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Abstract: A reaction system is a modeling framework for investigating the functioning of
the living cell, focused on capturing cause–effect relationships in biochemical environments.
Biochemical processes in this framework are seen to interact with each other by producing the
ingredients enabling and/or inhibiting other reactions. They can also be influenced by the
environment seen as a systematic driver of the processes through the ingredients brought into
the cellular environment. In this paper, the first attempt is made to implement reaction systems in the
hardware. We first show a tight relation between reaction systems and synchronous digital circuits,
generally used for digital electronics design. We describe the algorithms allowing us to translate one
model to the other one, while keeping the same behavior and similar size. We also develop a compiler
translating a reaction systems description into hardware circuit description using field-programming
gate arrays (FPGA) technology, leading to high performance, hardware-based simulations of reaction
systems. This work also opens a novel interesting perspective of analyzing the behavior of biological
systems using established industrial tools from electronic circuits design.

Keywords: reaction systems; synchronous digital circuits; field-programming gate arrays

1. Introduction

Reaction systems have been introduced in [1] as a formalism for describing the functioning of the
living cell by following the interactions between biochemical reactions and the cellular environment,
see also [2] for a recent survey. These interactions are fundamentally based on two mechanisms,
facilitation and inhibition: the products of reactions may be used by other reactions and may
inhibit others, while the environment may add additional ingredients in every step of the process.
The framework of reaction systems is a model of biocomputations where the configuration of the
system is created by the product of all reactions that were enabled in the previous step, plus the
additional contribution of the environment. The facilitation-inhibition mechanism gives reaction
systems the ability to follow up explicitly on the cause-effect relationships in a biochemical process,
helping to answer questions around why a certain property arises [3,4].

The research on reaction systems has flourished in the last few years along two broad
directions. On the one hand, reaction systems have been investigated for their mathematical and
computational properties as a model for interactive biocomputation, on topics such as minimal
systems [5,6], functions and state sequences [7,8], timed versions [9–12], modular decompositions [13],
equivalence properties [14–16]. On the other hand, reaction systems have been studied a modeling
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framework for capturing realistic biological processes and for enhancing their analytic capabilities;
topics include model checking properties [17–19], modeling of the heat shock response [20], of the
self-assembly of intermediate filaments [21], and of the ErbB signaling pathway [22], bifurcation and
multi-stability properties [23].

There has been a growing interest also in the simulation of the behavior of reaction systems,
supporting both lines of research described above. There are currently two different simulators
of interactive processes of reaction systems. The brsim/WEBRSIM simulator is a Haskell-based
implementation with a user-friendly web interface, providing also a few simple model checking
analysis options. It is currently the fastest available central processing unit (CPU)-based simulator.
The HERESY simulator [22] is based on a graphics processing unit (GPU) implementation with compute
unified device architecture (CUDA) and is especially efficient for very large reaction systems with
hundreds of reactions. It also has a slower CPU-based implementation.

The main contribution of this paper is the first attempt to implement reaction systems in the
hardware. We first present the links between two different models: reaction systems and synchronous
digital circuits. Our main observation is that interactive processes in reaction systems are similar
with the calculations of digital circuits and we establish this in a formal sense. Based on this
we build a new hardware-based simulator for reaction systems by simply translating a reaction
system into a digital synchronous circuit, and simulate it using a fast FPGA-based implementation.
This implementation is much faster than the previous software-based simulators, bringing speeds of
more than 108 steps per second, thus allowing a speed-up of order 2.5× 105 with respect to best existing
hardware (and software) implementations. Hence, this work shows us how to perform high-speed
and large-scale simulations of reaction systems, which opens a way for an efficient investigation
of big biological models, like for example the ErbB signaling pathway [24]. This can potentially
speed-up the drug discovery by pointing out different possible drug targets having the maximal
desired effect helping to target the further experiments [25,26]. At the same time, this paper is the
first study that shows how formal tools like Mealy and Moore automata can be used to investigate
the behavior of reaction systems and thus of corresponding biological systems. This also allows to
use high-quality industrial tools from the circuit design area to analyze and optimize the obtained
circuits (thus the initial system). By performing slight modifications, the proposed method can be used
to simulate arbitrary Boolean networks, which opens many interesting perspectives. While there are
several works on FPGA simulation of Boolean networks, e.g., [27–29], our article differs from them by
highlighting the theoretical link between the model of Boolean networks and sequential switching
circuits, hence implementing the corresponding simulation in most efficient way.

2. Preliminaries

We assume basic familiarity with the notions of Boolean (switching) functions and formulas.
There are many books available presenting these notions, we suggest [30] for an introduction. Below we
recall the differences between Boolean and switching algebras and circuits.

A Boolean algebra [31] is a distributive and complemented lattice. A switching algebra firstly
developed by Shannon in [32] can be seen as a restriction of a Boolean algebra to two elements: 0 and
1. It is also called a two-element Boolean algebra. The primary applications of switching algebra
are in digital circuit design and Boolean (two-valued) logic, see [33] for more details. Traditionally,
in switching algebra symbols ·, +, and ′ are used for conjunction, disjunction and negation, respectively.
In this paper we will use the standard logical notations for these functions: ∨, ∧, and x̄.

A switching function is any expression in switching algebra. The evaluation of the function
is done in an ordinary way by assigning values 0 or 1 to corresponding arguments and after that
evaluating the result by performing ordinary Boolean transformations. A switching circuit having n
inputs and m outputs is computing a switching function of the form f : {0, 1}n → {0, 1}m.

We remark that in the present-day literature the term switching is often replaced by Boolean,
which has the meaning of the former one.



Molecules 2019, 24, 1961 3 of 13

2.1. Sequential Circuits

There are two types of (switching) circuits: combinatorial, where the value of the output is a
function of only current input values and sequential, where the value of the output depends on the
input and also on the state of the circuit. The state allows us to memorize past values and to perform
decisions based on the partial history of the computation. Hence, in this case the value of the function
may be different for same inputs at different time steps (usually corresponding to the master clock
pulses that drive the circuit).

So the functioning of a sequential switching circuit with n inputs and m outputs and s binary-state
variables can be described by the following equations:

Q(t + 1) = F(Q(t), X(t))

Y(t) = G(Q(t), X(t)),
(1)

where X(t) = (x1(t), . . . , xn(t)) is the vector of input variables at time t ≥ 0, Y(t) = (y1(t), . . . , ym(t))
is the vector of output variables at time t, Q(t) = (q1(t), . . . , qs(t)) is the vector of internal states at
time t, F : {0, 1}s × {0, 1}n → {0, 1}s and G : {0, 1}s × {0, 1}n → {0, 1}m.

Each sequential circuit is associated with a truth-table with its columns headed (in order):

Q(t); X(t); Q(t + 1); Y(t).

An equivalent description of such circuits was shown by Mealy using Mealy automata [34].
It corresponds to a finite state automaton with input and output where the transitions are labeled by
two values corresponding to the input and the output. The transition is applicable if the current input
corresponds to the one indicated on the transition, and then the automaton outputs the corresponding
output value. A similar representation can be done by Moore automata [35]. In this case the output
depends only on the previous state and it is indicated beside the state label. Both models are equivalent,
however there is a one step output delay if using Moore model.

Example 1. Let us consider the example presented in [34]. The sequential circuit is described by the following
equations (n = 1, m = 1 and s = 2).

q1(t + 1) = q̄1(t) ∧ q̄2(t) ∨ x̄1(t) ∧ q̄2(t)

q2(t + 1) = q1(t) ∧ q̄2(t) ∨ x1(t) ∧ q1(t)

y1(t) = q̄1(t) ∧ q̄2(t).

(2)

These equations correspond to the truth table (computed by listing all possible combinations of values for
q1(t), q2(t) and x(t)) presented in Table 1. The corresponding Mealy and Moore automata are depicted on
Figure 1. It can be seen that these automata are a convenient way to represent the truth table. For example,
being in state 10 and following a transition labeled by 0, yields the state 11 and the output 0 (at the next step in
the case of Moore automaton), corresponding to the fifth line of the truth table.

Table 1. The truth table for Example 1.

q1(t) q2(t) x1(t) q1(t + 1) q2(t + 1) y1(t)

0 0 0 1 0 1
0 0 1 1 0 1
0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 1 1 0
1 0 1 0 1 0
1 1 0 0 0 0
1 1 1 0 1 0
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Figure 1. The Mealy (left) and Moore (right) automata for the circuit described by Equation (2).
The label of the state corresponds to the value of the vector (q1, q2). In the case of Moore automaton it
additionally contains the value of the output variable y. The label of the transition corresponds to the
value of the input variable x. In the case of Mealy automaton, it additionally contains the value of the
output variable y.

2.2. Reaction Systems

Below we briefly recall the definition of reaction systems given in [1,2].

Definition 1. A reaction is a triplet a = (R, I, P), where R, I, P are finite nonempty sets with R ∩ I = ∅. If S
is a set such that R, I, P ⊆ S, then a is a reaction in S.

Informally, reaction allows us to define causal effects between the production of the result P and
the presence of reactants R and the absence of inhibitors I. Formally, we defined resa(X) = P, if and
only if R ⊆ X and I ∩ X = ∅. This operation can be generalized to a set of reactions A in a standard
manner. Finally, the set of all reactions over a set S is denoted as rac(S).

Definition 2. A reaction system (RS), is an ordered pairA = (S, A) such that S is a finite set, and A ⊆ rac(S).

Definition 3. LetA = (S, A) be a RS and let n ≥ 0 be an integer. An (n-step) interactive process inA is a pair
π = (γ, δ) of finite sequences such that γ = C0, . . . , Cn and δ = D0, . . . , Dn, where C0, . . . , Cn, D0, . . . , Dn ⊆
S, D0 = ∅, and Di = resA(Di−1 ∪ Ci−1) for all i ∈ {1, . . . , n}.

Informally, an interactive process allows to compute a time series of the values of variables from
S based on the input provided at each step t by the context Ct.

The reaction systems model abstracts away from the various numerical details of biochemical
reactions, and rather it only indicates whether a resource is present or not in the system, and how they
trigger or block the execution of a certain reaction. This is best described as seen in the definitions
above through a set-theoretical framework, where each configuration of the system is a subset of the
reactant set. The environment is an active present of the semantic of reaction system and in each step
of the interactive process of a reaction system, it contributes potentially new, additional resources to
the current configuration. The current configuration then determines the next one by triggering all
the enabled reactions and having them generate through their products the next configuration of the
system. All the currently existing resources are excluded from the next configuration, unless they were
produced by one of the enabled reactions. This is the basic “non-permanency” principle of reaction
systems, proposing the idea that maintaining a resource in a system is a matter that has to be actively
supported by the system.

Many versions of reaction systems have been proposed, adding various features to the basic
model, such as a numerical dimension of the reactants, describing how many are available in a
configuration [9], and systems with durations, where there is an explicit, potentially non-zero life
duration of a reactant, keeping it into the system for several steps without additional support from the
enabled reactions [10]. All of these versions were proved to be equivalent with the basic model from
the point of view of their computing power [2]. We focus in this article only on the basic version of the
reaction systems, as defined above.
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3. Results

In this section we will show how it is possible to transform a reaction system to a switching circuit
and conversely.

3.1. From Reaction Systems to Switching Circuits

First we introduced a normal form for a reaction system under an interactive process.

Definition 4. A reaction system A = (S, A) is said to be in a normal form with respect to the interactive
process π = (γ, δ) if

• for any a = (R, I, P) ∈ A it holds |P| = 1 (i.e., only one product is allowed per reaction),
•

⋃
(R,I,P)∈A

P ∩ ⋃
i≥0

Ci = ∅ (i.e., the set of products is disjoint with the set of contexts).

Theorem 1. For any reaction system A = (S, A) and any interactive process π = (γ, δ) such that C ⊆ Z,
for any C ∈ δ it is possible to construct an iterative process π′ = (γ, δ′) and a reaction system A′ = (S′, A′)
in normal form with respect to π′ such that δ is a projection of δ′ with respect to S.

Proof. Initially S′ = S. First we add to A′ all reactions from A that have a single product.
Next, if a = (R, I, P) with |P| > 1, than we add to A′ the reactions (R, I, x), x ∈ P.
Let T = {x | (R, I, x) ∈ A′}. Now, if there is a symbol X ∈ Z ∩ T then we add a new background

symbol X′ to S′ and we replace the reaction (R, I, X) by (R, I, X′). We also add to A′ the set of reactions
{(R \ {X} ∪ {X′}, I, P) | X ∈ R} ∪ {(R, I \ {X} ∪ {X′}, P) | X ∈ I} (i.e., we made a copy of each
reaction involving X replacing it by X′).

Now consider the interactive process π′, which is obtained by feeding A′ the contexts γ.
Obviously, the reaction system A′ is in the normal form with respect to π′. Moreover, because no rule
was deleted and the added rules introduce primed symbols, which act as aliases for their non-primed
versions it is easy to see that the projection of δ′ over S yields δ.

We can define the input for a reaction system inp(A) as the set of all possible context symbols:
inp(A) = {Z ∈ δ | for any interactive process π = {γ, δ}}. Similarly, we might be interested by
particular symbols that can appear in the result. So we define can define the output of a RS as a
projection of S: out(A) ⊆ S.

Now we construct the Equation (1) using the method from [1], that transforms a reaction system
to a Boolean formula in disjunctive normal form (DNF).

Suppose that we have a reaction systemA = (S, A) in a normal form with input I. Then each group
of reactions having the same product Ap = {(Ra, Ia, p) | a ∈ A} can be seen as the following equation:

p(t + 1) =
∨

(Ra ,Ia ,p)∈Ap

( ∧
X∈Ra

X(t) ∧
∧

Y∈Ia

Ȳ(t)

)
. (3)

In order to compute the output of the switching circuit we add the following equation (since it is
a projection, we may omit it if it is clear from the context):

y(t) = y(t), for all y ∈ out(A). (4)

Equations (3) and (4) are of the form of Equation (1), so they define a switching circuit.
Moreover, since sets of reactants and inhibitors are disjoint, formula (3) is in DNF.
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Example 2. Consider the reaction system An = (Sn, An), n > 1 from [1] that defines a binary counter.
For n > 1, let Sn = {e0, . . . , en}. The set of reactions is defined as follows.

An =
{
({ei}, {ej}, {ei}) | 0 ≤ j < i ≤ n

}
∪{

({e0, . . . , ei−1}, {ei}, {ei}) | 0 < i ≤ n
}

.

In the interactive process e0 is the input and ei, 1 ≤ i ≤ n are the output symbols. So the system is in the
normal form. We construct the equations for the switching circuit:

ei(t + 1) =
∨

0≤j<i≤n
(ei(t) ∧ ēj(t)) ∨

∨
1≤i≤n

(
ēi(t) ∧

∧
0≤k≤i−1

ek(t)

)

The corresponding Moore machine for n = 3 is given on Figure 2. From the picture it can be clearly seen
that this circuit implements a binary counter.

000 0

001

1

0

010
1

0

011

1

0

100

1

0

101
1

0

110
1

0

111

1

1

0

Figure 2. Moore machine for Example 2 and n = 3. The state label corresponds to the values of the
vector (e3, e2, e1) and the transitions are labeled by the value of e0. The output is the label of the state.

Example 3. In [21], a model for the self-assembly of intermediate filaments from vimentin tetramers is presented.
We consider the first model from that paper (the other more complex variants of the model can be consulted as
examples provided with our compiler in [36]). It is defined as follows.

The background set is S = {O, H, F, d} and the input set is {T}. The reactions are the following (d is the
dummy inhibitor):

({T}, {d}, {O}),
({O}, {d}, {H}),
({H}, {d}, {F}),
({F}, {d}, {F}).

Using Equations (3) and (4) we obtain the following sequential circuit:

d(t + 1) = 0

O(t + 1) = T(t) ∧ d̄(t)

H(t + 1) = O(t) ∧ d̄(t)

F(t + 1) = (H(t) ∧ d̄(t)) ∨ (F(t) ∧ d̄(t)).

The Moore machine for this circuit is depicted on Figure 3. It can be immediately deduced that there is a
steady loop between states 101, 110 and 111 corresponding to the last rule that keeps F indefinitely once produced.
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Figure 3. Moore machine for Example 3. The state label corresponds to the values of the vector (F, H, O)

and the transitions are labeled by the value of T. The output is the label of the state.

3.2. From Switching Circuits to Reaction Systems

Now we will show how to construct a reaction system starting from a sequential switching circuit.
Let C be a circuit with n inputs, m outputs and s internal states described by Equation (1). Without loss
of generality we can suppose that F and G are in disjunctive normal form.

Then we construct a reaction system with input A = (S, A, I), where S = Q ∪ Y and I = X.
The reactions from A are defined as follows:

Let a be a conjunction a = a1 ∧ · · · ∧ ak, k > 0. We define
pos(a) = {as | 1 ≤ s ≤ k and k is a positive literal}
neg(a) = {as | 1 ≤ s ≤ k and k is a negative literal}.
Then an equation qi(t + 1) = Fi(Q(t), X(t)) =

∨
1≤s≤p cs, where cs is a conjunction of literals from

Q(t) and X(t) and p > 0 can be written as following set of reactions:

(pos(cs), neg(cs), {qi}), 1 ≤ s ≤ p.

Now, the initial values of state variables of the circuit give the value C0 of the initial context for
any interactive process π for this RS. It can be immediately seen that for any sequence of input values
for C, feeding same values as contexts for A give the same output sequence.

Example 4. Consider the circuit that implements a sequence detector and outputs 1 if the sequence 1101 is
detected as input. The corresponding Mealy machine is depicted in Figure 4 and the corresponding truth table is
given in Table 2.

00 0/0

01

1/0

0/0
10

1/0

1/0

11

0/00/0

1/1

Figure 4. Mealy machine for the 1101 sequence detector. It outputs 1 when the corresponding sequence
is encountered as input. The state label corresponds to the vector (q2, q1).

From this table we can deduce the state equations of the circuit (x being the input bit and y the output result):

q2(t + 1) = q̄2(t) ∧ q1(t) ∧ x ∨ q2(t) ∧ q̄1(t)

q1(t + 1) = q̄2(t) ∧ q̄1(t) ∧ x ∨ q2(t) ∧ q̄1(t) ∧ x̄ ∨ q2(t) ∧ q1(t) ∧ x(t)

y(t) = q2(t) ∧ q1(t) ∧ x(t)
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Using the above algorithm these equations are transformed to the following reaction system (where d is the
dummy inhibitor and initially the system is empty):

{x}{q1, q2}{q1},
{q2}{q1, x}{q1},
{q1, q2, x}{d}{q1},
{q1, x}{q2}{q2},
{q2}{q1}{q2},
{q1, q2, x}{d}{y}.

Table 2. The truth table for Example 4.

q2(t) q1(t) x(t) q2(t + 1) q1(t + 1) y(t)

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 1 1 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 1 1

4. Discussion

The translation of reaction systems to synchronous circuits gives several advantages. First,
the Mealy/Moore machine representation might allow a better understanding of the functioning
of the system and of its invariants. Next, there exist many powerful industrial tools allowing the
analysis, the minimization and the verification of digital circuits, hence they can be used to transform
or minimize the circuit. For example, applying tools from Vivado Design Suite 2018.2 [37] on the
translation of the reaction system describing ErbB signaling pathway taken from [22] allowed to reduce
the size of the model by 50% by performing cell identification and constant propagation. Finally,
the translation to circuits allows us to implement reaction systems in digital hardware in order to
perform fast experiments of systems of huge size. In most of the cases, the running speed of FPGA
clock can be achieved, yielding a simulation performing at 1–10 ns per step.

The converse translation is also interesting as it allows to use industrial tools for circuit design in
order to produce reaction systems. Moreover, many of such tools come with a library of predefined
circuits and it should be relatively simple to design complex reaction systems, e.g., simulating a RAM
or an Ethernet controller.

Another interesting implication of our research is that, due to the similarity between RS and
Boolean networks, the developed method can be directly applied to transform Boolean networks to
hardware circuits allowing to use high quality analysis tools and high-speed hardware simulation.
This approach is highly scalable, so it can open new perspectives in the area of Boolean biological
modeling, providing a way to handle models several orders bigger than those existing in the present.

Finally, the techniques discussed in this work are currently being generalized in order to
allow efficient hardware implementations of membrane computing models [38], such as cell-like
P systems [39–41], bacterial P systems [42] and spiking neural P systems [43–49], used for processing
images [50], controlling mobile robots [51], robot path-planning [52,53], image processing [54] and
modeling complex systems [55].
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5. Materials and Methods

This section discusses the hardware implementation. In order to perform the automated
translation of reaction systems to synchronous circuits a compiler RStoVerilog was written that
allows to generate hardware description of the circuit using Verilog language. The syntax of the
input file for RStoVerilog is the same as for brsim/WEBRSIM reaction systems simulator [56,57] and
the description of the command-line options can be found in [36]. As a result it produces a Verilog
description of the circuit, a Verilog test bench testing the circuit with the supplied input and the graph
describing the corresponding Moore machine in GraphViz format [58]. The program can be found
at [36] and can be freely used.

The compiler performed the following steps:

1. Parse the input file.
2. Identify input and output symbols.
3. Duplicate input symbols that are at the same time output symbols.
4. Transform the reaction system into a Boolean circuit in DNF.
5. Write Verilog output (module and the test bench).
6. Optionally, construct Moore automaton of the obtained system.

Step 1 was performed using standard compiling techniques. Now in order to apply the algorithm
described in Section 3 one needs to identify input and output symbols. Since the initial concept of
reaction systems does not possess this information, we used the following algorithm to automatically
identify them. So during Step 2, the program identified symbols that never appeared in the products
of a reaction as input symbols, while the others were identified as output symbols. This behavior can
be overridden by special annotations in the source file that give the explicit list of input and output
symbols (the remaining ones are considered as internal states). Since the above algorithm may lead to
symbols that are at the same time input and output symbols, we introduced an additional Step 3, that,
for each of these symbols (x), created a new input symbol xin and copied all rules involving x in the
reactants or inhibitors lists replacing x by xin for all possible combinations of occurrences. We remark
that this step can lead to an exponential blow-up of the number of reactions, so it is strongly suggested
to manually identify input and output symbols.

Then Step 4 was performed according to the algorithm described in Section 3. Step 5 is straightforward,
as a sequential Boolean (switching) function/circuit in DNF can be directly translated to Verilog. As a
result, two files were obtained: a synthesizable (in FPGA) Verilog module containing the code that
simulates each step of the reaction system and a (non-synthesizable) test bench that contains the timed
update of the input symbols using the provided context.

Finally, the compiler can optionally construct the Moore automaton of the obtained circuit (if “-g”
command-line switch is provided). This automaton is iteratively constructed by varying all the inputs
starting from the initial state given by the first context. By adding the command-line switch “-ga” all
possible initial states are constructed. The result was yielded using the GraphViz format [58]. Due to
the combinatorial explosion, it was necessary to construct the automaton (the corresponding algorithm
used standard enumeration techniques—so it was exponential), graph generation was limited to
systems having less than 32 species. Another reason for this restriction was that bigger graphs were
very difficult to analyze visually.

The Verilog test bench obtained by RStoVerilog can be directly simulated in software using a
Verilog compiler and simulator. We used Icarus Verilog 10.1 compiler and simulator [59] and the
corresponding result is quite competitive with respect to the other existing simulators. In order to make
a real-life use case test, we used the reaction system translation of the model of ErbB receptor signal
transduction in human mammary epithelial cells [24], which was performed in [22]. The corresponding
reaction system model had 6720 reactions involving 246 entities. Comparing the running time for the
context sequence of length 1000 also taken from [22] we obtained that the average time of running
brsim was 4.2 s, of HERESY in CPU mode was 10.1 s and the average running time of our Verilog test
bench was 7.98 s.
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The next performed step was to run the obtained circuit in hardware. We have used a Diligent
Basis 3 FPGA board, which features a Xilinx Artix 7 architecture. Since the result of our translation
consists only of the circuit simulating each step of the reaction system (the test bench cannot be
synthesized in hardware), we had to manually add the circuits allowing to enter the (input) context
sequence as well as to save the output result. We used several test reaction systems (including those
from Examples 2 and 3) as well as different input/output circuits. For small-size examples (up to
16 inputs and 16 outputs) we used switches and leds present on the board as input and output,
allowing to verify the correctness of the simulation. In order to speed-up the computation we also
considered input coming from the serial port at 115,200 bits/s. The tests have shown the correctness of
the simulation.

Finally, the last tests were performed using an autonomous execution of the system without
output and using distributed read-only memory data storage for the input (or context-less models).
Under this setup the speed of 100 Mhz (corresponding to the system clock) was achieved. This means
that a reaction system model can be simulated at a speed of 108 steps per second. Applied to the ErbB
model this gives a speed-up of 2.5× 105 with respect to the GPU-based simulator from [22].

Our tests show a low usage of FPGA resources (look-up tables (LUTs) and slices). For example,
the ErbB model uses only 186 LUTs and 55 Slices, which corresponds to 0.89% and 0.67%, respectively,
of available resources on Basis 3 board. Due to the simple architecture of the system these numbers
suggest that a basis 3 board can handle reactions systems having up to 20 K reactants and 500 K
reactions. Using a larger board, like VC707 based on Xilinx Virtex-7 architecture, it is possible to
increase the size of the simulated system by 15 times.

From the speed point of view, our architecture allows to perform one computation step during one
clock tick, so it runs at FPGA main clock speed, which can range from 50 Mhz to 400 Mhz. However,
one needs to add the time needed for the input/output procedures as they are usually much slower
(except for the input/output which are preloaded in distributed or block RAM). Depending on the
size of the context it might be convenient to load it initially into the RAM, or to acquire the input data
at each step, e.g., using serial port or peripheral component interconnect express (PCIe) connections.

We would like to remark that the input/output circuits are not system-specific and can be reused
for different simulations. However, at the present state they need to be integrated manually in the final
hardware design. It would be interesting to complete RStoVerilog compiler with a tool allowing to
automate this process.
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