the equation (3.45) as

U t = u + ∫ t 0 (r + (a -r)ς s ) U s ds + σ ∫ t 0 ς s U s dw s + ct -X t .
In this section we assume that

ς t ≡ δ , ( 3.47) 
where δ ≥ 0 is a xed nonrandom constant. In view of

d S t = (a -r) S t dt + σ S t dw t ,
we obtain for V t = γ t S t the following stochastic dierential equation

dV t = δ(a -r)V t dt + δσV t dw t + δd Z t , V 0 = δu .
Through Ito formula we can represent the process V t in the following form

V t = e ξ t ( δ u + δ c ∫ t 0 e -ξ s B -1 s dZ s ) ,
where ξ t = a 1 t + σ δ w t , a 1 = δ(a -r) -σ 2 δ /2 and σ δ = δσ. So, to get the property (3.47) we set

γ t = e ξ t ( δ u + δ c ∫ t 0 e -ξ s B -1 s dZ s ) S t , 0 ≤ t ≤ T .
For this strategy the risk process can be written as

U t = u + a δ ∫ t 0 U s ds + σ δ ∫ t 0 U s dw s + Z t , (3.48) 
where u > 0 is the initial capital, a δ = r + δ(a -r) and σ δ = δσ.

The ruin probability is

ψ(u) = P(inf t≥0 U t < 0) . (3.49)
We start to study this function for any u ≥ 0.

Proposition 3.6. The function ϕ(u) = 1 -ψ(u) satises for all u ≥ 0 the following dierential equation Proof. We denote by (η t ) t≥0 the solution of the following stochastic equation dη t = (a δ η t + c) dt + σ δ η t dw t , η 0 = u .

By Ito formula, we can resolve it, i.e. where a = a δ -σ 2 δ /2. Now we xe some h > 0 and then, in view of the denition of ϕ, we can represent this function as

η
ϕ(u) = E ( 1 {inf t≥0 U t ≥0} ) = E ( 1 {inf 0≤t≤h U t ≥0} E ( 1 {inf t≥h U t ≥0} | F h )) .
It should be noted that the process (3.48) is Markovian, i.e.

E

(

1 {inf t≥h U t ≥0} | F h ) = ϕ(U h )
and, therefore,

ϕ(u) = E ( 1 {inf 0≤t≤h U t ≥0} ϕ(U h )
) .

Moreover, we can represent this function in the form

ϕ(u) = A 1 (u) + A 2 (u) + A 3 (u) (3.53) 
where

A 1 (u) = E ( 1 {N h =0} ϕ(η h ) ) , A 2 (u) = E ( 1 {inf 0≤t≤h U t ≥0} 1 {N h =1} ϕ(U h )
)

and

A 3 (u) = E ( 1 {inf 0≤t≤h U t ≥0} 1 {N h ≥2} ϕ(U h )
) .

We rewrite the equation (3.53) as

A 1 (u) -ϕ(u) h + A 2 (u) h + A 3 (u) h = 0 . (3.54)
It is clear that A 1 (u) -ϕ(u) = e -λh E (ϕ(η h ) -ϕ(u)) .

In addition, it is well known (see, for example, in [START_REF] Paulsen | Stochastic Calculus with Applications to Risk Theory[END_REF]) that the function ϕ is two times continuously dierentiable. So, by the Ito formula A 1 (u) -ϕ(u) = (e -λh -1) ϕ(u)

+ ∫ h 0 E ( (a δ η v + c) ϕ ′ (η v ) + σ 2 δ η 2 v 2 ϕ ′′ (η v )
) dv and, therefore, Then we can represent the term A 2 (u) as

A 2 (u) = E ( 1 {η T 1 ≥Y 1 } 1 {N h =1} ϕ(U h )
) .

Note here that on the set {N h = 1} Finally, for the last term in (3.54) it's easy to see that

U h = ( η T 1 -Y 1 ) e ζ h -ζ T 1 + c ∫ h T 1 e ζ h -
A 3 (u) h ≤ P (N h ≥ 2) h → 0 , as h → 0 .
So, taking the limit in (3.54) as h → 0 we get the equation (3.50).

Hence Proposition 3.6.

To study the asymptotic properties of the ruin probability (3.49) sary that for any c > 0 the following series are convergent

∑ n≥1 E ξ c j , ∑ n≥1 E (ξ c j -E ξ c j ) 2 , ∑ n≥1 P ( |ξ j | > c ) ,
and suciently that these series are convergent for some xed c > 0,

where ξ c = ξ1 {|ξ j |≤c} .

A.4 Central limit theorem

First, we recall the weak convergence for random variables.

Denition A. Theorem A.4. Let (ξ j ) j≥1 be i.i.d. random variables with Eξ 1 = 0 and Eξ 2 1 = σ 2 . Then

∑ n j=1 ξ j √ n =⇒ ξ as n → ∞ ,
where ξ is a Gaussian random variable with the parameters (0, σ 2 ).
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  (a) Calculate EN t and Var(N t ) for t > 0. (b) Calculate the distribution of T n for n ≥ 1.

  Now we come back to the ruin problem, i.e. we study the properties for the ruin probability (3.10). Proposition 3.1. (Almost sure ruin) If c ≤ µλ, then ψ(u) = 1

  .20) Also we dene the Lundberg function asL(x) = ln E e xξ 1 .(3.21)The condition H 1 ) implies that the function L(x) is nite in absolute value for any 0 ≤ x ≤ δ.Proposition 3.2. We assume that the condition H 1 ) holds. If the equation L(x) = 0 has a strictly positive root, then this root is unique.

LH 2 )

 2 (x) = ln E e xξ 1 > ln e xEξ 1 ≥ 0 for any x > 0. So, the function L has no strictly positive root. Theorem 3.2. (Lundberg inequality) Under the conditions H 1 ) for all u ≥ 0 the ruin function admits the exponential upper bound ψ(u) ≤ e -ru . (3.22)

  .31) Remark 3.3. Note that, if we compare the form (3.31) with the upper bound (3.25), then one can see that the Lundberg inequality gives sharp upper bound for the coecient (1 + ρ) -1 .

  Calculate the generator function Ee hY 1 . For which values h > 0 this function is well dened? Calculate EY 1 . (b) Find the net prot condition for this model. (c) Calculate the Lundberg coecient for n = 1 and n = 2. (d) Write the integral equation for the ruin function ψ n (u).

Proposition 3 . 4 .

 34 5 we have shown that the probability of non-ruin ϕ(u) satises the equation (3.26). Now one needs to resolve this equation. We assume that in the Cram er-Lundberg model the distribution function F Y (•) for the random amounts (Y j ) j≥1 has a density f Y and µ = E Y 1 < ∞. Moreover, we assume that this model satises the net prot condition (3.18), i.e. c = λµ(1+ρ) with ρ > 0. Then the solution of the equation (3.26) has the following form ϕ(u) = p ∞ ∑ j=0 q j P( Sj ≤ u) , (3.40)where p = ρ/(1 + ρ), q = 1/(1 + ρ), S0 = 0, Sj = ∑ j i=1 Ỹi and ( Ỹ ) j≥1 are i.i.d. random variables with the distribution function

F

  Y,I(•) dened in(3.26).

  ϕ(u). We have already seen that |δ(u)| ≤ 2 for all u ≥ 0. Let now u be a xed positive number. Denote by M u = sup 0≤t≤u |δ(t)|. Then there exists 0 ≤ t 0 ≤ u such that M u = |δ(u 0 )| because the function δ(•) is continuous on the interval [0, u]. Therefore,

Theorem 3 . 5 .

 35 We assume that all the conditions in Proposition 3.4 hold and the distribution function F Y,I (•) is subexponential. Thenlim u→∞ ψ(u) F Y,I (u) = ρ -1 .(3.41)

Example 3 . 4 .

 34 We consider the Cram er-Lundberg model in which the positive random variables (Y j ) j≥1 are distributed according to the Pareto distribution function F (•) dened as

  )(a δ u + c) -λϕ(u) + λ ∫ u 0 ϕ(u -y)dF (y) = 0 (3.50) with the boundary conditions cϕ ′ (0) = λϕ(0) and ϕ(+∞) = 1 . (3.51)

lim h→0 A 1 σ 2 δ u 2 2 ϕ

 h→012 (u) -ϕ(u) h = (a δ u + c) ϕ ′ (u) + ′′ (u) -λϕ(u) .

  Remark 1.2. The equation(1.7) is called the "bus paradox" . If we associate the jump moments of a Poisson process with the time moments of passages of a bus through a station, then according to(1.7) for suciently large t the bus waiting time interval [T Nt , T Nt+1 ]

	) .	(1.7)

  Proposition 3.1 means that insurance companies have to choose the premium rate c > 0 such that Eξ 1 < 0. This is the only possibility to avoid being bankrupt almost sure in the framework of the Cram er -Lundberg model. So, if Eξ 1 < 0, then we can hope that the ruin function ψ(u) will be less then 1.

Denition 3.2. The Cram er-Lundberg model satises "net prot condition" if

  .44)We denote by π t = (β t , γ t ) and assume that the process π = (π t ) t≥0 is adapted to the ltration (F t ) t≥0 . In this case π is said a nancial strategy. Denition 3.5. Financial strategy π = (π t ) t≥0 with π t = (β t , γ t ) is said to be admissible if for any t ≥ 0

	∫ t	(	|β s | + γ 2
	0		

s

)

ds < ∞ a.s. and, for anyy t ≥ 0,

  .46) where S t = S t /B t and Z t = ∫ t 0 B -1 v dZ v . Then the nancial strategy (β t , γ t ) t≥0 is admissible. Proof. First of all note that the process (3.46) is integrable, i.e. Taking into account here that dZ t = B t d Z t and dS t = d S t B t = S t dB t + B t d S t , we get the equality (3.45).

	for any t > 0	∫ t
		|β v | dv < ∞ a.s.
		0
	The denition (3.46) implies that the discounted wealth process
		U t =	U t B

t = β t + γ t S t admits the following stochastic dierential:

d U t = γ t d S t + d Z t .

Therefore, Ito formula implies that

dU t = dB t U t = B t d U t + U t dB t = β t dB t + γ t ( S t dB t + B t d S t ) + B t d Z t .

  ζ s ds , where the process (ζ t ) t≥0 is given in(3.52). So, on the set{ N h = 1} ∩ {Y 1 ≤ η T 1 u|e x -1| + c h e 2x ) |e 2x -1| + 2c h e 2x + u|e x -1| .Taking into account that the process (ζ t ) t≥0 is continuous, we obtainIn view of the independence of the processes (ζ t ) t≥0 and (N t ) t≥0 ,

	} h -1 + c h e 2ζ * h ) e 2ζ * |U h -u + Y 1 | ≤ (u + η * h + η * h , η * h = sup h (x) = we get where where B * ( lim h→0 ζ * h = 0 a.s. Moreover, using the properties of a Brownian motion, one can check (3.55) directly that for all γ > 0 and 0 < t < ∞ E e γζ * t < ∞ . So, by the dominated convergence theorem lim h→0 EB * h (ζ * h ) = 0 . we obtain that u + that lim h→0 ∫ u A 2 (u) 0 h = λ ϕ(u -y) dF (y) . (3.56)

0≤s≤h |η s -u| and ζ * h = sup 0≤s≤h |ζ s | .

From the denition of (η t ) t≥0 it follows that

η * h ≤ u|e ζ * h -1| + c h e 2ζ * h .

Therefore, on the set (3.55)

|U h -u + Y 1 | ≤ B * h (ζ * h ) ,

  1. The sequence of random variable is called conver- gent weakly to a random variable ξ, i.e. ξ n =⇒ ξ as n → ∞, if for any bounded continuous R → R function g lim

n→∞ E g(ξ n ) = E g(ξ) .

z e rz P(Y

> z) dz and the parameter ρ > 0 is given in the net prot condition(3.19).

The notes are intended for students of the Mathematics This work was supported by the Ministry of Education and Science of the Russian Federation (project No 1.472.2016/1.4).

Proof. First, note that Remark 3.2 implies the condition (3.19).

Moreover, by the Theorem 3.3, we can write the equation for ψ ψ(u) = q F Y,I (u) + q ∫ u 0 ψ(u -y) dF Y,I (y) , (3.33) where q = (1 + ρ) -1 . From here we directly get the equation for the function Q(u) = e ru ψ(u), i.e.

where

Now let us to show that G is a distribution function, i.e. G(+∞) = 1. Indeed, the integrating by parts yields

Taking into account that 0 < r < δ, we obtain

The following theorem gives us the asymptotic behavior of the ruin probability in the depending of this parameter (see, for example, [START_REF] Frolova | In the insurance business risky investments are dangerous[END_REF] and [START_REF] Pergamenshchikov | Ruin probability in the presence of risky investments // Stoch[END_REF]).

Theorem 3.6. For the proportional strategy (3.47) the ruin probability (3.49) has the following asymptotic (as

Now one needs to choose the proportional investment coecient δ > 0 in the strategy (3.47) such that the power parameter ν dened in (3.57) will be positive, i.e. 0 < δ < δ * , where

Therefore, if there exists 0 < δ < δ * for which E Y 

A Appendix

In this section we announce main limit results of the probability theory which can be found, for example, in [10].

A. Then for any A ∈ X the probability P(A) = 0 or P(A) = 1.

A.3 Three series theorem

Theorem A.