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Introduction

Let α be a non zero algebraic number of degree d, with algebraic conjugates α 1 , . . . , α d . Let a be the leading coefficient of a minimal equation of α over Z. As usual we denote by M (α) its Mahler measure

M (α) = log |a| i max{|α i |, 1}
and by h(α) = 1 d log M (α) its absolute logarithmic Weil height. It is well known that h(α) = 0 if and only if α is a root of unity, which we will exclude from now on. In 1993 Lehmer asks whether there is a positive constant c such that

h(α) ≥ cd -1 .
Lehmer's problem is still unsolved, but a celebrated result of Dobrowolski [START_REF] Dobrowolski | On a question of Lehmer and the number of irreducible factors of a polynomial[END_REF] implies that for any ε > 0 there is c(ε) > 0 such that h(α) ≥ c(ε)d -1-ε . More precisely he shows that One could ask if it is possible to relax condition (1.1): does there exist a real function t → f (t) with lim t →+∞ f (t) = ∞ and a constant c > 0 such that h(α) ≥ cd -1 provided that D ≤ d f (d) ?

As pointed out by Bardestani [START_REF] Bardestani | Workshop on Heights and Applications to Unlikely Intersections[END_REF] (see Proposition 2.1) this question is logically equivalent to a positive answer to the full Lehmer's problem, and thus it seems beyond the state of the art. Nevertheless, the proof of Proposition 2.1 suggests that the obstruction to relax condition (1.1) is related to the existence of a small degree subextension Q(α e )/Q of Q(α)/Q.

As a special case of a more general result (Theorem 5.1) we prove the following generalization of Theorem 1.1:
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Theorem 1.2. Let α be a non zero algebraic number of degree d, let D be the degree of the normal closure of Q(α)/Q. We also let

d 0 = min e≥1 [Q(α e ) : Q] and we assume D ≤ 1 4 d 500 -1 log(ρd 0 ) 1/6
for some ρ ≥ 16. Then, if α is not a root of unity,

h(α) ≥ 1 ρd .
Theorem 1.2 is a consequence of Theorem 3.1 which provides a lower bound for the height depending on the size of two Galois groups. Theorem 3.1, combined with the fact that "roots of lacunary polynomials have small height", also applies to show that the size of the Galois group of a lacunary polynomial growths more than polynomially in the degree, under some natural assumptions.

Theorem 1.3. Let γ 1 , . . . , γ k non-zero integers and 0 = m k < • • • < m 0 = d coprime integers. We consider the polynomial X m 0 + γ 1 X m 1 + • • • + γ k-1 X m k-1 + γ k ∈ Z[X]
of degree d, which we assume irreducible. Let D ab be the degree of its Galois closure over Q ab . Then there exists a function f (t) explicitly depending on |γ| := max(|γ 1 |, . . . , |γ k |) and which growth to infinity with t, such that

D ab ≥ d f (d) .

More precisely, let h

* := k(|γ| + log k). Then, if d ≥ 16h * , D ab ≥ 1 16 (d/h * ) 10 -7 (log log(d/h * )) 1/4 .
Remark that the assumptions on the irreducibility of the polynomial and on the coprimality of m 0 , . . . , m k are both needed, as the following two examples show:

(X -2)(X d-1 -1), X d -2.
The new ingredients in the proofs of our results are two explicit versions of the main theorem of [START_REF] Amoroso | Le problème de Lehmer en dimension supérieure[END_REF]. The first one provides a good dependence in the dimension n of the ambient space:

Theorem 1.4 ([3], Corollary 1.6). Let α 1 , . . . , α n be multiplicatively independent algebraic numbers in a number field. Let D = [Q(α 1 , . . . , α n ) : Q]. Then h(α 1 ) • • • h(α n ) ≥ D -1 1050n 5 log(3D) -n 2 (n+1) 2 .
The lower bound [START_REF] Amoroso | Le problème de Lehmer en dimension supérieure[END_REF] for the height was previosly extended by Delsinne [START_REF] Delsinne | Le problème de Lehmer relatif en dimension supérieure[END_REF], to prove a so called "relative" result, replacing the degree over Q by the degree over Q ab . More precisely, a simplified version of [START_REF] Delsinne | Le problème de Lehmer relatif en dimension supérieure[END_REF]Theorem 1.6] asserts: Theorem 1.5 ([7], Theorem 1.6). Let α 1 , . . . , α n be multiplicatively independent algebraic numbers. Let

D ab = [Q ab (α 1 , . . . , α n ) : Q ab ]. Then h(α 1 ) • • • h(α n ) ≥ c 2 (n) -1 D -1 ab log(16D ab ) -κ 2 (n)
where

c 2 (n) = 2n 2 n exp 64n 2 n! 2(n + 1) 2 (n + 1)! 2n and κ 2 (n) = 3n 2(n + 1) 2 (n + 1)! n
Roughly speaking, Theorem 1.5 allows to replace D ab by D at the cost of replacing the exponent on the error terms in Theorem 1.4 (which is approximately n 3 ) by n n 2 . It is likely that the method of [START_REF] Amoroso | Small points on rational subvarieties of tori[END_REF] could be adapted to prove such a relative result with a much better exponent. To have a result depending on the degree over Q ab is important in several application, and for instance in the proof of Theorem 1.3 (see Remark 4.2).

We shall apply these lower bounds for the height taking for α 1 , . . . , α n some of the conjugates of an algebraic number α, so that h(α

1 ) = • • • = h(α n ) = h(α).
The explicit nature of the lowers bounds in Theorems 1.4 and 1.5 will allow us to let the dimension of the ambient space logarithmically growing with the degree, which was not allowed using the main theorem of [START_REF] Amoroso | Le problème de Lehmer en dimension supérieure[END_REF].

The proofs of our results are not difficult, but the explicit computations are involved, due to the nature of the lower bounds for the height of Theorems 1.4 and 1.5. For the convenience of reader, we begin the proofs of Theorems 3.1 and 5.1 with a short explanation of the strategy.

Notations and auxiliary results

We first state and prove the following proposition announced in the introduction. Proof. Let α be a non zero algebraic number of degree d which is not a root of unity. We can find a sequence e k of positive integers with lim k→+∞ e k = +∞ such that the polynomials

P k = X e k -α ∈ Q(α )[X] are irreducible. For each k, we select a root α k ∈ Q * of P k . Thus [Q(α k ) : Q(α )] = e k and d k := [Q(α k ) : Q] = d e k .
We also remark that the degree

D k of the normal closure of Q(α k )/Q is bounded by D e d k φ(e k ) ≤ D e d +1 k
, where D denotes the degree of the normal closure of

Q(α )/Q. Thus log D k log d k ≤ log D + (d + 1) log e k log d + log e k → d + 1 as k → +∞.
By assumption,

D k ≤ d f (d k ) k for large k. Thus, again by assumption, h(α k ) ≥ c d k and h(α ) = e k h(α k ) ≥ e k • c d k = c d .
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We now introduce some notations which we keep in the sequel of this article.

Notation. Let α be a non zero algebraic number of degree d, with algebraic conjugates α 1 , . . . , α d . We denote by M α the multiplicative group generated by α 1 , . . . , α d , by r(α) := dim Q (M α ⊗ Z Q) its rank and by e(α) the cardinality of its torsion subgroup.

Lemma 2.2. Let α be a non zero algebraic number, not a root of unity. Let

r = r(α) ≥ 1. Then the degree D of the normal closure of Q(α e(α) )/Q satisfies D ≤ D max (r) := (r) • 2 r r!
where Proof. (see also the proof of [1, Corollaire 6.1] and [START_REF] Berry | The conjugate dimension of algebraic numbers[END_REF]Theorem 18]). Let e = e(α) and G be the Galois group of Q(α e 1 , . . . , α e d )/Q. Since M α e is torsion free, the action of G over M α e defines an injective representation G → GL r (Z). Thus G identifies to a finite subgroup of GL r (Z). Feit [START_REF] Feit | The orders of finite linear groups[END_REF] (unpublished) shows that the group of signed permutation group (the group of r × r matrices with entries in {-1, 0, 1} having exactly one nonzero entry in each row and each column) has maximal order (= 2 r r!) for r = 1, 3, 5 and for r > 10. For the seven remaining values of r, Feit characterizes the corresponding maximal groups, showing that the maximal order is (r) • 2 r r! with (r) as above. See [START_REF] Friedland | The maximal orders of finite subgroups in GLn(Q)[END_REF] for more details and for a proof of the weaker statement n(r) ≤ 2 r r! for large r.

(2) = 3 2 , (4) = 3, (6) = 9 4 , (7) 
Notation. For t > e we set l(t) = log(t) log log(t) .

For t > e e , we also note

l 2 (t) = l(log t) = log log(t) log log log(t) . Remark 2.3.
i) The fonction t → l(t) is decreasing to e on (e, e e ] and increasing on [e e , +∞). Thus, for e < t 0 ≤ t 1 < t 2 we have l(t 1 ) ≤ e -1 l(t 0 )l(t 2 ). ii) We have log(t) 1/2 ≤ l(t), and, for t ≥ t 0 > e, l(t) ≤ (log log(t 0 )) -1 log(t).

Lower bound for the height and Galois groups

This section is devoted to the proof of the following theorem, which provides a lower bound for the height depending on the size of two Galois groups.

Theorem 3.1. Let α be a non zero algebraic number which is not a root of unity. I) Let D and D be respectively the degrees of the normal closures of Q(α)/Q and of Q(α e(α) )/Q. Then, for every α ∈ Q(α) such that r(α ) ≥ r(α) we have

h(α ) ≥ e -U with (3.1) U ≤ 8 max l(4D) -1/4 , l(4D ) -1 log(4D).
II) Let D ab and D be respectively the degrees of the normal closures of Q ab (α)/Q ab and of Q(α e(α) )/Q. Then, for every α ∈ Q ab (α) such that r(α ) ≥ r(α) we have

h(α ) ≥ e -U with (3.2) U ≤ 72 • 10 3 max l 2 (16D ab ) -1/2 , l(16D ) -1 log(16D ab ).
Proof. The strategy of the proof of I) and II) is the following. Lemma 2.2 provides us with a lower bound of r(α) in terms of D , say r(α) ≥ r(D ). Since r(α ) ≥ r(α), for any positive integer n ≤ r(D ) there exist n multiplicatively independent conjugates of α , say α 1 , . . . , α n . Since h(α

1 ) = • • • = h(α n ) = h(α )
, the lower bounds for the height (Theorem 1.4 to prove assertion I) and Theorem 1.5 for assertion II) give h(α ) ≥ e -U where U is an explicit function depending on n and on D (case I) or D ab (case II). We choose n ≤ r(D ) for which U is smaller.

We prove I). By assumption α is not a root of unity, thus r := r(α) ≥ 1. Since r(α ) ≥ r, in particular α is not a root of unity.

If l(4D ) ≤ l(4) ≤ 9/2 then U ≥ 16 9 log(4D). Thus our bound follows from a reasonable lower bound for the height. Indeed, if We claim that n ≤ r as we now show. We have n ≤ l(4D ) -1. An easy computation shows that l(4D ) log l(4D ) ≤ log D . Moreover D max (r) = 2 r r! ≤ r r for r > 10. Thus in this range

D = 1, then h(α ) ≥ log 2 ≥ 4 -16/9 and, if D ≥ 2, h(α ) ≥ 2D -1 log(3D) -3 ≥ (4D)
n log n ≤ l(4D ) log l(4D ) ≤ log D ≤ r log r
which ensures that n ≤ r, at least if r > 10. For r = 7, 8, 9, 10, a direct computation shows that again

n ≤ l(4D ) -1 ≤ l(4D max (r)) -1 ≤ r.
By assumption r ≤ r(α ). Thus there exist at least n multiplicatively independent conjugates of α , say α 1 , . . . , α n . Since h(α

1 ) = • • • = h(α n ) = h(α ), Theorem 1.4 shows that h(α ) ≥ D -1/n 1050n 5 log(3D) -n(n+1) 2 = e -U with (3.3) U = 1 n log D + n(n + 1) 2 log 1050n 5 log(3D) .
We have to prove (3.1). Since D ≥ 14 000 we have n ≤ l(4D) 1/4 ≤ log(4D) 

) 2 ≤ x 3 (from n ≤ x-1) we deduce U ≤   1 n + n(n + 1) 2 log 1050n 5 log(3D) log(4D)   log(4D) ≤ 8 max 1 x , x 3 l(4D) -1 log(4D).
Since x 4 ≤ l(4D), we finally get

U ≤ 8 x log(4D) = 8 max l(4D) -1/4 , l(4D ) -1 log(4D).
Inequality (3.1) is proved.

We now prove II). We follow the same pattern of the previous proof. We let r := r(α) ≥ 1.

If l(16D ) ≤ 12 then the R.H.S of (3.2) is ≥ 6 000 log(16D ab ) and our lower bound directly follows from Theorem 1.5, taking n = 1 :

h(α ) ≥ 1 2
exp(-16 384)D -1 ab log(16D ab ) -48 ≤ (16D ab ) -6 000 .

We assume from now on l(16D ) > 12, which easily implies D ≥ D ≥ 10 19 . Let

x := min 1 6 l 2 (16D ab ) 1/2 , l(16D ) ≥ 12 and n := [x] ≥ 12.
As in the proof of part I), n ≤ r. Indeed by Lemma 2.2, D ≤ D max (r) with D max (r) defined in the statement of the lemma. Since D ≥ 10 19 and D max (r) ≤ 10 10 for r ≤ 10 we must have r > 10 and thus D ≤ D max (r) = 2 r r! ≤ r r and n log n ≤ l(4D ) log l(4D ) ≤ log D ≤ r log r which ensures that n ≤ r.

By assumption r ≤ r(α ). Thus there exist at least n multiplicatively independent conjugates of α , say α 1 , . . . , α n . Theorem 1.5 shows that h(α ) ≥ e -U where

(3.4) U = 1 n log D ab + 1 n log(c 2 (n)) + κ 2 (n) n log log(16D ab )
and with c 2 (n) and κ 2 (n) defined in that theorem.

We have to prove (3.2). Since n ≥ 12, an elementary computation shows that

1 n log(c 2 (n)) = log(2n 2 ) + 64n • n! 2(n + 1) 2 (n + 1)! 2n ≤ n 2n 2 and κ 2 (n) n = 3 2(n + 1) 2 (n + 1)! n ≤ n 2n 2 .
Thus (taking into account n ≥ x -1 ≥ x 2 )

(3.5)

U ≤ 1 n + 2n 2n 2 log log(16D ab ) log(16D ab ) log(16D ab ) ≤ 4 max 1 x , x 2x 2 l(16D ab ) -1 log(16D ab ).
We now quote the following inequality, which can be easily checked.

Fact. For t ≥ 16 we have

1 2 1 + 1 18 l 2 (t) log(l 2 (t)/36) ≤ log l(t). Since x ≤ 1 6 l 2 (16D ab ) 1/2
, by the fact above we have

(1 + 2x 2 ) log x ≤ 1 2 1 + 1 18 l 2 (16D ab ) log(l 2 (16D ab )/36) ≤ log l(16D ab ).
Thus x 1+2x 2 ≤ l(16D ab ) and, by (3.5),

U ≤ 4 x log(16D ab ) = 4 max 6l 2 (16D ab ) -1/2 , l(16D ) -1 log(16D ab )
≤ 72 • 10 3 max l 2 (16D ab ) -1/2 , l(16D ) -1 log(16D ab ).

Inequality (3.2) is proved.
It is interesting to compare Theorem 3.1 with [2, Corollary 3.2] which in the present situation shows that

h(α ) ≥ c(ε)D -1/2-ε
for any ε > 0, with c(ε) > 0. The result I) of Theorem 3.1 is asymptotically stronger, but only when D is large. Corollary 3.2. Let α be a non zero algebraic number which is not a root of unity. I) Let us assume Q(α e(α) ) = Q(α). Then, for every α ∈ Q(α) such that r(α ) ≥ r(α) we have

h(α ) ≥ e -U with U ≤ 8l(4D) -1/4 log(4D)
where D is the degree of the normal closure of Q(α)/Q. II) Let us assume Q ab (α e(α) ) = Q ab (α). Then, for every α ∈ Q ab (α) such that r(α ) ≥ r(α) we have

h(α ) ≥ e -U with U ≤ 3 • 72 • 10 3 l 2 (16D ab ) -1/2 log(16D ab )
where D ab is the degree of the normal closure of Q ab (α)/Q ab .

Proof. Let D and D ab be respectively the degrees of the normal closures of

Q(α e(α) )/Q and of Q ab (α e(α) )/Q ab . II) If Q ab (α) = Q ab (α e(α)
) and d ≥ 16h * , the degree D ab of the Galois closure of

Q ab (α)/Q ab satisfies (4.2) log(16D ab ) > 10 -7 l 2 (d/h * ) 1/2 log(d/h * ).
Proof. By the assumption on non-vanishing subsums, we can apply [6, Lemma 2.2] to get

(m l -m l+1 )h(α) ≤ h(γ) + log max{l + 1, k -l} for l = 0, . . . , k -1. Summing over l we obtain dh(α) ≤ k(h(γ) + log k) = h * . Thus (4.3) h(α) ≤ exp(-log(d/h * )).
Let us prove I). By Corollary 3.2 I) h(α) ≥ e -U with

U ≤ 8l(4D) -1/4 log(4D) = 8(log 4D) 3/4 (log log 4D) 1/4 .
Comparing with (4.3) we get 8(log 4D) 3/4 (log log 4D)

1/4 ≥ log(d/h * ), i. e. (4.4) log 
(4D) ≥ 8 -3/4 (log log(4D)) -1/3 (log(d/h * )) 4/3 .
If log(4D) ≥ log(d/h * ) 4/3 then (4.1) is obviously satisfied (since d/h * ≥ 3 and 6 -1 log log(3) -1/3 < 1). Otherwise, we have log log(4D) ≤ 4 3 log log(d/h * ) and then (4.4) implies again (4.1):

log(4D) ≥ 8 -3/4 (4/3) -1/3 (log log(d/h * )) -1/3 (log(d/h * )) 4/3 > 6 -1 l(d/h * ) 1/3 log(d/h * ).

Let now prove II). By Corollary 3.2 II)

h(α ) ≥ e -U with U ≤ 3 • 72 • 10 3 l 2 (16D ab ) -1/2 log(16D ab ).
Comparing with (4.3) we get

(4.5) c log(16D ab ) ≥ l 2 (16D ab ) 1/2 log(d/h * ). with c = 3 • 72 • 10 3 . Since l 2 (16D ab ) ≥ 1, this implies log(d/h * ) ≤ c log(16D ab ). Since d/h * ≥ 16, from Remark 2.3 i) we get l 2 (d/h * ) = l(log(d/h * )) ≤ e -1 l 2 (16)l(c log(16D ab )).
A direct computation shows that l(c • t) ≤ 3l(t) for t > e. Thus

l 2 (d/h * ) ≤ 3e -1 l 2 (16)l(log(16D ab )) ≤ 8 2 l 2 (16D ab ).
Inserting this inequality in (4.5) we get

log(16D) ≥ (8 • c) -1 l 2 (d/h * ) 1/2 log(d/h * ) > 10 -7 l 2 (d/h * ) 1/2 log(d/h * ).
Proof of Theorem 1.3. We fix a positive integer k and non zero γ 1 , . . . , γ k ∈ Z. Let m 0 , . . . , m k ∈ Z coprime with 0 = m k < • • • < m 0 =: d and with d → +∞.

We consider the polynomial

P m = X m 0 + γ 1 X m 1 + • • • + γ k-1 X m k-1 + γ k ∈ Z[X]
which we assume irreducible. Let α be a root of P m . Since P m is irreducible, there is no vanishing subsum of the form α m 0 +γ 1 α m 1 +• • •+γ l α m l l with l < k. Moreover, we can assume P m not cyclotomic (since the number of non zero coefficients of a cyclotomic polynomial with coprime exponents growth to infinity with the degree Thus α is not a root of unity. Moreover, since m 0 , . . . , m k are coprime, P m is not a polynomial in X δ for δ > 1. By Lemma 3.3, Q ab (α) = Q ab (α e(α) ). All the assumptions of Theorem 4.1 II) are now satisfied. From 4.2 and Remark 2.3 ii) we get:

log(16D ab ) > 10 -7 l 2 (d/h * ) 1/2 log(d/h * ) ≥ 10 -7 log log(d/h * ) 1/4 log(d/h * ). Remark 4.2.
The assumption on the coprimality of the exponents is not enough to ensure Q(α) = Q(α e(α) ). Thus, even for a lower bound of the size of the Galois group over Q, we need assertion II) of Theorem 5.1 and thus the lower bound of Theorem 1.5.

Lehmer's problem and Galois groups

Theorem 1.2 announced in the introduction is a special case of the following result. for some ρ ≥ 4, where c = 500. Then, if α is not a root of unity,

h(α) ≥ 1 ρd . II) Let d ab = [Q ab (α) : Q ab ], d ab = [Q ab (α e(α) ) ∩ Q(α) : Q ab ∩ Q(α)
] and let D ab be the degree of the normal closure of Q ab (α)/Q ab . Let us assume

(5.2) log(16D ab ) ≤ c -1 min l 2 (ρd ab ) 1/2 , l(ρd ab )l 2 (ρd ab ) 1/2 log(ρd ab ).
for some ρ ≥ 16, where c = 2 • 10 11 . Then, if α is not a root of unity,

h(α) ≥ 1 ρd ab .
Proof. The strategy of the proof of I) is the following. We forget for the moment the parameter ρ, The proof of II) follows a similar pattern, with some more technical complications.

We prove I). Let D be the degree of the normal closure of Q(α e(α) )/Q. Let us assume first (5.3) 8l(4D ) -1 log(4D) ≤ log(ρd).

By Theorem 3.1 (with α = α)

(5.4) h(α) ≥ e -U , with U = 8 max l(4D) -1/4 , l(4D ) -1 log(4D).

By (5.1), log(4D) ≤ 500 -1 l(ρd) 1/3 log(ρd) = 500 -1 log(ρd) 4/3 log log(ρd) -1/3 , which in turn implies (taking into account 500 -1 (log log 4) -1/3 ≤ 1) log log(4D) ≤ 4 3 log log(ρd).

Thus

(5.5) 8l(4D) -1/4 log(4D) = 8(log(4D)) 3/4 (log log(4D)) 1/4

≤ 8 • 500 -3/4 log(ρd) log log(ρd) -1/4 • (4/3) 1/4 log log(ρd) 1/4 < log(ρd).

By (5.4), (5.5) and (5.3) we get h(α) ≥ 1 ρd . Let now assume (5.6) 8l(4D ) -1 log(4D) > log(ρd).

We have [Q(α) : Q(α e(α) )] = d/d . Thus,

α := Norm Q(α)
Q(α e(α) ) (α) = (root of unity) • α d/d . In particular, α ∈ Q(α e(α) ) and r(α ) = r(α) = r(α e(α) ). Moreover, the multiplicative group generated by the conjugates of α e(α) has no torsion, i. e. e(α e(α) ) = 1. Thus applying By Corollary 3.2 (with α e(α) at the place of α) we get h(α ) ≥ e -U , with U = 8l(4D ) -1/4 log(4D ) = 8l(4D ) 3/4 log log(4D ). By (5.1), log(4D) ≤ 500 -1 l(ρd ) 4/3 log(ρd). Thus (5.6) gives l(4D ) < 8 log(4D) log(ρd) -1 ≤ 60 -1 l(ρd ) 4/3 which in turn implies log(4D ) 1/2 ≤ log(ρd ) 4/3 (by Remark 2.3 ii) and since 60 -1 (log log 4) -4/3 ≤ 1) and log log(4D ) ≤ 8 3 log log(ρd ).

We get:

U ≤ 8 • 60 -3/4 l(ρd ) • 8 3 log log(ρd ) < log(ρd ).

Fact. U ≤ log(ρd ab ).

Proof. Let for short u(t) = (log log(t) log log log(t)) 1/2 = l(t) -1 l 2 (t) -1/2 log(t). Thus (5.11) becomes (5.12) U ≤ 3c 0 u(16D ab )l(16D ab ).

By (5. Proof of Theorem 1.2. We apply Theorem 5.1, I). Since d 0 ≤ d ≤ d and ρ ≥ 16, we have by Remark 2.3, min{l(ρd) 1/3 , l(ρd ) 4/3 } ≥ l(ρd 0 ) 1/3 ≥ log(ρd 0 ) 1/6 .

  0 absolute constant. Let D := [Q(α 1 , . . . , α d ) : Q] be the degree of the normal closure of Q(α)/Q. More recently, David with the author gave a positive answer to Lehmer's problem when D growth at most polynomially in d. More precisely, Theorem 1.1 ([1], Corollaire 1.7). Let m be a fixed positive integer. Then there exists c(m) > 0 such that h(α) ≥ c(m)d -1 provided that (1.1) D ≤ d m .

Proposition 2 . 1 .

 21 Let us assume that there exists a function d → f (d) with lim d →+∞ f (d) = ∞ and a constant c > 0 such that h(α) ≥ cd -1 for any non zero algebraic number α which is not a root of unity, provided that the degree D of the normal closure Q(α)/Q satisfies D ≤ d f (d) . Then the same conclusion holds without any assumption on D.

  ) = 1 for a positive integer r ∈ {2, 4, 6, 7, 8, 9, 10}.

-16/ 9 by [ 12 ,

 912 Corollary 2]. Thus we assume from now on l(4D ) > l(4) > 4, which easily implies D ≥ D ≥ 14 000. By Lemma 2.2, D ≤ D max (r) with D max (r) defined in the statement of the lemma. Since D ≥ 14 000 and D max (r) ≤ 3 840 for r = 2, 3, 4, 5, 6 we must have r ≥ 7. Let x := min l(4D) 1/4 , l(4D ) ≥ 4 and n := [x] -1 ≥ 3.

Theorem 5 . 1 .

 51 Let α be a non zero algebraic number which is not a root of unity.I) Let d = [Q(α) : Q], d = [Q(α e(α)) : Q] and let D be the degree of the normal closure of Q(α)/Q. Let us assume(5.1) log(4D) ≤ c -1 min l(ρd) 1/3 , l(ρd ) 4/3 log(ρd).

  the constants and the factors log log. Let D be the degree of the normal closure of Q(α e(α) )/Q. If log D ≥ (log D)/(log d), Theorem 3.1 with α = α gives a lower bound of the shape h(α) ≥ e -U with U ≤ (log D) 3/4 , which implies the desired result, by the upper bound log D ≤ (log d) 4/3 of (5.1). Otherwise, we apply Theorem 3.1 (more precisely, its corollary 3.2) with α e(α) at the place of α, choosing α = Norm Q(α) Q(α e(α) ) (α) = (root of unity) • α d/d . This gives the lower bound h(α ) ≥ e -U with U ≤ (log D ) 3/4 . Since we are now assuming log D ≤ (log D)/(log d) and log D ≤ (log d ) 4/3 log d by (5.1), we obtain a "Lehmer's type" lower bound h(α ) ≥ 1/d for the height of α and thus a "Lehmer's type" lower bound h(α) ≥ 1/d for the height of α.

1 ≤ 2 •

 12 2), log(16D ab ) ≤ c -1 l(ρd ab )l 2 (ρd ab ) 1/2 log(ρd ab ) = c -1 u(ρd ab ) -1 log(ρd ab ) log(ρd ab ) Thus, by(5.10) and since c = 2 • 10 11 > 27 • c 2 0 , (5.13) l(16D ab ) < c 0 log(16D ab ) log(ρd ab ) -(27 • c 0 ) -1 u(ρd ab ) -1 log(ρd ab ) which in turn implies log log(16D ab ) ≤ 2 log log(ρd ab ) (taking into account (27 • c 0 ) -1 u(16) ≤ 1 and Remark 2.3 ii)) and log log log(16D ab ) ≤ 1 + log 2 log log log 16 log log log(ρd ab ) ≤ 37 log log log(ρd ab ).Thus u(16D ab ) ≤ √ 37 u(ρd ab ) ≤ 9u(ρd ab ). From this last inequality and from (5.12) and (5.13) we getU ≤ 3c 0 • 9u(ρd ab ) • (27 • c 0 ) -1 u(ρd ab ) -1 log(ρd ab ) = log(ρd ab ).By the fact above, h(α) = d ab d ab h(α ) ≥ d ab d ab e -U ≥ 1 ρd ab .

F. AMOROSO

We prove I). We apply Theorem 3.1 I), taking into account D = D. Since l(4D) ≥ 1, by assertion I) of that theorem we have h(α) ≥ e -U with U = 8 max l(4D) -1/4 , l(4D) -1 log(4D) = 8l(4D) -1/4 log(4D).

Similarly, by Theorem 3.1, II) we have h(α) ≥ e -U with U = 72 • 10 3 max l 2 (16D ab ) -1/2 , l(16D ) -1 log(16D ab ).

We now prove II). By assumption

The assumption Q ab (α e(α) ) = Q ab (α) of part II) of the previous corollary, is easily read on the minimal polynomial of α over Q. This not seem to be the case for the analogous assumption Q(α e(α) ) = Q(α) of part I). Lemma 3.3. Let α be an algebraic number with minimal polynomial P (X) over Q. Let us assume that P is not a polynomial in X δ for δ integer > 1. Then for any integer e ≥ 1 we have Q ab (α e ) = Q ab (α).

Proof. Let e ≥ 1 be an integer. Let for short

Size of the Galois group of a lacunary polynomial

In this section we prove a general result on the size of the Galois group of a root of a lacunary polynomial, and we deduce Theorem 1.3 from it.

Let α be a root of the polynomial

of degree d := m 0 . We assume that α is not a root of unity and that there is no vanishing subsum of the form

This gives

We now prove II). Let D ab be the degree of the normal closure of Q ab (α e(α) )/Q ab and let for short c 0 = 72 • 10 3 . Let us assume first (5.7) l(16D ab ) -1 log(16D ab ) ≤ c -1 0 log(ρd ab ). By II) of Theorem 3.1 (with α = α, and since the degree D of the normal closure of Q(α e(α) )/Q is bounded by D ab ), h(α) ≥ e -U with (5.8)

In order to show that h(α) ≥ 1 ρd ab we quote the following tedious computation: Fact.

U ≤ log(ρd ab )

Proof. By (5.8) and (5.7), it enough to prove that

If otherwise log(ρd ab ) ≤ c 0 log(16D ab ), then l 2 (ρd ab ) 1/2 log(ρd ab ) = l(log(ρd ab )) 1/2 log(ρd ab ) ≤ e -1 l 2 (16)

1/2 l(c 0 log(16D ab )) 

Q ab (α e(α) )∩Q(α) (α) = (root of unity) • α d ab /d ab . In particular, α ∈ Q ab (α e(α) ) and r(α ) = r(α) = r(α e(α) ). As in the proof of part I), e(α e(α) ) = 1 and we can apply Corollary 3.2 (with α e(α) at the place of α). We get h(α ) ≥ e -U with (5.11) U ≤ 3c 0 l 2 (16D ab ) -1/2 log(16D ab ).

We need an other tedious computation: