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Abstract

Reaching a global view of brain organization requires assembling evidence on widely different
mental processes and mechanisms. The variety of human neuroscience concepts and terminology
poses a fundamental challenge to relating brain imaging results across the scientific literature.
Existing meta-analysis methods perform statistical tests on sets of publications associated with a
particular concept. Thus, large-scale meta-analyses only tackle single terms that occur frequently.
We propose a new paradigm, focusing on prediction rather than inference. Our multivariate model
predicts the spatial distribution of neurological observations, given text describing an experiment,
cognitive process, or disease. This approach handles text of arbitrary length and terms that are
too rare for standard meta-analysis. We capture the relationships and neural correlates of 7 547
neuroscience terms across 13 459 neuroimaging publications. The resulting meta-analytic tool,
neuroquery.org, can ground hypothesis generation and data-analysis priors on a comprehensive
view of published findings on the brain.

1 Introduction: pushing the envelope of meta-analyses

Each year, thousands of brain-imaging studies explore the links between brain and behavior: more
than 6 000 publications a year contain the term “neuroimaging” on PubMed. Finding consistent trends
in the knowledge acquired across these studies is crucial, as individual studies by themselves seldom
have enough statistical power to establish fully trustworthy results [Button et al., 2013, Poldrack
et al., 2017]. But compiling an answer to a specific question from this impressive number of results
is a daunting task. There are too many studies to manually collect and aggregate their findings. In
addition, such a task is fundamentally difficult due to the many different aspects of behavior, as well
as the diversity of the protocols used to probe them.

Meta-analyses can give objective views of the field, to ground a review article or a discussion of
new results. Coordinate-Based Meta-Analysis (CBMA) methods [Laird et al., 2005, Wager et al., 2007,
Eickhoff et al., 2009] assess the consistency of results across studies, comparing the observed spatial
density of reported brain stereotactic coordinates to the null hypothesis of a uniform distribution.
Automating CBMA methods across the literature, as in NeuroSynth [Yarkoni et al., 2011], enables
large-scale analyses of brain-imaging studies, giving excellent statistical power. Existing meta-analysis
methods focus on identifying effects reported consistently across the literature, to distinguish true
discoveries from noise and artifacts. However, they can only address neuroscience concepts that are
easy to define. Choosing which studies to include in a meta-analysis can be challenging. In principle,
studies can be manually annotated as carefully as one likes. However, manual meta-analyses are not
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Cognitive Atlas 100% 14% 0% 3% 14% 68%
MeSH 1% 100% 3% 4% 1% 9%
NeuroNames 0% 9% 100% 29% 1% 10%
NIF 0% 12% 30% 100% 1% 10%
NeuroSynth 9% 14% 5% 5% 100% 98%
NeuroQuery 8% 25% 9% 9% 17% 100%

Table 1: Diversity of vocabularies: there is no established lexicon of neuroscience, even in hand-curated
reference vocabularies, as visible across CognitiveAtlas [Poldrack and Yarkoni, 2016], MeSH [Lipscomb, 2000],
NeuroNames [Bowden and Martin, 1995], NIF [Gardner et al., 2008], and NeuroSynth [Yarkoni et al., 2011]. Our
dataset, NeuroQuery, contains all the terms from the other vocabularies that occur in more than 5 out of 10 000
articles. “MeSH” corresponds to the branches of PubMed’s MEdical Subject Headings related to neurology,
psychology, or neuroanatomy (see Section 4.4.2). Many MeSH terms are hardly or never used in practice –
e.g. variants of multi-term expressions with permuted word order such as “Dementia, Frontotemporal”, and
are therefore not included in NeuroQuery’s vocabulary.

scalable, and the corresponding degrees of freedom are difficult to control statistically. In what follows,
we focus on automated meta-analysis. To automate the selection of studies, the common solution is to
rely on terms present in publications. But closely related terms can lead to markedly different meta-
analyses (Fig. 6). The lack of a universally established vocabulary or ontology to describe mental
processes and disorders is a strong impediment to meta-analysis [Poldrack and Yarkoni, 2016]. Indeed,
only 30% of the terms contained in a neuroscience ontology or meta-analysis tool are common to
another (see Table 1). In addition, studies are diverse in many ways: they investigate different mental
processes, using different terms to describe them, and different experimental paradigms to probe them
[Newell, 1973]. Yet, current meta-analysis approaches model all studies as asking the same question.
They cannot model nuances across studies because they rely on in-sample statistical inference and
are not designed to interpolate between studies that address related but different questions, or make
predictions for unseen combinations of mental processes. A consequence is that, as we will show, their
results are harder to control outside of well-defined and frequently-studied psychological concepts.

Currently, an automated meta-analysis cannot cover all studies that report a particular functional
contrast (contrasting mental conditions to isolate a mental process, Poldrack et al. [2011]). Indeed, we
lack the tools to parse the text in articles and reliably identify those that relate to equivalent or very
similar contrasts. As an example, consider a study of the neural support of translating orthography
to phonology, probed with visual stimuli by Pinho et al. [2018]. The results of this study build upon
an experimental contrast labeled by the authors as “Read pseudo-words vs. consonant strings”, shown
in Fig. 2. Given this description, what prior hypotheses arise from the literature for this contrast?
Conversely, given the statistical map resulting from the experiment, how can one compare it with
previous reports on similar tasks? For these questions, meta-analysis seems the tool of choice. Yet, the
current meta-analytic paradigm requires the practitioner to select a set of studies that are included
in the meta-analysis. In this case, which studies from the literature should be included? Even with a
corpus of 14 000 full-text articles, selection based on simple pattern matching –as with NeuroSynth–
falls short. Indeed, only 29 studies contain all 5 words from the contrast description, which leads
to a noisy and under-powered meta-analytic map (Fig. 2). To avoid relying on the contrast name,
which can be seen as too short and terse, one could do a meta-analysis based on the page-long task
description1. However, that would require combining even more terms, which precludes selecting
studies that contain all of them. A more manual selection may help to identify relevant studies, but
it is far more difficult and time-consuming. Moreover, some concepts of interest may not have been

1https://project.inria.fr/IBC/files/2019/03/documentation.pdf
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investigated by themselves, or only in very few studies: rare diseases, or tasks involving a combination
of mental processes that have not been studied together. For instance, there is evidence of agnosia in
Huntington’s disease [Sitek et al., 2014], but it has not been studied with brain imaging. To compile a
brain map from the literature for such queries, it is necessary to interpolate between studies only partly
related to the query. Standard meta-analytic methods lack an automatic way to measure the relevance
of studies to a question, and to interpolate between them. This prevents them from answering new
questions, or questions that cannot be formulated simply.

Many of the constraints of standard meta-analysis arise from the necessity to define an in-sample
test on a given set of studies. Here, we propose a new kind of meta-analysis, that focuses on out-of-
sample prediction rather than hypothesis testing. The focus shifts from establishing consensus for a
particular subject of study to building multivariate mappings from mental diseases and psychological
concepts to anatomical structures in the brain. This approach is complementary to classic meta-
analysis methods such as Activation Likelihood Estimate (ALE) [Laird et al., 2005], Multilevel Kernel
Density Analysis (MKDA) [Wager et al., 2007] or NeuroSynth [Yarkoni et al., 2011]: these perform
statistical tests to evaluate trustworthiness of results from past studies, while our framework predicts,
based on the description of an experiment or subject of study, which brain regions are most likely
to be observed in a study. We introduce a new meta-analysis tool, NeuroQuery, that predicts the
neural correlates of neuroscience concepts – related to behavior, diseases, or anatomy. To do so, it
considers terms not in isolation, but in a dynamic, contextually-informed way that allows for mutual
interactions. A predictive framework enables maps to be generated by generalizing from terms that are
well studied (“faces”) to those that are less well studied and inaccessible to traditional meta-analyses
(“prosopagnosia”). As a result, NeuroQuery produces high-quality brain maps for concepts studied
infrequently in the literature and for a larger class of queries than existing tools – including, e.g., free
text descriptions of a hypothetical experiment. These brain maps predict well the spatial distribution
of findings and thus form good grounds to generate regions of interest or interpret results for studies
of infrequent terms such as prosopagnosia. Yet, unlike with conventional meta-analysis, they do not
control a voxel-level null hypothesis, hence are less suited to asserting that a particular area is activated
in studies, e.g. of prosopagnosia.

Our approach, NeuroQuery, assembles results from the literature into a brain map using an arbitrary
query with words from our vocabulary of 7 547 neuroscience terms. NeuroQuery uses a multivariate
model of the statistical link between multiple terms and corresponding brain locations. It is fitted using
supervised machine learning on 13 459 full-text publications. Thus, it learns to weight and combine
terms to predict the brain locations most likely to be reported in a study. It can predict a brain
map given any combination of terms related to neuroscience – not only single words, but also detailed
descriptions, abstracts, or full papers. With an extensive comparison to published studies, we show in
Section 2.5 that it indeed approximates well results of actual experimental data collection. NeuroQuery
also models the semantic relations that underlie the vocabulary of neuroscience. Using techniques from
natural language processing, NeuroQuery infers semantic similarities across terms used in the literature.
Thus, it makes better use of the available information, and can recover biologically plausible brain
maps where other automated methods lack statistical power, for example with terms that are used in
few studies, as shown in Section 2.4. This semantic model also makes NeuroQuery less sensitive to
small variations in terminology (Fig. 6). Finally, the semantic similarities captured by NeuroQuery
can help researchers navigate related neuroscience concepts while exploring their associations with
brain activity. NeuroQuery extends the scope of standard meta-analysis, as it extracts from the
literature a comprehensive statistical summary of evidence accumulated by neuroimaging research.
It can be used to explore the domain knowledge across sub-fields, generate new hypotheses, and
construct quantitative priors or regions of interest for future studies, or put in perspective results of
an experiment. NeuroQuery is easily usable online, at neuroquery.org, and the data and source code
can be freely downloaded. We start by briefly describing the statistical model behind NeuroQuery
in Section 2.1, then illustrate its usage (Section 2.2) and show that it can map new combinations of
concepts in Section 2.3. In Section 2.4 and 2.5, we conduct a thorough qualitative and quantitative
assessment of the new possibilities it offers, before a discussion and conclusion.
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2 Results: The NeuroQuery tool and what it can do.

2.1 Overview of the NeuroQuery model.

NeuroQuery is a statistical model that identifies brain regions related to an arbitrary text query – a
single term, a few keywords, or a longer text. It is built on a controlled vocabulary of neuroscience
terms and a large corpus containing the full text of neuroimaging publications and the coordinates
that they report. The main components of the NeuroQuery model are an estimate of the relatedness
of terms in the vocabulary, derived from co-occurrence statistics, and a regression model that links
term occurrences to neural activations using supervised machine learning techniques. To generate a
brain map, NeuroQuery first uses the estimated semantic associations to map the query onto a set
of keywords that can be reliably associated with brain regions. Then, it transforms the resulting
representation into a brain map using a linear regression model (Fig. 1). This model can thus be
understood as a reduced rank regression, where the low-dimensional representation is a distribution of
weights over keywords selected for their strong link with brain activity. We emphasize the fact that
NeuroQuery is a predictive model. The maps it outputs are predictions of the likelihood of observation
brain location (rescaled by their standard deviation). They do not have the same meaning as ALE,
MKDA or NeuroSynth maps as they do not show a voxel-level test statistic. In this section we describe
our neuroscience corpus and how we use it to estimate semantic relations, select keywords, and map
them onto brain activations.

NeuroQuery relies on a corpus of 13 459 full-text neuroimaging publications, described in Section 4.1.
This corpus is by far the largest of its kind; the NeuroSynth corpus contains a similar number of
documents, but uses only the article abstracts, and not the full article texts. We represent the text
of a document with the (weighted) occurrence frequencies of each phrase from a fixed vocabulary, i.e.,

"grasping"

grasping
object
action

movement
action observation

object
action

movement

L R

z=44
query expansion mapping result

"visual"

visual
visual cortex

cortex
occipital

visual
visual cortex

occipital

L R

z=0
query expansion mapping result

Figure 1: Overview of the NeuroQuery model: two examples of how association maps are constructed
for the terms “grasping” and “visual”. The query is expanded by adding weights to related terms. The
resulting vector is projected on the subspace spanned by the smaller vocabulary selected during supervised
feature selection. Those well-encoded terms are shown in color. Finally, it is mapped onto the brain space
through the regression model. When a word (e.g., “visual”) has a strong association with brain activity and
is selected as a regressor, the smoothing has limited effect. Details: the first bar plot shows the semantic
similarities of neighboring terms with the query. It represents the smoothed TFIDF vector. Terms that are
not used as features for the supervised regression are shown in gray. The second bar plot shows the similarities
of selected terms, rescaled by the norms of the corresponding regression coefficient maps. It represents the
relative contribution of each term in the final prediction. The coefficient maps associated with individual terms
are shown next to the bar plot. These maps are combined linearly to produce the prediction shown on the
right.
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Term Frequency · Inverse Document Frequency (TFIDF) features [Salton and Buckley, 1988]. This
vocabulary is built from the union of terms from several ontologies (shown in Table 1) and labels from
12 anatomical atlases (listed in Table 4 in Section 4.4.2). It comprises 7 547 terms or phrases related
to neuroscience that occur in at least 0.05% of publications. We automatically extract 418 772 peak
activations coordinates from publications, and transform them to brain maps with a kernel density
estimator. Coordinate extraction is discussed and evaluated in Section 4.1.3. This preprocessing step
thus yields, for each article: its representation in term frequency space (a TFIDF vector), and a brain
map representing the estimated density of activations for this study. The corresponding data is also
openly available online.

The first step of the NeuroQuery pipeline is a semantic smoothing of the term-frequency represen-
tations. Many expressions are challenging for existing automated meta-analysis frameworks, because
they are too rare, polysemic, or have a low correlation with brain activity. Rare words are problematic
because peak activation coordinates are a very weak signal: from each article we extract little infor-
mation about the associated brain activity. Therefore existing frameworks rely on the occurrence of
a term in hundreds of studies in order to detect a pattern in peak activations. Term co-occurrences,
on the other hand, are more consistent and reliable, and capture semantic relationships [Turney and
Pantel, 2010]. The strength of these relationships encode semantic proximity, from very strong for syn-
onyms that occur in statistically identical contexts, to weaker for different yet related mental processes
that are often studied one opposed to the other. Using them helps meta analysis: it would require
hundreds of studies to detect a pattern in locations reported for “aphasia”, e.g. in lesion studies. But
with the text of a few publications we notice that it often appears close to “language”, which is indeed
a related mental process. By leveraging this information, NeuroQuery recovers maps for terms that are
too rare to be mapped reliably with standard automated meta-analysis. Using Non-negative Matrix
Factorization (NMF), we compute a low-rank approximation of word co-occurrences (the covariance
of the TFIDF features), and obtain a denoised semantic relatedness matrix (details are provided in
Section 4.2.3). These word associations guide the encoding of rare or difficult terms into brain maps.
They can also be used to explore related neuroscience concepts when using the NeuroQuery tool.

The second step from a text query to a brain map is NeuroQuery’s text-to-brain encoding model.
When analyzing the literature, we fit a linear regression to reliably map text onto brain activations.
The intensity (across the peak density maps) of each voxel in the brain is regressed on the TFIDF
descriptors of documents. This model is an additive one across the term occurrences, as opposed to
logical operations traditionally used to select studies for meta-analysis. It results in higher predictive
power (Section 4.4.1).

One challenge is that TFIDF representations are sparse and high-dimensional. We use a reweighted
ridge regression and feature selection procedure (described in Section 4.2.2) to prevent uninformative
terms such as “magnetoencephalography” from degrading performance. This procedure automatically
selects around 200 keywords that display a strong statistical link with brain activity and adapts
the regularization applied to each feature. Indeed, mapping too many terms (covariates) without
appropriate regularization would degrade the regression performance due to multicolinearity.

To make a prediction, NeuroQuery combines semantic smoothing and linear regression of brain
activations. To encode a new document or query, the text is expanded, or smoothed, by adding
weight to related terms using the semantic similarity matrix. The resulting smoothed representation
is projected onto the reduced vocabulary of selected keywords, then mapped onto the brain through
the linear regression coefficients (Fig. 1). The rank of this linear model is therefore the size of the
restricted vocabulary that was found to be reliably mapped to the brain. Compared with other latent
factor models, this 2-layer linear model is easily interpretable, as each dimension (both of the input
and the latent space) is associated with a term from our vocabulary. In addition, NeuroQuery uses
an estimate of the voxel-level variance of association (see methodological details in Section 4.2), and
reports a map of Z statistics. Note that this variance represents an uncertainty around a prediction
for a TFIDF representation of the concept of interest, which is treated as a fixed quantity. Therefore,
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the resulting map cannot be thresholded to reject any simple null hypothesis. NeuroQuery maps have
a different meaning and different uses than standard meta-analysis maps obtained e.g. with ALE.
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Figure 2: Illustration: studying the contrast “Read pseudo words vs. consonant strings”. Left:
Group-level map from the IBC dataset for the contrast “Read pseudo-words vs. consonant strings” and contour
of NeuroQuery map obtained from this query. The NeuroQuery map was obtained directly from the contrast
description in the dataset’s documentation, without needing to manually select studies for the meta-analysis
nor convert this description to a string pattern usable by existing automatic meta-analysis tools. The map
from which the contour is drawn, as well as a NeuroQuery map for the page-long description of the RSVP
language task, are shown in Section 4.3.1, in Section 4.3.1c and Section 4.3.1d respectively. Right: ALE
map for 29 studies that contain all terms from the IBC contrast description. The map was obtained with the
GingerALE tool [Eickhoff et al., 2009]. With only 29 matching studies, ALE lacks statistical power for this
contrast description.

2.2 Illustration: using NeuroQuery for post-hoc interpretation

After running a functional Magnetic Resonance Imaging (fMRI) experiment, it is common to compare
the computed contrasts to what is known from the existing literature, and even use prior knowledge to
assess whether some activations are not specific to the targeted mental process, but due to experimental
artifacts such as the stimulus modality. It is also possible to introduce prior knowledge earlier in the
study and choose a Region of Interest (ROI) before running the experiment. This is usually done based
on the expertise of the researcher, which is hard to formalize and reproduce. With NeuroQuery, it is
easy to capture the domain knowledge and perform these comparisons or ROI selections in a principled
way.

As an example, consider again the contrast from the RSVP language task [Pinho et al., 2018,
Humphries et al., 2006] in the Individual Brain Charting (IBC) dataset, shown in Fig. 2. It is described
as “Read pseudo-words vs. consonant strings”. We obtain a brain map from NeuroQuery by simply
transforming the contrast description, without any manual intervention, and compare both maps by
overlaying a contour of the NeuroQuery map on the actual IBC group contrast map. We can also obtain
a meta-analytic map for the whole RSVP language task by analyzing the free-text task description
with NeuroQuery (Section 4.3.1).

2.3 NeuroQuery can map new combinations of concepts

To study the predictions of NeuroQuery, we first demonstrate that it can indeed give good brain
maps on combinations of terms that have never been studied together. For this, we leave out from our
corpus of studies all the publications that simultaneously mention two given terms, we fit a NeuroQuery
model on the resulting reduced corpus, and evaluate its predictions on the left out publications, that
did actually report these terms together. Fig. 3 shows an example of such an experiment: excluding
publications mentioning simultaneously “distance” and “color”. The figure compares a simple meta
analysis of the combination of these two terms – contrasting the left-out studies with the remaining
ones – with the predictions of the model fitted excluding studies that include the term conjunction.
Qualitatively, the predicted maps comprise all the brain structures visible in the simultaneous studies
of “distance” and “color”: on the one hand, the intra-parietal sulci, the frontal eye fields, and the
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Figure 3: Mapping an unseen combination of terms Left The difference in the spatial distribution of
findings reported in studies that contains both “distance” and “color” (n = 687), and the rest of the studies. –
Right Predictions of a NeuroQuery model fitted on the studies that do not contain simultaneously both terms
“distance” and “color”.

anterior cingulate / anterior insula network associated with distance perception, and on the other
hand, the additional mid-level visual region around the approximate location of V4 associated with
color perception. The extrapolation from two terms for which the model has seen studies, “distance”
and “color”, to their combination, for which the model has no data, is possible thanks to the linear
additive model, combining regression maps for “distance” and “color”.

To assert that the good generalization to unseen pairs of terms is not limited to the above pair,
we apply quantitative experiments of prediction quality (introduced later, in Section 2.5) to 1 000
randomly-chosen pairs. We find that measures of how well predictions match the literature decrease
only slightly for studies with terms already seen together compared to studies with terms never seen
jointly (details in Section 4.3.2). Finally, we gauge the quality of the maps with a quantitative experi-
ment mirroring the qualitative evaluation of Fig. 3: for each of the 1 000 pairs of terms, we compute the
Pearson correlation of the predicted map for the unseen combination of terms with the meta-analytic
map obtained on the left-out studies. We find a median correlation of 0.85 which shows that the
excellent performance observed on Fig. 3 is not due to a specific choice of terms.

2.4 NeuroQuery can map rare or difficult concepts

We now we compare the NeuroQuery model to existing automated meta-analysis methods, investi-
gate how it handles terms that are challenging for the current state of the art, and quantitatively
evaluate its performance. We compare NeuroQuery with NeuroSynth [Yarkoni et al., 2011], the best
known automated meta-analytic tool, and with Generalized Correspondence Latent Dirichlet Alloca-
tion (GCLDA) [Rubin et al., 2017]. GCLDA is an important baseline because it is the only multivariate
meta-analytic model to date. However, it produces maps with a low spatial resolution because it mod-
els brain activations as a mixture of Gaussians. Moreover, it takes several days to train and a dozen of
seconds to produce a map at test time, and is thus unsuitable to build an online and responsive tool
like NeuroSynth or NeuroQuery.

By combining term similarities and an additive encoding model, NeuroQuery can accurately map
rare or difficult terms for which standard meta-analysis lacks statistical power, as visible on Fig. 4.

Quantitatively comparing methods on very rare terms is difficult for lack of ground truth. We
therefore conduct meta-analyses on subsampled corpora, in which some terms are made artificially
rare, and use the maps obtained from the full corpus as a reference. We choose a set of frequent
and well-mapped terms, such as “language”, for which NeuroQuery and NeuroSynth (trained on a
full corpus) give consistent results. For each of those terms, we construct a series of corpora in which
the word becomes more and more rare: from a full corpus, we erase randomly the word from many
documents until it occurs at most in 213 = 8912 articles, then 212 = 4096, and so on. For many terms,
NeuroQuery only needs a dozen examples to produce maps that are qualitatively and quantitatively
close to the maps it obtains for the full corpus – and to NeuroSynth’s full-corpus maps. NeuroSynth
typically needs hundreds of examples to obtain similar results, as seen in Fig. 5. Document frequencies
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Figure 4: Examples of maps obtained for a given term, compared across different large-scale meta-analysis frameworks.
“GCLDA” has low spatial resolution and produces inaccurate maps for many terms. For relatively straightforward terms like “psts”
(posterior superior temporal sulcus), NeuroSynth and NeuroQuery give consistent results. For terms that are more rare or difficult
to map like “dyslexia”, only NeuroQuery generates usable brain maps.
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Figure 5: Learning good maps from few studies. left: maps obtained from subsampled corpora, in which
the encoded word appears in 16 and 128 documents, and from the full corpus. NeuroQuery needs less examples
to learn a sensible brain map. NeuroSynth maps correspond to NeuroSynth’s Z scores for the “association test”
from neurosynth.org. NeuroSynth’s “posterior probability” maps for these terms for the full corpus are shown
in Fig. 19. Each tool is trained on its own dataset, which is why the full-corpus occurrence counts differ. right:
convergence of maps toward their value for the full corpus, as the number of occurrences increases. Averaged
over 13 words: “language”, “auditory”, “emotional”, “hand”, “face”, “default mode”, “putamen”, “hippocampus”,
“reward”, “spatial”, “amygdala”, “sentence”, “memory”. On average, NeuroQuery is closer to the full-corpus map.
This confirms quantitatively what we observe for the two examples “language” and “reward” on the left. Note that
here convergence is only measured with respect to the model’s own behavior on the full corpus, hence a high value
does not indicate necessarily a good face validity of the maps with respect to neuroscience knowledge. The solid
line represents the mean across the 13 words and the error bands represent a 95% confidence interval based on 1 000
bootstrap repetitions.

roughly follow a power law [Piantadosi, 2014], meaning that most words are very rare – half the terms
in our vocabulary occur in less than 76 articles (see Fig. 16 in Section 4.4.1). Reducing the number of
studies required to map well a term (a.k.a. the sample complexity of the meta-analysis model) therefore
greatly widens the vocabulary that can be studied by meta-analysis.
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Figure 6: Taming query variability
Maps obtained for a few words related to
mental arithmetic. By correctly capturing
the fact that these words are related, Neu-
roQuery can use its map for easier words
like “calculation” and “arithmetic” to en-
code terms like “computation” and “addi-
tion” that are difficult for meta-analysis.
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Capturing relations between terms is important because the literature does not use a perfectly con-
sistent terminology. The standard solution is to use expert-built ontologies [Poldrack and Yarkoni,
2016], but these tend to have low coverage. For example, the controlled vocabularies that we use dis-
play relatively small intersections, as can be seen in Table 1. In addition, ontologies are typically even
more incomplete in listing relations across terms. Rather than ontologies, NeuroQuery relies on distri-
butional semantics and co-occurrence statistics across the literature to estimate relatedness between
terms. These continuous semantic links provide robustness to inconsistent terminology: consistent
meta-analytic maps for similar terms. For instance, “calculation”, “computation”, “arithmetic”, and
“addition” are all related terms that are associated with similar maps by NeuroQuery. On the contrary,
standard automated meta-analysis frameworks map these terms in isolation, and thus suffer from a
lack of statistical power and produce empty, or nearly empty, maps for some of these terms (see Fig. 6).

NeuroQuery improves mapping not only for rare terms that are variants of concepts widely studied,
but also for some concepts rarely studied, such as “color” or “Huntington” (Figure 4). The main reason
is the semantic smoothing described in Section 2.1. Another reason is that working with the full text
of publications associates many more studies to a query: 2779 for “color”, while NeuroSynth matches
only 236 abstracts, and 147 for “huntington”, a term not known to NeuroSynth. Full-text matching
however requires to give unequal weight to studies, to avoid giving too much weight to studies weakly
related to the query. These weights are computed by the supervised-learning ridge regression: in its
dual formulation, ridge regression is seen as giving weights to training samples [Bishop, 2006, sec 6.1].

2.5 Quantitative evaluation: NeuroQuery is an accurate model of the lit-
erature.

Unlike standard meta-analysis methods, which compute in-sample summary statistics, NeuroQuery is
a predictive model, that can produce brain maps for out-of-sample neuroimaging studies. This enables
us to quantitatively assess its generalization performance. Here we check that NeuroQuery captures
reliable links from concepts to brain activity – associations that generalize to new, unseen neuroimaging
studies. We do this with 16-fold shuffle-split cross-validation. After fitting a NeuroQuery model on
90% of the corpus, for each document in the left-out test set (around 1 300), we encode it, normalize
the predicted brain map to coerce it into a probability density, and compute the average log-likelihood
of the coordinates reported in the article with respect to this density. The procedure is then repeated
16 times and results are presented in Fig. 7. We also perform this procedure with NeuroSynth and
GCLDA. NeuroSynth does not perform well for this test. Indeed, the NeuroSynth model is designed
for single-phrase meta-analysis, and does not have a mechanism to combine words and encode a full
document. Moreover, it is a tool for in-sample statistical inference, which is not well suited for out-of
sample prediction. GCLDA performs significantly better than chance, but still worse than a simple
ridge regression baseline. This can be explained by the unrealistic modelling of brain activations as a
mixture of a small number of Gaussians, which results in low spatial resolution, and by the difficulty
to perform posterior inference for GCLDA. Another metric, introduced in Mitchell et al. [2008] for
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Figure 7: Explaining coordinates reported in unseen studies. – Left: log-likelihood for coordinates
reported in test articles, relative to the log-likelihood of a naive baseline that predicts the average density
of the training set. NeuroQuery outperforms GCLDA, NeuroSynth, and a ridge regression baseline. Note
that NeuroSynth is not designed to make encoding predictions for full documents, which is why it does not
perform well on this task. – Right: how often the predicted map is closer to the true coordinates than to the
coordinates for another article in the test set [Mitchell et al., 2008]. The boxes represent the first, second and
third quartiles of scores across 16 cross-validation folds. Whiskers represent the rest of the distribution, except
for outliers, defined as points beyond 1.5 times the IQR past the low and high quartiles, and represented with
diamond fliers.

encoding models, tests the ability of the meta-analytic model to match the text of a left-out study
with its brain map. For each article in the test set, we draw randomly another one and check whether
the predicted map is closer to the correct map (containing peaks at each reported location) or to the
random negative example. More than 72% of the time, NeuroQuery’s output has a higher Pearson
correlation with the correct map than with the negative example (see Fig. 7 right).

2.6 NeuroQuery maps reflect well other meta-analytic maps

The above experiments quantify how well NeuroQuery captures the information in the literature, by
comparing predictions to reported coordinates. However, the scores are difficult to interpret, as peak
coordinates reported in the literature are noisy and incomplete with respect to the full activation
maps. We also want to quantify the quality of the brain maps generated by NeuroQuery, extending
the visual comparisons of Fig. 4. For this purpose, we compare NeuroQuery predictions to a few
reliable references.

First, we use a set of diverse and curated Coordinate-Based Meta-Analysis (IBMA) maps available
publicly [Varoquaux et al., 2018]. This collection contains 19 IBMA brain maps, labelled with cognitive
concepts such as “visual words”. For each of these labels, we obtain a prediction from NeuroQuery and
compare it to the corresponding IBMA map. The IBMA maps are thresholded. We evaluate whether
thresholding the NeuroQuery predicted maps can recover the above-threshold voxels in the IBMA,
quantifying false detections and misses for all thresholds with the Area Under the Receiver Operating
Characteristic (ROC) Curve [Fawcett, 2006]. NeuroQuery predictions match well the IBMA results,
with a median Area Under the Curve (AUC) of 0.80. Such results cannot be directly obtained with
NeuroSynth, as many labels are missing from NeuroSynth’s vocabulary. Manually reformulating the
labels to terms from NeuroSynth’s vocabulary gives a median AUC of .83 for NeuroSynth, and also
raises the AUC to .88 for NeuroQuery (details in Section 4.3.5 and Fig. 13).

We also perform a similar experiment for anatomical terms, relying on the Harvard-Oxford struc-
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tural atlases [Desikan et al., 2006]. Both NeuroSynth and NeuroQuery produce maps that are close
to the atlases’ manually segmented regions, with a median AUC of 0.98 for NeuroQuery and 0.95 for
NeuroSynth, for the region labels that are present in NeuroSynth’s vocabulary. Details are provided
in Section 4.3.6 and Fig. 14.

For frequent-enough terms, we consider NeuroSynth as a reference. Indeed, while the goal of
NeuroSynth is to reject a voxel-level association test, and not to predict a activation distribution like
NeuroQuery, it would still be desirable that NeuroQuery predicts few observations where an association
statistic is small. We threshold NeuroSynth maps by controlling the False Discovery Rate (FDR) at 1%
and select the 200 maps with the largest number of activations. We compare NeuroQuery predictions
to NeuroSynth activations by computing the AUC. NeuroQuery and NeuroSynth maps for these well-
captured terms are very similar, with a median AUC of 0.90. Details are provided in Section 4.3.7 and
Fig. 15.

2.7 NeuroQuery is an openly available resource

NeuroQuery can easily be used online: https://neuroquery.org. Users can enter free text in a
search box (rather than select a single term from a list as is the case with existing tools) and discover
which terms, neuroimaging publications, and brain regions are related to their query. NeuroQuery
is also available as an open-source Python package that can be easily installed on all platforms:
https://github.com/neuroquery/neuroquery. This will enable advanced users to run extensive
meta-analysis with Neuroquery, integrate it in other applications, and extend it. The package allows
training new NeuroQuery models as well as downloading and using a pre-trained model. Finally, all
the resources used to build NeuroQuery are freely available at https://github.com/neuroquery/

neuroquery_data. This repository contains i) the data used to train the model: vocabulary list and
document frequencies, word counts (TFIDF features), and peak activation coordinates for our whole
corpus of 13 459 publications, ii) the semantic-smoothing matrix, that encodes relations across the ter-
minology. The corpus is significantly richer than NeuroSynth, the largest corpus to date (see Table 3
for a comparison), and manual quality assurance reveals more accurate extraction of brain coordinates
(Table 2).

3 Discussion and conclusion

NeuroQuery makes it easy to perform meta-analyses of arbitrary questions on the human neuroscience
literature: it uses a full-text description of the question and the studies and it provides an online query
interface with a rich database of studies. For this, it departs from existing meta-analytic frameworks
by treating meta-analysis as a prediction problem. It describes neuroscience concepts of interest by
continuous combinations of terms rather than matching publications for exact terms. As it combines
multiple terms and interpolates between available studies, it extends the scope of meta-analysis in
neuroimaging. In particular, it can capture information for concepts studied much less frequently than
those that are covered by current automated meta-analytic approaches.

3.1 Related work

A variety of prior works have paved the way for NeuroQuery. Brainmap [Laird et al., 2005] was the first
systematic database of brain coordinates. NeuroSynth [Yarkoni et al., 2011] pioneered automated meta-
analysis using abstracts from the literature, broadening a lot the set of terms for which the consistency
of reported locations can be tested. These works perform classic meta-analysis, which considers terms
in isolation, unlike NeuroQuery. Topic models have also been used to find relationships across terms
used in meta-analysis. Nielsen et al. [2004] used a non-negative matrix factorization on the matrix of
occurrences of terms for each brain location (voxel): their model outputs a set of seven spatial networks
associated with cognitive topics, described as weighted combinations of terms. Poldrack et al. [2012]
used topic models on the full text of 5 800 publications to extract from term cooccurrences 130 topics
on mental function and disorders, followed by a classic meta-analysis to map their neural correlates
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in the literature. These topic-modeling works produce a reduced number of cognitive latent factors
–or topics– mapped to the brain, unlike NeuroQuery which strives to map individual terms and uses
their cooccurences in publications only to infer the semantic links. From a modeling perspective, the
important difference of NeuroQuery is supervised learning, used as an encoding model [Naselaris et al.,
2011]. In this sense, the supervised learning used in NeuroQuery differs from that used in Yarkoni et al.
[2011]: the latter is a decoding model that, given brain locations in a study, predicts the likelihood of
neuroscience terms without using relationships between terms. Unlike prior approaches, the maps of
NeuroQuery are predictions of its statistical model, as opposed to model parameters. Finally, other
works have modelled co-activations and interactions between brain locations [Kang et al., 2011, Wager
et al., 2015, Xue et al., 2014]. We do not explore this possibility here, and except for the density
estimation NeuroQuery treats voxels independently.

3.2 Usage recommendations and limitations

We have thoroughly validated that NeuroQuery gives quantitatively and qualitatively good results
that summarize well the literature. Yet, the tool has strengths and weaknesses that should inform its
usage. Brain maps produced by NeuroQuery are predictions, and a specific prediction may be wrong
although the tool performs well on average. A NeuroQuery prediction by itself therefore does not
support definite conclusions as it does not come with a statistical test. Rather, NeuroQuery will be
most successfully used to produce hypotheses and as an exploratory tool, to be confronted with other
sources of evidence. To prepare a new functional neuroimaging study, NeuroQuery helps to formulate
hypotheses, defining ROIs or other formal priors (for Bayesian analyses). To interpret results of a
neuroimaging experiment, NeuroQuery can readily use the description of the experiment to assemble
maps from the literature, which can be compared against, or updated using, experimental findings.
As an exploratory tool, extracting patterns from published neuroimaging findings can help conjecture
relationships across mental processes as well as their neural correlates [Yeo et al., 2014]. NeuroQuery
can also facilitate literature reviews: given a query, it uses its semantic model to list related studies
and their reported activations. What NeuroQuery does not do is provide conclusive evidence that
a brain region is recruited by a mental process or affected by a pathology. Compared to traditional
meta-analysis tools, NeuroQuery is particularly beneficial i) when the term of interest is rare, ii) when
the concept of interest is best described by a combination of multiple terms, and iii) when a fully
automated method is necessary and queries would otherwise need cumbersome manual curation to be
understood by other tools.

Understanding the components of NeuroQuery helps interpreting its results. We now describe in
details potential failures of the tool, and how to detect them. NeuroQuery builds predictions by
combining brain maps each associated with a keyword related to the query. A first step to interpret
results is to inspect this list of keywords, displayed by the online tool. These keywords are selected
based on their semantic relation to the query, and as such will usually be relevant. However, in rare
cases, they may build upon undesirable associations. For example, “agnosia” is linked to “visual”,
“fusiform”, “word” and “object”, because visual agnosia is the type of agnosia most studied in the
literature, even though “agnosia” is a much more general concept. In this specific case, the indirect
association is problematic because “agnosia” is not a selected term that NeuroQuery can map by itself,
as it is not well-represented in the source data. As a result, the NeuroQuery prediction for “agnosia”
is driven by indirect associations, and focuses on the visual system, rather than areas related to, e.g.,
auditory agnosia. By contrast, “aphasia” is an example of a term that is well mapped, building on
maps for “speech” and “language”, terms that are semantically close to aphasia and well captured in
the literature.

A second consideration is that, in some extreme cases, the semantic smoothing fails to produce
meaningful results. This happens when a term has no closely related terms that correlate well with
brain activity. For instance, “ADHD” is very similar to “attention deficit hyperactivity disorder”,
“hyperactivity”, “inattention”, but none of these terms is selected as a feature mapped in itself,
because their link with brain activity is relatively loose. Hence, for “ADHD”, the model builds its
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prediction on terms that are distant from the query, and produces a misleading map that highlights
mostly the cerebellum2. While this result is not satisfying, the failure is detected by the NeuroQuery
interface and reported with a warning stating that results may not be reliable. To a user with general
knowledge in psychology, the failure can also be seen by inspecting the associated terms, as displayed
in the user interface.

A third source of potential failure stems from NeuroQuery’s model of additive combination. This
model is not unique to NeuroQuery, and lies at the heart of functional neuroimaging, which builds upon
the hypothesis of pure insertion of cognitive processes [Ulrich et al., 1999, Poldrack, 2010]. An inevitable
consequence is that, in some cases, a group of words will not be well mapped by its constituents. For
example, “visual sentence comprehension” is decomposed into two constituents known to Neuroquery:
“visual” and “sentence comprehension”. Unfortunately, the map corresponding to the combination is
then dominated by the primary visual cortex, given that it leads to very powerful activations in fMRI.
Note that “visual word comprehension”, a slightly more common subject of interest, is decomposed
into “visual word” and “comprehension”, which leads to a more plausible map, with strong loadings
in the visual word form area.

A careful user can check that each constituent of a query is associated with a plausible map, and
that they are well combined. The NeuroQuery interface enables to gauge the quality of the mapping
of each individual term by presenting the corresponding brain map as well as the number of associated
studies. The final combination can be understood by inspecting the weights of the combination as
well as comparing the final combined map with the maps for individual terms. Such an inspection
can for instance reveal that, as mentioned above, “visual” dominates “sentence comprehension” when
mapping “visual sentence comprehension”.

We have attempted to provide a comprehensive overview of the main pitfalls users are likely to
encounter when using NeuroQuery, but we hasten to emphasize that all of these pitfalls are infrequent.
NeuroQuery produces reliable maps for the typical queries, as quantified by our experiments.

3.3 General considerations on meta-analyses

When using NeuroQuery to foster scientific progress, it is useful to keep in mind that meta-analyses
are not a silver bullet. First, meta-analyses have little or no ability to correct biases present in the
primary literature (e.g., perhaps confirmation bias drives researchers to overreport amygdala activation
in emotion studies). Beyond increased statistical power, one promise of meta-analysis is to afford a
wider perspective on results—in particular, by comparing brain structures detected across many dif-
ferent conditions. However, claims that a structure is selective to a mental condition need an explicit
statistical model of reverse inference [Wager et al., 2016]. Gathering such evidence is challenging:
selectivity means that changes at the given brain location specifically imply a mental condition, while
brain imaging experiments most often do not manipulate the brain itself, but rather the experimental
conditions it is placed in [Poldrack, 2006]. In a meta-analysis, the most important confound for re-
verse inferences is that some brain locations are reported for many different conditions. NeuroQuery
accounts for this varying baseline across the brain by fitting an intercept and reporting only differ-
ences from the baseline. While helpful, this is not a formal statistical test of reverse inference. For
example, the NeuroQuery map for “interoception” highlights the insula, because studies that mention
“interoception” tend to mention and report coordinates in the insula. This, of course, does not mean
that interoception is the only function of the insula. Another fundamental challenge of meta-analyses
in psychology is the decomposition of the tasks in mental processes: the descriptions of the dimensions
of the experimental paradigms are likely imperfect and incomplete. Indeed, even for a task as simple
as finger tapping, minor variations in task design lead to reproducible variations in neural responses
[Witt et al., 2008]. However, quantitatively describing all aspects of all tasks and cognitive strategies
is presently impossible, as it would require a universally-accepted, all-encompassing psychological on-
tology. Rather, NeuroQuery grounds meta-analysis in the full-text descriptions of the studies, which
in our view provide the best available proxy for such an idealized ontology.

2https://neuroquery.org/query?text=adhd
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3.4 Conclusion

NeuroQuery stems from a desire to compile results across studies and laboratories, an essential endeavor
for the progress of human brain mapping [Yarkoni et al., 2010]. Mental processes are difficult to isolate
and findings of individual studies may not generalize. Thus, tools are needed to denoise and summarize
knowledge accumulated across a large number of studies. Such tools must be usable in practice
and match the needs of researchers who exploit them to study human brain function and disorders.
NeuroSynth took a huge step in this direction by enabling anyone to perform, in a few seconds, a
fully automated meta-analysis across thousands of studies, for an important number of isolated terms.
Still, users are faced with the difficult task of mapping their question to a single term from the
NeuroSynth vocabulary, which cannot always be done in a meaningful way. If the selected term is not
popular enough, the resulting map also risks being unusable for lack of statistical power. NeuroQuery
provides statistical maps for arbitrary queries – from seldom-studied terms to free-text descriptions
of experimental protocols. Thus, it enables applying fully-automated and quantitative meta-analysis
in situations where only semi-manual and subjective solutions were available. It therefore brings an
important advancement towards grounding neuroscience on quantitative knowledge representations.
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4 Materials and methods

We now expose methodological details: first the constitution of the NeuroQuery data, then the statis-
tical model, the validation experiments in details, and the word-occurrence statistics in the corpus of
studies.

4.1 Building the NeuroQuery training data

4.1.1 A new dataset

The dataset collected by NeuroSynth [Yarkoni et al., 2011] is openly available3. In July, 2019, Neu-
roSynth contains 448 255 unique locations for 14 371 studies. It also contains the term frequencies for
3228 terms (1335 are actually used in the NeuroSynth online tool4), based on the abstracts of the
studies. However, it only contains term frequencies for the abstracts, and not the articles themselves.
This results in a shallow description of the studies, based on a very short text (around 20 times smaller
than the full article). As a result, many important terms are very rare: they seldom occur in abstracts,
and can be associated with very few studies. For example, in our corpus of 13 459 studies, “hunting-
ton disease” occurs in 32 abstracts, and “prosopagnosia” in 25. For such terms, meta-analysis lacks
statistical power. When the full text is available, many more term occurrences – associations between
a term and a study – are observed (Fig. 16). This means that more information is available, terms
are better described by their set of associated studies, and meta-analyses have more statistical power.
Moreover, as publications cannot always be redistributed for copyright reasons, NeuroSynth (and any
dataset of this nature) can only provide term frequencies for a fixed vocabulary, and not the text they
were extracted from. We therefore decided to collect a new corpus of neuroimaging studies, which
contains the full text. We also created a new peak activation coordinate extraction system, which
achieved a higher precision and recall than NeuroSynth’s on a small sample of manually annotated
studies.

3https://github.com/neurosynth/neurosynth-data
4http://neurosynth.org
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4.1.2 Journal articles in a uniform and validated format

We downloaded around 149 000 full-text journal articles related to neuroimaging from the PubMed
Central5 [Sayers, 2009] and Elsevier6 APIs. We focus on these sources of data because they provide
many articles in a structured format. It should be noted that this could result in a selection bias, as
some scientific journals – mostly paid journals – are not available through these channels. The arti-
cles are selected by querying the ESearch Entrez utility [Sayers, 2009] either for specific neuroimaging
journals or with query strings such as “fMRI”. The resulting studies are mostly based on fMRI exper-
iments, but the dataset also contains Positron Emission Tomography (PET) or structural Magnetic
Resonance Imaging (MRI) studies. It contains studies about diverse types of populations: healthy
adults, patients, elderly, children.

We use eXtensible Stylesheet Language Transformations (XSLT) to convert all articles to the
Journal Article Tag Suite (JATS) Archiving and Interchange XML language7 and validate the result
using the W3C XML Schema (XSD) schemas provided on the JATS website. From the resulting XML
documents, it is straightforward to extract the title, keywords, abstract, and the relevant parts of the
article body, discarding the parts which would add noise to our data (such as the acknowledgements
or references).

4.1.3 Coordinate extraction

We extract tables from the downloaded articles and convert them to the XHTML 1.1 table model (the
JATS also allows using the OASIS CALS table model). We use stylesheets provided by docbook8 to
convert from CALS to XHTML. Cells in tables can span several rows and columns. When extracting
a table, we normalize it by splitting cells that span several rows or columns and duplicating these
cells’ content; the normalized table thus has the shape of a matrix. Finally, all unicode characters that
can be used to represent “+” or “-” signs (such as &#x2212; “MINUS SIGN”) are mapped to their
ASCII equivalents, “+” (&#x2b; “PLUS SIGN”) or “-” (&#x2d; “HYPHEN MINUS”). Once tables
are isolated, in XHTML format, and their rows and columns are well aligned, the last step is to find
and extract peak activation coordinates. Heuristics find columns containing either single coordinates
or triplets of coordinates based on their header and the cells’ content. A heuristic detects when the
coordinates extracted from a table are probably not stereotactic peak activation coordinates, either
because many of them lie outside a standard brain mask, or because the group of coordinates as a
whole fits a normal distribution too well. In such cases the whole table is discarded. Out of the 149 000
downloaded and formatted articles, 13 459 contain coordinates that could be extracted by this process,
resulting in a total of 418 772 locations.

All the extracted coordinates are treated as coordinates in the Montreal Neurological Institute
(MNI) space, even though some articles still refer to the Talairach space. The precision of extracted
coordinates could be improved by detecting which reference is used and transforming Talairach co-
ordinates to MNI coordinates. However, differences between the two coordinate systems are at most
of the order of 1 cm, and much smaller in most of the brain. This is comparable to the size of the
Gaussian kernel used to smooth images. Moreover, the alignment of brain images does not only de-
pend on the used template but also on the registration method, and there is no perfect transformation
from Talairach to MNI space [Lancaster et al., 2007]. Therefore, treating all coordinates uniformly is
acceptable as a first approximation, but better handling of Talairach coordinates is a clear direction
for improving the NeuroQuery dataset.

Coordinate extraction evaluation. To evaluate the coordinate extraction process, we focused
on articles that are present in both NeuroSynth’s dataset and NeuroQuery’s, and for which the two
coordinate extraction systems disagree. Out of 8 692 articles in the intersection of both corpora, the
extracted coordinates differ (for at least one coordinate) in 1 961 (i.e. in 23% of articles). We selected

5https://www.ncbi.nlm.nih.gov/pmc/, https://www.ncbi.nlm.nih.gov/books/NBK25501/
6https://dev.elsevier.com/api_docs.html
7https://jats.nlm.nih.gov/archiving/
8https://docbook.org/tools/
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Table 2: Number of extracted coordinate sets that con-
tain at least one error of each type, out of 40 manually
annotated articles. The articles are chosen from those on
which NeuroSynth and NeuroQuery disagree – the ones
most likely to contain errors.

False positives False negatives
NeuroSynth 20 28
NeuroQuery 3 8

the first 40 articles (sorted by PubMed ID) and manually evaluated the extracted coordinates. As
shown in Table 2, our method extracted false coordinates from fewer articles: 3 / 40 articles have at
least one false location in our dataset, against 20 for NeuroSynth. While these numbers may seem
high, note that errors are far less likely to occur in articles for which both methods extract exactly the
same locations.

4.1.4 Density maps

For each article, the coordinates from all tables are pooled, resulting in a set of peak activation
coordinates. We then use Gaussian Kernel Density Estimation (KDE) [Silverman, 1986, Scott, 2015]
to estimate the density of these activations over the brain. The chosen bandwidth of the Gaussian
kernel yields a Full Width at Half Maximum (FWHM) close to 9mm, which is in the range of smoothing
kernels that are typically used for fMRI meta-analysis [Wager et al., 2007, 2004, Turkeltaub et al., 2002].
For comparison, NeuroSynth uses a hard ball of 10mm radius.

One benefit of focusing on the density of peak coordinates (which is `1-normalized) is that it does
not depend on the number of contrasts presented in an article, nor on other analytic choices that cause
the number of reported coordinates to vary widely, ranging from less than a dozen to several hundreds.

4.1.5 Vocabulary and TFIDF features

We represent the text of our articles by TFIDF features [Salton and Buckley, 1988]. These simple
representations are popular in document retrieval and text classification because they are very efficient
for many applications. They contain the (reweighted) frequencies of many terms in the text, discarding
the order in which words appear. An important choice when building TFIDF vectors is the vocabulary:
the words or expressions whose frequency are measured. It is common to use all words encountered in
the training corpus, possibly discarding those that are too frequent or too rare. The vocabulary is often
enriched with “n-grams”, or collocations: groups of words that often appear in the same sequence,
such as “European Union” or “default mode network”. These collocations are assigned a dimension of
the TFIDF representations and counted as if they were a single token. There are several strategies to
discover such collocations in a training corpus [Mikolov et al., 2013, Bouma, 2009].

We do not extract the vocabulary and collocations from the training corpus, but instead rely on
existing, manually-curated vocabularies and ontologies of neuroscience. This ensures that we only
consider terms that are relevant to brain function, anatomy or disorders, and that we only use mean-
ingful collocations. Moreover, it helps to reduce the dimensionality of the TFIDF representations.
Our vocabulary comprises five important lexicons of neuroscience, based on community efforts: the
subset of Medical Subject Headings (MeSH) (https://www.ncbi.nlm.nih.gov/mesh) dedicated to
neuroscience and psychology, detailed in Section 4.4.2 (MeSH are the terms used by PubMed to index
articles), Cognitive Atlas (http://www.cognitiveatlas.org/), NeuroNames (http://braininfo.
rprc.washington.edu/NeuroNames.xml) and NIF (https://neuinfo.org/). We also include all the
terms and bigrams used by NeuroSynth (http://neurosynth.org). We discard all the terms and
expressions that occur in less than 5 / 10 000 articles. The resulting vocabulary contains 7 547 terms
and expressions related to neuroscience.

4.1.6 Summary of collected data

The data collection described in this section provides us with important resources: i) Over 149K full-
text journal articles related to neuroscience – 13.5K of which contain peak activation coordinates – all
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translated into the same structured format and validated. ii) Over 418K peak activation coordinates
for more than 13.5K articles. iii) A vocabulary of 7547 terms related to neuroscience, each occurring
in at least 6 articles from which we extracted coordinates. This dataset is the largest of its kind. In
what follows we focus on the set of 13.5K articles from which we extracted peak locations.

Some quantitative aspects of the NeuroQuery and NeuroSynth datasets are summarized in Table 3.

NeuroSynth NeuroQuery
Dataset size
articles 14 371 13 459
terms 3 228 (1 335 online) 7 547
journals 60 458
raw text length (words) ≈ 4 M ≈ 75 M
unique term occurrences 1 063 670 5 855 483
unique term occurrences in voc intersection 677 345 3 089 040
coordinates 448 255 418 772
Coordinate extraction errors on conflicting articles
articles with false positives / 40 20 3
articles with false negatives / 40 28 8

Table 3: Comparison with NeuroSynth. “voc intersection” is the set of terms present in both NeuroSynth’s
and NeuroQuery’s vocabularies. The “conflicting articles” are papers present in both datasets, for which the
coordinate extraction tools disagree, 40 of which were manually annotated.

Text. In terms of raw amount of text, this corpus is 20 times larger than NeuroSynth’s. Combined
with our vocabulary, it yields over 5.5M occurrences of a unique term in an article. This is over 5 times
more than the word occurrence counts distributed by NeuroSynth9. When considering only terms in
NeuroSynth’s vocabulary, the corpus still contains over 3M term-study associations, 4.6 times more
than NeuroSynth. Using this larger corpus results in denser representations, higher statistical power,
and coverage of a wider vocabulary. There is an important overlap between the selected studies: 8 692
studies are present in both datasets – the Intersection Over Union is 0.45.

Coordinates. The set of extracted coordinates is almost the size of NeuroSynth’s (which is 7% larger
with 448 255 coordinates after removing duplicates), and is less noisy. To compare coordinate extrac-
tions, we manually annotated a small set of articles for which NeuroSynth’s coordinates differ from
NeuroQuery’s. Compared with NeuroSynth, NeuroQuery’s extraction method reduced the number of
articles with incorrect coordinates (false positives) by a factor of 7, and the number of articles with
missing coordinates (false negatives) by a factor of 3 (Table 2). Less noisy brain activation data is
useful for training encoding models.

Sharing data. We do not have the right to share the full text of the articles, but the vocabulary,
extracted coordinates, and term occurrence counts for the whole corpus are freely available online10.

4.2 Mathematical details of the NeuroQuery statistical model

Notation We denote scalars, vectors and matrices with lower-case, bold lower-case, and bold-upper
case letters respectively: x, x, X. We denote the elements of X by xi,j , its rows by xi, and its
columns by x∗,i. We denote p the number of voxels in the brain, v the size of the vocabulary, and n
the number of studies in the dataset. We use indices i, j, k to indicate indexing samples (studies),

features (terms), and outputs (voxels) respectively. We use a hat to denote estimated values, e.g. B̂.
〈x,y〉 is the vector scalar product.

9https://github.com/neurosynth/neurosynth-data
10https://github.com/neuroquery/neuroquery_data/training_data
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4.2.1 TFIDF feature extraction

We represent a document by its TFIDF features [Salton and Buckley, 1988], which are reweighted
Bag-Of-Words features. A TFIDF representation is a vector in which each entry corresponds to the
(reweighted) frequency of occurrence of a particular term. The term frequency, tf, of a word in
a document is the number of times the word occurs, divided by the total number of words in the
document. The document frequency, df, of a word in a corpus is the proportion of documents in which
it appears. The inverse document frequency, idf, is defined as:

idf(w) = − log(df) + 1 = − log
| { i | w occurs in document i } |

n
+ 1 , (1)

where n is the number of documents in the corpus and | · | is the cardinality. Term frequencies are
reweighted by their idf, so that frequent words, which occur in many documents (such as “results” or
“brain”), are given less importance. Indeed, such words are usually not very informative.

Our TFIDF representation for a study is the uniform average of the normalized TFIDF vectors for
its title, abstract, full text, and keywords. Therefore, all parts of the article are taken into account,
but a word that occurs in the title is more important than a word the article body (since the title is
shorter).

TFIDF features exploit a fixed vocabulary – each dimension is associated with a particular word.
The vocabulary we consider comprises 7 547 terms or phrases related to neuroscience that occur in
at least 0.05% of publications. These terms are extracted from manually curated sources shown in
Table 1 and Table 4.

4.2.2 Reweighted ridge matrix and feature (vocabulary) selection

Here we give some details about the feature selection and adaptive ridge regularization. After extract-
ing TFIDF features and computing density estimation maps, we fit a linear model by regressing the
activity of each voxel on the TFIDF descriptors (Section 2.1). We denote p the number of voxels,
v the size of the vocabulary, and n the number of documents in the corpus. We construct a design
matrix X ∈ Rn×v containing the TFIDF features of each study, and the dependent variables Y ∈ Rn×p
representing the activation density at each voxel for each study. The linear model thus writes:

Y = XB∗ +E, (2)

where E is Gaussian noise and B∗ ∈ Rv×p are the unknown model coefficients. We use ridge regression
(least-squares regression with a penalty on the `2 norm of the model coefficients). Some words are much
more informative than others, or have a much stronger correlation with brain activity. For example,
“auditory” is well correlated with activations in the auditory areas, whereas “attention” has a lower
signal-to-noise ratio, as it is polysemic and, even when used as a psychological concept, has a weaker
link to reported neural activations. Therefore it is beneficial to adapt the amount of regularization for
each word, to strongly penalize (or even discard) the most noisy features.

Many existing methods for feature selection are not adapted to our case, because: i) the design
matrix X is very sparse, and more importantly ii) we want to select the same features for ≈ 28 000
outputs (each voxel in the brain is a dependent variable). We therefore introduce a new reweighted
ridge regression and feature selection procedure.

Our approach is based on the observation that when fitting a ridge regression with a uniform
regularization, the most informative words are associated with large coefficients for many voxels. We
start by fitting a ridge regression with uniform regularization. We obtain one statistical map of the
brain for every feature (every term in the vocabulary). The maps are rescaled to reduce the importance
of coefficients with a high variance. We then compute the squared `2 norms of these brain maps across
voxels. These norms are a good proxy for the importance of each feature. Terms associated with large
norms explain well the activity of many voxels and tend to be helpful features. We rely on these brain
map norms to determine which features are selected and what regularization is applied. The feature
selection and adaptive regularization are described in detail in the rest of this section.
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Z scores for ridge regression coefficients Our design matrix X ∈ Rn×v holds TFIDF features
for v terms in n studies. There are p dependent variables, one for each voxel in the brain, which form
Y ∈ Rn×p. The first ridge regression fit yields coefficients B̂(0) ∈ Rv×p:

B̂(0) = argmin
B∈Rv×p

||Y −XB||2F + λ ||B||2F, (3)

where λ ∈ R>0 is a hyperparameter set with Generalized Cross-Validation (GCV) [Rifkin and Lippert,
2007]. We then compute an estimate of the variance of these coefficients. The approach is similar to
the one presented in Gaonkar and Davatzikos [2012] for the case of SVMs. A simple estimator can
be obtained by noting that the coefficients of a ridge regression are a linear function of the dependent
variables. Indeed, solving Eq. (3) yields:

B̂(0) = (XTX + λI)−1XTY . (4)

Defining
M = (XTX + λI)−1XT ∈ Rv×n , (5)

for a voxel k ∈ {1, . . . , p}, and a feature j ∈ {1, . . . v},

b̂
(0)
j,k = 〈mj , y∗,k〉 , (6)

where mj ∈ Rn is the ith row of M and y∗,k ∈ Rn is the kth column of Y . The activations of voxel k
across studies are considered to be independent identically distributed (i.i.d), so

Var(y∗,k) = Var(y1,k) In , s2k In . (7)

An estimate of this variance can be obtained from the residuals:

ŝ2k ,
1

n

n∑
i=1

(ŷ
(0)
i,k − yi,k)2 =

1

n

n∑
i=1

((XB̂(0))i,k − yi,k)2 . (8)

A simple estimate of the coefficients’ variance is then:

σ̂2
j,k , V̂ar(b̂

(0)
j,k) = ŝ2k 〈mj , mj〉 = ŝ2k

n∑
i=1

m2
j,i (9)

We can thus estimate the standard deviation of each entry of B̂(0). We obtain a brain map of Z scores
for each term in the vocabulary: for term j ∈ {1, . . . , v} and voxel k ∈ {1 . . . p},

ẑj,k ,
b̂
(0)
j,k

σ̂j,k
. (10)

We denote σ̂j = (σ̂j,1, . . . , σ̂j,p) ∈ Rp; and the Z-map for term j: ẑj = (ẑj,1, . . . , ẑj,p) ∈ Rp .

Reweighted ridge matrix Once we have a Z-map for each term, we summarize these maps by
computing their squared Euclidean norm. In practice, we smooth the Z scores: ẑj,k in Eq. (10) is
replaced by

ζ̂j,k =
b̂
(0)
j,k

σ̂j,k + δ
, (11)

where δ is a constant offset. The offset δ allows us to interpolate between basing the regularization on
the Z scores, or on the raw coefficients, i.e. the β-maps. We obtain better results with a large value
for δ, such as the mean variance of all the regression coefficients. This prevents selecting terms only
because they have a very small estimated variance in some voxels. Note that this offset δ is only used
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to compute the regularization, and not to compute the rescaled predictions produced by NeuroQuery
as in Eq. (17).

We denote ζ̂j = (ζ̂j,1, . . . , ζ̂j,p) ∈ Rp, ∀j ∈ {1, . . . , v}. Next, we compute the mean µ and standard

deviation e of { ||ζ̂j ||22, j = 1 . . . v }, and set an arbitrary cutoff

c = µ+ 2 e . (12)

All features j such that ||ζ̂j ||22 ≤ c+ ε, where ε is a small margin to avoid division by zero in Eq. (14),
are discarded. In practice we set ε to 0.001. The value of ε is not important, because features that
are not discarded but have their ζ norm close to c get very heavily penalized in Eq. (14) and have
coefficients very close to 0.

We denote u < v the number of features that remain in the selected vocabulary. We denote
φ : {1 . . . u} → {1 . . . v} the strictly increasing mapping that reindexes the features by keeping only the
u selected terms: φ({1 . . . u}) is the set of selected features. We denote P ∈ Ru×v the corresponding
projection matrix:

pT∗,j = eφ(j) , ∀j ∈ {1 . . . u} , (13)

where {ej , j = 1 . . . v} is the natural basis of Rv. The regularization for the selected features is then
set to

wj =
1

||ζ̂φ(j)||22 − c
. (14)

Finally, we define the diagonal matrix W ∈ Ru×u such that the jth element of its diagonal is wj and

fit a new set of coefficients B̂ ∈ Ru×p with this new ridge matrix.

Fitting the reweighted ridge regression The reweighted ridge regression problem writes:

B̂ = argmin
B∈Ru×p

||Y −XP T B||2F + γ Tr(BT W B) , (15)

Where γ ∈ R>0 is a new hyperparameter, that is again set by Generalized Cross-Validation (GCV).
With a change of variables this becomes equivalent to solving the usual ridge regression problem:

Γ̂ = argmin
Γ
||Y − X̃ Γ||2F + γ ||Γ||2F , (16)

where X̃ = XP T W− 1
2 and we recover B̂ as B̂ = W− 1

2 Γ̂ .
The variance of the parameters B̂ can be estimated as in Eq. (9) – without applying the smoothing

of Eq. (11). NeuroQuery can thus report rescaled predictions

ẑ =
xT B̂(

V̂ar(xT B̂)
) 1

2

(17)

One benefit of this rescaling is to provide the user a natural value to threshold the maps. As visible
on figures 4, 5, and 6, thresholding e.g. at ẑ ≈ 3 selects regions typical of the query, that can be used
for instance in a region of interest analysis.

Summary of the regression with adaptive regularization The whole procedure for feature
selection and adaptive regularization is summarized in Algorithm 1.

In practice, the feature selection keeps u ≈ 200 features. It has a very low computational cost
compared to other feature selection schemes. The computational cost is that of fitting two ridge
regressions (and the second one is fitted with a much smaller number of features). Moreover, the
feature selection also reduces computation at prediction time, which is useful because we deploy an
online tool based on the NeuroQuery model11.

11https://neuroquery.saclay.inria.fr
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Algorithm 1: Reweighted Ridge Regression

input: TFIDF features X, brain activation densities Y , regularization hyperparameter grid Λ,
variance smoothing parameter δ

use GCV to compute the best hyperparameter λ ∈ Λ and
B̂(0) = argminB ||Y −XB||2F + λ||B||2F;

compute variance estimates σ̂2
j as in Eq. (9);

ζ̂j ←
b̂
(0)
j

σ̂j+δ
∀j ∈ {1 . . . v};

compute c according to Eq. (12) ;

define φ the reindexing that selects features j such that ||ζ̂j ||22 > c+ ε ;
define P ∈ Ru×v the projection matrix for φ as in Eq. (13) ;

wj ← 1
||ζ̂φ(j)||22−c

∀j ∈ {1 . . . u};
W ← diag(wj , j = 1 . . . u);
use GCV to compute the best hyperparameter γ ∈ Λ and
B̂ = argminB ||Y −XP TB||2F + γ Tr(BTWB) ;

return B̂, V̂ar(B̂), γ, P , W

4.2.3 Smoothing: regularization at test time

In order to smooth the sparse input features, we exploit the covariance of our training corpus. We rely
on Non-negative Matrix Factorization (NMF) [Lee and Seung, 1999]. We use a NMF of X ∈ Rn×v to
compute a low-rank approximation of the covariance XT X ∈ Rv×v. Thus, we obtain a denoised term
co-occurrence matrix, which measures the strength of association between pairs of terms. We start by
computing an approximate factorization of the corpus TFIDF matrix X:

U ,V = argmin
U∈Rn×d

≥0

V ∈Rd×v≥0

||X −U V ||2F + λ(||U ||2F + ||V ||2F) + γ(||U ||1,1 + ||V ||1,1) , (18)

where d < v is a hyperparameter and || · ||1,1 designates the sum of absolute values of all entries of a
matrix. Computing this factorization amounts to describing each document in the corpus as a linear
mixture of d latent factors, or topics. In natural language processing, similar decomposition methods
are referred to as topic modelling [Deerwester et al., 1990, Blei et al., 2003].

The latent factors, or topics, are the rows of V ∈ Rd×v: each topic is characterized by a vector of
positive weights over the terms in the vocabulary. U ∈ Rn×d contains the weight that each document
gives to each topic. For each term in the vocabulary, the corresponding column of V is a a d-dimensional
embedding in the low-dimensional, latent space: this embedding contains the strength of association
of the term with each topic. These embeddings capture semantic relationships: related terms tend to
be associated with embeddings that have large inner products.

The hyperparameters d = 300, λ = 0.1 and γ = 0.01 are set by evaluating the reconstruction error,
sparsity of the similarity matrix, and extracted topics (rows of V ) on an unlabelled (separate) corpus.
We find that the NeuroQuery model as a whole is not very sensitive to these hyperparameters and we
obtain similar results for a range of different values.

Eq. (18) is a well-known problem. We solve it with a coordinate-descent algorithm described
in Cichocki and Phan [2009] and implemented in scikit-learn [Pedregosa et al., 2011]. Then, let
N ∈ Rd×d be the diagonal matrix containing the Euclidean norms of the columns of U , i.e. such that
nii = ||u∗,i||2 and let Ṽ = N V . We define the word similarity matrix A = Ṽ T Ṽ ∈ Rv×v. This
matrix is a denoised, low-rank approximation of the corpus covariance. Indeed,

XT X ≈ (U V )
T
U V (19)

= V T NT
(
U N−1

)T
U N−1N V (20)

≈ Ṽ T Ṽ . (21)
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The last approximation is justified by the fact that the columns of U ∈ Rn×d are almost orthogonal,
and UT U is almost a diagonal matrix. This is what we observe in practice, and is due to the fact that
n ≈ 13 000 is much larger than d = 300, and that to minimize the reconstruction error in Eq. (18) the
columns of U have an incentive to span a large subspace of Rn.

The similarity matrix A contains the inner products of the low-dimensional embeddings of the
terms in our vocabulary. We form the matrix T by dividing the rows of A by their `1 norm:

ti,j =
ai,j
||ai ||1

∀ i = 1 . . . v, j = 1 . . . v . (22)

This normalization ensures that terms that have many neighbors are not given more importance in
the smoothed representation. The smoothing matrix that we use is then defined as:

S = (1− α) I + αT , (23)

with 0 < α < 1 (in our experiments α is set to 0.1). This smoothing matrix is a mixture of the
identity matrix and the term associations T . The model is not very sensitive to the parameter α as
long as it is chosen small enough for terms actually present in the query to have a higher weight than
terms introduced by the query expansion. This prevents degrading performance for documents which
contain well-encoded terms, which obtain good prediction even without smoothing. This explains why
in Fig. 1, the prediction for “visual” relies mostly on the regression coefficient for this exact term,
whereas the prediction for “agnosia” relies on coefficients of terms that are related to “agnosia” –
“agnosia” itself is not kept by the feature selection procedure.

The smoothed representation for a query q becomes:

x = STq ∈ Rv (24)

where q ∈ Rv is the TFIDF representation of the query in large vocabulary space, and S ∈ Rv×v is
the smoothing matrix. And the prediction for q is:

ŷ = B̂ P STq, (25)

where P ∈ Ru×v is the projection onto the useful vocabulary (selected features), B̂ ∈ Rp×u are the
estimated linear regression coefficients, ŷ ∈ Rp is the predicted map.

4.3 Validation experiments: additional details

4.3.1 Example Meta-analysis results for the RSVP language task from the IBC dataset.

Here we provide more details on the meta-analyses for “Read pseudo-words vs consonant strings” shown
in Fig. 2. the PMIDS of the studies included in the GingerALE meta-analysis are: 15961322, 16574082,
16968771, 17189619, 17884585, 17933023, 18272399, 18423780, 18476755, 18778780, 19396362, 19591947,
20035884, 20600985, 20650450, 20961169, 21767584, 22285025, 22659111, 23117157, 23270676, 24321558,
24508158, 24667455, 25566039, 26017384, 26188258, 26235228, 28780219. Representing a total of 29
studies and 2025 peak activation coordinates. They are the studies from our corpus (the largest ex-
isting corpus of text and peak activation coordinates, with ≈ 14 000 studies) which contain the terms:
“reading”, “pseudo”, “word”, “consonant” and “string”. The map shown on the right of Fig. 2 was
obtained with GingerALE, 5000 permutations and the default settings otherwise. Note that an un-
realistically low threshold is used for the display because the map would be empty otherwise. Fig. 8
displays more maps with different analysis strategies: the details of the original contrasts and the dif-
ference between running NeuroQuery the contrast definition or the task definition. The task definition
leads to predicted activations in the early visual cortex, as in the actual group-level maps from the
experiment but unlike the predictions from the contrast definition, as the later contains no information
on the stimulus modality.
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Figure 8: Using meta-analysis to interpret fMRI maps. Example of the “Read pseudo-words
vs. consonant strings” contrast, derived from the RSVP language task in the IBC dataset. (a): the group-
level map obtained from the actual fMRI data from IBC. (b): ALE map using the 29 studies in our corpus
that contain all 5 terms from the contrast name. (c): NeuroQuery map obtained from the contrast name.
(d): NeuroQuery map obtained from the page-long RSVP task description in the IBC dataset documentation:
https://project.inria.fr/IBC/files/2019/03/documentation.pdf
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Figure 9: Quantitative evaluations on unseen pairs A quantitative comparison of prediction on random
unseen studies (i.i.d. cross-validation) to prediction on studies containing pairs of terms never seen before,
using the two measures of predictions performance (as visible on Fig. 7 for standard cross-validation).

4.3.2 NeuroQuery performance on unseen pairs of terms

Fig. 3 shows in a qualitative way that NeuroQuery can produce useful brain maps on a combination
of terms that have not been studied together. To give a quantitative evaluation that is not limited
to a specific pair of terms, we perform a systematic experiment, studying prediction on many unseen
pairs of term. For this purpose, we chose pairs of terms in our full corpus and leave out all the studies
where both of these terms appear. We train a NeuroQuery model on the reduced corpus of studies
obtained by excluding studies with both terms, and evaluate its predictions on the left-out studies.

We choose terms that appear simultaneously in studies frequently (more than 500) to ensure a good
estimation of the combined locations for these terms in the test set, but not too frequently (less than
1000), to avoid depleting the training set too much. Indeed, removing the studies for both terms from
the corpus not only decreases the statistical power to map these terms but also, more importantly, it
creates a negative correlation between these terms. Out of these terms, we select 1000 out random as
a left-out and run the experiment 1000 times.
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Figure 10: Consistency between prediction of
unseen pairs and meta-analysis The Pearson cor-
relation between the map predicted by NeuroQuery on
a pair of unseen terms and the average density of lo-
cations reported on the studies containing this pair of
terms (hence excluded from the training set of Neuro-
Query).
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To evaluate NeuroQuery’s prediction on these unseen pairs of terms, we first use the same metrics
as in Section 2.5. Fig. 9-left shows the log-likelihood of coordinates reported in a publication evaluated
on left-out studies that contain the combination of terms excluded from the train set. Compared to
testing on a random subset of studied, identically distributed to the training, there is a slight decrease
in likelihood but it is small compared to the variance between cross-validation runs. Fig. 9-right shows
results for our other validation metric [adapted from Mitchell et al., 2008]: matching 1 publication out
of 2 to its observed locations. The decrease in performance is more marked. However, it should be
noted that the task is more difficult when the test set is made only of publications that all contain
two terms, as these publications are all more similar to each other than random publications from the
general corpus.

To gauge the quality of the maps on unseen pairs, and not only how well the corresponding pub-
lications are captured, Fig. 10 shows the Pearson correlation between the predicted brain map and
the average density of the reported locations in the left-out studies. The excellent median Pearson
correlation of .85 shows that the predicted brain map is indeed true to what a meta-analysis of these
studies would reveal.

4.3.3 NeuroQuery prediction performance without anatomical terms

In Fig. 11, we present an additional quantitative measure of prediction performance. We delete all
terms that are related to anatomy in test articles, to see how NeuroQuery performs without these highly
predictive features, which may be missing from queries related to brain function. As the GCLDA and
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Figure 11: Explaining coordinates reported in unseen studies. left: log-likelihood of reported co-
ordinates in test articles. right: how often the predicted map is closer to the true coordinates than to the
coordinates for another article in the test set [Mitchell et al., 2008]. The boxes represent the first, second and
third quartiles of scores across 16 cross-validation folds. Whiskers represent the rest of the distribution, except
for outliers, defined as points beyond 1.5 times the IQR past the low and high quartiles, and represented with
diamond fliers.
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NeuroSynth tools are designed to work with NeuroSynth data, they are only tested on NeuroSynth’s
TFIDF features, which represent the articles’ abstracts.

4.3.4 Variable terminology

In Fig. 12, we show predictions for some terms related to mental arithmetic. NeuroQuery’s semantic
smoothing produces consistent results for related terms.
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Figure 12: Taming arbitrary query variability Maps obtained for a few words related to mental arith-
metic. By correctly capturing the fact that these words are related, NeuroQuery can use its map for easier
words like “calculation” and “arithmetic” to encode terms like “computation” and “addition” that are difficult
for meta-analysis.

4.3.5 Comparison with the BrainPedia IBMA study

To compare maps produced by NeuroQuery with a reliable ground truth, we use the BrainPedia study
[Varoquaux et al., 2018], which exploits IBMA to produce maps for 19 cognitive concepts. Indeed,
when it its feasible, IBMA of manually selected studies produces high-quality brain maps and has been
used as a reference for CBMA methods [Salimi-Khorshidi et al., 2009]. We download the BrainPedia
maps and their cognitive labels from the NeuroVault platform12. BrainPedia maps combine forward
and reverse inference, and are thresholded to identify regions that are both recruited and predictive
of each cognitive process. We treat these maps as a binary ground truth: above-threshold voxels are
relevant to the map’s label. For each label, we obtain a brain map from NeuroQuery, NeuroSynth
and GCLDA. We compare these results to the BrainPedia thresholded maps and measure the Area
Under the ROC Curve. This standard classification metric measures the probability that a voxel that
is active in the BrainPedia reference map will be given a higher intensity in the NeuroQuery prediction
than a voxel that is inactive in the BrainPedia map.

We consider two settings. First, we use the original labels provided in the NeuroVault metadata.
However, some of these labels are missing from the NeuroSynth vocabulary. In a second experiment,
we therefore replace these labels with the most similar term we can find in the NeuroSynth vocabulary.
These replacements are shown in Fig. 13.

When replacing the original labels with less specific terms understood by NeuroSynth, both Neu-
roQuery and NeuroSynth perform well: NeuroQuery’s median AUC is 0.9 and NeuroSynth’s is 0.8.
When using the original labels, NeuroSynth fails to produce results for many labels as they are missing
from its vocabulary. NeuroQuery still performs well on these uncurated labels with a median AUC of

12https://neurovault.org/collections/4563/
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0.8. Finally, we can note that although the BrainPedia maps come from IBMA conducted on carefully
selected fMRI studies, they also contain some noise. As can be seen in Fig. 13, BrainPedia maps that
qualitatively match the domain knowledge also tend to be close to the CBMA results produced by
NeuroQuery and NeuroSynth.
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Figure 13: Comparison of CBMA maps with IBMA maps from the BrainPedia study. We use
labelled and thresholded maps resulting from a manual IBMA. The labels are fed to NeuroQuery, NeuroSynth
and GCLDA and their results are compared to the reference by measuring the Area under the ROC Curve.
The black vertical bars show the median. When using the original BrainPedia labels, NeuroQuery performs
relatively well but NeuroSynth fails to recognize most labels. When reformulating the labels, i.e. replacing them
with similar terms from NeuroSynth’s vocabulary, both NeuroSynth and NeuroQuery match the manual IBMA
reference for most terms. On the top, we show the BrainPedia map (first row) and NeuroQuery prediction
(second row) for the quartiles of the AUC obtained by NeuroQuery on the original labels. A lower AUC for
some concepts can sometimes be explained by a more noisy BrainPedia reference map.

4.3.6 Comparison with Harvard-Oxford anatomical atlas

Here, we compare CBMA maps to manually segmented regions of the Harvard-Oxford anatomical atlas
[Desikan et al., 2006]. We feed the labels from this atlas to NeuroQuery, NeuroSynth and GCLDA
and compare the resulting maps to the atlas regions. This experiment provides a sanity check that
relies on an excellent ground truth, as the atlas regions are labelled and segmented by experts. For
simplicity, atlas labels absent from NeuroSynth’s vocabulary are discarded. For the remaining 18
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labels, we compute the Area Under the ROC Curve of the maps produced by each meta-analytic tool.
This experiment is therefore identical to the one presented in Section 4.3.5, except that the reference
ground truth is a manually segmented anatomical atlas, and that we do not consider reformulating the
labels. GCLDA is not used in this experiment as the trained model distributed by the authors does
not recognize anatomical terms. We observe that both NeuroSynth and NeuroQuery match closely the
reference atlas, with a median AUC above 0.9, as seen in Fig. 14.
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Figure 14: Comparison of predictions with regions of the Harvard-Oxford anatomical atlas.
Labels of the Harvard-Oxford anatomical atlas present in NeuroSynth’s vocabulary are fed to NeuroSynth and
NeuroQuery. The meta-analytic maps are compared to the manually segmented reference by measuring the
Area Under the ROC Curve. The black vertical bars show the median. Both NeuroSynth and NeuroQuery
achieve a median AUC above 0.9. On the top, we show the atlas region (first row) and NeuroQuery prediction
(second row) for the quartiles of the NeuroQuery AUC scores.

4.3.7 Comparison with NeuroSynth on terms with strong activations

As NeuroSynth performs a statistical test, when a term has a strong link with brain activity and is
popular enough for NeuroSynth to detect many activations, the resulting map is trustworthy and can be
used as a reference. Moreover, it is a well-established tool that has been adopted by the neuroimaging
community. Here, we verify that when a term is well captured by NeuroSynth, NeuroQuery predicts
a similar brain map. To identify terms that NeuroSynth captures well, we compute the NeuroSynth
maps for all the terms in NeuroSynth’s vocabulary. We use the Benjamini-Hochberg procedure to
threshold the maps, controlling the FDR at 1%. We then select the 200 maps with the largest number
of active (above-threshold) voxels. We use these activation maps as a reference to which we compare the
NeuroQuery prediction. For each term, we compute the Area Under the ROC Curve: the probability
that a voxel that is active in the NeuroSynth map will have a higher value in the NeuroQuery prediction
than an inactive voxel. We find that NeuroQuery and NeuroSynth’s maps coincide well, with a median
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Figure 15: Comparison with
NeuroSynth. NeuroSynth maps
are thresholded controlling the FDR
at 1%. The 200 words with the
largest number of active voxels are
selected and NeuroQuery predictions
are compared to the NeuroSynth ac-
tivations by computing the Area Un-
der the ROC Curve. The distribu-
tion of the AUC is shown on the
top. The vertical black line shows
the median (0.90). On the bot-
tom, we show the NeuroQuery maps
(first row) and NeuroSynth activa-
tions (second row) for the quartiles
of the NeuroQuery AUC scores.
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AUC of 0.90. The distribution of the AUC and the brain map corresponding to each quartile are
shown in Fig. 15.

4.4 The NeuroQuery publication corpus and associated vocabulary

4.4.1 Word occurrence frequencies across the corpus

The challenge: most words are rare. As shown on Fig. 16 right, most words occur in very few
documents, which is why correctly mapping rare words is important. The problem of rare words is
more severe in the NeuroSynth corpus, which contains only the abstracts. As the NeuroQuery corpus
contains the full text of the articles (around 20 times more text), more occurrences of a unique term
in a document are observed, as shown in Fig. 16 left, and in Fig. 17 for a few example terms.

Document set intersections lack statistical power. For example, “face perception” occurs in 413
articles, and “dementia” in 1312. 1703 articles contain at least one of these words and could be used for
a multivariate regression’s prediction for the query “face perception and dementia”. Indeed, denoting
c the dual coefficients of the ridge regression and X the training design matrix, the prediction for a
query q is qtXtc, and any document that has a nonzero dot product with the query can participate in
the prediction. However, only 22 documents contain both terms and would be used with the classical
meta-analysis selection, which would lack statistical power and fail to produce meaningful results.
Exact matches of multi-word expressions such as “creative problem solving”, “ facial trustworthiness
recognition ”, “positive feedback processing”, “potential monetary reward”, “visual word recognition”
(all cognitive atlas concepts, all occurring in less than 5 / 10 000 full-text articles), are very rare –
and classical meta-analysis thus cannot produce results for such expressions. In Fig. 18, we compare
the frequency of multi-word expressions from our vocabulary (such as “face recognition”) with the
frequency of their constituent words. Being able to combine words in an additive fashion is crucial to
encode such expressions into brain space.

4.4.2 The choice of vocabulary

Details on the Medical Subject Headings The Medical Subject Headings (MeSH) are concerned
with all of medicine. We only included in NeuroQuery’s vocabulary the parts of this graph that are
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Figure 16: Right: benefit of using full-text articles. Document frequencies (number of documents in
which a word appears) for terms from the NeuroSynth vocabulary, in the NeuroSynth corpus (x axis) and the
NeuroQuery corpus (y axis). Words appear in much fewer documents in the NeuroSynth corpus because it only
contains abstracts. Even when considering only terms present in the NeuroSynth vocabulary, the NeuroQuery
corpus contains over 3M term-study associations – 4.6 times more than NeuroSynth. Left: Most terms
occur in few documents Plot of the document frequencies in the NeuroQuery corpus, for terms in the
vocabulary, sorted in decreasing order. While some terms are very frequent, occurring in over 12 000 articles,
most are very rare: half occur in less than 76 (out of 14 000) articles.

Figure 17: Document fre-
quencies for some example
words, in NeuroQuery’s and
NeuroSynth’s corpora.
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Figure 18: Occurrences of phrases ver-
sus its constituents How often a phrase
from the vocabulary (e.g. “face recogni-
tion”) occurs, versus at least one of its con-
stituent words (e.g. “face”). Expressions in-
volving several words are typically very rare.
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relevant for neuroscience and psychology. Here we list the branches of Medical Subject Headings
(MeSH) that we included in our vocabulary:

Neuroanatomy: ’A08.186.211’
Neurological disorders: ’C10.114’, ’C10.177’, ’C10.228’, ’C10.281’, ’C10.292’, ’C10.314’, ’C10.500’,

’C10.551’, ’C10.562’, ’C10.574’, ’C10.597’, ’C10.668’, ’C10.720’, ’C10.803’, ’C10.886’, ’C10.900’
Psychology: ’F02.463’, ’F02.830’, ’F03’, ’F01.058’, ’F01.100’, ’F01.145’, ’F01.318’, ’F01.393’, ’F01.470’,

’F01.510’, ’F01.525’, ’F01.590’, ’F01.658’, ’F01.700’, ’F01.752’, ’F01.829’, ’F01.914’
Many MeSH terms are too rare to be part of NeuroQuery’s vocabulary. Some are too specific,

e.g. “Diffuse Neurofibrillary Tangles with Calcification”. More importantly, many terms are absent
because for each heading, MeSH provides many Entry Terms – various ways to refer to a concept,
some of which are almost never used in practice in the text of publications. For example Neuro-
Query recognizes the MeSH Preferred Term “Frontotemporal Dementia” but not some of its varia-
tions (https://meshb.nlm.nih.gov/record/ui?ui=D057180) such as “Dementia, Frontotemporal”,
“Disinhibition-Dementia-Parkinsonism-Amyotrophy Complex”, or “HDDD1”. Note that even when
absent from the vocabulary as single phrases, many of these variations can be parsed as a combination
of several terms, resulting in a similar brain map as the one obtained for the preferred term.

Atlas labels included in the vocabulary The labels from the 12 atlases shown in Table 4 were
included in the NeuroQuery vocabulary.

4.5 NeuroSynth posterior probability maps

The NeuroSynth maps shown in Fig. 5 are the NeuroSynth “association test” maps. For completeness,
here we show the other kind of map that NeuroSynth can produce, called “posterior probability” maps.
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name url

talairach http://www.talairach.org/talairach.nii

harvard oxford http://www.nitrc.org/frs/download.php/7700/HarvardOxford.tgz

destrieux https://www.nitrc.org/frs/download.php/7739/destrieux2009.tgz

aal http://www.gin.cnrs.fr/AAL-217

JHU-labels https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#JHU-labels

Striatum-Structural https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#Striatum-Structural

STN https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#STN

Striatum-
Connectivity-7sub

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#

Striatum-Connectivity-7sub

Juelich https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#Juelich

MNI https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#MNI

JHU-tracts https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#JHU-tracts

Thalamus https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#Thalamus

Table 4: Atlases included in NeuroQuery’s vocabulary
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Figure 19: NeuroSynth posterior probability maps for “language” (top) and “reward” (bottom), using the
full corpus.
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