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Abstract. In this paper, we first describe the isothermal constrained
loop extension DNA amplification (ICLEDA), which is a variant of am-
plification combining the advantages of rolling circle amplification (RCA)
and of strand displacement amplification (SDA). Then, we formalize this
process in terms of the theory of formal languages, which yields two new
operations of sticking and displacement on normal and circular strings.
The obtained formalism is quite expressive and we show how to imple-
ment the computation of any boolean function on DNA strands using
ICLEDA. We also discuss variants of the model that could eventually
bring more computational power.

1 Introduction

The first attempt to use DNA for solving computational problems was done by
Adleman [1]. Since that time several models of computation using DNA have
been proposed, we refer to [3] for an overview. The structure and the properties
of DNA molecules allow their natural representation as strings and operations
on strings. So, abstracting from the physical constraints, it is possible to perform
a language-theoretical study of the obtained models. This study can reveal some
interesting properties and limitations that could eventually be translated back
to the original DNA molecules. The book [11] contains several examples of such
an approach.

In this article we follow the same line by formalizing the process of a special
type of string amplification and displacement in terms of operations on strings.
The most common in-vitro DNA strand replication method (also called “DNA
amplification”) is based on PCR. This method is based on a series of primer
extension cycles with changing temperature conditions to allow for strand sep-
aration at the beginning of each cycle.
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Rolling-circle amplification (RCA) is another method of strand replication
based on circular DNA molecules [4] and is inspired from the natural replication
mechanisms of several viruses [5]. The important observation is that this method
does not require changing the conditions of the test tube for DNA amplification
and produces long single stranded DNA molecules including multiple comple-
mentary copies of the circular template DNA fragment. This procedure was
used in DNA computing as a basis for the simulation of the resolution refutation
in [6].

The strand displacement amplification (SDA) is based on the ability of a
restriction enzyme to nick a modified recognition site and the ability of a poly-
merase to initiate synthesis at the nick and displace a downstream DNA strand
during replication [12]. Both above methods allow us to produce DNA strands in
isothermal conditions. There are methods using both RCA and SDA, for example
ramification-extension method (RAM) [13].

In this article we consider a new isothermal DNA replication method, called
ICLEDA for “Isothermal Constrained Loop Extension DNA Amplification”, de-
scribed in [8]. It makes it possible to produce short linear and single stranded
DNA strands in isothermal conditions. Importantly in the perspective of a prac-
tical application, the amplification is also possible when the template molecules
are immobilized on a support. We formalize the amplification process in terms of
formal languages. Such a formal system is constructed from a number of circular
strings, which we call amplification loop complexes (or simply loop complexes)
that can be in two states: blocked or unblocked. A loop complex in unblocked
state produces infinitely the corresponding DNA strand (signal). The transition
from a blocked to an unblocked state is done by annealing and primer exten-
sion, formalized as a string displacement operation. The resulting model is quite
powerful, for example it is possible to simulate a signaling cascade whose nodes
correspond to AND and OR gates. More precisely, using an approach similar
to [9, 2], we consider asynchronous circuits with dual-rail encoding, i.e. a bit is
encoded using 2 wires and determined by the transition happening on one of
them, exclusively. The amplification to express the presence of signals which
can further trigger the amplification of new signals following the circuit in an
autonomous way.

A preliminary version of this article can be found in [7].

2 The biological mechanism

In this section, we first describe the ICLEDA amplification process defined in
[8] on which the whole work is based. Then, we show how this mechanism al-
lows us to devise a configuration, which we call the loop complex, which will
later on allow us to implement logical gates in this context. Note that the word
loop refers to the shape of the biophysical complex we consider rather than the
computational device which is usually understood by this term, this is why the
term complex is attached to loop in this denomination.
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2.1 The amplification and the loop

The ICLEDA amplification method designed in patent4 [8] is to some extend a
combination of RCA and SDA amplification. We refer to this patent for more
technical information.

The mechanism is represented on Fig. 1(a). The loop complex is a circular
molecule composed of two parts: the amplifiable fragment (2) and the loop link
(1). The arrow represents the 3’ end of the amplifiable fragment. We represent
this molecule schematically as on Fig. 1(b). For the sake of commodity we split
the amplifiable fragment in 3 parts (3,4,5 on the picture) corresponding to the
3’ end, middle and 5’ end of the amplifiable fragment.

(a) (b)

Fig. 1. The loop complex (a): the amplifiable fragment (2) and the loop link (1). The
schematic representation (b) highlighting the 3 components of the amplifiable fragment

The amplification mix contains primers (101) which hybridize to the 3’ part
of the amplifiable fragment (3). They can be further extended by DNA poly-
merase (102) present in the mix, see Fig. 2(a). The loop link (1) length is small
compared to the length of the DNA fragment. The DNA fragment is also short
in regards to the stiffness of double stranded DNA. In conditions where the bio-
chemical replication reactions can take place, double stranded DNA molecules
shorter than 300 – 500 nucleotides are too stiff for their extremities to come
into close proximity. In other words, a circular DNA molecule shorter than 300
nucleotides cannot exist in full double stranded form, but is found as stretches
of double stranded portions separated by single stranded portions. This is true
also for the loop complexes used in ICLEDA. At some point the complex will be
composed from a single stranded DNA having n nucleotides from the 5’ end of
the amplifiable fragment, a double-stranded DNA corresponding to the 3’ part
of the amplifiable fragment, the extended primer and the linking loop of special
length.

Since the two extremities of the amplifiable fragment are linked to each other
this gives a geometric constraint for the loop. In order to continue the reaction
either the single strand part should be extended to the maximum or the double
stranded part should open at the opposite extremity. At some level of tension

4 Presently, this patent is in the public domain.
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(a) (b) (c)

Fig. 2. The amplification process: primer extension (a); maximum stretch of amplifiable
fragment and the opening of the 5’ end of the double strand (b); a second amplification
started (c). Notation: link loop (1), amplifiable fragment (3,4,5), DNA polymerase
(102), (extended) primer (101), single stranded fragment (104).

the energetic preference will be to continue the extension of the primer by DNA
polymerase, while the opposite end will detach by Brownian motion. So, at the
same time the double stranded fragment will be opened at 5’ part and one
nucleotide will be added by DNA polymerase. However it should be noted that
the number of nucleotides on the double stranded part remains unchanged, due
to the geometric constraints of the loop.

Since no more nucleotides are bound at the 3’ end of the amplifiable fragment
(3) at some point it becomes accessible for a hybridization with a new primer,
see Fig. 2(b). The extension is blocked when it reaches the end on the amplifiable
fragment (105) because of the presence of non-natural nucleotides in the link,
see Fig. 2(c).

Now we remark that if in the mix a fragment of a single stranded DNA that
matches the 3’ part of the amplifiable fragment is present, then it can stick to
the amplifiable fragment as shown on Fig. 3(a). We call such a strand a trigger.
When a trigger is attached to the loop complex, no amplification can be done. A
trigger can be detached from the loop complex by an activator that matches by
its 3’ end a part of the trigger strand as shown on Fig. 3(b). Once bound to the
trigger the activator can be extended by DNA polymerase and this will release
the trigger, so the loop complex will be able to start the amplification process.

2.2 Formalization

By a DNA-like alphabet V we mean an alphabet with 2n letters, n ≥ 1, of
the form V = {a1, . . . , an, ā1, . . . , ān}. Letters ai and āi, 1 ≤ i ≤ n are said
to be complementary letters. The terminology originates from the basic DNA
alphabet {A,G,C, T}, where the letters A and G have their complements T and
C. By hw we denote the letter-to-letter endomorphism of a DNA-like alphabet V
mapping each letter to its complementary letter; hw is also called the Watson-
Crick morphism. Let us denote by rev the function yielding the reverse of a
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(a) (b)

Fig. 3. The loop complex blocked by a trigger (a) and the hybridization with further
extension used to remove the trigger (b). Notation: link loop (1), amplifiable fragment
(3,4,5), trigger (11), DNA strand used to release the trigger (12)

word. Then the Watson-Crick complementarity function ρ : V ∗ → V ∗ is defined
as ρ(u) = rev(hw(u)).

We shall abstract DNA molecules as words over a DNA-like alphabet. By
convention we will consider that they are read in 5′ to 3′ direction, i.e. the
leftmost symbol of the word corresponds to the first nucleotide at the 5′ end of the
molecule. For the purpose of this paper the considered words will be partitioned
into two kind of parts: sensitive and neutral. Sensitive parts of different words can
eventually interact with each other, while the neutral parts can never interact
with other sensitive or neutral ones. So in some sense, the neutral parts are just
a separator for sensitive parts. We shall mark this difference between sensitive
and neutral parts of words in the notation: sensitive parts will be denoted by
capital letters and neutral parts will be denoted by lower case ones. As mentioned
before we are not interested by the concrete symbols in words, but rather by the
interleaving of sensitive and neutral parts.

Let V be a DNA-like alphabet. We denote by Sensitive(V ) the letters that
are used to label sensitive parts (by convention in latin uppercase) and by
Neutral(V ) the letters used to label neutral parts (by convention in latin low-
ercase). We will assume that in any word two neutral letters (parts) cannot be
adjacent to each other.

We shall formalize the partial annealing of DNA sequences. For this we con-
sider that DNA molecules can bind together at some point if they share a com-
plementary sequence of sensitive parts at that place. Now in order to be able to
write the resulting object in a linear way, the binding points will be identified
by a unique number and the corresponding sensitive parts of both molecules will
be marked by this identifier. We shall use the notation [A]i to denote that A is
marked by i. For example, Jx[A]1yAz, tBp[Ā]1K indicate that molecules xAyAz
and tBpĀ are partially hybridized on the first sensitive part A of xAyAz. Since
indices are unique for each binding point, each complex molecular structure cor-
responds to an equivalence class grouping several indices, hence we can identify
it by using only one of its representatives. We denote by [V ] the infinite extension
of the alphabet V containing normal and integer marked symbols.
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Now we can define the operation Glue as follows.

Glue(u, v) = {Ju′, v′K | where

u = α1A1 . . . Akα2, v = β1Āk . . . Ā1β2,

u′ = α1[A1]i . . . [Ak]iα2, v′ = β1[Āk]i . . . [Ā1]iβ2,

i > 0, k ≥ 1, α1, α2, β1β2 ∈ [V ]∗,

such that there is no α′
1, α

′
2, β

′
1, β

′
2 ∈ Sensitive(V )∗, α′

1α
′
2β

′
1β

′
2 ̸= λ

satisfying u = α′′
1α

′
1A1 . . . Akα

′
2α

′′, v = β′′
1β

′
1Āk . . . Ā1β

′
2β

′′
2

and having α′
1A1 . . . Akα

′
2 = ρ(β′

1Āk . . . Ā1β
′
2) }.

We remark that Glue(u, v) returns all possible molecules that are obtained
by a partial annealing of u and v. The condition stated in the definition also
requires the annealed part to be non-extensible, i.e. there should be no pos-
sibility to anneal more adjacent regions. We also remark that already marked
symbols cannot be used for annealing. We will use the notation u⊗ v to denote
Glue(u, v) and we will also extend this notation to circular strings and languages
in a traditional way. We observe that ⊗ operation is commutative and in some
cases associative, e.g. when there is no competition for gluing sites (there is no
intersection between sensitive parts of different words), so it can be naturally
extended to any number of operands. This corresponds to the fact that ⊗ models
a situation in which the components are independent and may freely combine
or not and in all possible combinations.

Now we shall define the operation that will simulate the strand displacement.
We shall consider two cases: (1) when the displacing strand contains the full
annealed sequence of the displaced one and (2) when the displacing strand starts
with symbol(s) complementary to the free positions just before the attachment
of the displaced strand. The latter case corresponds to a displacement by the
sequence extended in the 5′ (left) direction.

First, we define the full displacement operation Displacef .

Displacef (u, v) = {u′, v′ | where there exist i, j > 0 such that

u = Jα1A1 . . . An[B1]i . . . [Bm]iα2, β1[B̄m]i . . . [B̄1]iβ2K,
v = γ1ρ(A1 . . . AnB1 . . . Bm)γ2,

u′ = Jα1[A1]j . . . [An]j [B1]j . . . [Bm]jα2, γ1[B̄m]j . . . [B̄1]j [Ān]j . . . [Ā1]jγ2K,
v′ = β1Bm . . . B1β2 }.

Next, we define the extension displacement operation Displacee.

Displacee(u, v) = {u′, v′ | where there exist i, j > 0 such that

u = Jα1A1 . . . An[B1]i . . . [Bm]iα2, β1[B̄m]i . . . [B̄1]iβ2K,
v = ρ(A1 . . . An)γ,

u′ = Jα1[A1]j . . . [An]j [B1]j . . . [Bm]jα2, [B̄m]j . . . [B̄1]j [Ān]j . . . [Ā1]jγK,
v′ = β1Bm . . . B1β2 }.



String Displacement Systems and DNA Circuits. . . 7

Finally, we define the displacement operation Displace.

Displace(u, v) = Displacef (u, v) ∪Displacee(u, v).

We shall use the notation u
⊕

v to denote Displace(u, v). We observe that⊕
operation is commutative and in some cases associative (when there is no

competition for the displacement positions), so it can be naturally extended to
any number of operands.

The loop complex can be formalized as a circular word ∼F̄ uR̄ where u is the
neutral part and F̄ with R̄ are the sensitive ones, corresponding to the parts
4,3,5 on Fig. 1(b). Its functioning can be described by the following equation
defining the unary operation Produce:

Produce(∼F̄ uR̄) = RūF. (1)

A trigger can be formalized as tĀFw, where w and z are the neutral parts and
Ā, F are the sensitive ones. We remark that glue and displacement operations
can be applied for the case of circular strings exactly in the same manner as for
the linear one. Hence, the attachment of the trigger to the loop complex can be
described as follows:

∼F̄ uR̄
⊕

tĀFw ⊢ ∼F̄ uR̄⊗ tĀFw. (2)

where u, t and w are neutral. From subsection 2.1, the result of (2) blocks the
application of (1).

The loop can be unblocked by an activator of form xAF̄y or xA:

∼F̄ uR̄⊗ tĀFw
⊕

yF̄Ax ⊢ {∼F̄ uR̄, tĀFw ⊗ yF̄Ax}, (3)

∼F̄ uR̄⊗ tĀFw
⊕

Ax ⊢ {∼F̄ uR̄, tĀFw ⊗ F̄Ax}. (4)

A string displacement system is the construct D = (V,Ac, Al), where V is
a DNA-like alphabet, Al ⊆ (V ∪ {⊗})∗ is the set of initial partially annealed
linear strings and Ac ⊆ ∼V (V ∪ {⊗})∗ is the set of loop complexes eventually
partially annealed with linear strings. The configuration of the system is a pair
C = (Cc, Cl), where as for axioms Cl is the set of current partially annealed linear
strings and Cc is the current set of circular strings eventually partially annealed
with linear ones. We pass from configuration C to C ′ (denoted as C ⊢ C ′) if
C ′

c = Displace(u, v), u ∈ Cc, v ∈ Cl and
C ′

l = Displace(u, v) ∪ Produce(z), u ∈ Cc ∪ Cl, v ∈ Cl, z ∈ Cc.
The language generated by a displacement system D is the set of all “pure”

strings (not being part of a complex) that can be obtained from the axioms:

L(D) = {w ∈ V ∗ | (Ac, Al) ⊢∗ (Fc, Fl) and w ∈ Fl}.

It is clear that for any string displacement system D we have that L(D) is
finite.
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3 Implementing boolean functions

In this section we show how it is possible to implement boolean functions using
the operations introduced in the previous section.

We start by a remark that if a loop ∼F̄ uR̄ is unblocked, then there will be
an unbounded number of copies of RūF . This assumption results from the
observation that once started, the amplification could produce a large enough
number of resulting molecules, even if the loop is blocked again afterwards.

This implies that we can consider that initially all loops are blocked, oth-
erwise we substitute them by a large number of DNA molecules corresponding
to their result. So the computation in such a system consists in unblocking
some loops in some order. This corresponds in a direct manner to asynchronous
boolean circuits where the electrical impulses are propagated in the circuit. The
signals we use are always identified by the part at the beginning of the molecule,
i.e. a signal A will be given by the string Aw for some w ∈ V ∗.

It is known that every boolean function of n variables can be implemented
by a boolean circuit using AND, OR and NOT gates. It is possible to eliminate
the NOT gate by considering the dual-rail encoding, i.e. that only “true” sig-
nals can circulate in the circuit, corresponding to the transition over the wire
that we call signal. This encoding also allows to consider asynchronous circuits,
especially important for the DNA computing area. The positional information
can be handled by distinguishing signals (wires) and considering that each gate
waits for concrete input signals and produces a unique output signal when all
input signals are present.

The input of the circuit is not the true or false value for the same variable
x, but rather a signal for x or for ¬x. The output is also modified: instead of
a single output having one of the values true or false, there are two outputs
(marked by true and false) and a presence of a signal in some of the outputs
indicate that the output value of the circuit is true or false. If we consider that
the two output nodes are combined into a fictive output node then such a circuit
is a DAG with the root being the output node and the leaves being the input
variables and their negations. For a boolean formula ϕ such a modified circuit
can be constructed by a superposition of two circuits, one computing ϕ and the
other one computing ¬ϕ.

We remark an important similarity between traditional electronic implemen-
tation of boolean circuits and our implementation: if a signal (represented by
an electric charge in electronics and by DNA molecule in our case) appears at
some moment during the computation, then it is sufficiently strong and does
not disappear in the consequent steps. This allows us to make a direct analogy
between two implementations and use similar construction techniques. This is
different from other approaches of simulation of circuits by DNA computing, as
we do not need additional amplification phase anymore.

More precisely, let f : Bn → B, B = {0, 1} be a boolean function and let D =
(V,E, F ) be the circuit implementing this function (where V = {1, . . . , n} is the
set of vertices, E ⊆ V ×V is the set of edges and F : V → {xp,¬xp, ANDm, ORk,
NOTq, out}, 1 ≤ p, q,m, k ≤ n is the function that labels vertices of the circuit).
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Then for any inner node y such that F (y) = ORm (resp. F (y) = ANDm) we
construct an OR loop (resp. AND loop) as discussed in 3.1 (resp. 3.2). The final
gate will send the signal to the output node (the root of the circuit (F (x) = out)).
A similar construction should be performed for ¬f . The final assembly is the
union of these two circuits.

In order to compute the result in the initial configuration signals correspond-
ing to Xk (where Xk is either xk or ¬xk) should be introduced.

We give below an example of such a construction for the following function:
f(x1, x2, x3) = (¬x1 ∧ x2) ∨ (x1 ∧ x2 ∧ ¬x3).

The asynchronous dual-rail circuit computing f is given below. We numbered
the gates and labeled the edges going out from the same left node (corresponding
to a concrete signal produced by the corresponding gate).

x1

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

B
S1

LLL
LLL

LLL
LLL

LLL
LL

¬x1
S2

AND1
S7

KKK
KKK

x2S3

iiiiiiiiiiiiiii

77
77

77
77

77
77

AND5

S8

88
88

88
88

88
88

OR4
S11

outtrue

¬x2
S4

XXXXXX
XXXXXX

XXXXXX
XXXXXX AND3

S10 tttttt
outfalse

x3

S5

ssssssssssssssssss
AND2

S9

rrrrrr
OR6

S12

ssssss

¬x3

S6 ssssss

Having in mind that the true value of some node is represented by the pres-
ence of the corresponding signal (that labels the edge), it becomes clear that
this construction can be directly implemented using loop complexes and corre-
sponding signals by 4 AND gates and 2 OR gates.

The signals S1 − S6 correspond to the input values and the signals S11 and
S12 to the output. So the computation starts by giving input signals (taking care
of not having an input x and ¬x at the same time). Then the gates will act in
cascade and one of two output signals (S11 if f is true or S12 if f is false) will
be obtained.

3.1 The OR-gate

We base our construction of the fact that the outcome of rule (1) can be inter-
preted as the production of the signal R.

In this condition, if the trigger tĀFw is initially attached to a loop complex
∼F̄ uR̄, forming ∼F̄ uR̄⊗ tĀFw, rule (3) tells us that introducing the moleculeAx
we obtain ∼F̄ uR̄ and tĀFw ⊗ F̄Ax. As now rule (1) applies to ∼F̄ uR̄: accord-
ingly, we get the signal R.
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It is not difficult to obtain a similar sequence of deductions with ∼ḠvR̄ and
the trigger rB̄Gs. Introducing the molecule By we shall also get R by applying
the rules. The final construction for the gate is shown on Fig. 4.

Fig. 4. The simulation of the OR gate.

We remark that the construction above can be extended to an n-ary OR
gate. This gives the possibility to simulate semi-unbounded fan-in circuits.

3.2 The AND-gate

We can simulate an AND gate by considering two active regions on the loop,
i.e. loops of form ∼F̄AuF̄BvR̄, where F̄A and F̄B are active zones for trig-
gers having A and B. Then the loop is blocked by two molecules as follows
∼F̄AuF̄BvR̄⊗ tĀFAw ⊗ qB̄FBs, see Fig. 5(a). Now if both activators Ax and
By are present, then the loop complex can be unblocked:

∼F̄AuF̄BvR̄⊗ tĀFAw ⊗ qB̄FBs
⊕

Ax
⊕

By ⊢
⊢ {∼F̄AuF̄BvR̄⊗ tĀFAw

⊕
Ax, qB̄FBs⊗ F̄BBy} ⊢

⊢ {∼F̄AuF̄BvR̄, tĀFAw ⊗ F̄AAx, qB̄FBs⊗ F̄BBy} (5)

In the above derivation the unblocking can start by the signal Ax, but fol-
lowing the commutativity of

⊕
it yields the same result.

It is clear that if only one of the activators Ax or By is present, then the loop
complex is only partially unblocked (it has either the form ∼F̄AuF̄BvR̄⊗ tĀFAw
or ∼F̄AuF̄BvR̄⊗ qB̄FBs) and cannot produce the resulting signal.

3.3 The initial AND-gate

Another variant of the AND gate is described in [8]. Like in the previous case it
is also a complex of 3 molecules, however the loop complex is bound in only one
place. Its construction is done in two stages: the loop complex ∼F̄AwR̄ is blocked
by the trigger FAĀ. After that the molecule B̄A is added into the solution and
it will stick to the Ā site. Hence, the complex ∼F̄AwR̄⊗ ĀFA ⊗ B̄A will be
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formed, see Fig. 5(b). We remark that since this complex is formed during the
preparation stage, we can insure that no molecules Ax, (x ̸= B) or tFAAv are
present in the solution.

Now during the computation the loop complex can be unblocked as follows:

∼F̄AwR̄⊗ ĀFA ⊗ B̄A
⊕

By
⊕

Ax ⊢
⊢ {∼F̄AwR̄⊗ ĀFA, B̄A⊗ ĀBy}

⊕
Ax ⊢

⊢ {∼F̄AwR̄, B̄A⊗ ĀBy, ĀFA ⊗ F̄AAx}. (6)

We remark that unlike the previous case this construction is not symmetric,
i.e. first the signal By is removing the molecule B̄A from the complex, freeing
the site Ā, which can be bound after that by the signal Ax that finally unblocks
the loop.

(a) (b)

Fig. 5. The simulation of the AND gate with two active regions on the loop (a) and
with one active region on the loop (b)

4 Conclusions

In this article we present a formalization of a new method of DNA string am-
plification. This process lead us to the introduction of two operations on strings
that permit to express the partial annealing and the strand displacement using
a linear notation. The obtained model is very promising and it presents many
mathematical challenges, especially because the introduced operations are not
unary. Numerous extensions are possible, we cite [11] for a good overview of
different possibilities. We would like to mention the possibility to use multisets
or fuzzy sets instead of sets of strings. The motivation for such an extension is
that the model allows us to produce a trigger and to stop the loop amplification.
Another interesting idea is to consider molecules (strings) attached to a support
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and use a washing procedure that would eliminate strings that are not attached
or that will move unattached strings to some other compartment/membrane,
allowing to further apply techniques from [10].

Another interesting outcome of this article is a new method for the simu-
lation of boolean circuits. The use of ICLEDA offers many advantages like a
single volume and unchanged reaction conditions. This implies that the corre-
sponding implementation will not need any additional intervention. Moreover,
since the loop complexes can be easily attached to the support it is possible to
reuse the circuit by washing the tube and by introducing trigger molecules to
block the loops. Another advantage of the method is that the signal molecules
(corresponding to the true value of some gate) are of a small length; moreover,
by introducing compartments it is possible to share some of the signals.
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INPI N◦2936246, September, 24, 2009. (Method of amplification of nucleic acids
and its applications, French patent). http://fr.espacenet.com/ as well as at
http://www.lacl.fr/verlan/data/brevetICEDA.pdf

9. M. Ogihara, A. Ray, DNA-based self-propagating algorithm for solving bounded-
fan-in Boolean circuits, In proceedings of Third Conference on Genetic Program-
ming, Morgan Kaufman Publishers, San Francisco, (1998), 725–730.
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