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Abstract The geometric constructions obtained with only straightedge and com-
pass are famous and play a special role in the development of geometry. On the
one hand, the constructibility of figures is a key ingredient in Euclid geometry
and, on the other hand, unconstructibility gave birth to famous open problems
of the ancient Greece which were unlocked only in the nineteenth century using
discoveries in algebra. This paper discusses the mechanization of straightedge and
compass constructions. It focuses on the algebraic approaches and presents two
methods which are implemented; one is due to Lebesgue and the other one was
jointly designed by Gao and Chou. Some links between the algebraic approach of
constructions and synthetic geometry are described.

Keywords Straightedge and compass constructibility, triangle problems,
geometric knowledge-based systems, Wu’s method, regular chains

1 Introduction

Apart from their practical use in architectural or mechanical design, geometric
constructions play a very special role in mathematics. Historically they are the
constructive face of the axiomatization of geometry by the ancient Greeks. In
addition to the fact that the result of a construction problem is an algorithm,
one can see this fundamental aspect of Greek geometry as a middle ground with
the constructive Chinese point of view of mathematics [Chemla and Guo(2005),
Wu(2008)]. Despite its antiquity, this constructive design of geometry sounds sin-
gularly in the modern conception of mathematics and particularly in the context
of computational mathematics.
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The ancient Greeks considered straightedge and compass as effective tools
for representing idealized lines and circles, then straightedge1 and compass con-
structions, RC-constructions in short, gained a special status in geometry that
remains to this day. This is especially true in education where they are an in-
exhaustible source of problems for exercising the imagination and the rigor of
students, or as a recreational pastime [Wernick(1982),Euclidea(2016–2018)]. It
is also worth citing educational software of dynamic geometry, like the precur-
sor Cabri Géomètre and the renowned GeoGebra [Laborde and Strasser(1990),
Hohenwarter and Fuchs(2004)], that made geometry more empirical and more ac-
cessible to students.

Interestingly, RC-construction are also famous because they gave rise to prob-
lems impossible to solve which were open for about two millennia. These problems
were solved thanks to a radical change of point of view about geometry rooted in
“Cartesianization” of geometry and progress in algebra with Galois results on solv-
ability of polynomial equations. As often, it was useful to get out of a theory to ob-
tain an impossibility result about that theory. These works stressed the difference
between constructibility and construction: solving a problem with straightedge and
compass immediately answers the question of constructibility, but not knowing a
construction does not mean that a problem is not RC-constructible. Conversely,
knowing that a problem is RC-constructible does not necessary gives a (usable)
construction. In a previous work with Pascal Mathis [Schreck and Mathis(2016)],
we exploited algebraic results to automatically check a whole corpus, namely
the Wernick’s and Connelly’s lists, about RC-constructibility of triangle prob-
lems [Connelly(2009)]. We noticed that it is easier to show that a problem is
RC-unconstructible than the opposite. And when we showed that a problem was
RC-constructible, we sometimes had no idea about the geometric constructions.
This paper discusses this issue by studying two constructive methods due to Henri
Lebesgue and to Xiao-Shan Gao and Shang-Ching Chou.

It has to be noted that the ancient Greeks knew how to solve RC-unconstructible
problems like angle trisection or doubling the cube by using smart tools to draw
loci more powerful than lines and circles. Conversely, the folklore of geomet-
ric constructions contains several results about less powerful tools like, for in-
stance, using a rusted compass instead of a compass, or only a compass and
no straightedge. The former example is a classical problem for students in ge-
ometry, and the second one is also classical but far from obvious. But, rad-
ically different tools can be considered. With the work of Margharita P. Be-
loch in 1936 [Hull(2011)], origami, or rather computational origami, has regained
popularity both from the practical/artistic and the mathematical points of view
[Alperin(2000),Ida et al.(2015)Ida, Ghourabi, and Takahashi,Justin(1987)]. We do
not discuss further these domains and we restrain ourselves to straightedge and
compass constructions.

The rest of the paper is organized as follows. Section 2 presents the domain of
straightedge and compass constructions and its two synthetic and algebraic faces.
Section 3 focuses on the algebraic aspects of constructions, in particular the use of
the Wu method and the works of Lebesgue and Gao & Chou. Section 4 describes

1 Some authors use the word ruler for straightedge giving the shortcut RC-construction used
throughout this text.
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some examples of application and briefly discusses the qualities and defects of the
algebraic approach.

2 Geometric RC-constructions

Geometric RC-constructions are known for millennia. But, despite polished mathe-
matical definitions, they must be carefully specified when it comes to mechanizing
them. This section discusses the specific features and how to handle them in a
computational approach.

2.1 Definition and discussion

First, RC-constructibility can be classically defined as follows (this definition comes
from a French book dedicated to mathematics teachers [Carréga(1981)]):

Definition 1 (RC-constructibility) Given a finite set of points B = {B0, . . . , Bm}
in the Euclidean plane, a point P is RC-constructible from the set B if there is a
finite set of points {P0, . . . , Pn} such that P = Pn, P0 ∈ B and every point Pi
(1 ≤ i ≤ n) is either a point of B or is at the intersection either of two lines, or of
a line and a circle, or of two circles, themselves obtained as follows:

– any considered line passes through two distinct points from the set {P0, . . . , Pi−1};
– any considered circle has its center in the set {P0, . . . , Pi−1} and its radius is

equal to the distance PjPk for some j < i and k < i.

The sequence of these points with their basic constructions in terms of intersec-
tions between lines and circles is called a RC-construction of point P .
A line is said RC-constructible from B if it contains two distinct points RC-
constructible from B.
A circle is said RC-constructible from B if its center is RC-constructible from B
and there are two points M and N RC-constructible from B such that MN equals
its radius.

Consequently, for proving that a point or a line or a circle is RC-constructible
from B, it suffices to define such a sequence of points, in addition the proof should
exhibit the lines and circles used for defining these points, and also a proof of
correctness. In many textbooks, the following example comes just after that defi-
nition:

Given a line l and a point A, it is possible to construct with straightedge
and compass the line m perpendicular to l and passing through A.

The construction is easy, but the problem does not fit this definition. In fact,
we have to construct or to choose two distinct points on l, to use them for the
construction and to prove that the result does not depend on that choice. Usu-
ally, basic axioms for geometry impose that a line has to contain at least two or
three points, or in other words, within a constructive approach, we suppose that
we have a function yielding two points from a line: classically these points do not
have to be RC-constructible from B since they are forgotten after the construc-
tion, but when it comes to discussing what is the underlying geometry this issue
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becomes questionable. We do not press this point further, but if one wants to im-
plement a software for RC-construction, this question has to be answered. In most
of the frameworks for RC-construction, this question is side-stepped by giving this
construction as a primitive.

A construction problem therefore consists in a specification of a figure made
of geometric relations between given points, lines or circles and sought points,
lines or circles. Now, the question is “what kind of relations?”. For instance, if we
consider technical drawing, another domain where geometric constructions were
widely used, these relations are currently called geometric constraints and are
mainly related to dimensions: there are standards in this regard and CAD soft-
wares take them into account. But the fun, in mathematics, is to impose original
constraints: for instance, how to draw the bisectors of two lines which meets out-
side the sheet of paper? Or how to draw a perpendicular with a wood square
having a broken corner? This kind of relations also tightly relies on the subtended
geometry. For instance, Wu’s metric geometry does not consider an order on the
points of a line, then the notions of orientations are out of reach. On the other
hand, Wernick’s and Connelly’s corpora deal with some remarkable points of the
triangle and their relations with its vertexes in the R2 Euclidean plane. These con-
siderations must be taken into account especially when it comes to using algebra
in this context.

Also, the initial points can be given in an absolute way, say by giving their
coordinates in some reference system, or, alternatively, they can be given as pa-
rameters, or free points in the dynamic geometry parlance. The latter case is more
problematic since the problem can be solved for some particular configurations and
not for others. For instance, it is possible to cut the right angle in three using only
straightedge and compass, but apart from a null set, it is not possible to do it for
any angle. We face here a well known problem in rigidity theory or in mechanical
geometry theorem proving where an assertion can be either generally true (that
is true except for degenerate cases) or generally false, or even, true on parts/false
on parts [Botana and Recio(2016)]. This also should be taken into consideration
especially when algebra is involved.

Let us now turn to the question of the form of the expected result. We said in
Definition 1, that the proof of the constructibility could be constituted by a RC-
construction, that is, a sequence of points with their basic construction in terms
of intersection between lines and circles. But having now, free points to consider,
it could happen that:

– the configuration of the free points leads to a degenerate case,
– in the case of multiple intersection, like circle-circle intersection, both points

lead to a solution or on the contrary, only one point leads to a solution (how
to chose it?),

– there are two or more different constructions producing different figures, some
or all of them, meeting the requirements according to the parameters values.

Consider the following statement:

Statement 21 Two parallel lines l1 and l2, and three points A on l1, B on l2
and C being given in addition to a fixed length k, produce a RC-construction for
a line L passing through C and cutting line l1 in M and line l2 in N such that
AM +BN = k (See Fig. 1).
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Fig. 1 Figure corresponding to Statement 21

This problem is RC-solvable if every solution can be constructed using only
straightedge and compass from a base set containing lines l1, l2, points A, B and
C, and two points giving length k.

The resolution is not complicated but a bit tricky. After adding a new point
K on line l1 such that AK = k, it is easy to see on the figure that MKNB is a
parallelogram, hence the midpoint I of segment BK should also be the midpoint
of segment MN . The sought line is then line CI whose RC-construction is easy to
get. In fact, this is a rough analysis of the problem, there are indeed several issues:

– what happens if I = C?
– more subtly, what happens if C is on the line parallel to l1 through I?
– we choose one pointK such that AK = k but there is another point symmetrical

wrt A meeting this requirement. Do we get the same solution with both choices?
– we said above that MKNB is a parallelogram (without explanations), but it

also could happen that MKBN is a parallelogram (and MKNB is a cross
quadrangle). In this case, a solution is the line passing through point C and
parallel to line BK.

The situation is a bit more complicated than expected. We have two kinds of
constructions: one is using the midpoint of (M,N), let us call it construction of
type I, and the other one is using the direction of line MN , construction of type
d. Several cases can occur, we can have (See Fig. 2):

– no line L at all,
– two lines L1 and L2: one of type I and one of type d, or both of the same type
I or d,

– infinitely many lines if C = I or C = I ′.

Back to RC-construction, we can see that, when line L specified by the state-
ment exists, it is always RC-constructible. The problem is then RC-solvable and
the very solution of Statement 21 is a procedure to construct all the possible lines
L in every cases. This can be formalized by the notion of program of construction
which is a formal way to express geometric constructions. With the previous ex-
ample, we could get the program given on Table 1. This program is automatically
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Fig. 2 Different areas where point C can be located according to the construction cases: I
(resp. I′, d, d′) means that point I (resp. point I′, direction d, direction d′) is used in the
RC-construction, ∅ indicates that there is no solution (constructible or not) in the area. If C
equals I or I′, there are infinitely many solutions. If C is on an oblique line there are two
solutions on the frontier of two solution area and only one solution on a frontier with an area
labeled by ∅.

produced by a Prolog software prototype called Progé that I implemented a long
time ago during my PhD (see [Schreck(1993),Schreck(1994)] for more details).

The ad-hoc geometric programming language contains special control structures
like conditional and kind of iterative instructions. It was designed to implement
logical structures expressing solvability into procedures. We will see below, that it
is possible to give it an algebraic meaning.

2.2 RC-(un)constructibility and algebra

Proving the impossibility of having such a program of construction is more prob-
lematic. Let us spend a moment about the notion of RC-unconstructibility (or
RC-unsolvability for a problem). A problem is RC-unsolvable if there are non-
degenerate real solutions which are not RC-constructible.

As said in the introduction, the domain of RC-constructions is famous because
of unsolvable problems like squaring the circle or doubling the cube. These prob-
lems are related to the RC-construction of numbers. Let us recall the definition:

Definition 2 (RC-construction of numbers) Given a finite set of points B =
{B0, . . . , Bm} in the Euclidean plane, a number a is said RC-constructible from B
if one can construct using only straightedge and compass a point P whose abscissa
is a. A number is RC-constructible (without mention of a base set) if it is RC-
constructible from {O, I}, point O having coordinates (0, 0), and I, (1, 0).

It is not complicated to see that all the rational numbers are RC-constructible
since there is a construction to perform the sum and the difference of any con-
structible numbers and then we are able to construct any integer from O and I

(see Fig. 3, remark that the given construction adds algebraic distances and thus,
it works for addition and substraction). On the same figure, we give a construction
for the product of two constructible numbers –the construction of the quotient is
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Construction Program

c := (given point)
di := (given direction)
a := (given point)
b := (given point)
k := (given length)
l1 := dpdir(a, di)
l2 := dpdir(b, di)
circle00 := ccr(a, k)
list00 := [intercl1(circle00, l1), intercl2(circle00, l1)]
for point00 in list00 do

list01 := [pll(point00,m,b,n), pll(point00,m,n,b)]
for case00 in list01 do

if case00 = pll(point00, m, b, n) then
len03 := dist(point00,b)
if point00 dif b then

point01 := mid(point00, b)
line00 := sline(b, point00)
len04 := dist(point01, c)
if point01 diff c then

l := sline(point01, c)
m := interll(l, l1)
n := interll(l, l2)
end

else fail
end

end
else fail

end
end

if case00 = pll(point00, m, n, b) then
len05 := dist(b, point00)
if b diff point00 then

line05 := sline(b, point00)
l := dpdir(c, dir06)
m := interll(l, l1)
n := interll(l, l2)
end

else
fail
end

end
else

fail
end

end
end

end
verify(m is_onl l1)
verify(n is_onl l2)
verify(m is_onl l)
verify(n is_onl l)
verify(c is_on l)
verify(dist(a,m) + dist(b, n) == k)
verify(l1 diff l2)
end

Table 1 A complete construction program automatically produced by software Progé. Notice
that this is Prolog code, in fact a big Prolog term, and all the variables noted with uppercase
in the statement are here in lower case. Also, the names of auxiliary objects (points, lines,
. . . ) are automatically given, for instance point00 taken in list00 corresponds to point K on
the figure. Moreover, the existence of the intersection point of lines is not discussed in this
program.
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Fig. 3 Constructions for the arithmetic operations. On the top of the figure, sum of a = OA
and b = OB, point O′ is any point not on the x axis, K is the midpoint of OO′, and J is the
midpoint of O′A; in the middle, product of a = OA and b = OB, O has coordinates (0, 0), U
has coordinates (1, 0) and OP = ab (note that divisions can be constructed in he same way);
at the bottom, square root of a = OA, V has coordinates (−1, 0), the circle has diameter V A
and
√
a = OR.

very similar. A simple construction allows to graphically compute the square root
of a constructible number. With these constructions we get that the set of RC-
constructible numbers together with addition and multiplication is an Euclidean2

subfield of R. A more precise result expresses that this field is the smaller Euclidean
subfield of R.

There are two famous results about RC-constructible numbers. The first one
is related to the previous observation:

Theorem 1 (Wantzel) A number a is RC-constructible if and only if it can be ex-

pressed by an arithmetic expression with radicals, that is, involving only numbers in Q,

arithmetic operations and square root extractions.

A consequence of this theorem is known as Wantzel’s result which states that
any number a RC-constructible is algebraic and [Q[a] : Q] = 2n for some n. This re-
sult is sufficient to prove that one cannot double the unit cube using only straight-
edge and compass, that the trisection of π

3 angle is RC-unsolvable, and since π

is not algebraic (proved by Lindenmann in 1882), that squaring the circle is also
impossible.

2 Euclidean means stable by the square root operation.
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As noted before, we consider numbers constructible from {O, I} and then,
polynomials with coefficients in Q (or Z without loss of generality). This extensible
to some field F which classically is a transcendental extension of Q of the form
Q(u1, . . . , um) where u1, . . . , um are parameters. Also note that Wantzel’s result
only gives a necessary condition and cannot be used to prove that a number is
RC-constructible. The following theorem is a necessary and sufficient condition for
a number to be RC-constructible (see [Stewart(2003)] for instance).

Theorem 2 (Galois) An algebraic number on F is constructible if and only if the

splitting field of its minimal polynomial P , is an extension of degree 2m for some m

over F . The degree of this extension, 2m, is also the cardinal of the Galois group of P .

The latter theorem is sufficient to prove both RC-constructibility and RC-
unconstructibility of an algebraic number specified by its minimal polynomial and
providing that we can compute the Galois group of this polynomial. In fact, this a
key ingredient in the method used by the author and Mathis to automatically check
and prove the RC-constructibility status of all the problems in both Wernick’s and
Connelly’s corpora [Mathis and Schreck(2016)] which describe about 250 problems
about triangle construction. But, when a problem is RC-solvable, Galois theorem
does not give the result, that is, a procedure to construct the solutions using only
straightedge and compass.

In the nineties, two methods were described and implemented to give an answer
to this issue by describing a way to compute the algebraic expression –using only
arithmetic and square root operations– of a constructible number. Having this
expression, it is possible to translate it into elementary operations that can be
performed using straightedge and compass.

The first one comes from lectures by Lebesgue in “Collège de France” in 1942
[Lebesgue(1950)] simplified and implemented by Chen in Maple. This work was
the result of an end-of-studies internship on a subject directed by the author and
Dufourd and, for now, only a master thesis is available [Chen(1992)]. The second
one is due to Gao and Chou and it is more in the Chinese tradition reinvigorating
by Wu [Wu(2008)]. It was published by Computer Aided Design journal (CAD,
Elsevier) in 1998 [Gao and Chou(1998)].

It is to be noted that the problem of solving a RC-solvable univariate polyno-
mial has been addressed by Landau and Miller [Landau and Miller(1985)] in the
case where the coefficient field is Q. But, their algorithm is focused on univariate
polynomials in Q[X] and does not extend to problems with parameters. Moreover,
as far as we know, it has no been implemented yet. To our knowledge, the methods
of Lebesgue and Gao-Chou are the only methods which fully address the problem
of RC-solvability.

The next sections present these works and compare them on some simple ex-
amples.

3 RC-construction and algebra

In the previous section, we focused on the algebraic characterization of RC-cons-
tructible numbers. Now, we want to practically solve more general construction
problems by using algebra. It is worth to notice that we place ourselves within the
geometrical framework described by Wu, namely the metric geometry: we only
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consider statements that can be translated into polynomial equations. In a corpus
approach like the problems from the lists of Wernick and Connelly, the translation
can be automatically done [Schreck and Mathis(2016)].

Thus, a RC-construction problem becomes an algebraic system to be solved
using only arithmetic and square root operations on a given field K which usually
is a finite extension of Q: in the following, we assume that K = Q(u1, . . . , um)
where u1, . . . , um are independent parameters. But treating an algebraic system is
not the same as treating a single polynomial equation, and the first step consists
in yielding equivalent triangular systems.

At this point, we need to ask ourselves if the needed operations are computa-
tionally feasible.

3.1 Computatbility

For commodity, we define the notion of RP-computability:

Definition 3 (RP-computability) A field F is said RP-computable if and only
if:

– there are data structures for representing the elements of F ,
– there are algorithms for computing the arithmetic operations on F ,
– there are algorithms for solving in F every polynomial equation in F [X].

This definition means that such a field F can effectively be implemented and,
given a polynomial with coefficients in F , we can compute all its roots belonging
to F .

It is obvious that every finite field is RP-computable. The first interesting RP-
computable field is Q: data structures and algorithms for arithmetic operations are
obvious, and it is well known that the rational roots of polynomial anx

n + . . . a0
whose coefficients are in Z, are of the form p/q where p is a divisor of a0 and q

a divisor of an. Using triangularization algorithms, is not difficult to prove the
following theorem:

Theorem 3 A field F is RP-computable if and only if there is a factorization algorithm

in F [X].

We then have the classical result:

Theorem 4 Let K ⊂ F be a field extension and µ ∈ F be either transcendental or

specified by its minimal polynomial. If K is RP-computable then K(µ) is also com-

putable.

Indeed, if µ is algebraic we can then use its minimal polynomial for the com-
putations including the factorization of polynomials (this latter proof is very close
to the Lebesgue’s technique used below in section 3.3). And if µ is transcendental,
the factorization process is the very same than in Q.

Then, K = Q(u1, . . . , um) where u1, . . . , um is RP-computable and the finite
extensions of K are also RP-computable.

We can now go back to the RC-solvability problem.
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3.2 Triangularization

In Lebesgue’s book, the question of the triangularization is not well developed.
But recall that there was no computer at that time and he only described a
theoretical method as a proof of concept. For him, the progressive elimination
of variables can be done by successive uses of Euclidean division by embedding
K[X1, . . . Xi] in K(X1, . . . Xi−1)[Xi], that is the Euclidean domain of polynomials
with coefficients in the field K(X1, . . . Xi−1), thus avoiding to consider the initials
of the polynomial which is not very accurate as we know it now. Moreover, after
that phase, each polynomial had to be factorized since Galois theory considers
irreducible polynomials.

A more disciplined approach uses the Wu-Ritt’s method to produce irreducible
ascending sets [Wu(1984),Chou(1988)]. More precisely, if S is the given system,
the method produces k triangular systems T1, . . . Tk such that

V (S) = V (T1) ∪ V (T2) . . . ∪ V (Tk)

There are several papers on the subject and elimination theory, see for instance
[Kalkbrener(1993),Kapur and Saxena(1995),Buchberger and Winkler(1998)] and
a recent comparison in [Wang(2016)]. In the following, we will use the regular
chains [Aubry et al.(1999)Aubry, Lazard, and Moreno-Maza] which have all the
required properties, in particular by producing irreducible components, for Galois’s
theory. More particularly, we use the Maple RegularChains tools which are imple-
mented by Lemaire, Moreno Maza and Xie [Lemaire et al.(2005)Lemaire, Maza, and Xie].
Then each triangular system has to be examined separately. For each non degener-
ate system with real solutions, Ti, we have to solve the equation by beginning with
the equations with least unknowns and reporting the found values in the remaining
equation. The problem is then reduced to check if the roots of a polynomial are
RC-constructible and to compute them. Knowing the Galois group of a polyno-
mial does not allow to straightforwardly compute its constructible roots. On the
contrary, the two algorithms presented below take parameters into account and
can be used to both check the RC-solvability and formally compute the solutions.

3.3 Lebesgue’s method

Original Lebesgue’s method consists in decomposing a polynomial with a high
degree so called the “resolving polynomial”3. This polynomial is built from an ir-
reducible polynomial to be solved. In 1992, Chen with Carayol from the University
of Strasbourg showed that it is useless to consider that polynomial. In fact, they
proved that:

Theorem 5 (Chen and Carayol) Let x be an algebraic number on a field K such

that Q ⊂ Kand P be its minimal polynomial. x is RC-constructible if and only if there

is a number r in K such that P is decomposable on K(
√
r).

3 Résolvante de Galois in French
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Thus, having a minimal polynomial (that is an irreducible polynomial with
leading coefficient equal to 1) P , one tries to decompose P into two factors. We
present the method with a simple example.

Consider P (x) = x4 + 2x− 2, which is irreducible, and K = Q, we search r ∈ Q
and r > 0 such that there is a divisor of P in K(

√
r)[X].

If P has a factor of degree 1, it means that it has a root of the form a
√
r + b.

Thus, −a
√
r + b is also a root and then x2 − 2bx + a2r + b2 should be a factor in

Q[X] of P . But P is irreducible. It is then useless to search factors of degree 1.
Then, we search a divisor of degree 2, that is, of the form F (x) = x2 + (a +

d
√
r)x + b

√
r + c. Remark that, since we can chose either d or b equal to 1 or -1,

we have to add the equation (d2 − 1)(b2 − 1) = 0. In the following, for the sake of
simplicity, we chose d = 1 forgetting solutions with d = 0 and d = −1 if any (we
will see below that the case where d = −1 can be avoided). When we divide P

by F the remainder should vanish everywhere. We get the polynomial (remember
that we put d = 1):

((−3a+ 2b)r + (−3a2 + 2ab+ 2c− r)
√
r − a3 + 2ac+ 2)x

(−2ab+ b2 − c)r + (−a2b− 2ac+ 2bc− br)
√
r − a2c+ c2 − 2

since we want this polynomial to be null, we have the four equations:
−3a2 + 2ab+ 2c− r = 0
−a3 + 2ac− 3ar + 2br + 2 = 0
−a2b− 2ac+ 2bc− br = 0
(−2ab+ b2 − c)r − a2c+ c2 − 2 = 0

After elimination of a, c and r by triangularizing the system using regular
chains, we have the following equations in two components:

b4 − 2b− 2 = 0

or, in the second component

4b3 + 8b2 + 1 = 0

where factor 4b3 + 8b2 + 1 is remarkable (see below). It is also interesting to note
that a factor very similar to the initial equation appears: b4− 2b− 2, but this time
we are not seeking for RC-solvability, we only want to know if it admits rational
solutions. It is easy to see that none of the equations has rational roots. Checking
the other cases: b = ±1 and d = −1 leads to the same systems. The equation is
then not RC-solvable.

Let us try a RC-solvable case and consider the polynomial x4+2x3−3x2−2x+1.
After dividing it by x2 + (a+

√
r)x+ b

√
r + c we get the system:

−a2b+ 2ab− 2ac+ 2bc− br + 3b+ 2c = 0
(−2ab+ b2 + 2b− c)r − a2c+ 2ac+ c2 + 3c+ 1 = 0
−3a2 + 2ab+ 4a− 2b+ 2c− r + 3 = 0
(−3a+ 2b+ 2)r − a3 + 2a2 + 2ac+ 3a− 2c− 2 = 0

Then using regular chains, we find three irreducible components: two of them
have no rational roots and the third one admits the single solution a = 1, b = 0, c =
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−1, r = 2 giving the factor x2+(1+
√

2)x−1. The other factor is x2+(1−
√

2)x−1.
The four solutions of these equations are of the form:

−(1/2)
√

2− 1/2± (1/2)
√

7± 2
√

2 .

This method immediately extends to higher degree by searching factors of
degree 2, 3, . . . with an Euclidean division and making the remainder vanish: a
factor F of degree k of P (x) in K[

√
r] is of the form:

xk +mk−1x
k−1 + . . .m0 +

√
r(nk−1x

k−1 + . . . n0) .

And the remainder of P by the division by F is a polynomial of the form:

(Ak−1(m,n)
√
r +Bk−1(m,n))xk−1 + . . . A0(m,n)

√
r +B0(m,n)

where m = (m0, . . .mk−1), n = (n0, . . . nk−1) and, Ai(m,n) and Bi(m,n) are poly-
nomials with coefficient in K. This remainder equals the null polynomial if and
only if F is a factor of P . This leads to an algebraic system with 2k + 1 and 2k
equations: we just add the equation (n0 − 1)(n1 − 1) . . . (nk−1 − 1) = 0 as we did
in our example. Now, we have to solve this system in K which, by chance, is
RP-computable.

If we find some solution in r which permits the factorization, we continue
with each factors until the polynomial is discomposed in factors of degree 1
[Lebesgue(1950),Chen(1992)].

3.4 Gao and Chou’s method

Gao and Chou used another characterization of RC-constructible numbers:

Theorem 6 Let K be a field as in the previous theorem and p be an algebraic number

on K. p is RC-constructible if and only if there is a sequence of numbers α1, . . . αn
such that

– [K(α1) : K] = 2,

– [K(αi+1, . . . , α1) : K(αi, . . . , α1)] = 2, for i = 1, . . . n− 1,

– p = αn

In our case, saying that a root p of polynomial P (x) = x4 + 2x− 2 means that
the algebraic system has x2 = p as solution (and x1 = α1 with the notations of
the above theorem): {

x21 − r = 0
x22 + (x1 + a)x2 + bx1 + c = 0

where r, a, b, c are in Q and all the variables are unknowns. But, eliminating x1
in this system leads to the minimal polynomial of p which is P (x). It then comes:

x4 + 2x− 2 ≡ x4 + 2ax3 + (−r + 2c+ a2)x2 + (2ac− 2br)x− b2r + c2 .

Symbol ≡ stands for equality of polynomials. Thus coefficients of both polynomials
can be identified, and we get:

2a = 0
−r + 2c+ a2 = 0
−2br + 2ac− 2 = 0
−b2r + c2 + 2 = 0
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Eliminating a, r and c leads to the equation b4(4b3 + 8b2 + 1) = 0 (*). The obvious
solution b = 0 gives by replacement the equation c2 + 2 = 0 which has no rational
solution. The second factor 4b3+8b2+1 has not rational root. Thus the polynomial
P is not solvable by square radicals.

For the RC-solvable polynomial x4 + 2x3−3x2−2x+ 1, the identification with
the polynomial x4 + 2ax3 + (a2 + 2c − r)x2 + (2(ac − br))x − rb2 + c2 gives the
system: 

b2r − c2 + 1 = 0
2− 2a = 0
−a2 − 2c+ r − 3 = 0
−2ac+ 2br − 2 = 0

The triangularization yields two irreducible systems: the first one does not have
any rational solution and the second one correspond to the solution found by
Lebesgue’s method.

This method is extended to higher degrees but even for polynomial of degree
8, the system to be solved is very complicated.

3.5 Comparison of the two methods with an example

Both methods are quite similar but Gao-Chou method seems more efficient than
the Lebesgue’s one, at least for the quartic equations. But the idea of factorizing
the polynomial was not fully exploited by Lebesgue and computing the remainder
brings complications.

Let us re-examine the first example where P (x) = x4 + 2x− 2.
Using conjugation, we can see that if this polynomial is reducible in Q(

√
r)[x],

we have:

x4 + 2x− 2 ≡ (x2 + (a+
√
r)x+ b

√
r + c)(x2 + (a−

√
r)x− b

√
r + c)

identifying the coefficients, we get the system:
2a = 0
a2 + 2c− r = 0
2ac− 2br − 2 = 0
−b2r + c2 + 2 = 0

which is exactly the same system as in Gao-Chou method. The comparison for
higher degrees is difficult because the polynomials found are very complicated. We
guess that this idea of factorizing the minimal polynomial by identification could
lead to some simplifications, but this is a subject for future research.

4 Examples and further discussions

In the previous sections, we only give tiny examples, without parameters, and we
observe that the results are complicated. We will see these methods at work on
some classical examples of construction problems.
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4.1 A simple example

Let us begin with Example 21 of section 2. In order to translate the problem into
algebra, we have to choose the coordinate system. We fix point B to coordinates
(0, 0) and line l2 will be the x-axis. Then, as point A can be chosen almost any-
where, it has coordinates (p2, p3) where pi are parameters. It is the same for C
whose coordinates are (p4, p5). The last parameters correspond to the sum of dis-
tances AM + BN which is fixed to be equal to p1 (that is k = p1, we change the
name for the sake of homogeneity). Then, points M and N are respectively located
at (x1, p3) and (x2, 0).

Expressing that points C,M and N are collinear is straightforward and corre-
sponds to the polynomial:

f1 : (x2 − x1)p5 − p3(x2 − p4) .

It is also not difficult to translate the constraint AM +BN = p1, and we get:

f2 : (x1 − p2)4 + x42 + p41 − 2((x1 − p2)2p21 + x22p
2
1 + (x1 − p2)2x22) .

After triangularization by using Maple’s RegularChains tools, we obtain four irre-
ducible systems. We describe and comment on the first and the third ones:

First system.{
(p3 − p5)x2 − p3p4 + x1p5 = 0
(p3 − 2p5)x1 + (p3 − p5)p1 + (−p3 + p5)p2 + p3p4 = 0

with the additional conditions {
p3 − 2p5 6= 0
p3 − p5 6= 0

These conditions express that point C cannot be on l1 and cannot be the line
parallel to l1 through I. This is a linear system and the solutions are easy to
obtain:

x1 = −p1p3 − p1p5 − p2p3 + p2p5 + p3p4
p3 − 2p5

and x2 =
p1p5 − p2p5 + p3p4

p3 − 2p5

and we have x1 +x2 = −p1 +p2. This corresponds to a construction of type I with
point K to the left of A. The second system (not described here) corresponds to
the construction of type I with point K to the right of A. These constructions are
valid even in the degenerate case where l1 = l2.

Third system {
(p3 − p5)x2 + x1p5 − p3p4 = 0
p3x1 + (−p3 + p5)p1 + (−p3 + p5)p2 − p3p4 = 0

with the additional conditions {
p3 6= 0
p3 − p5 6= 0
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The conditions now express that point C cannot be on l1 and line l1 has to be
distinct from line l2. The solutions of that system are expressed by:

x1 =
p1p3 − p1p5 + p2p3 − p2p5 + p3p4

p3
and x2 = −p1p5 + p2p5 − p3p4

p3
.

We observe here that x1−x2 = p1 +p2 meaning that this corresponds to a con-
struction of type d with point K to the right of A. The fourth system corresponds
to a construction of type d with point K to the left of A.

We retrieve our four kinds of constructions, but the conditions are not as precise
as the regions we found in Section 2. This is because using algebra we implicitly
consider complex numbers and the distance between two points can be negative
leading to more solutions than considering only real number.

This example illustrates the link between structuring the solution into dif-
ferent cases for both geometric construction programs and the decomposition of
irreducible ideals but it does not show how the methods of section 3 can be used.
This is the aim of the next example.

4.2 Example 119 from Wernick’s list

This problem comes from a list of problems established by Wernick. The goal is
to construct, if it is possible, a triangle being given three characteristic points
among the vertices, the circumcenter, the midpoints of the sides and the gravity
center, the feet of the altitudes and the orthocenter, and finally, the feet of the
inner bisectors and the incenter. If a problem is not RC-solvable, a proof of its
RC-unsolvability has to be produced. Problem 119 can be expressed as it follows:

Statement 41 (Wernick 119) Let I, G, Ha be three given points, construct points
A, B and C such that I is the innercenter of triangle ABC, G its isobarycenter
and Ha the foot of the altitude from A.

This problem is RC-solvable [Schreck and Mathis(2016)]. Our proof of its RC-
solvability uses the algebraic approach. We first choose a cordinate system by
taking the following coordinates: I(0, 0), Ha(1, 0) and G(a, b) where a and b are
parameters. Then, translating the constraints into algebraic expressions where
(xA, yA), (xB , yB) and (xC , yC) are the coordinates of points A, B and C to be
constructed, we get the system:

−xAx2ByB − xAx
2
ByC + 2xAxBxCyB − xAy3B + xAy

2
ByC + x3ByA + x3ByC

−x2BxCyA − x
2
BxCyB + xByAy

2
B − 2xByAyByC + xBy

2
ByC + xCyAy

2
B − xCy

3
B = 0

x3AyB + x3AyC − x
2
AxByA − x

2
AxByC − x

2
AxCyA − x

2
AxCyB + 2xAxBxCyA

+xAy
2
AyB + xAy

2
AyC − 2xAyAyByC − xBy3A + xBy

2
AyC − xCy

3
A + xCy

2
AyB = 0

(xA − 1)(xC − 1) + yAyC = 0
(1− xB)(yC − yB)− yB(xB − xC) = 0
3a− xA − xB − xC = 0
3b− yA − yB − yC = 0

The triangularization of this system gives six irreducible systems with the
last five being degenerate and the first one containing 5 linear equations and one
polynomial equation with the single unknown yC :

PyC : c4y
4
C + c3y

3
C + c2y

2
C + c1yC + c0 = 0
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C

M

A

P

G

Fig. 4 The problem of Cramer and Castillon (Statement 42)

where
c4 = 19683a9−59049a8+(78732b2+61236)a7+(−183708b2−20412)a6+(118098b4+
166212b2 − 4374)a5 + (−196830b4 − 72900b2 + 2754)a4 + (78732b6 + 148716b4 +
10692b2 + 324)a3 + (−78732b6− 61236b4 + 3564b2− 108)a2 + (19683b8 + 43740b6 +
18954b4 − 756b2 − 21)a− 6561b8 − 8748b6 − 3078b4 − 108b2 − 1,
the other coefficients c3, . . . c0 being of the same kind. Maple is able to check if
polynomial PyC is irreducible on Q(a, b)[X] and to compute its Galois group by
identification [Hulpke(1999)]. The order of this group is 8, hence the problem is
RC-constructible.

It is also possible to use Gao-Chou’s method: considering quadratic polynomial
Pyc the equation (*) of degree 3 described in section 3.4 is now a sum of 237
monomials in y, a and b where y is the unknown. This polynomial is reducible
meaning that it has solutions in Q(a, b); hence the equation in yC is RC-solvable
and triangle ABC is RC-constructible. Maple gives a factor of this equation and
then, a solution for y. This solution can be used to find r, as described above, and
the coefficient of a quadratic equation with coefficients in Q(a, b,

√
r) whose yC is

a solution. It is is clear that the exact formulation of this solution does not matter
when it comes to producing a RC-construction.

The next example shows that this can be worst.

4.3 Cramer Castillon

The problem of Cramer-Castillon is a classical problem which is RC-constructible,
and, even if the known construction is complicated, it is very simple to express:

Statement 42 (Cramer-Castillon) Let A, B and C be three given points and G

be a given circle, construct three points M , N and P on G, such that, A is on line
MP , B is on line NP and C is on line MN (See Fig. 4)
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Without loss of generality, we can suppose that the radius of G equals 1
and its center has coordinates (0, 0). We can also suppose that C is on the x

axis. Naming the coordinates of points, we get: A(p1, p2), B(p3, p4), C(p5, 0) and
M(x1, x2), N(x3, x4), P (x5, x6). Thus we have the system:

f1 : (x1 − p1)(x6 − p2)− (x2 − p2)(x5 − p1)
f2 : (x1 − p5)x4 − (x3 − p5)x2
f3 : (x5 − p3)(x4 − p4)− (x3 − p3)(x6 − p4)
f4 : x21 + x22 − 1 = 0
f5 : x23 + x24 − 1 = 0
f6 : x25 + x26 − 1 = 0

But unfortunately, the triangularization of this system fails due to a lack of
memory using a standard 2018 PC with 8Go of memory.

On the other hand, replacing the parameters by integers chosen at random,
the triangularization is easily done and produce several degenerate cases (seven
with my examples) and one containing only linear and quadratic equations. Thus,
we can suspect that this problem is RC-constructible but we have no proof of it.

4.4 Discussion and last example

These examples highlight some aspects of the algebraic approach in RC-construction:

– algebra allows a systematic way to check if a problem is RC-solvable or not;
– when a problem is RC-constructible, it is possible to have the exact solutions

and to extract a RC-construction;
– these techniques are in practice limited by a heavy complexity both in time

and in space, and the current computer tools are unable to perform even the
triangularization of a small algebraic system with parameters;

The picture is rather disturbing: the algebraic tools are very powerful but
poorly usable to find the solutions. Let us say that, first it is important to know
the existence of these methods as they fix some theoretical limits. Second, they
are useful when it comes to proving RC-unconstructibility since they are actually
almost the unique tool we have. For instance, with Pascal Mathis, we use them to
automatically check the RC-constructibility (that is, proving RC-constructibility
or finding counter-example) of both Wernick’s and Connelly’s lists. We then found
the status, constructible, unconstructible or miss-constrained, for all the problems
of these lists and resolving this way some open problems: most of these previously
open problems are RC-unconstructible with some notable exceptions like Problem
119 of the Wernick’s list and Problem 108 of that list which I present below. Notice
that we proved that Problem 119 is RC-constructible and we are, in theory, able to
produce a RC-construction, but the expression will be awful and not in the spirit
of geometric construction.

Let us now present problem 108 of Wernick’s list:

Statement 43 (Wernick 108) Let Ta, Ma and H be three given points, construct
a triangle ABC such that H is its orthocenter, Ma the midpoint of edge BC and
Ta the foot of the inner bisector from A
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Ma
Ta

H

B

A

C

Fig. 5 Illustration of Statement 43: points Ma, Ta and H are given, and the problem is to
construct the triangle ABC (the gray lines are the inner bisector from A and two altitudes,
and they are figured here to recall the definitions of Ta and H).

Problem 108 is stated as RC-unconstructible in [Meyers(1996)]. But, using the
algebraic tools described above, we find that this problem is RC-solvable. Moreover
it is easy to prove this.

Thus, we consider the general case with the parameterized polynomial system
by putting coordinates (0, 0) for point Ta, (1, 0) for point Ma and (a, b) for point
H. The triangularization yields after filtering the following triangular system:

xC + xB − 2 = 0
−a2 − byA + x2B + 2a− 2xB = 0
yC = 0
yB = 0
xA − a = 0
a3 + abyA − a2 + y2A = 0

which is obviously RC-solvable, no need for Galois theory. The solutions are:

yA = a
2

(
−b±

√
b2 − 4a+ 4

)
xC = 1±

√
a2 + b.yA − 2.a+ 1

xB = 2− xC .

Hence, we can produce a construction with only straightedge and compass mim-
icking the calculi. For instance, the expression for yA immediately translates into
a geometric construction (See Fig. 6)

It can be observed that a simple calculation gives rise to a very complicated
construction which has to be carefully handled. However, this construction is not
satisfactory for the RC-construction fans since the fun of an elegant geometry
reasoning is missing.

Now, in this example, we see that the quantity b2 − 4a+ 4 = (2− a)2 + b2 − a2
plays a special role. This seems to indicate that the point P at location (2−a,−b)
could be interesting. Actually point P is a characteristic point of triangle ABC 4:
P is the symmetric of H with respect to Ma. This leads us to explore the figure
very carefully and we find two useful properties:

4 It is to be noted that there are thousands of such characteristic points as it can be seen in
Clark Kimberling’s Encyclopedia of Triangle Centers (http://faculty.evansville.edu/ck6/
encyclopedia/ETC.html) [Narboux and Braun(2016)]
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  circle for square root extraction
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∆
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Fig. 6 Construction of yA = a
2

(−b +
√
b2 − 4a + 4) by constructing the sequence of numbers

b2, 4a, b2 − 4a, b2 − 4a + 4,
√
b2 − 4a + 4, and so on.

– the inner angle bisector from A is also the inner angle bisector of the altitude
AH and the ray AO where O is the circumcenter of triangle ABC.

– point P is also the symmetric of A with respect to O.

The construction is then as follows (see also Fig. 7). Line BC is known since
point Ma and Ta are given. By projecting H on BC we have the foot Ha of the
altitude from A and the altitude HHa itself. From the first property above, Ta
is the center of the circle Γ tangent to HHa and AO, and passing through Ha.
This circle is then constructible. Point P is also constructible: it is the symmetric
of H wrt Ma. Since P is on line OA, this line passes through P and is tangent
to circle Γ : line OP is constructible by using the circle with diameter PTa. O is
constructible as it is the intersection of this tangent and the perpendicular to line
BC passing by Ma. We then have point A, the circumcircle of ABC and, finally,
points B and C.

This suggests a heuristic approach to help solving a construction problem:

– check if the problem is RC-constructible or not,
– if it is, try to solve it algebraically and check the quantities under the square

roots,
– ask for a characteristic point related to this quantities with data mining tech-

niques (for instance, see [Song et al.(2017)Song, Wang, and Chen] for tech-
niques of exploration of a figure and features extraction) and find the associated
geometric relations.

Of course, the pertinence and the properties of the points found with heuristics
have to be formally verified, for instance by using a CAS.
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Fig. 7 A simple geometric construction for example 3, done by using point P .

5 Related works

On the one hand, considering the mathematical aspects of RC-constructions, thou-
sands of articles and hundreds of books have been published over the centuries. In
particular, following Lindenmann’s result on the transcendence of π, the French
“Académie des sciences” refused to publish the many false proofs of the problem of
squaring the circle. Yet, they still receive papers claiming it solved! Recently, in the
field of logic, especially intuitionistic logic in foundations of geometry, some works
were already done within the framework of constructive geometry [Beeson(2012)].

On the other hand, as far as I know, very little has been done on the automation
of ruler and compass constructions. Apart from the algebraic approaches described
in this paper, the other works mainly follow a synthetic geometric approach.

The work of Scandura et al. seems to be the first one to describe a system-
atic way, with higher order geometric rules, to solve RC-constructions problems
[Scandura et al.(1974)Scandura, Durnin, and Wulfeck II]. The geometric aspects
are derived from Polya’s work [Polya(1965)], but this work is more focused on
pedagogical considerations about structural learning. To our knowledge, there is
no implementation of this study.

In 1975, Buthion also worked on geometric construction and implemented
his work in FORTRAN. Unfortunately, this work is only published in French
[Buthion(1979)]. Without mentioning straightedge and compass, Aldefeld imple-
ment a synthetic geometric solver adapted to Computer Assisted Design, CAD,
[Aldefeld(1988)] using ideas similar to those of Buthion. Also adopting a synthetic
point of view, I developed in 1992 the notion of geometric universe and geomet-
ric construction program. This work is supported by a knowledge based system
to exploit this notion to produce a highly parameterizable software able, inter
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alia to solve RC-problems taking degenerate cases and multiple possibilities into
account. This approach for solving construction problem was called universal ap-
proach [Schreck(1994)]. This work also was specialized by Mathis and Schreck to
CAD in particular by using decomposition of problems invariant by direct isome-
tries or even by similarities [Dufourd et al.(1998)Dufourd, Mathis, and Schreck,
Schreck and Mathis(2006)].

It also worth citing the work of Gao et al. about the so-called reparameteriza-
tion of 3D CAD-systems by using the so-called Locus Intersection Method (LIM)
[Gao et al.(2002)Gao, Hoffmann, and Yang]. In this work, LIM is implemented by
a simple solver whose result is in turn used by another solver based on a sampling
method to numerically yield the solutions.

More recently Marinković and Janičić worked on a corpus approach in auto-
matic RC-construction [Marinković and Janičić(2012)]. The problem is to fully au-
tomatically solve Wernick’s corpus by giving a RC-construction when it is possible,
and then to automatically prove that the construction really meets the statement
specifications. For RC-unconstructible problems, they follow a reduction method
to RC-irreducible problems [Schreck et al.(2016)Schreck, Marinkovic, and Janicic]
or algebraic methods [Marinkovic et al.(2014)Marinkovic, Janicic, and Schreck].

Finally, Gulwani and his teams at Microsoft in program synthesis presented
a very original approach using techniques of automatic program synthesis from a
specification [Gulwani et al.(2011)Gulwani, Korthikanti, and Tiwari].

6 Conclusion

This paper mainly compares two different algebraic methods which theoretically
are able to solve RC-construction problems, more precisely, able to detect if a
problem is RC-solvable or not, and if it is, to express the solutions using only
arithmetic operations and square root. We see on some examples that the alge-
braic tools used are effective in proving unconstructibility but when it comes to
computing the solutions of constructible problems, they lack efficiency. However,
some progress in information retrieval could possibly exploit the algebraic forms
of the solutions, in simple cases, to retrieve relevant geometric constructions which
is very helpful in the domain of computer aided education.
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