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LEHMER’S PROBLEM FOR SMALL GALOIS GROUPS

F. AMOROSO

1. Introduction

Let α be a non zero algebraic number of degree d, with algebraic conjugates
α1, . . . , αd. Let a be the leading coefficient of a minimal equation of α over Z. As
usual we denote by M(α) its Mahler measure

M(α) = log |a|
∏
i

max{|αi|, 1}

and by h(α) = 1
d logM(α) its absolute logarithmic Weil height. It is well known

that h(α) = 0 if and only if α is a root of unity, which we will exclude from now
on. In 1993 Lehmer asks whether there is a positive constant c such that

h(α) ≥ cd−1.
Lehmer’s problem is still unsolved, but a celebrated result of Dobrowolski [8] im-
plies that for any ε > 0 there is c(ε) > 0 such that h(α) ≥ c(ε)d−1−ε. More
precisely he shows that

h(α) ≥ c

d

(
log(3d)

log log(3d)

)−3
with c > 0 absolute constant.

Let D := [Q(α1, . . . , αd) : Q] be the degree of the normal closure of Q(α)/Q.
More recently, David with the author gave a positive answer to Lehmer’s problem
when D growth at most polynomially in d. More precisely,

Theorem 1.1 ([1], Corollaire 1.7). Let m be a fixed positive integer. Then there
exists c(m) > 0 such that

h(α) ≥ c(m)d−1

provided that

(1.1) D ≤ dm.

One could ask if it is possible to relax condition (1.1): does there exist a real
function t 7→ f(t) with limt7→+∞ f(t) =∞ and a constant c > 0 such that h(α) ≥
cd−1 provided that D ≤ df(d)?

As pointed out by Bardestani [5] (see Proposition 2.1) this question is logically
equivalent to a positive answer to the full Lehmer’s problem, and thus it seems
beyond the state of the art. Nevertheless, the proof of Proposition 2.1 suggests
that the obstruction to relax condition (1.1) is related to the existence of a small
degree subextension Q(αe)/Q of Q(α)/Q.

As a special case of a more general result (Theorem 5.1) we prove the following
generalization of Theorem 1.1:
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2 F. AMOROSO

Theorem 1.2. Let α be a non zero algebraic number of degree d, let D be the
degree of the normal closure of Q(α)/Q. We also let

d0 = min
e≥1

[Q(αe) : Q]

and we assume

D ≤ 1

4
d 500−1 log(ρd0)1/6

for some ρ ≥ 16. Then, if α is not a root of unity,

h(α) ≥ 1

ρd
.

Theorem 1.2 is a consequence of Theorem 3.1 which provides a lower bound for
the height depending on the size of two Galois groups. Theorem 3.1, combined
with the fact that “roots of lacunary polynomials have small height”, also applies
to show that the size of the Galois group of a lacunary polynomial growths more
than polynomially in the degree, under some natural assumptions.

Theorem 1.3. Let γ1, . . . , γk non-zero integers and 0 = mk < · · · < m0 = d
coprime integers. We consider the polynomial

Xm0 + γ1X
m1 + · · ·+ γk−1X

mk−1 + γk ∈ Z[X]

of degree d, which we assume irreducible. Let Dab be the degree of its Galois
closure over Qab. Then there exists a function f(t) explicitly depending on |γ| :=
max(|γ1|, . . . , |γk|) and which growth to infinity with t, such that

Dab ≥ df(d).
More precisely, let h∗ := k(|γ|+ log k). Then, if d ≥ 16h∗,

Dab ≥
1

16
(d/h∗)10

−7(log log(d/h∗))1/4 .

Remark that the assumptions on the irreducibility of the polynomial and on the
coprimality of m0, . . . ,mk are both needed, as the following two examples show:

(X − 2)(Xd−1 − 1), Xd − 2.

The new ingredients in the proofs of our results are two explicit versions of the
main theorem of [1]. The first one provides a good dependence in the dimension
n of the ambient space:

Theorem 1.4 ([3], Corollary 1.6). Let α1, . . . , αn be multiplicatively independent
algebraic numbers in a number field. Let D = [Q(α1, . . . , αn) : Q]. Then

h(α1) · · ·h(αn) ≥ D−1
(
1050n5 log(3D)

)−n2(n+1)2
.

The lower bound [1] for the height was previosly extended by Delsinne [7], to
prove a so called “relative” result, replacing the degree over Q by the degree over
Qab. More precisely, a simplified version of [7, Theorem 1.6] asserts:

Theorem 1.5 ([7], Theorem 1.6). Let α1, . . . , αn be multiplicatively independent
algebraic numbers. Let Dab = [Qab(α1, . . . , αn) : Qab]. Then

h(α1) · · ·h(αn) ≥ c2(n)−1D−1ab log(16Dab)−κ2(n)
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where

c2(n) =
(
2n2
)n

exp
(

64n2n!
(
2(n+ 1)2(n+ 1)!

)2n)
and

κ2(n) = 3n
(
2(n+ 1)2(n+ 1)!

)n
Roughly speaking, Theorem 1.5 allows to replace Dab by D at the cost of re-

placing the exponent on the error terms in Theorem 1.4 (which is approximately

n3) by nn
2
. It is likely that the method of [3] could be adapted to prove such a

relative result with a much better exponent. To have a result depending on the
degree over Qab is important in several application, and for instance in the proof
of Theorem 1.3 (see Remark 4.2).

We shall apply these lower bounds for the height taking for α1, . . . , αn some of
the conjugates of an algebraic number α, so that h(α1) = · · · = h(αn) = h(α).
The explicit nature of the lowers bounds in Theorems 1.4 and 1.5 will allow us to
let the dimension of the ambient space logarithmically growing with the degree,
which was not allowed using the main theorem of [1].

The proofs of our results are not difficult, but the explicit computations are
involved, due to the nature of the lower bounds for the height of Theorems 1.4
and 1.5. For the convenience of reader, we begin the proofs of Theorems 3.1 and 5.1
with a short explanation of the strategy.

2. Notations and auxiliary results

We first state and prove the following proposition announced in the introduction.

Proposition 2.1. Let us assume that there exists a function d 7→ f(d) with
limd7→+∞ f(d) = ∞ and a constant c > 0 such that h(α) ≥ cd−1 for any non
zero algebraic number α which is not a root of unity, provided that the degree D of
the normal closure Q(α)/Q satisfies D ≤ df(d). Then the same conclusion holds
without any assumption on D.

Proof. Let α′ be a non zero algebraic number of degree d′ which is not a root
of unity. We can find a sequence ek of positive integers with limk→+∞ ek = +∞
such that the polynomials Pk = Xek − α′ ∈ Q(α′)[X] are irreducible. For each k,

we select a root αk ∈ Q∗ of Pk. Thus [Q(αk) : Q(α′)] = ek and dk := [Q(αk) :
Q] = d′ek. We also remark that the degree Dk of the normal closure of Q(αk)/Q
is bounded by D′ed

′
k φ(ek) ≤ D′ed

′+1
k , where D′ denotes the degree of the normal

closure of Q(α′)/Q. Thus

logDk

log dk
≤ logD′ + (d′ + 1) log ek

log d′ + log ek
→ d′ + 1 as k → +∞.

By assumption, Dk ≤ d
f(dk)
k for large k. Thus, again by assumption, h(αk) ≥ c

dk
and

h(α′) = ekh(αk) ≥ ek ·
c

dk
=

c

d′
.

�



4 F. AMOROSO

We now introduce some notations which we keep in the sequel of this article.

Notation. Let α be a non zero algebraic number of degree d, with algebraic
conjugates α1, . . . , αd. We denote by Mα the multiplicative group generated by
α1, . . . , αd, by r(α) := dimQ(Mα ⊗Z Q) its rank and by e(α) the cardinality of its
torsion subgroup.

Lemma 2.2. Let α be a non zero algebraic number, not a root of unity. Let
r = r(α) ≥ 1. Then the degree D′ of the normal closure of Q(αe(α))/Q satisfies

D′ ≤ Dmax(r) := ε(r) · 2rr!

where

ε(2) =
3

2
, ε(4) = 3, ε(6) =

9

4
, ε(7) =

9

2
, ε(8) =

135

2
, ε(9) =

15

2
, 15, ε(10) =

9

4

and ε(r) = 1 for a positive integer r 6∈ {2, 4, 6, 7, 8, 9, 10}.

Proof. (see also the proof of [1, Corollaire 6.1] and [4, Theorem 18]). Let e = e(α)
and G be the Galois group of Q(αe1, . . . , α

e
d)/Q. Since Mαe is torsion free, the

action of G over Mαe defines an injective representation G → GLr(Z). Thus G
identifies to a finite subgroup of GLr(Z). Feit [9] (unpublished) shows that the
group of signed permutation group (the group of r × r matrices with entries in
{−1, 0, 1} having exactly one nonzero entry in each row and each column) has
maximal order (= 2rr!) for r = 1, 3, 5 and for r > 10. For the seven remaining
values of r, Feit characterizes the corresponding maximal groups, showing that the
maximal order is ε(r) · 2rr! with ε(r) as above. See [10] for more details and for a
proof of the weaker statement n(r) ≤ 2rr! for large r.

�

Notation. For t > e we set

l(t) =
log(t)

log log(t)
.

For t > ee, we also note

l2(t) = l(log t) =
log log(t)

log log log(t)
.

Remark 2.3.

i) The fonction t 7→ l(t) is decreasing to e on (e, ee] and increasing on
[ee,+∞). Thus, for e < t0 ≤ t1 < t2 we have l(t1) ≤ e−1l(t0)l(t2).

ii) We have log(t)1/2 ≤ l(t), and, for t ≥ t0 > e, l(t) ≤ (log log(t0))
−1 log(t).

3. Lower bound for the height and Galois groups

This section is devoted to the proof of the following theorem, which provides a
lower bound for the height depending on the size of two Galois groups.

Theorem 3.1. Let α be a non zero algebraic number which is not a root of unity.
I) Let D and D′ be respectively the degrees of the normal closures of Q(α)/Q and

of Q(αe(α))/Q. Then, for every α′ ∈ Q(α) such that r(α′) ≥ r(α) we have

h(α′) ≥ e−U
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with

(3.1) U ≤ 8 max
{
l(4D)−1/4, l(4D′)−1

}
log(4D).

II) Let Dab and D′ be respectively the degrees of the normal closures of Qab(α)/Qab

and of Q(αe(α))/Q. Then, for every α′ ∈ Qab(α) such that r(α′) ≥ r(α) we have

h(α′) ≥ e−U

with

(3.2) U ≤ 72 · 103 max
{
l2(16Dab)−1/2, l(16D′)−1

}
log(16Dab).

Proof. The strategy of the proof of I) and II) is the following. Lemma 2.2
provides us with a lower bound of r(α) in terms of D′, say r(α) ≥ r(D′). Since
r(α′) ≥ r(α), for any positive integer n ≤ r(D′) there exist n multiplicatively inde-
pendent conjugates of α′, say α′1, . . . , α

′
n. Since h(α′1) = · · · = h(α′n) = h(α′), the

lower bounds for the height (Theorem 1.4 to prove assertion I) and Theorem 1.5
for assertion II) give h(α′) ≥ e−U where U is an explicit function depending on n
and on D (case I) or Dab (case II). We choose n ≤ r(D′) for which U is smaller.

We prove I). By assumption α is not a root of unity, thus r := r(α) ≥ 1. Since
r(α′) ≥ r, in particular α′ is not a root of unity.

If l(4D′) ≤ l(4) ≤ 9/2 then U ≥ 16
9 log(4D). Thus our bound follows from a

reasonable lower bound for the height. Indeed, if D = 1, then h(α′) ≥ log 2 ≥
4−16/9 and, if D ≥ 2,

h(α′) ≥ 2D−1 log(3D)−3 ≥ (4D)−16/9

by [12, Corollary 2]. Thus we assume from now on l(4D′) > l(4) > 4, which easily
implies D ≥ D′ ≥ 14 000.

By Lemma 2.2,

D′ ≤ Dmax(r)

with Dmax(r) defined in the statement of the lemma. Since D′ ≥ 14 000 and
Dmax(r) ≤ 3 840 for r = 2, 3, 4, 5, 6 we must have r ≥ 7. Let

x := min
{
l(4D)1/4, l(4D′)

}
≥ 4

and n := [x]− 1 ≥ 3.
We claim that n ≤ r as we now show. We have n ≤ l(4D′) − 1. An easy

computation shows that l(4D′) log l(4D′) ≤ logD′. Moreover Dmax(r) = 2rr! ≤ rr
for r > 10. Thus in this range

n log n ≤ l(4D′) log l(4D′) ≤ logD′ ≤ r log r

which ensures that n ≤ r, at least if r > 10. For r = 7, 8, 9, 10, a direct computation
shows that again

n ≤ l(4D′)− 1 ≤ l(4Dmax(r))− 1 ≤ r.

By assumption r ≤ r(α′). Thus there exist at least n multiplicatively inde-
pendent conjugates of α′, say α′1, . . . , α

′
n. Since h(α′1) = · · · = h(α′n) = h(α′),

Theorem 1.4 shows that

h(α′) ≥ D−1/n
(
1050n5 log(3D)

)−n(n+1)2
= e−U
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with

(3.3) U =
1

n
logD + n(n+ 1)2 log

(
1050n5 log(3D)

)
.

We have to prove (3.1). Since D ≥ 14 000 we have n ≤ l(4D)1/4 ≤ log(4D)1/4 and

log
(

1050n5 log(3D)
)
≤ log(1050) +

5

4
log log(4D) + log log(4D)

≤
(

log(1050)

log log(4 · 14 000)
+

9

4

)
log log(4D) ≤ 6 log log(4D).

By (3.3) and using n ≥ x−2 ≥ x
2 (from x ≥ 4) and n(n+1)2 ≤ x3 (from n ≤ x−1)

we deduce

U ≤

 1

n
+ n(n+ 1)2

log
(

1050n5 log(3D)
)

log(4D)

 log(4D)

≤ 8 max

{
1

x
, x3l(4D)−1

}
log(4D).

Since x4 ≤ l(4D), we finally get

U ≤ 8

x
log(4D) = 8 max

{
l(4D)−1/4, l(4D′)−1

}
log(4D).

Inequality (3.1) is proved.

We now prove II). We follow the same pattern of the previous proof. We let
r := r(α) ≥ 1.

If l(16D′) ≤ 12 then the R.H.S of (3.2) is ≥ 6 000 log(16Dab) and our lower
bound directly follows from Theorem 1.5, taking n = 1 :

h(α′) ≥ 1

2
exp(−16 384)D−1ab log(16Dab)−48 ≤ (16Dab)−6 000.

We assume from now on l(16D′) > 12, which easily implies D ≥ D′ ≥ 1019.
Let

x := min

{
1

6
l2(16Dab)1/2, l(16D′)

}
≥ 12

and n := [x] ≥ 12.
As in the proof of part I), n ≤ r. Indeed by Lemma 2.2, D′ ≤ Dmax(r) with

Dmax(r) defined in the statement of the lemma. Since D′ ≥ 1019 and Dmax(r) ≤
1010 for r ≤ 10 we must have r > 10 and thus D′ ≤ Dmax(r) = 2rr! ≤ rr and
n log n ≤ l(4D′) log l(4D′) ≤ logD′ ≤ r log r which ensures that n ≤ r.

By assumption r ≤ r(α′). Thus there exist at least n multiplicatively inde-
pendent conjugates of α′, say α′1, . . . , α

′
n. Theorem 1.5 shows that h(α′) ≥ e−U

where

(3.4) U =
1

n
logDab +

1

n
log(c2(n)) +

κ2(n)

n
log log(16Dab)

and with c2(n) and κ2(n) defined in that theorem.
We have to prove (3.2). Since n ≥ 12, an elementary computation shows that

1

n
log(c2(n)) = log(2n2) + 64n · n!

(
2(n+ 1)2(n+ 1)!

)2n ≤ n2n2
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and
κ2(n)

n
= 3

(
2(n+ 1)2(n+ 1)!

)n ≤ n2n2
.

Thus (taking into account n ≥ x− 1 ≥ x
2 )

(3.5)

U ≤

(
1

n
+

2n2n
2

log log(16Dab)

log(16Dab)

)
log(16Dab)

≤ 4 max

{
1

x
, x2x

2
l(16Dab)−1

}
log(16Dab).

We now quote the following inequality, which can be easily checked.

Fact. For t ≥ 16 we have

1

2

(
1 +

1

18
l2(t)

)
log(l2(t)/36) ≤ log l(t).

Since x ≤ 1
6 l2(16Dab)1/2, by the fact above we have

(1 + 2x2) log x ≤ 1

2

(
1 +

1

18
l2(16Dab)

)
log(l2(16Dab)/36) ≤ log l(16Dab).

Thus x1+2x2 ≤ l(16Dab) and, by (3.5),

U ≤ 4

x
log(16Dab) = 4 max

{
6l2(16Dab)−1/2, l(16D′)−1

}
log(16Dab)

≤ 72 · 103 max
{
l2(16Dab)−1/2, l(16D′)−1

}
log(16Dab).

Inequality (3.2) is proved.

�

It is interesting to compare Theorem 3.1 with [2, Corollary 3.2] which in the
present situation shows that

h(α′) ≥ c(ε)D−1/2−ε

for any ε > 0, with c(ε) > 0. The result I) of Theorem 3.1 is asymptotically
stronger, but only when D′ is large.

Corollary 3.2. Let α be a non zero algebraic number which is not a root of unity.
I) Let us assume Q(αe(α)) = Q(α). Then, for every α′ ∈ Q(α) such that r(α′) ≥
r(α) we have

h(α′) ≥ e−U with U ≤ 8l(4D)−1/4 log(4D)

where D is the degree of the normal closure of Q(α)/Q.

II) Let us assume Qab(αe(α)) = Qab(α). Then, for every α′ ∈ Qab(α) such that
r(α′) ≥ r(α) we have

h(α′) ≥ e−U with U ≤ 3 · 72 · 103l2(16Dab)−1/2 log(16Dab)

where Dab is the degree of the normal closure of Qab(α)/Qab.

Proof. Let D′ and D′ab be respectively the degrees of the normal closures of

Q(αe(α))/Q and of Qab(αe(α))/Qab.
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We prove I). We apply Theorem 3.1 I), taking into account D′ = D. Since
l(4D) ≥ 1, by assertion I) of that theorem we have h(α) ≥ e−U with

U = 8 max
{
l(4D)−1/4, l(4D)−1

}
log(4D) = 8l(4D)−1/4 log(4D).

Similarly, by Theorem 3.1, II) we have h(α) ≥ e−U with

U = 72 · 103 max
{
l2(16Dab)−1/2, l(16D′)−1

}
log(16Dab).

We now prove II). By assumption D′ab = Dab. Since D′ ≥ D′ab we have D′ ≥
Dab. A computation shows that l2(t)

1/2 ≤ 3l(t) for t ≥ 16. Thus l2(16Dab)1/2 ≤
3l(16Dab) ≤ 3l(16D′) (by Remark 2.3 i) and since Dab ≤ D′) and

U ≤ 3 · 72 · 103l2(16Dab)−1/2 log(16Dab).

�

The assumption Qab(αe(α)) = Qab(α) of part II) of the previous corollary, is
easily read on the minimal polynomial of α over Q. This not seem to be the case
for the analogous assumption Q(αe(α)) = Q(α) of part I).

Lemma 3.3. Let α be an algebraic number with minimal polynomial P (X) over
Q. Let us assume that P is not a polynomial in Xδ for δ integer > 1. Then for
any integer e ≥ 1 we have Qab(αe) = Qab(α).

Proof. Let e ≥ 1 be an integer. Let for short E = Qab(αe) ∩ Q(α). We note

δ = [Q(α) : E] and α′ = Norm
Q(α)
E (α) ∈ E. Thus α′ = ζαδ for some root of unity

ζ. Hence ζ ∈ Qab. Since ζ = α′/αδ ∈ Q(α) we have ζ ∈ Qab ∩Q(α) ⊆ E and thus
also αδ ∈ E. Let

Q(X) =
∏

σ : E↪→Q
σ|Q=Id

(Xδ − σαδ) ∈ Q[X].

Then Q(α) = 0 and degQ = δ × [E : Q] = [Q(α) : Q]. Thus Q = P . Since Q
is a polynomial in Xδ, by assumption we have δ = 1, i. e. Q(α) ⊆ Qab(αe). This
implies Qab(αe) = Qab(α) as claimed.

�

4. Size of the Galois group of a lacunary polynomial

In this section we prove a general result on the size of the Galois group of a root
of a lacunary polynomial, and we deduce Theorem 1.3 from it.

Theorem 4.1. Let γ0, γ1, . . . γk ∈ Q∗ and m0, . . . ,mk ∈ Z with 0 = mk < mk−1 <
· · · < m1 < m0. We set h∗ = h∗(γ) := k(h(γ0 : · · · : γk) + log k). Let α be a root
of the polynomial

γ0X
m0 + γ1X

m1 + · · ·+ γk−1X
mk−1 + γk = 0

of degree d := m0. We assume that α is not a root of unity and that there is no
vanishing subsum of the form γ0α

m0 + · · ·+ γlα
ml
l with l < k.

I) If Q(α) = Q(αe(α)) and d ≥ 3h∗, the degree D of the Galois closure of Q(α)/Q
satisfies

(4.1) log(4D) > 6−1l(d/h∗)1/3 log(d/h∗).



LEHMER’S PROBLEM FOR SMALL GALOIS GROUPS 9

II) If Qab(α) = Qab(αe(α)) and d ≥ 16h∗, the degree Dab of the Galois closure of
Qab(α)/Qab satisfies

(4.2) log(16Dab) > 10−7l2(d/h
∗)1/2 log(d/h∗).

Proof. By the assumption on non-vanishing subsums, we can apply [6, Lemma
2.2] to get

(ml −ml+1)h(α) ≤ h(γ) + log max{l + 1, k − l}

for l = 0, . . . , k−1. Summing over l we obtain dh(α) ≤ k(h(γ)+log k) = h∗. Thus

(4.3) h(α) ≤ exp(− log(d/h∗)).

Let us prove I). By Corollary 3.2 I) h(α) ≥ e−U with

U ≤ 8l(4D)−1/4 log(4D) = 8(log 4D)3/4(log log 4D)1/4.

Comparing with (4.3) we get 8(log 4D)3/4(log log 4D)1/4 ≥ log(d/h∗), i. e.

(4.4) log(4D) ≥ 8−3/4(log log(4D))−1/3(log(d/h∗))4/3.

If log(4D) ≥ log(d/h∗)4/3 then (4.1) is obviously satisfied (since d/h∗ ≥ 3 and

6−1 log log(3)−1/3 < 1). Otherwise, we have log log(4D) ≤ 4
3 log log(d/h∗) and

then (4.4) implies again (4.1):

log(4D) ≥ 8−3/4(4/3)−1/3(log log(d/h∗))−1/3(log(d/h∗))4/3

> 6−1l(d/h∗)1/3 log(d/h∗).

Let now prove II). By Corollary 3.2 II)

h(α′) ≥ e−U with U ≤ 3 · 72 · 103l2(16Dab)−1/2 log(16Dab).

Comparing with (4.3) we get

(4.5) c log(16Dab) ≥ l2(16Dab)1/2 log(d/h∗).

with c = 3 · 72 · 103. Since l2(16Dab) ≥ 1, this implies log(d/h∗) ≤ c log(16Dab).
Since d/h∗ ≥ 16, from Remark 2.3 i) we get

l2(d/h
∗) = l(log(d/h∗)) ≤ e−1l2(16)l(c log(16Dab)).

A direct computation shows that l(c · t) ≤ 3l(t) for t > e. Thus

l2(d/h
∗) ≤ 3e−1l2(16)l(log(16Dab)) ≤ 82l2(16Dab).

Inserting this inequality in (4.5) we get

log(16D) ≥ (8 · c)−1l2(d/h∗)1/2 log(d/h∗) > 10−7l2(d/h
∗)1/2 log(d/h∗).

�
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Proof of Theorem 1.3. We fix a positive integer k and non zero γ1, . . . , γk ∈ Z.
Let m0, . . . ,mk ∈ Z coprime with 0 = mk < · · · < m0 =: d and with d → +∞.
We consider the polynomial

Pm = Xm0 + γ1X
m1 + · · ·+ γk−1X

mk−1 + γk ∈ Z[X]

which we assume irreducible. Let α be a root of Pm. Since Pm is irreducible, there
is no vanishing subsum of the form αm0 +γ1α

m1 +· · ·+γlαmll with l < k. Moreover,
we can assume Pm not cyclotomic (since the number of non zero coefficients of a
cyclotomic polynomial with coprime exponents growth to infinity with the degree
Thus α is not a root of unity. Moreover, since m0, . . . ,mk are coprime, Pm is
not a polynomial in Xδ for δ > 1. By Lemma 3.3, Qab(α) = Qab(αe(α)). All the
assumptions of Theorem 4.1 II) are now satisfied. From 4.2 and Remark 2.3 ii) we
get:

log(16Dab) > 10−7l2(d/h
∗)1/2 log(d/h∗) ≥ 10−7 log log(d/h∗)1/4 log(d/h∗).

�

Remark 4.2. The assumption on the coprimality of the exponents is not enough
to ensure Q(α) = Q(αe(α)). Thus, even for a lower bound of the size of the Galois
group over Q, we need assertion II) of Theorem 5.1 and thus the lower bound of
Theorem 1.5.

5. Lehmer’s problem and Galois groups

Theorem 1.2 announced in the introduction is a special case of the following
result.

Theorem 5.1. Let α be a non zero algebraic number which is not a root of unity.
I) Let d = [Q(α) : Q], d′ = [Q(αe(α)) : Q] and let D be the degree of the normal
closure of Q(α)/Q. Let us assume

(5.1) log(4D) ≤ c−1 min
{
l(ρd)1/3, l(ρd′)4/3

}
log(ρd).

for some ρ ≥ 4, where c = 500. Then, if α is not a root of unity,

h(α) ≥ 1

ρd
.

II) Let dab = [Qab(α) : Qab], d′ab = [Qab(αe(α)) ∩ Q(α) : Qab ∩ Q(α)] and let Dab

be the degree of the normal closure of Qab(α)/Qab. Let us assume

(5.2) log(16Dab) ≤ c−1 min
{
l2(ρdab)1/2, l(ρd′ab)l2(ρd

′
ab)1/2

}
log(ρdab).

for some ρ ≥ 16, where c = 2 · 1011. Then, if α is not a root of unity,

h(α) ≥ 1

ρdab
.

Proof. The strategy of the proof of I) is the following. We forget for the moment
the parameter ρ, the constants and the factors log log. Let D′ be the degree of the
normal closure of Q(αe(α))/Q. If logD′ ≥ (logD)/(log d), Theorem 3.1 with α′ = α

gives a lower bound of the shape h(α) ≥ e−U with U ≤ (logD)3/4, which implies

the desired result, by the upper bound logD ≤ (log d)4/3 of (5.1). Otherwise, we
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apply Theorem 3.1 (more precisely, its corollary 3.2) with αe(α) at the place of α,
choosing

α′ = Norm
Q(α)

Q(αe(α))
(α) = (root of unity) · αd/d′ .

This gives the lower bound h(α′) ≥ e−U with U ≤ (logD′)3/4. Since we are

now assuming logD′ ≤ (logD)/(log d) and logD ≤ (log d′)4/3 log d by (5.1), we
obtain a “Lehmer’s type” lower bound h(α′) ≥ 1/d′ for the height of α′ and thus
a “Lehmer’s type” lower bound h(α) ≥ 1/d for the height of α.

The proof of II) follows a similar pattern, with some more technical complica-
tions.

We prove I). Let D′ be the degree of the normal closure of Q(αe(α))/Q. Let us
assume first

(5.3) 8l(4D′)−1 log(4D) ≤ log(ρd).

By Theorem 3.1 (with α′ = α)

(5.4) h(α) ≥ e−U , with U = 8 max
{
l(4D)−1/4, l(4D′)−1

}
log(4D).

By (5.1), log(4D) ≤ 500−1l(ρd)1/3 log(ρd) = 500−1 log(ρd)4/3 log log(ρd)−1/3, which

in turn implies (taking into account 500−1(log log 4)−1/3 ≤ 1)

log log(4D) ≤ 4

3
log log(ρd).

Thus

(5.5) 8l(4D)−1/4 log(4D) = 8(log(4D))3/4(log log(4D))1/4

≤ 8 · 500−3/4 log(ρd) log log(ρd)−1/4 · (4/3)1/4 log log(ρd)1/4 < log(ρd).

By (5.4), (5.5) and (5.3) we get h(α) ≥ 1
ρd .

Let now assume

(5.6) 8l(4D′)−1 log(4D) > log(ρd).

We have [Q(α) : Q(αe(α))] = d/d′. Thus,

α′ := Norm
Q(α)

Q(αe(α))
(α) = (root of unity) · αd/d′ .

In particular, α′ ∈ Q(αe(α)) and r(α′) = r(α) = r(αe(α)). Moreover, the multiplica-

tive group generated by the conjugates of αe(α) has no torsion, i. e. e(αe(α)) = 1.

Thus applying By Corollary 3.2 (with αe(α) at the place of α) we get

h(α′) ≥ e−U , with U = 8l(4D′)−1/4 log(4D′) = 8l(4D′)3/4 log log(4D′).

By (5.1), log(4D) ≤ 500−1l(ρd′)4/3 log(ρd). Thus (5.6) gives

l(4D′) < 8 log(4D) log(ρd)−1 ≤ 60−1l(ρd′)4/3

which in turn implies log(4D′)1/2 ≤ log(ρd′)4/3 (by Remark 2.3 ii) and since

60−1(log log 4)−4/3 ≤ 1) and

log log(4D′) ≤ 8

3
log log(ρd′).

We get:

U ≤ 8 · 60−3/4l(ρd′) · 8

3
log log(ρd′) < log(ρd′).
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This gives

h(α) =
d′

d
h(α′) ≥ d′

d
e−U ≥ 1

ρd
.

We now prove II). Let D′ab be the degree of the normal closure of Qab(αe(α))/Qab

and let for short c0 = 72 · 103. Let us assume first

(5.7) l(16D′ab)−1 log(16Dab) ≤ c−10 log(ρdab).

By II) of Theorem 3.1 (with α′ = α, and since the degree D′ of the normal closure

of Q(αe(α))/Q is bounded by D′ab), h(α) ≥ e−U with

(5.8) U = c0 max
{
l2(16Dab)−1/2, l(16D′ab)−1

}
log(16Dab).

In order to show that h(α) ≥ 1
ρdab

we quote the following tedious computation:

Fact.

U ≤ log(ρdab)

Proof. By (5.8) and (5.7), it enough to prove that

(5.9) log(16Dab) ≤ c−10 l2(16Dab)1/2 log(ρdab).

This is clear if log(16Dab) ≤ c−10 log(ρdab), since l2(16Dab) ≥ 1. If otherwise
log(ρdab) ≤ c0 log(16Dab), then

l2(ρdab)1/2 log(ρdab) = l(log(ρdab))1/2 log(ρdab)

≤
(
e−1l2(16)

)1/2
l(c0 log(16Dab))1/2 log(ρdab)

by Remark 2.3. Moreover a direct computation shows that l(log(c0t)) ≤ 2l(t) for
t > e. Thus

l2(ρdab)1/2 log(ρdab) ≤
(
2e−1l2(16)

)1/2
l2(16Dab)1/2 log(ρdab).

Inequality (5.9) now follows from (5.2):

log(16Dab) ≤ c−1l2(ρdab)1/2 log(ρdab) ≤ c−10 l2(16Dab)1/2 log(ρdab)

since
(
2e−1l2(16)

)1/2
c0 ≤ 7 · 72 · 103 ≤ 2 · 1011 = c.

�

Let now assume

(5.10) l(16D′ab)−1 log(16Dab) > c−10 log(ρdab).

We have [Q(α) : Qab ∩Q(α)] = [Qab(α) : Qab] = dab. Thus, by definition of d′ab,

α′ := Norm
Q(α)

Qab(αe(α))∩Q(α)
(α) = (root of unity) · αdab/d′ab .

In particular, α′ ∈ Qab(αe(α)) and r(α′) = r(α) = r(αe(α)). As in the proof of part

I), e(αe(α)) = 1 and we can apply Corollary 3.2 (with αe(α) at the place of α). We
get h(α′) ≥ e−U with

(5.11) U ≤ 3c0l2(16D′ab)−1/2 log(16D′ab).

We need an other tedious computation:
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Fact.
U ≤ log(ρd′ab).

Proof. Let for short u(t) = (log log(t) log log log(t))1/2 = l(t)−1l2(t)
−1/2 log(t).

Thus (5.11) becomes

(5.12) U ≤ 3c0u(16D′ab)l(16D′ab).

By (5.2),

log(16Dab) ≤ c−1l(ρd′ab)l2(ρd
′
ab)1/2 log(ρdab)

= c−1u(ρd′ab)−1 log(ρd′ab) log(ρdab)

Thus, by (5.10) and since c = 2 · 1011 > 27 · c20,

(5.13)
l(16D′ab) < c0 log(16Dab) log(ρdab)−1

≤ (27 · c0)−1u(ρd′ab)−1 log(ρd′ab)

which in turn implies log log(16D′ab) ≤ 2 log log(ρd′ab) (taking into account (27 ·
c0)
−1u(16) ≤ 1 and Remark 2.3 ii)) and

log log log(16D′ab) ≤
(

1 +
log 2

log log log 16

)
log log log(ρd′ab) ≤ 37 log log log(ρd′ab).

Thus u(16D′ab) ≤
√

2 · 37u(ρd′ab) ≤ 9u(ρd′ab). From this last inequality and
from (5.12) and (5.13) we get

U ≤ 3c0 · 9u(ρd′ab) · (27 · c0)−1u(ρd′ab)−1 log(ρd′ab) = log(ρd′ab).

�

By the fact above,

h(α) =
d′ab
dab

h(α′) ≥
d′ab
dab

e−U ≥ 1

ρdab
.

�

Proof of Theorem 1.2. We apply Theorem 5.1, I). Since d0 ≤ d′ ≤ d and
ρ ≥ 16, we have by Remark 2.3,

min{l(ρd)1/3, l(ρd′)4/3} ≥ l(ρd0)1/3 ≥ log(ρd0)
1/6.

�
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