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Abstract We consider extended spiking neural P systems

with the additional possibility of so-called ‘‘white hole

rules’’, which send the complete contents of a neuron to

other neurons, and we prove that this extension of the

original model can easily simulate register machines.

Based on this proof, we then define red–green variants of

these extended spiking neural P systems with white hole

rules and show how to go beyond Turing with these red–

green systems. We also discuss the number of actor neu-

rons needed, and the relation of this model to some special

variants of Lindenmayer systems.

Keywords Going beyond Turing � Red-green automata �
Spiking neural P systems � White hole rules

1 Introduction

Based on the biological background of neurons sending

electrical impulses along axons to other neurons, several

models were developed in the area of neural computation,

e.g., see Maass (2002), Maass and Bishop (1999), and

Gerstner and Kistler (2002). In the area of P systems, the

model of spiking neural P systems was introduced in

Ionescu et al. (2006). Whereas the basic model of mem-

brane systems, see Păun (2000), reflects hierarchical

membrane structures, the model of tissue P systems con-

siders cells to be placed in the nodes of a graph. This

variant was first considered in Păun et al. (2006) and then

further elaborated, for example, in Freund et al. (2004) and

Martı́n-Vide et al. (2002). In spiking neural P systems, the

cells are arranged as in tissue P systems, but the contents of

a cell (neuron) consists of a number of so-called spikes, i.e.,

of a multiset over a single object. The rules assigned to a

neuron allow us to send information to other neurons in the

form of electrical impulses (also called spikes) which are

summed up at the target neuron; the application of the rules

depends on the contents of the neuron and in the general

case is described by regular sets. As inspired from biology,

the neuron sending out spikes may be ‘‘closed’’ for a

specific time period corresponding to the refraction period

of a neuron; during this refraction period, the neuron is

closed for new input and cannot get excited (‘‘fire’’) for

spiking again.

The length of the axon may cause a time delay before a

spike arrives at the target. Moreover, the spikes coming

along different axons may cause effects of different mag-

nitude. All these biologically motivated features were

included in the model of extended spiking neural P systems

considered in Alhazov et al. (2006), the most important

theoretical feature being that neurons can send spikes along
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the axons with different magnitudes at different moments

of time. In Wang et al. (2010), spiking neural P systems

with weights on the axons and firing threshold were

investigated, where the values of these weights and firing

thresholds as well as the potential consumed by each rule

could be natural numbers, integer numbers, rational num-

bers, and even (computable) real numbers.

In this paper, we will further extend the model of

extended spiking neural P systems by using so-called

‘‘white hole rules’’, which allow us to use the whole con-

tents of a neuron and send it to other neurons, yet even-

tually multiplied by some constant rational number.

In the literature, several variants how to obtain results

from the computations of a spiking neural P system have

been investigated. For example, in Ionescu et al. (2006) the

output of a spiking neural P system was considered to be

the time between two spikes in a designated output neuron.

It was shown how spiking neural P systems in that way can

generate any recursively enumerable set of natural num-

bers. Moreover, a characterization of semilinear sets was

obtained by spiking neural P system with a bounded

number of spikes in the neurons. These results can also be

obtained with even more restricted forms of spiking neural

P systems, e.g., no time delay (refraction period) is needed,

as it was shown in Ibarra et al. (2006). In Chen et al.

(2006), the generation of strings (over the binary alphabet 0

and 1) by spiking neural P systems was investigated; due to

the restrictions of the original model of spiking neural P

systems, even specific finite languages cannot be gener-

ated, but on the other hand, regular languages can be rep-

resented as inverse-morphic images of languages generated

by finite spiking neural P systems, and even recursively

enumerable languages can be characterized as projections

of inverse-morphic images of languages generated by

spiking neural P systems. The problems occurring in the

proofs are also caused by the quite restricted way the

output is obtained from the output neuron as sequence of

symbols 0 and 1. The strings of a regular or recursively

enumerable language could be obtained directly by col-

lecting the spikes sent by specific output neurons for each

symbol.

In the extended model considered in Alhazov et al.

(2006), a specific output neuron was used for each symbol.

Computational completeness could be obtained by simu-

lating register machines as in the proofs elaborated in the

papers mentioned above, yet in an easier way using only a

bounded number of neurons. Moreover, regular languages

could be characterized by finite extended spiking neural P

systems; again, only a bounded number of neurons was

needed.

In this paper, we now extend this model of extended

spiking neural P systems by also using so-called ‘‘white

hole rules’’, which may send the whole contents of a

neuron along its axons, eventually even multiplied by a

(positive) rational number. In that way, the whole contents

of a neuron can be multiplied by a rational number, in fact,

multiplied with or divided by a natural number. Hence,

even one single neuron is able to simulate the computations

of an arbitrary register machine.

The idea of consuming the whole contents of a neuron

by white hole rules is closely related to the concept of the

exhaustive use of rules, i.e., an enabled rule is applied in

the maximal way possible in one step; P systems with the

exhaustive use of rules can be used in the usual maximally

parallel way on the level of the whole system or in the

sequential way, for example, see Zhang et al. (2008, 2012).

Yet all the approaches of spiking neural P systems with the

exhaustive use of rules are mainly based on the classic

definitions of spiking neural P systems, whereas the spiking

neural P systems with white hole rules as investigated in

Alhazov et al. (2015a) are based on the extended model as

introduced in Alhazov et al. (2006). In this paper we now

use this new model of spiking neural P systems with white

hole rules together the idea of considering infinite com-

putations on finite inputs, which will allow us to ‘‘go

beyond Turing’’.

Variants of how to ‘‘go beyond Turing’’ are discussed in

van Leeuwen and Wiedermann (2012), for example, the

definitions and results for red–green Turing machines can

be found there. In Aman et al. (2014) the notion of red–

green automata for register machines with input strings

given on an input tape (often also called counter automata)

was introduced and the concept of red–green P automata

for several specific models of membrane systems was

explained. Via red–green counter automata, the results for

acceptance and recognizability of finite strings by red–

green Turing machines were carried over to red–green P

automata. The basic idea of red–green automata is to dis-

tinguish between two different sets of states (red and green

states) and to consider infinite runs of the automaton on

finite input objects (strings, multisets); allowed to change

between red and green states more than once, red–green

automata can recognize more than the recursively enu-

merable sets (of strings, multisets), i.e., in that way we can

‘‘go beyond Turing’’. In the area of P systems, first

attempts to do that can be found in Calude and Păun (2004)

and Sosı́k and Valı́k (2006). Computations with infinite

words by P automata were investigated in Freund et al.

(2004).

The rest of the paper is organized as follows: In the next

section, we recall some preliminary notions and definitions

from formal language theory, especially the definition and

some well-known results for register machines. Then we

define red–green Turing machines and red–green register

machines and recall some results from Aman et al. (2014).

In Sect. 4 we recall the definitions of the extended model
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of spiking neural P systems as considered in Alhazov et al.

(2006) as well as the most important results established

there. Moreover, we show that extended spiking neural P

systems with only one actor neuron have exactly the same

computational power as register machines with only one

register that can be decremented.

In Sect. 5, we define the model of extended spiking

neural P systems extended by the use of white hole rules as

introduced in Alhazov et al. (2015a). Besides giving some

examples, for instance showing how Lindenmayer systems

can be simulated by extended spiking neural P systems

only using white hole rules, we prove that the computations

of an arbitrary register machine can be simulated by only

one single neuron equipped with the most powerful variant

of white hole rules, i.e., extended spiking neural P systems

equipped with white hole rules are even more powerful

than extended spiking neural P systems, which need (at

least) two neurons to be able to simulate the computations

of an arbitrary register machine. Based on this result, we

define the red–green variant of spiking neural P systems

with white hole rules and show that their computational

power is similar to the computational power of red–green

register machines. A short summary of the results we

obtained concludes the paper.

2 Preliminaries

In this section we recall the basic elements of formal lan-

guage theory and especially the definitions and results for

register machines; we here mainly follow the correspond-

ing section from Alhazov et al. (2006, 2015a).

For the basic elements of formal language theory needed

in the following, we refer to any monograph in this area, in

particular, to Rozenberg and Salomaa (1997). We just list a

few notions and notations: V� is the free monoid generated

by the alphabet V under the operation of concatenation and

the empty string, denoted by k, as unit element; for any

w 2 V�, wj j denotes the number of symbols in w (the length

of w). Nþ denotes the set of positive integers (natural

numbers), N is the set of non-negative integers, i.e.,

N ¼ Nþ [ 0f g, and Z is the set of integers, i.e.,

Z ¼ Nþ [ 0f g [ �Nþ. The interval of non-negative inte-

gers between k and m is denoted by k::m½ �, and k �Nþ
denotes the set of positive multiples of k. Observe that

there is a one-to-one correspondence between a set M � N

and the one-letter language L Mð Þ ¼ an j n 2 Mf g; e.g., M

is a regular (semilinear) set of non-negative integers if and

only if L Mð Þ is a regular language. By FIN Nk
� �

,

REG Nk
� �

, and RE Nk
� �

, for any k 2 N, we denote the sets

of subsets of Nk that are finite, regular, and recursively

enumerable, respectively.

By REG (REG Vð Þ) and RE (RE Vð Þ) we denote the

family of regular and recursively enumerable languages

(over the alphabet V, respectively). By WT Lð Þ we denote

the Parikh image of the language L � T�, and by PsFL we

denote the set of Parikh images of languages from a given

family FL. In that sense, PsRE Vð Þ for a k-letter alphabet

V corresponds with the family of recursively enumerable

sets of k-dimensional vectors of non-negative integers.

2.1 Register machines

The proofs of the results establishing computational com-

pleteness in the area of P systems often are based on the

simulation of register machines; we refer to Minsky (1967)

for original definitions, and to Freund and Oswald (2002)

for the definitions we use in this paper:

An n-register machine is a tuple M ¼ n;B; l0; lh;Pð Þ,
where n is the number of registers, B is a set of labels,

l0 2 B is the initial label, lh 2 B is the final label, and P is

the set of instructions bijectively labeled by elements of

B. The instructions of M can be of the following forms:

• l1 : ADD rð Þ; l2; l3ð Þ, with l1 2 B n lhf g, l2; l3 2 B,

1� j� n.

Increases the value of register r by one, followed by a

non-deterministic jump to instruction l2 or l3. This

instruction is usually called increment.

• l1 : SUB rð Þ; l2; l3ð Þ, with l1 2 B n lhf g, l2; l3 2 B,

1� j� n.

If the value of register r is zero then jump to instruction

l3; otherwise, the value of register r is decreased by one,

followed by a jump to instruction l2. The two cases of

this instruction are usually called zero-test and decre-

ment, respectively.

• lh : halt (HALT instruction)

Stop the machine. The final label lh is only assigned to

this instruction.

A (non-deterministic) register machine M is said to gen-

erate a vector s1; . . .; sb
� �

of natural numbers if, starting

with the instruction with label l0 and all registers con-

taining the number 0, the machine stops (it reaches the

instruction lh : halt) with the first b registers containing the

numbers s1; . . .; sb (and all other registers being empty).

Without loss of generality, in the succeeding proofs we

will assume that in each ADD instruction l1 :

ADD rð Þ; l2; l3ð Þ and in each SUB instruction l1 :

SUB rð Þ; l2; l3ð Þ the labels l1; l2; l3 are mutually distinct (for

a short proof see Freund et al. 2004).
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The register machines are known to be computationally

complete, equal in power to (non-deterministic) Turing

machines: they generate exactly the sets of vectors of non-

negative integers which can be generated by Turing

machines, i.e., the family PsRE.

Based on the results established in Minsky (1967), the

results proved in Freund and Oswald (2002) and Freund

and Păun (2004) immediately lead to the following result:

Proposition 1 For any recursively enumerable set L �
Nb of vectors of non-negative integers there exists a non-

deterministic bþ 2ð Þ -register machine M generating L in

such a way that, when starting with all registers 1 to bþ 2

being empty, M non-deterministically computes and halts

with ni in registers i, 1� i� b, and registers bþ 1 and

bþ 2 being empty if and only if n1; . . .; nb
� �

2 L. More-

over, the registers 1 to b are never decremented.

When considering the generation of languages, we can

use the model of a register machine with output tape,

which also uses a tape operation:

• l1 : write að Þ; l2ð Þ
Write symbol a on the output tape and go to

instruction l2:

We then also specify the output alphabet T in the

description of the register machine with output tape, i.e.,

we write M ¼ m;B; l0; lh;P; Tð Þ.
The following result is folklore, too, e.g., see Minsky

(1967):

Proposition 2 Let L � T� be a recursively enumerable

language. Then L can be generated by a register machine

with output tape with 2 registers. Moreover, at the begin-

ning and at the end of a successful computation generating

a string w 2 L both registers are empty, and finally, only

successful computations halt.

2.2 The arithmetical hierarchy

The Arithmetical Hierarchy—e.g., see Budnik (2006)—is

usually developed with the universal (8) and existential (9)

quantifiers restricted to the integers. Levels in the Arith-

metical Hierarchy are labeled as Rn if they can be defined

by expressions beginning with a sequence of n alternating

quantifiers starting with 9; levels are labeled as Pn if they

can be defined by such expressions of n alternating quan-

tifiers that start with 8. R0 and P0 are defined as having no

quantifiers and are equivalent. R1 and P1 only have the

single quantifier 9 and 8, respectively. We only need to

consider alternating pairs of the quantifiers 8 and 9 because

two quantifiers of the same type occurring together are

equivalent to a single quantifier.

3 Red–green automata

The exposition of this section mainly follows the corre-

sponding section in Alhazov et al. (2015a).

In general, a red–green automaton M is an automaton

whose set of internal states Q is partitioned into two sub-

sets, Qred and Qgreen, and M operates without halting. Qred

is called the set of ‘‘red states’’, Qgreen the set of ‘‘green

states’’. Moreover, we shall assume M to be deterministic,

i.e., for each configuration there exists exactly one transi-

tion to the next one.

3.1 Red–green turing machines

Red–green Turing machines, see van Leeuwen and Wie-

dermann (2012), can be seen as a type of x-Turing

machines on finite inputs with a recognition criterion based

on some property of the set(s) of states visited (in)finitely

often, in the tradition of x-automata, for example, see

Freund et al. (2004), i.e., we call an infinite run of the

Turing machine M on input w recognizing if and only if

• no red state is visited infinitely often and

• some green states (one or more) are visited infinitely often.

A set of strings L � R� is said to be accepted by M if and

only if the following two conditions are satisfied:

1. L ¼ w j w is recognized by Mf g.

2. For every string w 62 L, the computation of M on input

w eventually stabilizes in red; in this case w is said to

be rejected.

The phrase ‘‘mind change’’ is used in the sense of changing

the color, i.e., changing from red to green or vice versa.

The following results were established in van Leeuwen

and Wiedermann (2012):

Theorem 1 A set of strings L is recognized by a red–

green Turing machine with one mind change if and only if

L 2 R1, i.e., if L is recursively enumerable.

Theorem 2 (Computational power of red–green Turing

machines)

1. Red–green Turing machines recognize exactly the R2 -

sets of the Arithmetical Hierarchy.

2. Red–green Turing machines accept exactly those sets

which simultaneously are R2- and P2-sets of the

Arithmetical Hierarchy.

3.2 Red–green register machines

In Aman et al. (2014), similar results as for red–green

Turing machines were shown for red–green counter auto-

mata and register machines, respectively.

300 A. Alhazov et al.

123



As it is well-known folklore, e.g., see Minsky (1967),

the computations of a Turing machine can be simulated by

a counter automaton with (only two) counters; in this

paper, we will rather speak of a register machine with (two)

registers and with string input. As for red–green Turing

machines, we can also color the ‘‘states’’, i.e., the labels, of

a register machine M ¼ m;B; l0; lh;P; Tinð Þ by the two

colors red and green, i.e., partition its set of labels B into

two disjoint sets Bred (red ‘‘states’’) and Bgreen (green

‘‘states’’), and we then write RM ¼ m;B;Bred;ð
Bgreen; l0;P; TinÞ, as we can omit the halting label lh.

The following two lemmas were proved in Aman et al.

(2014); the step from red–green Turing machines to red–

green register machines is important for the succeeding

sections, as usually register machines are simulated when

proving a model of P systems to be computationally

complete. Therefore, in the following we always have in

mind this specific relation between red–green Turing

machines and red–green register machines when investi-

gating the infinite behavior of specific models of P auto-

mata, as we will only have to argue how red–green register

machines can be simulated.

Lemma 1 The computations of a red–green Turing

machine TM can be simulated by a red–green register

machine RM with two registers and with string input in

such a way that during the simulation of a transition of

TM leading from a state p with color c to a state p0 with

color c0 the simulating register machine uses instruc-

tions with labels (‘‘states’’) of color c and only in the

last step of the simulation changes to a label (‘‘state’’)

of color c0.

Lemma 2 The computations of a red–green register

machine RM with an arbitrary number of registers and

with string input can be simulated by a red–green Turing

machine TM in such a way that during the simulation of a

computation step of RM leading from an instruction with

label (‘‘state’’) p with color c to an instruction with label

(‘‘state’’) p0 with color c0 the simulating Turing machine

stays in states of color c and only in the last step of the

simulation changes to a state of color c0.

As an immediate consequence, the preceding two lem-

mas yield the characterization of R2 and R2 \P2 by red–

green register machines as Theorem 2 does for red–green

Turing machines, see van Leeuwen and Wiedermann

(2012):

Theorem 3 (Computational power of red–green register

machines)

1. A set of strings L is recognized by a red–green register

machine with one mind change if and only if L 2 R1,

i.e., if L is recursively enumerable.

2. Red–green register machines recognize exactly the R2-

sets of the Arithmetical Hierarchy.

3. Red–green register machines accept exactly those sets

which simultaneously are R2-and P2-sets of the

Arithmetical Hierarchy.

4 Extended spiking neural P systems

The reader is supposed to be familiar with basic elements

of membrane computing, e.g., from Păun (2002) and Păun

et al. (2010); comprehensive information can be found on

the P systems web page (www.ppage.psystems.eu). More-

over, for the motivation and the biological background of

spiking neural P systems we refer the reader to Ionescu

et al. (2006). The definition of an extended spiking neural

P system is mainly taken from Alhazov et al. (2006), with

the number of spikes k still be given in the ‘‘classical’’ way

as ak; later on, we simple will use the number k itself only

instead of ak.

The definitions given in the following are taken

from Alhazov et al. (2006).

Definition 1 An extended spiking neural P system (of

degree m	 1) (an ESNP system for short) is a construct

P ¼ m; S;Rð Þ where

• m is the number of cells (or neurons); the neurons are

uniquely identified by a number between 1 and

m (obviously, we could instead use an alphabet with

m symbols to identify the neurons);

• S describes the initial configuration by assigning an

initial value (of spikes) to each neuron; for the sake of

simplicity, we assume that at the beginning of a

computation we have no pending packages along the

axons between the neurons;

• R is a finite set of rules of the form i;E=ak ! P; d
� �

such that i 2 1::m½ � (specifying that this rule is assigned

to neuron i), E � REG af gð Þ is the checking set (the

current number of spikes in the neuron has to be from E

if this rule shall be executed), k 2 N is the ‘‘number of

spikes’’ (the energy) consumed by this rule, d is the

delay (the ‘‘refraction time’’ when neuron i performs

this rule), and P is a (possibly empty) set of productions

of the form l;w; tð Þ where l 2 1::m½ � (thus specifying

the target neuron), w 2 af g� is the weight of the energy

sent along the axon from neuron i to neuron l, and t is

the time needed before the information sent from

neuron i arrives at neuron l (i.e., the delay along the

axon). If the checking sets in all rules are finite, then P
is called a finite ESNP system.
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Definition 2 A configuration of the ESNP system is

described as follows:

• for each neuron, the actual number of spikes in the

neuron is specified;

• in each neuron i, we may find an ‘‘activated rule’’

i;E=ak ! P; d0� �
waiting to be executed where d0 is the

remaining time until the neuron spikes;

• in each axon to a neuron l, we may find pending

packages of the form l;w; t0ð Þ where t0 is the remaining

time until wj j spikes have to be added to neuron

l provided it is not closed for input at the time this

package arrives.

A transition from one configuration to another one now

works as follows:

• for each neuron i, we first check whether we find an

‘‘activated rule’’ i;E=ak ! P; d0� �
waiting to be exe-

cuted; if d0 ¼ 0, then neuron i ‘‘spikes’’, i.e., for every

production l;w; tð Þ occurring in the set P we put the

corresponding package l;w; tð Þ on the axon from

neuron i to neuron l, and after that, we eliminate this

‘‘activated rule’’ i;E=ak ! P; d0� �
;

• for each neuron l, we now consider all packages

l;w; t0ð Þ on axons leading to neuron l; provided the

neuron is not closed, i.e., if it does not carry an

activated rule i;E=ak ! P; d0� �
with d0 [ 0, we then

sum up all weights w in such packages where t0 ¼ 0 and

add this sum of spikes to the corresponding number of

spikes in neuron l; in any case, the packages with t0 ¼ 0

are eliminated from the axons, whereas for all packages

with t0 [ 0, we decrement t0 by one;

• for each neuron i, we now again check whether we find

an ‘‘activated rule’’ i;E=ak ! P; d0� �
(with d0 [ 0) or

not; if we have not found an ‘‘activated rule’’, we now

may apply any rule i;E=ak ! P; d
� �

from R for which

the current number of spikes in the neuron is in E and

then put a copy of this rule as ‘‘activated rule’’ for this

neuron into the description of the current configuration;

on the other hand, if there still has been an ‘‘activated

rule’’ i;E=ak ! P; d0� �
in the neuron with d0 [ 0, then

we replace d0 by d0 � 1 and keep i;E=ak ! P; d0 � 1
� �

as the ‘‘activated rule’’ in neuron i in the description of

the configuration for the next step of the computation.

After having executed all the substeps described above in

the correct sequence, we obtain the description of the new

configuration. A computation is a sequence of configura-

tions starting with the initial configuration given by S. A

computation is called successful if it halts, i.e., if no

pending package can be found along any axon, no neuron

contains an activated rule, and for no neuron, a rule can be

activated.

In the original model introduced in Ionescu et al. (2006),

in the productions l;w; tð Þ of a rule i;E=ak !
�

l;w; tð Þf g; dÞ, only w ¼ a (for spiking rules) or w ¼ k (for

forgetting rules) as well as t ¼ 0 was allowed (and for

forgetting rules, the checking set E had to be finite and

disjoint from all other sets E in rules assigned to neuron i).

Moreover, reflexive axons, i.e., leading from neuron i to

neuron i, were not allowed, hence, for l;w; tð Þ being a

production in a rule i;E=ak ! P; d
� �

for neuron i, l 6¼ i

was required. Yet the most important extension is that

different rules for neuron i may affect different axons

leaving from it whereas in the original model the structure

of the axons (called synapses there) was fixed. In Alhazov

et al. (2006), the sequence of substeps leading from one

configuration to the next one together with the interpreta-

tion of the rules from R was taken in such a way that the

original model can be interpreted in a consistent way

within the extended model introduced in that paper. As

mentioned in Alhazov et al. (2006), from a mathematical

point of view, another interpretation would have been even

more suitable: whenever a rule i;E=ak ! P; d
� �

is acti-

vated, the packages induced by the productions l;w; tð Þ in

the set P of a rule i;E=ak ! P; d
� �

activated in a compu-

tation step are immediately put on the axon from neuron

i to neuron l, whereas the delay d only indicates the

refraction time for neuron i itself, i.e., the time period this

neuron will be closed. The delay t in productions l;w; tð Þ
can be used to replace the delay in the neurons themselves

in many of the constructions elaborated, for example, in

Ionescu et al. (2006), Păun et al. (2006), and Chen et al.

(2006). Yet as in (the proofs of computational complete-

ness given in) Alhazov et al. (2006), we shall not need any

of the delay features in this paper, hence we need not go

into the details of these variants of interpreting the delays.

Depending on the purpose the ESNP system is to be

used, some more features have to be specified: for gener-

ating k-dimensional vectors of non-negative integers, we

have to designate k neurons as output neurons; the other

neurons then will also be called actor neurons. There are

several possibilities to define how the output values are

computed; according to Ionescu et al. (2006), we can take

the distance between the first two spikes in an output

neuron to define its value. As in Alhazov et al. (2006), also

in this paper, we take the number of spikes at the end of a

successful computation in the neuron as the output value.

For generating strings, we do not interpret the spike train of

a single output neuron as done, for example, in Chen et al.

(2006), but instead consider the sequence of spikes in the

output neurons each of them corresponding to a specific

terminal symbol; if more than one output neuron spikes, we

take any permutation of the corresponding symbols as the

next substring of the string to be generated.
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Remark 1 As already mentioned, there is a one-to-one

correspondence between (sets of) strings ak over the one-

letter alphabet af g and the corresponding non-negative

integer k. Hence, in the following, we will consider the

checking sets E of a rule i;E=ak ! P; d
� �

to be sets of non-

negative integers and write k instead of ak for any w ¼ ak

in a production l;w; tð Þ of P. Moreover, if no delays d or t

are needed, we simply omit them. For example, instead of

2; aif g=ai ! 1; a; 0ð Þ; 2; aj; 0ð Þf g; 0ð Þ we write

2; if g=i ! 1; 1ð Þ; 2; jð Þf gð Þ.

4.1 ESNP systems as generating devices

As in Alhazov et al. (2006), we first consider extended

spiking neural P systems as generating devices. The fol-

lowing example gives a characterization of regular sets of

non-negative integers:

Example 1 Any semilinear set of non-negative integers

M can be generated by a finite ESNP system with only two

neurons.

Let M be a semilinear set of non-negative integers and

consider a regular grammar G generating the language

L Gð Þ � af g� with N L Gð Þð Þ ¼ M; without loss of general-

ity we assume the regular grammar to be of the form G ¼
N; af g;A1;Pð Þ with the set of non-terminal symbols N,

N ¼ Ai j 1� i�mf g, the start symbol A1, and P the set of

regular productions of the form B ! aC with B;C 2 N and

A ! k. We now construct the finite ESNP system P ¼
2; S;Rð Þ that generates an element of M by the number of

spikes contained in the output neuron 1 at the end of a

halting computation: we start with one spike in neuron 2

(representing the start symbol A1 and no spike in the output

neuron 1, i.e., S ¼ 1; 0ð Þ; 2; 1ð Þf g. The production Ai !
aAj is simulated by the rule 2; if g=i ! 1; 1ð Þ; 2; jð Þf gð Þ and

Ai ! k is simulated by the rule 2; if g=i ! ;ð Þ, i.e., in sum

we obtain

P ¼ 2; S;Rð Þ;
S ¼ 1; 0ð Þ; 2; 1ð Þf g;
R ¼ 2; if g=i ! 1; 1ð Þ; 2; jð Þf gð Þf j

1� i; j�m; Ai ! aAj 2 P
�

[ 2; if g=i ! ;ð Þ j 1� i�m;Ai ! k 2 Pf g:

Neuron 2 keeps track of the actual non-terminal symbol

and stops the derivation as soon as it simulates a production

Ai ! k, because finally neuron 2 is empty. In order to

guarantee that this is the only way how we can obtain a

halting computation in P, without loss of generality we

assume G to be reduced, i.e., for every non-terminal

symbol A from N there is a regular production with A on

the left-hand side. These observations prove that we have

N L Gð Þð Þ ¼ M.

The following results were already proved in Alhazov

et al. (2006):

Lemma 3 For any ESNP system where during any

computation only a bounded number of spikes occurs in the

actor neurons, the generated language is regular.

Theorem 4 Any regular language L with L � T� for a

terminal alphabet T with card Tð Þ ¼ n can be generated by

a finite ESNP system with n þ 1 neurons. On the other

hand, every language generated by a finite ESNP system is

regular.

Corollary 1 Any semilinear set of n-dimensional vectors

can be generated by a finite ESNP system with n þ 1

neurons. On the other hand, every set of n-dimensional

vectors generated by a finite ESNP system is semilinear.

Theorem 5 Any recursively enumerable language L with

L � T� for a terminal alphabet T with card Tð Þ ¼ n can be

generated by an ESNP system with n þ 2 neurons.

Corollary 2 Any recursively enumerable set of n-di-

mensional vectors can be generated by an ESNP system

with n þ 2 neurons.

Besides these results already established in Alhazov

et al. (2006), we now prove a characterization of languages

and sets of (vectors of) natural numbers generated by

ESNPS with only one neuron. Roughly speaking, having

only one actor neuron corresponds with, besides output

registers, having only one register which can be

decremented.

Lemma 4 For any ESNP system with only one actor

neuron we can effectively construct a register machine with

output tape and only one register that can be decremented,

generating the same language, respectively a register

machine with one register that can be decremented, gen-

erating the same set of (vectors of) natural numbers.

Proof First we notice that the delays would not matter:

the overall system is sequential, and therefore it is always

possible to pre-compute what happens until the actor

neuron re-opens; the weight of all pending packages is also

bounded. All the details of storing and managing all these

features by the finite control of the register machines are

tedious, but very much straightforward. In the following,

we therefore assume that the ESNPS is given as:

P ¼ðn þ 1; S;RÞ;
S ¼fð1;m1Þ; . . .; ðn;mnÞ; ðn þ 1;mnþ1Þg;
R ¼fðn þ 1;Er=ir ! fð1; pr;1Þ; . . .; ðn; pr;nÞ;

ðn þ 1; pr;nþ1ÞgÞ j 1� r � qg:

Thus, given n, P can be specified by the following non-

negative integers: the number q of rules, initial spikes
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m1; . . .;mn;mnþ1, and, for every rule r, the following

ingredients: the number ir of consumed spikes, the numbers

pr;1; . . .; pr;nþ1 of produced spikes, and the regular sets Er

of numbers. Note that, as it will be obvious later, it is

enough to only consider the case m1 ¼ � � � ¼ mn ¼ 0,

because otherwise placing the initial spikes can be done by

a 1-register machine in a preparatory phase, before

switching to the instruction corresponding to starting the

simulation.

The main challenge of the construction is to remember

the actual ‘‘status’’ of the regular checking sets. It is known

that every regular set E of numbers is semilinear, and it is

possible to write Er ¼
Slr

j¼1ðkrNþ dr;jÞ [ Dr, i.e., all the

linear sets constituting Er can be reduced to a common

period kr, and an additional finite set. Then, we can take a

common multiple k of periods kr, and represent each

checking set as Er ¼ kNþ þ fd0
r;j j 1� j� l0rg

� �
[ D0

r,

where D0
r is finite.

Finally, take a number M such that M is a multiple of k,

that M is larger than any element of Dr, 1� r � q, that M is

larger than any number d0
r;j, 1� j� l0r, 1� r � q, that M is

larger than any of ir and pr;nþ1, 1� r � q. Then, if neuron

n þ 1 has N spikes, the following properties hold:

• rule r is applicable if and only if N 2 Er in case when

ir �N\M, and if and only if M þ ðN mod MÞ 2 Er in

case when N 	M,

• the difference between the number of spikes in neuron

n þ 1 in two successive configurations is not larger than

M.

For neuron n þ 1, Mk þ j spikes (where 0� j�M � 1) will

be represented by value k of register 1 and state j.

We simulate P by a register machine R with one register

and an output tape of m symbols. Before we proceed, we

need to remark that, without restricting the generality, we

may have an arbitrary set of ‘‘next instructions’’ instead of

fl2; l3g in l1 : ðADDðrÞ; l2; l3Þ, and arbitrary sets of ‘‘next

instructions’’ instead of fl2g and fl3g in

l1 : ðSUBðrÞ; l2; l3Þ. Indeed, non-determinism between

choice of multiple instructions can be implemented by an

increment followed by a decrement in each case, as many

times as needed for the corresponding set of ‘‘next

instructions’’. Clearly, l1 : ðADDðrÞ; fl2gÞ is just a shorter

form of l1 : ðADDðrÞ; l2; l2Þ.
Finally, besides instructions ADD(r), SUB(r),

write(a) and halt, we introduce the notation of NOP,

meaning only a switch to a different instruction without

modifying the register. This will greatly simplify the

construction below, and such a notation can be reduced to

either compressing the rules (by substituting the instruction

label with the label of the next instruction in all other

instructions), or be simulated by an ADD(1) instruction,

followed by a SUB(1) instruction.

We take bðmnþ1 mod MÞ as the starting state of R, and

the starting value of register 1 is mnþ1div M.

For every class modulo M, 0� j�M � 1, we define sets

Lj;0 ¼flr;0 j 1� r � q; j 2 Er; ir 	 jg;
Lj;þ ¼flr;þ j 1� r � q; j þ M 2 Erg

of applicable rules corresponding to remainder j, subscripts

0 and þ represent cases of having less than M spikes, and

at least M spikes, respectively. Let us redefine any of these

sets to flhg if the expression above is empty.

We proceed with the actual simulation. A rule

n þ 1;Er=ir ! ð1; pr;1Þ; . . .; ðn; pr;nÞ; ðn þ 1; pr;nþ1Þ
� �� �

can be simulated by the following rules of R:

bðjÞ : ðSð1Þ; Lj;þ; Lj;0Þ; lr 2 Lj;0;

lr;a : . . .; ða sequence of pr1
instructions

. . .;writeða1Þ; . . .; prn
instructionswriteðanÞ;

. . .l0r;a; andprnþ1
instructions ADDð1ÞÞ; a 2 f0;þg;

l0r;þ : ðNOP; fbððj � ir þ pr;nþ1Þmod MÞgÞ;
if j � ir þ pr;nþ1\0;

l0r;þ : ðADDð1Þ; fl0r;0gÞ; if j � ir þ pr;nþ1\M;

l0r;0 : ðNOP; fbððj � ir þ pr;nþ1Þmod MÞgÞ;
if j � ir þ pr;nþ1\M;

l0r;0 : ðADDð1Þ; fbððj � ir þ pr;nþ1Þmod MÞgÞ;
if j � ir þ pr;nþ1 	M;

lh : halt:

Indeed, instruction b(j) corresponds to checking whether

neuron n þ 1 has at least M spikes, transitioning into the

halting instruction, or into the set of instructions associated

with the corresponding applicable rules, in the context of

the result of the checking mentioned above. Sending spikes

to output neurons is simulated by writing the corresponding

symbols on the tape. This goal is obtained, knowing values

j, ir, pr;nþ1, and whether neuron 1 had at least M spikes or

not, by transitioning to instruction bððj � ir þ
pr;nþ1Þmod MÞ after incrementing register 1 the needed

number of times (0, 1 or 2), which is equal to

j � ir þ pr;nþ1div M
� �

þ d, where d ¼ 0 if neuron 1 had at

least M spikes, and d ¼ 1 otherwise (to compensate for the

subtraction done by instruction b(j) in the initial checking).

The simulation of instructions continues until we reach the

situation where no rules of the underlying spiking system

are applicable, transitioning to some Lj;a ¼ flhg.

Finally, let us formally describe the instruction

sequences from lr;a to l0r;a. For the sake of simplicity of

notation, we do not mention subscripts r; a in the notation
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of the intermediate instructions, keeping in mind that these

are different instructions for different r; a. The difficulty

for generating the string languages is that, by the definition,

all permutations are to be considered if spikes are sent to

multiple neurons 1; . . .;m.

lr;a : ðNOP; fsðpr1
; . . .; prn

ÞgÞ;
sði1; . . .; inÞ :
ðNOP; fskði1; . . .; inÞ j ik [ 0; 1� k� ngÞ;

0� ij � prj
; 1� j� n; ði1; . . .; inÞ 6¼ ð0; . . .; 0Þ;

sðkÞði1; . . .; inÞ : ðwriteðakÞ; fsði01; . . .; i0nÞgÞ;
i0k ¼ ik � 1; and i0j ¼ ij; 1� j� n; j 6¼ k;

0� ij � prj
; 1� j� n; ði1; . . .; inÞ 6¼ ð0; . . .; 0Þ;

sð0; . . .; 0Þ : ðNOP; ftðprnþ1
ÞgÞ;

tðiÞ : ðADDðn þ 1Þ; tði � 1ÞÞ; 1� i� prnþ1
;

tð0Þ : ðNOP; l0r;aÞ:

The rules above describe precisely the following behavior:

to produce any sequence with the desired numbers of

occurrences of symbols a1; . . .; an, a symbol is non-deter-

ministically chosen (out of those, the current desired

number of occurrences of which is positive) and written,

iterating until all desired symbols are written.

Next, the register is incremented the needed number of

times. This finishes the explanation of the instruction

sequences from lr;a to l0r;a, as well as the explanation of the

simulation.

Therefore, the class of languages generated by ESNP

systems with only one neuron containing rules and n output

neurons is included in the class of languages generated by

1-register machines with an output tape of n symbols.

Applying Parikh mapping to both classes, just replacing

write-instructions by ADD-instructions on new registers

associated with these symbols, it follows that the class of

sets of vectors generated by ESNP systems with only one

neuron containing rules and n output neurons is included in

the class of sets of vectors generated by n þ 1-register

machines where all registers except one are restricted to be

increment-only. These observations conclude the proof. h

The inclusions formulated at the end of the proof given

above are actually characterizations, as we can also prove

the opposite inclusion.

Lemma 5 For any register machine with output tape with

only one register that can be decremented respectively for

any register machine with only one register that can be

decremented we can effectively construct an ESNP system

generating the same language respectively the same set of

(vectors of) natural numbers.

Proof By definition, output registers can only be incre-

mented, so the main computational power lies in the reg-

ister which can also be decremented. The

decrementable register can be simulated together with

storing the actual state by storing the number dn þ ci

where: n is the actual contents of the register, ci is a

number encoding the i-th instruction of the register

machine, and d is a number bigger than all ci. Then

incrementing this first register by an instruction ci and

jumping to cj means consuming ci and adding d þ cj in the

actor neuron, provided the checking set guarantees that the

actual contents is an element of dNþ ci. Decrementing

means consuming d þ ci and adding cj in the actor neuron,

provided the checking set guarantees that the actual con-

tents is an element of dNþ þ ci; if n ¼ 0, then ci is con-

sumed and ck is added in the actor neuron with ck being the

instruction to continue in the zero case. At the same time,

with each of these simulation steps, the output neurons can

be incremented in the exact way as the output registers; in

the case of register machines with output tape, a spike is

sent to the output neuron representing the symbol to be

written. Further details of this construction are left to the

reader. h

5 ESNP systems with white hole rules

In this section, we recall the definition of extended spiking

neural P systems with white hole rules as introduced in

Alhazov et al. (2015a). We will show that with this new

variant of extended spiking neural P systems, computa-

tional completeness can already be obtained with only one

actor neuron, by proving that the computations of any

register machines can already be simulated in only one

neuron equipped with the most general variant of white

hole rules. Using this single actor neuron to also extract the

final result of a computation, we even obtain weak uni-

versality with only one neuron.

As already mentioned in Remark 1, we are going to

describe the checking sets and the number of spikes by

non-negative integers. The following definition is an

extension of Definition 1:

Definition 3 An extended spiking neural P system with

white hole rules (of degree m	 1) (in the following we

shall simply speak of an EESNP system) is a construct

P ¼ m; S;Rð Þ where

• m is the number of cells (or neurons); the neurons are

uniquely identified by a number between 1 and m;
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• S describes the initial configuration by assigning an

initial value (of spikes) to each neuron;

• R is a finite set of rules either being a white hole rule or

a rule of the form as already described in Definition 3

i;E=k ! P; dð Þ such that i 2 1::m½ � (specifying that this

rule is assigned to neuron i), E � REG Nð Þ is the

checking set (the current number of spikes in the neuron

has to be from E if this rule shall be executed), k 2 N is

the ‘‘number of spikes’’ (the energy) consumed by this

rule, d is the delay (the ‘‘refraction time’’ when neuron i

performs this rule), and P is a (possibly empty) set of

productions of the form l;w; tð Þ where l 2 1::m½ � (thus

specifying the target neuron), w 2 N is the weight of

the energy sent along the axon from neuron i to neuron

l, and t is the time needed before the information sent

from neuron i arrives at neuron l (i.e., the delay along

the axon). A white hole rule is of the form

i;E=all ! P; dð Þ where all means that the whole

contents of the neuron is taken out of the neuron; in

the productions l;w; tð Þ, either w 2 N as before or else

w ¼ all þ pð Þ � q þ z with p; q; z 2 Q; provided

c þ pð Þ � q þ z, where c denotes the contents of the

neuron, is non-negative, then c þ pð Þ � q þ zb c is the

number of spikes put on the axon to neuron l.

If the checking sets in all rules are finite, then P is

called a finite EESNP system.

Allowing the white hole rules having productions being

of the form w ¼ all þ pð Þ � q þ z with p; q; z 2 Q is a very

general variant, which can be restricted in many ways, for

example, by taking z 2 Z or omitting any of the rational

numbers p; q; z 2 Q or demanding them to be in N etc.

Obviously, every ESNP system also is an EESNP sys-

tem, but without white hole rules, and a finite EESNP

system also is a finite ESNP system, as in this case the

effect of white hole rules is also bounded, i.e., even with

allowing the use of white hole rules, the following lemma

as a counterpart of Lemma 3 is still valid:

Lemma 6 For any EESNP system where during any

computation only a bounded number of spikes occurs in the

actor neurons, the generated language is regular.

Hence, in the following our main interest is in EESNP

systems which really make use of the whole power of white

hole rules.

EESNP systems can also be used for computing func-

tions, not only for generating sets of (vectors of) integer

numbers. As a simple example, we show how the function

n 7!2nþ1 can be computed by a deterministic EESPNS,

which only has exactly one rule in each of its two neurons;

the output neuron 2 in this case is not free of rules.

Example 2 Computing n 7!2nþ1

(1,N+/1 → {(2, 1)})
1

(2, 2 · N+ + 1/all → {(2, (all − 1) · 2)})
2

Initial value = n

Initial value = 2

The rule 2; 2 �Nþ þ 1=all ! 2; all � 1ð Þ � 2ð Þf gð Þ could

also be written as 2;2 �Nþ þ 1=all ! 2; allð Þ � 2� 2ð Þf gð Þ.
In both cases, starting with the input number n (of spikes)

in neuron 1, with each decrement in neuron 1, the contents

of neuron 2 (not taking into account the enabling spike

from neuron 1) is doubled. The computation stops with

2nþ1 in neuron 1, as with 0 in neuron 1 no enabling spike is

sent to neuron 2 any more, hence, the firing condition is not

fulfilled any more.

We remark that, if the initial value of neuron 2 is 1

(instead of 2), the function n 7!2n will be computed (instead

of n 7!2nþ1). Indeed, if n ¼ 0, the system halts immediately

and the value of the second neuron is 20 ¼ 1. If n ¼ 1,

neuron 1 spikes once increasing the value of the second

neuron to 21 ¼ 2, which is not enough for it to spike

(2 62 2 �Nþ þ 1), so the system halts. For values n[ 1,

neuron 2 will start spiking at the second step of evolution,

doubling its contents at each subsequent step; it will

therefore contain 2k spikes at the k-th evolution step.

Note that, when the initial value of neuron 2 is 2, the

system satisfies the property that the second neuron spikes

whenever the first one does. If we set the initial value of

neuron 2 to 1, however, the second neuron never spikes

before the first neuron spikes once.

5.1 Pure white hole model

Example 3 Pure White Hole Model of EESNPS for DT0L

Systems

Let G ¼ af g;P; asð Þ be a Lindenmayer system with the

axiom as and the finite set of tables P each containing a

finite set of parallel productions of the form a ! ak. Such a

system is called a tabled Lindenmayer system, abbreviated

T0L system, and it is called deterministic, abbreviated

DT0L system, if each table contains exactly one rule. Now

let G ¼ af g;P; asð Þ be a DT0L system with

P ¼ a ! aki
� �

j 1� i� n
� �

. Then the following EESNPS

using only white hole rules computes the same set of

natural numbers as are represented by the language

generated by G, with the results being taken with uncon-

ditional halting, i.e., taking a result at every moment, see

Beyreder and Freund (2009).
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{(1,N+/all → {(1, all · ki)}) | 1 ≤ i ≤ n}
1

Initial value = s

If we want to generate with normal halting, we have to

add an additional output neuron 2 and an additional rule

1;Nþ=all ! 2; all � 1ð Þf gð Þf g in neuron 1 which at the

end moves the contents of neuron 1 to neuron 2.

To consider the generalization of the example above to

multiple neurons, we first would like to recall a related

model considered in Klejn and Rozenberg (1980) already

in 1980, for the case of L systems, calling them 0LIP

systems: like in Indian parallel grammars, all identical

symbols simultaneously evolve by the same rule, but like in

Lindenmayer systems, all symbols evolve in parallel. We

also note that in the area of P systems such a requirement

may be viewed as a special case of the label agreement

feature. Label selection, target selection, and target agree-

ment have extensively been studied, for example, see

Alhazov and Freund (2014, 2015); hence, it is proper to

call it rule agreement, as studied, e.g., in Alhazov

et al. (2015b).

Lemma 7 With unconditional halting, pure white hole

EESNP systems generate at least 0LIP.

Proof Take an arbitrary 0LIP system L with alphabet

fAi j 1� i� ng. We define a pure EESNP system P with n

neurons as follows. The rules of P consist of one rule

ði;Nþ=all ! fðj; all � jwjAj
Þ j 1� j� ngÞ

for every rule Ai ! w in L.

The multiplicity of symbols Ai in a configuration of L

corresponds to the multiplicity of spikes in neuron i of

an associated configuration of P. Hence, the bisimi-

larity between derivations in P and derivations in L is

obvious. h

Clearly, as a particular case with n ¼ 1, we get the

previous example covering DTU0L.

5.2 Computational completeness of EESNP systems

The following main result was already established in Al-

hazov et al. (2015a).

Lemma 8 The computation of any register machine can

be simulated in only one single actor neuron of an EESPN

system.

Proof Let M ¼ n;B; l0; lh;Pð Þ be an n-register machine,

where n is the number of registers, P is a finite set of

instructions injectively labeled with elements from the set

of labels B, l0 is the initial label, and lh is the final label.

Then we can effectively construct an EESNP system

P ¼ m; S;Rð Þ simulating the computations of M by

encoding the contents ni of each register i, 1� i� n, as

pni

i for different prime numbers pi. Moreover, for each

instruction (label) j we take a prime number qj, of course,

also each of them being different from each other and from

the pi.

The instructions are simulated as follows:

• l1 : ADD rð Þ; l2; l3ð Þ (ADD instruction)

This instruction can be simulated by the rules 1;ql1 �ðf
Nþ=all ! 1;all � qli pr=ql1ð Þf gÞ j 2� i�3g in neuron 1.

• l1 : SUB rð Þ; l2; l3ð Þ (SUB instruction)

This instruction can be simulated by the rules

1;ql1 pr �Nþ=all ! 1;all � ql2= ql1 prð Þð Þf gð Þ and 1; ql1 �ðð
Nþ n ql1 pr �NþÞ=all ! 1;all � ql2=ql1ð Þf gÞ in neuron 1;

the first rule simulates the decrement case, the second

one the zero test.

• lh : halt (HALT instruction)

This instruction can be simulated by the rule

1; qlh �Nþ=all ! 1; all � 1=qlhð Þf gð Þ in neuron 1.

In fact, after the application of the last rule, we end up

with pm1

1 � � � pmn
n in neuron 1, where m1; . . .;mnð Þ is the

vector computed by M and now, in the prime number

encoding, by P as well.

All the checking sets we use are regular, and the produc-

tions in all the white hole rules even again yield integer

numbers. h

Remark 2 As the productions in all the white hole rules of

the EESNP system constructed in the preceding proof even

again yield integer numbers, we could also interpret this

EESNP system as an ESNP system with exhaustive use of

rules:

The white hole rules in the EESNP system constructed

in the previous proof are of the general form

1; q �Nþ=all ! 1; all � p=qð Þf gð Þ

with p and q being natural numbers. Each of these rules can

be simulated in a one-to-one manner by the rule

1; q �Nþ=q ! pð Þ

used in an ESNP system with one neuron in the exhaustive

way.

Based on the preceding main result, i.e., Lemma 8, the

following theorems were proved in Alhazov et al. (2015a).

Theorem 6 Any recursively enumerable set of n-dimen-

sional vectors can be generated by an EESNP system with

n þ 1 neurons.
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Proof We only have to show how to extract the results

into the additional output neurons from the single actor

neuron which can do the whole computational task as

exhibited in Lemma 8. Yet this is pretty easy:

When the actor neuron reaches the halting state, the

desired result mi for output neuron i þ 1 is stored as factor

in this one number stored in the actor neuron within the

prime number encoding, i.e., as pi
mi , for 1� i� n. Instead

of using the final rule

1; qlh �Nþ=all ! 1; all � 1=qlhð Þf gð Þ

in neuron 1 we now take the rule

1; qlh �Nþ=all ! 1; all � r1=qlhð Þf gð Þ:

With the rules

1; ripi �Nþ=all ! 1; all � 1=pið Þ; i þ 1; 1ð Þf gð Þ;

we can decode the factor pi
mi to mi into output neuron

i þ 1, with the instruction code (prime number) ri for

1� i� n. If the contents of the actor neuron is not dividable

by pi any more, we switch to the next instruction code riþ1

by the rule

1; ri �Nþ n ripi �Nþð Þ=all ! 1; all � riþ1=rið Þf gð Þ:

At the end, we can end up with 0 in the actor neuron after

having used the rule

1; rn �Nþ n rnpn �Nþð Þ=all ! ;ð Þ

and then stop with mi in output neuron i þ 1, 1� i� n. h

Theorem 7 Any recursively enumerable language L with

L � T� for a terminal alphabet T with card Tð Þ ¼ n can be

generated by an EESNP system with n þ 1 neurons.

Proof In the case of generating strings, we have to sim-

ulate a register machine with output tape; hence, in addi-

tion to the simulating rules already described in Lemma 8,

we have to simulate the tape rule l1 : write að Þ; l2ð Þ, which

in the EESNPS means sending one spike to the output

neuron N að Þ representing the symbol a. This task is

accomplished by the rule 1; l1 �Nþ=all ! 1; all � l2=ðfð
l1Þ; N að Þ; 1ð ÞgÞ. The rest of the construction and of the

proof is similar to that what we have done in the proof of

Lemma 8. h

6 Red–green EESNP systems

For defining a suitable model of red–green EESNP systems

we have to consider several constraints.

First of all, the computations should be deterministic,

i.e., for any configuration of the EESNP system P there

should be at most one rule applicable in each neuron. This

condition can be fulfilled syntactically by requiring the

checking sets of all the rules in each neuron to be disjoint.

Whereas in the generating case we had one output

neuron for each possible input symbol, these specific

neurons now have to act as input neurons. As we only want

deterministic behavior to be considered now, we assume

that in every derivation step at most one input neuron

spikes until the whole input is ‘‘read’’, but this input has to

be made ‘‘on demand’’, i.e., we imagine that the EESNP

system P sends out an input request to the environment

which is answered in the next step by the spiking of exactly

one input neuron as long as the string has not been ‘‘read’’

completely.

‘‘Reading’’ the spiking of an input neuron into the single

actor neuron means that we have to be able to distinguish

the signals coming from different input neurons. Hence, the

simplest variant to do this is to multiply the spike coming

from input neuron number k by k. Yet then we have to take

into account that the minimum value in the actor neuron

must be bigger than the maximal number k, i.e., the

smallest prime number used for the prime number encod-

ing must fulfill this condition, and our encoding of the

number ni now is chosen to be pi
niþ1.

Finally, we have to define red and green ‘‘states’’ of the

red–green EESNP system; yet as we only have a finite

number of rules in each neuron, each of the possible vec-

tors of rules represents a color; hence, the color of the

current configuration, i.e., its ‘‘state’’, can be defined via

the (unique) vector of rules to be applied.

Based on the proof Lemma 8, we now can easily

establish the following results, similar to the results

obtained for red–green register machines, see Lemmas 1

and 2 as well as Theorem 3:

Lemma 9 The computations of a red–green register

machine RM with an arbitrary number of registers and

with string input can be simulated by a red–green EESNP

system P in such a way that during the simulation of a

computation step of RM leading from an instruction with

label (‘‘state’’) p with color c to an instruction with label

(‘‘state’’) p0 with color c0 the simulating EESNP system P
uses states of color c and only in the last step of the sim-

ulation changes to a state of color c0.

Lemma 10 The computations of a red–green EESNP

system P can be simulated by a red–green register

machine RM with two registers and with string input in

such a way that during the simulation of a derivation step

of P leading from a state p with color c to a state p0 with

color c0 the simulating register machine uses instructions

with labels (‘‘states’’) of color c and only in the last step of

the simulation changes to a label (‘‘state’’) of color c0.
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As an immediate consequence, the preceding two lem-

mas yield the characterization of R2 and R2 \P2 by red–

green EESNP systems:

Theorem 8 (Computational power of red–green EESNP

systems)

1. A set of strings L is recognized by a red–green EESNP

system with one mind change if and only if L 2 R1, i.e.,

if L is recursively enumerable.

2. Red–green EESNP systems recognize exactly the R2-

sets of the Arithmetical Hierarchy.

3. Red–green EESNP systems accept exactly those sets

which simultaneously are R2- and P2-sets of the

Arithmetical Hierarchy.

7 Conclusion

In this paper, we have further studied the model of

extended spiking neural P systems with white hole rules as

introduced in Alhazov et al. (2015a). With this variant of

extended spiking neural P systems, computational com-

pleteness can already be obtained with only one actor

neuron, as the computations of any register machine can

already be simulated in only one neuron equipped with the

most general variant of white hole rules. Using this single

actor neuron to also extract the final result of a computa-

tion, we even obtain weak universality with only one

neuron.

The model of extended spiking neural P systems with

white hole rules also allows for a red–green variant and

thus to ‘‘go beyond Turing’’. Computational completeness

can already be obtained with only one actor neuron, and

with the red–green variant of extended spiking neural P

systems with white hole rules exactly the R2-sets of the

Arithmetical Hierarchy can be recognized.

A quite natural feature found in biology and also already

used in the area of spiking neural P systems is that of

inhibiting neurons or axons between neurons, i.e., certain

connections from one neuron to another one can be spec-

ified as inhibiting ones—the spikes coming along such

inhibiting axons then close the target neuron for a time

period given by the sum of all inhibiting spikes, e.g., see

Binder et al. (2007). Such variants can also be considered

for extended spiking neural P systems with white hole

rules.
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membrane channels. In: Păun Gh, Rozenberg G, Salomaa A,

Extended spiking neural P systems with white hole rules and their red–green variants 309

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Zandron C (eds) Membrane Computing. International Workshop
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