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Abstract. This paper deals with the Lehmann rotation of banded cholesteric droplets subjected to a

temperature gradient when they coexist with their own isotropic liquid. I show that their angular rotation

velocity increases –in absolute value– when they are subjected to an additional AC electric field in the

conducting regime. This velocity increase is correlated with a prolate distortion of the droplets and the

probable presence of electrohydrodynamical toroidal circulation flows inside and outside the droplets. I

propose that the coupling between these flows and the director field is responsible for the increase of the

angular velocity of the texture. The origin of these flows is discussed qualitatively in the framework of the

leaky dielectric model by taking into account the generation of charges both in the bulk via a Carr-Helfrich

mechanism (Tarasov, Krekhow and Kramer model) and at the surface of the droplet (Taylor-Melcher

model).

PACS. 61.30.Jf Defects in liquid crystals – 61.72.Lk Linear defects: dislocations, disclinations – 81.40.Lm

Deformation, plasticity, and creep

1 Introduction

A cholesteric phase is a chiral nematic phase spontaneously

twisted in one space direction [1,2]. The Lehmann effect is

the continuous rotation of cholesteric droplets subjected

a e-mail: patrick.oswald@ens-lyon.fr

to a temperature gradient. Discovered in 1900 by Otto

Lehmann [3], this effect was re-observed recently both

when the droplets coexist with their own isotropic liq-

uid [4–6] and when they are dispersed in a different liquid

that partly dissolves the liquid crystal (LC) [7]. The first
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explanation of the Lehmann effect was given by Leslie in

1968 in terms of thermomechanical coupling [8]. Unfor-

tunately, this explanation fails to explain the more basic

experimental observations both in the coexistence region

[9,10] and in the emulsions (for a review see Ref. [11]).

Other models were recently proposed such as the melting-

growth model to explain the rotation in the coexistence

region [12] and a pure hydrodynamical model to explain

the rotation in the emulsions [13]. Despite these efforts,

the Lehmann effect is not yet completely understood [11]

and further experimental investigations are still desirable.

For this reason, I studied the role of an electric field

on the Lehmann rotation when the latter is applied in ad-

dition of the temperature gradient. My motivation came

from a recent observation by Auernhammer et al. about

the deformation of nematic droplets in an AC electric

field [14]. These authors showed that ’strong’ flows can

develop within the isotropic liquid around the droplets,

leading to their deformation. These flows resemble very

much the Marangoni flows observed around the droplets

in the Lehmann experiment with emulsified cholesterics

[11,15]. Because these flows are responsible for the droplet

rotation in that case, one can expect that a similar effect

exists in the coexistence region when an AC electric field is

applied to the droplets. The goal of this paper is to check

this prediction.

I mention that, surprisingly and to the best of my

knowledge, no systematic experiments were performed so

far with an AC electric field. On the other hand, several

experiments were conducted with a DC field, first in In-

dia [16,17] and more recently in Russia [18,19]. The re-

sult of all these experiments was that a DC electric field

can make the cholesteric droplets rotate provided it is

large enough. The rotation under DC field was initially

explained in terms of electromechanical coupling [16,17]

by analogy with the Leslie thermomechanical coupling [1]

but it was shown later that this coupling is much too small

to explain the observations [20]. Another explanation was

proposed recently by Tarasov et al. [21–24] in the frame-

work of an electrohydrodynamical (EHD) model. In this

model, charges are generated in the bulk of the droplets

due to the local divergences of the flexoelectric polariza-

tion. Under a DC electric field, the Coulomb force act-

ing on these charges generates flows inside the droplets,

making their texture rotate. This model predicts a linear

dependence between the rotation velocity and the field,

which is observed experimentally, and leads to rotation

velocities that are compatible with experiments. By con-

trast, this model based on flexoelectricity cannot lead to a

continuous rotation of the droplets under AC field because

of its linear dependence on the field.

The plan of the paper is as follows. In Section II, I give

the details about the experimental setup and the sam-

ples used in this study. The experimental results about

the droplet rotation velocity are given in Section III. In

this section, the role of frequency and amplitude of the

electric field is analyzed as well as the role of the concen-

tration of ionic impurities, droplet diameter, temperature

gradient and sample thickness. These results are then dis-

cussed in Section IV in the framework of two models. The
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first one is due to Tarasov, Krehkov and Kramer and only

considers the bulk charges generated by the Carr-Helfrich

mechanism [1,2] associated with the anisotropic conduc-

tion in the cholesteric phase. The second one is based on

the Taylor-Melcher model [25–27] and only accounts for

the surface charges. Conclusions are drawn at the end of

this section and new experiments are proposed to test the

relative importance of these two models.

2 Experimental details

The experimental setup used to impose the temperature

gradient is described in Ref. [4]. In brief, the sample is

sandwiched between two transparent ovens regulated in

temperature within 0.01◦C. A Leica Laborlux 12 Pol po-

larizing microscope equipped with a Hamamatsu C4742-

95 digital camera is used to visualize the droplets. The

temperature gradient G across the LC layer can be cal-

culated from the temperature difference ∆T between the

top and bottom ovens by using the formula G(K/m) ≈

1750∆T [4].

The samples are prepared between two transparent

ITO (Indium Tin Oxide) electrodes covered with a ∼

100 nm-thick polymercaptan layer. This layer imposes a

sliding planar anchoring to the cholesteric phase [28–30]

which almost completely dewets in the coexistence re-

gion in the presence of the isotropic liquid. This dewet-

ting favors the formation of droplets that have the shape

of slightly truncated spheres as revealed by confocal mi-

croscopy [6]. Two Nickel wires are used as a spacer to fix

the sample thickness which is precisely measured with a

USB4000 Ocean Optics spectrometer. The LC used is the

8CB (4-Octyl-4-biphenylcarbonitrile from Frinton Labora-

tories, USA) doped with 1.5wt% R811 (R-(+)-4-(2-methyl

butyl)phenyl-4-hexyloxybenzoate from Merck, Germany).

The cholesteric pitch at the solidus temperature is mea-

sured by using the Cano-wedge technique [1,2]: P ≈ 6 µm

(right-handed cholesteric phase). The ionic impurity TBAB

(tetrabutylammonium bromide from Sigma-Aldrich) is used

to dope the LC and increase its conductivity and its charge

relaxation frequency. A LCR meter HP 4284A is used to

measure the electric impedance of the samples from which

the dielectric constants and the charge relaxation frequen-

cies are deduced (Appendix A). Measurements are per-

formed with 5 different samples. Only sample 4 is doped

with 0.11wt% TBAB. For each sample the thickness and

the charge relaxation frequencies in the isotropic (f Ir ) and

cholesteric (f⊥r , f
‖
r ) phases are given in Table 1. All the

samples are sealed with NOA 61 UV glue. In spite of

this precaution, the samples degrade in contact with the

glue and the polymercaptan, their freezing range slowly

increasing in time, mainly during the first two weeks. On

the other hand, their charge relaxation frequencies do not

change much (by less than a factor of 2), even after three

months, meaning that the polymercaptan layer and the

UV glue do not introduce large amounts of ionic impuri-

ties.

3 Results

In this paper, I only analyze the rotation of the banded

droplets which are by far the most numerous. In these
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Table 1. Thickness of the 5 samples used and their charge

relaxation frequencies measured one day after filling with the

LC in the cholesteric and isotropic phases.

Sample n◦ d(µm) f
‖
r (Hz) f⊥r (Hz) fIr (Hz)

1 21 1700 1300 2150

2 21.5 1150 881 1650

3 21.6 1280 1000 1590

4 21.8 66700 49400 75600

5 39.8 1330 1000 1647

droplets the helical axis is perpendicular to the bands and

to the temperature gradient (for a complete description of

their texture, see [31]). These droplets form spontaneously

in the region of coexistence with the isotropic liquid, when

the temperature is close to 38 − 39◦C. Under the action

of the temperature gradient, the droplet (more rigorously,

the droplet texture) rotates at constant angular velocity ω,

clockwise (ω < 0) when the temperature gradient points

upwards (∆T > 0) and anticlockwise (ω > 0) when the

temperature gradient is reversed (∆T < 0), which is ex-

pected for a right-handed cholesteric LC (P > 0). Ex-

perimentally, ω depends on many parameters: the tem-

perature gradient G (or the difference temperature ∆T ),

but also the droplet radius R and the sample thickness d

(a) (b)

(c) (d)

Fig. 1. Same banded droplet photographed in natural light

when I successively impose V = 0 (a), V = 4 Vrms, f =

10 000 Hz (b) and V = 4 Vrms, f = 100 Hz (c) and V = 0

again (d). Note that in the meantime the droplet has rotated.

The three white dashed circumferences have a radius of 9.9 µm

and the black dashed circumference has a radius of 10.7 µm.

These photos show that the droplet radius increases when a

low-frequency field is applied and does not change, within the

experimental accuracy, when a high-frequency field is applied.

Note in addition that the contrast and the periodicity of the

bands change little when the field is applied, which indicates

that the texture remains globally unchanged. The fact that the

droplet recovers its initial radius when the field is switched off

also indicates that the volume of the droplet does not change

when the field is applied. Photos taken with sample 3.

(for a review, see [11]). In the present experiments, an AC

electric field E =
√
2V
d cos(2πf t) where V is the applied

voltage given in Vrms and f the frequency, is also applied

parallel to the temperature gradient. In this case, I show

that the droplet rotation also depends on the electric field

under certain conditions. I note now that in all of my ex-
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periments, the applied voltage is smaller than the critical

voltage necessary to unwind the helix (around 6.5 Vrms

in a 20 µm-thick sample and twice more in a 40 µm-thick

sample) [1,2]. This is important to not change too much

the internal texture of the droplets and the band periodic-

ity inside. In the following, I analyze separately the effects

of the different parameters, by starting with the electric

field which is the focal point of my study.

3.1 Role of the electric field

The main observation of this paper is that the droplets

flatten and rotate faster when they are subjected to a

low-frequency AC electric field. By contrast, they remain

unchanged and rotate at the same velocity as with no

field when a high-frequency field is applied. In the follow-

ing, this velocity is denoted by ω̄. The change of shape is

evidenced in Fig. 1 showing the same droplet before and

after the application of a low and high-frequency electric

field. The change of velocity is shown in video S1. At the

beginning of the movie, V = 0 and the droplet rotates

slowly clockwise under the sole action of the temperature

gradient (∆T = 2◦C). At time t = 300 s, a low-frequency

field of amplitude 4 Vrms and frequency 100 Hz is ap-

plied. In doing so, the droplet flattens and rotates faster,

always clockwise. Finally, the frequency is switched from

100 Hz to 10 kHz at time t = 600 s while maintaining

an amplitude of 4 Vrms. Under this condition, the droplet

recovers its initial radius and rotates clockwise as if no

field is applied. To better quantify this phenomenon, I sys-

tematically measure the angular velocity and the droplet

deformation Ds = (R1 −R2)/(R1 +R2) (with R1 and R2

being the principal radii of the droplet in the vertical and

horizontal directions) as a function of frequency f under

constant voltage (4 Vrms) for droplets of radius 10 µm in

sample 3. The deformation is calculated from formula

Ds =
1− (R/R∞)3

1 + (R/R∞)3
(1)

where R ≡ R2 is the apparent radius of the droplet mea-

sured on the photos and R∞ its radius measured at high

frequency. This formula is obtained by noting that 1) the

droplet volume V does not change when the field is ap-

plied and 2) the droplet remains quasi-spherical [6] with

the same radius as with no field at high frequency [31]

(see Fig. 1). As a consequence V = 4
3πR

3
∞ = 4

3πR1R
2,

yielding R1/R = R3
∞/R

3 from which Eq. (1) is deduced.

Fig. 2(a) shows that the angular velocity is constant

at high and low frequency (with a tendency to decrease at

very low frequency, in particular in the sample doped with

DTAB1) and is almost 9 times larger at low frequency than

at high frequency. In this experiment, the cutoff frequency

clearly coincides with the charge relaxation frequency, the

values of which in the two phases are indicated by the

vertical arrows in the figure. Fig. 2(b) shows that this ve-

locity change is also clearly correlated with a deformation

of the droplets into a prolate shape (Ds < 0) in the low-

frequency regime.

To confirm that the cutoff frequency is well given by

the charge relaxation frequency, I perform similar mea-

1 This is certainly due to the formation of Debye layers near

the electrodes that screen the field, as evidenced by the dielec-

tric measurements shown in the Appendix.
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Fig. 2. Angular velocity ω (a) and droplet deformation Ds

(b) as a function of frequency f . ∆T = 2◦C, V = 4 Vrms and

R = 10 µm and d = 21 µm. The three arrows from left to right

indicate, respectively, the values of f
‖
r , f⊥r and fIr –measured

the same day for more confidence. Sample 3 was used for these

measurements. The solid lines are fits with a law of the type

a+ b/(1 + cf2) where a, b and c are the fit parameters.

surements with a sample doped with a small quantity

of TBAB (sample 4). With this new sample, the charge

relaxation frequency is almost two orders of magnitude

larger than in the previous sample (sample 3). The new

measurements are shown in Fig. 3 together with those

of Fig. 2 by using the reduced frequency f/f̄r, where

f̄r = (f⊥r + f
‖
r + f Ir )/3 is an average charge relaxation fre-

quency. With this new variable the two velocity curves and

the two deformation curves superimpose. This confirms

4x10-2

3

2

1

0

−ω
  (r

ad
/s

)
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f / fr
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D
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(b)Ds
0

Δω

ω0

ω

Fig. 3. Angular velocity ω (a) and droplet deformation Ds

(b) as a function of the reduced frequency f/f̄r measured in

two samples with very different charge relaxation frequencies.

For sample 3 (filled circles), f̄r = 1 290 Hz and for sample 4

(empty squares), f̄r = 64 000 Hz. In these two experiments,

∆T = 2◦C, V = 4 Vrms and R = 10 µm. These two samples

have similar thicknesses d ≈ 21 µm.

that the droplets start to deform and rotate faster at the

transition between the dielectric and conducting regimes

when the frequency is decreased. Another important point

is that the values of the velocity jump∆ω = ω0−ω̄ and the

deformation D0
s measured on the plateau in the conduct-

ing regime are independent of the concentration of ionic

impurities that mainly fixes the cutoff frequency between

the two regimes.

I also measure the effect of the field amplitude on the

rotation velocity and the deformation of the droplets in
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Fig. 4. Angular velocity ω (a) and droplet deformation D0
s (b)

of droplets of radius R = 10µm as a function of the applied

voltage V in the conducting regime at f = 100 Hz. A small

temperature gradient is applied (∆T = 2◦C). Sample 3 was

used for these measurements. The solid lines are the best fits

with a law of the type a + bV 2, where a and b are the fit

parameters.

the conducting regime. I find that these two quantities

increase (in absolute value) quadratically with the applied

field. This is shown in Fig. 4 for droplets of radius R =

10 µm subjected to a temperature gradient ∆T = 2◦C.

3.2 Role of the droplet radius

In previous studies on the Lehmann effect, the rotation

velocity of the banded droplets was found to decrease

quadratically with their radius [11]. Does this dependence

6
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Fig. 5. Angular velocity as a function of the radius when V = 0

(ω̄) and V = 4 Vrms, f = 100 Hz (ω0). The solid lines are the

best fits with a 1/R2 law. Sample 1 with ∆T = 2◦C.

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

14121086420

 ΔT = 0°C
 ΔT = 5°C
 ΔT = 10°C

D
s
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0

Fig. 6. Deformation D0
s as a function of the radius R∞

measured in sample 3 for three different values of ∆T at

V = 4 Vrms and f = 100 Hz. The solid line is the best linear fit

passing through the origin of the full data set for R∞ < 10 µm.

The vertical line indicates the value of the half sample thick-

ness. The points on the right of this line correspond to confined

droplets.

also apply for the velocity increase in the conducting regime

when an electric field is applied ? To answer this question,

I measure the rotation velocity as a function of the droplet

radius in the absence (ω̄) and in the presence (ω0) of an

electric field in the conducting regime. Note that the radii

reported here are the apparent radii of the droplets mea-
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sured on the photos. These measurements are performed

in sample 1 at V = 4 Vrms and f = 100 Hz in the con-

ducting regime (see table 1). Typical velocity curves are

reported in Fig. 5 when ∆T = 2◦C, showing that ω0 and ω̄

both decreases as 1/R2. A direct consequence is that the

velocity jump ∆ω = ω0 − ω̄ also decreases as 1/R2. This

dependence is observed in all samples at all temperature

gradients.

I also measure the deformation D0
s on the plateau in

the conducting regime as a function of the radius. Data

obtained with sample 3 are shown in Fig. 6 for three dif-

ferent values of ∆T . In practice, D0
s is measured at 100 Hz

and the radius at 10 kHz in the dielectric regime (noted

R∞). This curve is noisy because of the difficulty to pre-

cisely measure the droplet radius. Nevertheless, the mea-

surement shows that the smaller the drop, the smaller

the deformation. This graph also shows that the defor-

mation strongly decreases when the droplets become con-

fined, with a diameter larger than the thickness, and touch

the two electrodes.

3.3 Role of the temperature gradient

It is known that the velocity ω̄ is proportional to the tem-

perature gradient [11]. Is it the same for the velocity jump

∆ω? To answer this issue, I systematically measure ∆ω in

samples 1-4 as a function of the temperature difference∆T

for droplets of radius R = 10 µm. The result is shown in

Fig. 7. This graph shows that ∆ω is odd in ∆T , meaning

that the rotation velocity reverses when the temperature

gradient is reversed. On the other hand, the absolute value

-3x10-2

-2

-1

0

1

2

3

Δ
ω

 (r
ad

/s)

-20 -10 0 10 20
ΔT (°C)

 sample 1
 sample 2
 sample 3
 sample 4

Fig. 7. Velocity jump ∆ω as a function of the temperature

difference ∆T measured in samples 1-4 of thickness 20 µm at

V = 4 Vrms.

t = 0

t = 60 s

20 μm

Fig. 8. Two droplets in sample 5 (of thickness ∼ 40 µm)

rotating in opposite directions at V = 4 Vrms and f = 100 Hz

when the temperature is uniform (∆T = 0). The left droplet

on focus under the microscope is attached to the top surface

and the right one –out of focus– is attached to the bottom

surface.
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of ∆ω is independent of ∆T so that ∆ω jumps from a neg-

ative to a positive value at ∆T = 0. Whence the question:

what happens at ∆T = 0 ? To answer this question, I im-

pose ∆T = 0 to sample 5 and observe the droplets under

electric field in the conducting regime at V = 4 Vrms and

f = 100 Hz. In doing so, I find that the droplets rotate in

both directions depending on which plate they are in con-

tact. More precisely, I observe that the droplets attached

to the bottom plate rotate clockwise, while the others at-

tached to the top surface rotate anti-clockwise. This is

shown in Fig. 8 and the corresponding Video S2. In this

figure and this video, the left droplet on which I focus is

attached to the top plate and rotate anti-clockwise, while

the other –which is out of focus– is attached to the bot-

tom plate and rotates clockwise. The movie shows, in ad-

dition, that the two droplets attract, approach and finally

coalesce when they contact each other. It is likely that

this attractive force is hydrodynamic in nature and due to

the convective rolls observed by Auernhammer et al. [14]

in the isotropic liquid around the droplets. The fact that

all the droplets rotate in the same direction when a tem-

perature gradient is applied now explains easily. Indeed,

imposing a temperature gradient forces the droplets to nu-

cleate on the cold plate. As a consequence, all the droplets

are in contact with the bottom plate when ∆T > 0 and

rotate clockwise, while they are all in contact with the top

plate and rotate anti-clockwise when ∆T < 0.

I also find that the deformation D0
s measured in the

conducting regime is independent of the temperature gra-

7x10-2
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5

4

3

2

1

0

−ω
 (r

ad
/s)

86420
V (Vrms)

 

Fig. 9. Velocity ω measured with droplets of radius R = 10 µm

in sample 5 of thickness ∼ 40 µm as a function of the applied

voltage V at f = 100 Hz and ∆T = 5◦C. The best fit (solid

line) with a power law of the type a+bV ν gives ν = 2.06±0.16.

This shows that ∆ω increases quadratically with the electric

field.

dient within the experimental errors. This is shown in

Fig. 6 and in Fig. 10.

In conclusion, the velocity increase ∆ω and the defor-

mation D0
s are mainly due to the electric field, the tem-

perature gradient only selecting the sense of rotation of

the droplets by just imposing on which plate they are in

contact.

3.4 Role of the sample thickness

It is already known that the velocity ω̄ of banded droplets

is independent of the sample thickness [32]. I observe the

same in the present experiments. However, the velocity

increase ∆ω should depend on the thickness if it is due

to the flows observed by Auernhammer et al. [14]. Indeed,

the thicker the sample, the stronger must be the flows, and

the faster the droplets should rotate, if this interpretation

is correct.
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Fig. 10. Deformation D0
s as a function of the droplet radius

R measured for three different temperature gradients at V =

8 Vrms and f = 100 Hz in sample 5 of thickness ∼ 40 µm.

The solid red line is the best linear fit passing through the

origin of the full data set for R < 18 µm. The vertical line

indicates the value of the half sample thickness. The points

on the right of this line correspond to confined droplets. The

dashed blue line shows the same curve obtained with sample 3

of thickness ∼ 20 µm under the same electric field (V = 4 Vrms

and f = 100 Hz) and similar temperature gradients.

To check this point, I prepare a sample twice thicker

than the rest (sample 5 of thickness 40 µm, table 1) and I

observe that ∆ω still changes quadratically with the ap-

plied voltage (Fig. 9). I then measure D0
s as a function of

R∞ and ∆ω as a function of ∆T in the conducting regime,

by taking V = 8 Vrms and f = 100 Hz to keep the same

electric field as in Figs. 6 and 7. The results are shown

in Figs. 10 and 11. A comparison with the average data

obtained from the 20 µm-thick samples (represented by

the dashed lines in the two figures) shows that D0
s and

∆ω increase in absolute value by a factor of 1.3 and 2, re-

spectively, when the thickness doubles at constant electric

field. This confirms that the flows are certainly responsible

8x10-2
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4

2
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Δω
 (r

ad
/s)

1086420
ΔT (°C)

Fig. 11. Absolute value of the velocity jump |∆ω| measured

with droplets of radius R = 10 µm in sample 5 of thickness

∼ 40 µm as a function of the absolute value of the temperature

difference |∆T | at V = 8 Vrms and f = 100 Hz. Within the

experimental errors, |∆ω| is independent of |∆T |, of average

value (solid red line) about twice larger than that measured in

the 20 µm-thick samples (dashed blue line) at V = 4 Vrms and

f = 100 Hz. Each error bar indicates the standard deviation

over a dozen measurements.

for the increase of the rotation velocity of the droplets un-

der the electric field in the conducting regime. The origin

of these flows is discussed in the next section.

4 Discussion

The first remark concerns the symmetries. Indeed, it has

been shown in Ref. [31] that the director field of a spherical

banded droplet is invariant with respect to a π rotation

about a horizontal axis parallel or perpendicular to the

bands. For this reason, such a droplet cannot rotate in

average under an AC electric field if it is at equal distance

from the electrodes. The only possibility to observe a rota-

tion is to break this C2 symmetry. This is indeed the case

experimentally because the droplets are always in contact
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and, for this reason, slightly truncated, with one of the

two plates limiting the sample.

The next question concerns the origin of the rota-

tion. For the pure Lehmann effect (velocity ω̄), I refer

to Ref. [11,12] for a discussion on its origin. As for the

velocity jump ∆ω observed under electric field in the con-

ducting regime, the present experiments suggest that it is

due to the EHD flows. This is quite plausible since the ve-

locity field couples to the director field to make the texture

rotate with the angular velocity:

ω =

∫∫∫
drop

(γ2An + γ1[(v · ∇)n−Ω× n]) · δnδθ d3r∫∫∫
drop

γ1( δnδθ )2d3r
. (2)

In this formula, δn
δθ = ∂n

∂θ − ez × n, by denoting by ez

the unit vector along the vertical z-axis and θ the polar

angle in cylindrical coordinates (r, θ, z), Ω = 1
2∇×v is the

local rotation rate, A is the symmetric strain rate tensor

of component Aij = 1
2 (vi,j + vj,i) and γ1 ≡ α3 − α2 and

γ2 ≡ α3 + α2 are two viscosities of the cholesteric phase

(with α2 and α3 two of the five Leslie viscosity coefficients

[1,2]).

This general formula is derivated in Ref. [13] and re-

mains valid when an electric field is applied as can be

easily checked by adding the electric energy to the elastic

and surface anchoring energies in the derivation and by

replacing the elastic molecular field h by h + hE , where

hE = ε0(ε‖ − ε⊥)(n×E)E is the so-called electric contri-

bution to the molecular field. Note that the flexoelectric

terms disappear under AC electric field because they are

linear in E, and so they vanish on average over time.

In practice, the flows can have two origins, depending

of the type of charges considered.

G

Fig. 12. Sketch of the flow field around a droplet observed by

Auernhammer et al. by using tracer colloids (from Ref. [14]).

In the model of Tarasov, Krakhov and Kramer [21,22]

the negative and positive charges separate in the bulk of

the cholesteric phase in the conducting regime because of

the anisotropy of the electrical conductivity. The sample

remains electrically neutral in average. This is the Carr-

Helfrich effect, responsible for the convective instabilities

in a nematic slab under electric field in the conducting

regime [1,2]. Under the action of the electric field, these

charges experience a Coulomb force, which generates flows

in the cholesteric phase. These flows are responsible for

the drift of cholesteric fingers under AC electric field in

the conducting regime [21,33] and could explain, at least

in part, the velocity jump ∆ω in the present experiments.

This model is plausible as it predicts that v –and so ∆ω

according to Eq. (2)– must change as [21,22]

∆ω ∝ E2

1 + f2/f2r
(3)

where fr is the typical charge relaxation frequency. Such

a dependence on f is indeed observed experimentally (see

Fig. 2(a)), as well as the quadratic dependence on the

electric field (see Fig. 4(a) and Fig. 9).

On the other hand, this model ignores the deformation

of the droplets. The latter is due to the presence of charges
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Fig. 13. Deformation Ds (a) and maximum velocity vM (b)

predicted by the Taylor-Melcher model by taking the values

of the parameters corresponding to sample 3. In the graphs,

the curves from top to bottom have been calculated by taking

M = 0.5, 1, 2, 10. The three arrows from left to right indicate

the values of f
‖
r , f⊥r and fIr , respectively.

at their surface. Indeed, according to the Taylor-Melcher

model, positive and negative charges also appear on the

surface of the droplet, with a net charge remaining equal

to 0 as in the bulk. The action of the field on these surface

charges generate electric stresses across the cholesteric-

isotropic interface, which not only leads to deformation of

the droplets but also generates flows in and around the

droplets, which should add to the flows created by the

bulk charges.

The flow out of the droplets was observed experimen-

tally by Auernhammer et al. [14] and is schematically

sketched in Fig. 12 when the temperature gradient points

upwards (droplet in contact with the bottom electrode).

In this case, the direction of flow is the same as in the

cholesteric emulsion experiments reported in Ref. [13] when

the temperature gradient points upwards, which was shown

to produce a rotation in the same sense as in the usual

Lehmann effect. In practice, the confinement of the droplets

between the two electrodes must alter the distribution of

the electric field and the associated flows. This is shown in

recent numerical simulations of confined two-dimensional

isotropic droplets [34]. This effect could explain why the

deformation D0
s and the velocity jump ∆ω depend on the

thickness in my experiments.

It is also important to note that the Taylor-Melcher

model predicts the good order of magnitude for both Ds

and the velocity, of the order of a few µm/s according to

Auernhammer et al. [14]. To check this point, I plot the

curve of the deformation Ds as a function of frequency

f in Fig. 13(a) for a droplet of radius R = 10 µm under

an electric field E = V/d = 2 105 V/m (corresponding to

V = 4 Vrms when d = 20 µm), by using the formula [27]

Ds =
9ε0εI
16γ

ΦsRE
2 (4)

valid for a non-confined droplet in a uniform electric field.

In this formula, ε0 is the permittivity of free space, γ is

the surface tension and Φs is given by



P. Oswald: Role of an oscillatory electric field on the Lehmann rotation of cholesteric droplets 13

Φs = 1− T (11M + 14) + T 2[15(M + 1) + S(19M + 16)] + 15T 2(1 +M)(1 + 2S)f2/f I 2r
5(1 +M)[(2T + 1)2 + T 2(S + 2)2f2/f I 2r ]

(5)

where S ≡ εchol/εI , T ≡ σI/σchol, M ≡ µchol/µI with µ

the viscosity, and f Ir = σI/2πε0εI . To plot this curve I

assume that εchol ≈ (ε‖+ ε⊥)/2, σchol ≈ (σ‖+ σ⊥)/2 and

I use the values of the parameters measured in sample 3,

viz. ε‖ = 13, ε⊥ = 7.5, εI = 9.6 and σ‖ = 6.37 10−7 S/m,

σ⊥ = 4.8 10−7 S/m and σI = 6.14 10−7 S/m. The sur-

face tension is given by Faetti and Palleschi in 8CB :

γ = 0.95 10−5N/m [35]. It turns out that the curve calcu-

lated with Eqs. (4) and (5) depends little on the value of

the viscosity ratio M and is very close to the experimental

curve of Fig. 2(b) in spite of the fact that these formulas

do not take into account the confinement of the droplet.

This good agreement is certainly a coincidence. However,

there is no doubt that this model leads to the correct or-

der of magnitude and is pertinent, as already underlined

by Auernhammer et al. [14].

This model also predicts that the maximum velocity

at the surface of the droplet is frequency dependent, given

by [27]

vM =
9ε0εIE

2R

20µI(1 +M)

T (TS − 1)

(2T + 1)2 + T 2(S + 2)2f2/f I 2r
(6)

The curve of vM as a function of f is shown in Fig. 13(b).

This curve shows the same behavior in frequency as the

experimental curve for ∆ω, which is expected since ∆ω

is proportional to vM according to Eq. (2). The velocity

is also of the order of a few µm/s, which is compatible

with the observations of Auernhammer et al. [14]. As a

consequence, the Taylor-Melcher model could also explain

the rotation of the droplets under AC electric field in the

conducting regime.

Another crucial point is that, in the two models, only

the conductivity ratios enter into the calculations. If all

the conductivities change in the same way with the con-

centration of ionic impurities, which is likely at small con-

centrations, this could also explain why the deformation

D0
s and the velocity jump ∆ω are experimentally indepen-

dent of the concentration of ionic impurities (see Fig. 3).

For the moment, it is difficult to say which mechanism

is the most important. However, there is no doubt that

the surface charges are important to explain the defor-

mation of the droplets. The confinement effects are also

important to explain the thickness dependence of both the

deformation and the rotation velocity of the droplets.

In the future it would important to solve numerically

this problem by taking into account these two mecha-

nisms. This is a very difficult task because of the com-

plexity of the equations. A way to simplify the problem

would be to calculate separately the velocity fields due

to the Carr-Helfrich and Taylor-Melcher mechanisms. The

contribution of each of them to the rotation velocity could

then be calculated from the general equation (2) and com-

pared. In these calculations, an additional simplification

would be to consider that the director field is the same as

at equilibrium, without flow.
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It would also be interesting to perform the experiments

with other liquid crystals. Indeed, the Taylor-Melcher model

predicts that depending on the values of the ratios of the

dielectric constants and conductivities, the electric field

can deform a droplet into a prolate or oblate ellipsoidal

shape. With 8CB, an oblate shape is observed and the

flows make the texture rotate in the same direction as in

the Lehmann effect. As a consequence the two effects add.

By contrast, a prolate shape should produce an opposite

effect since the velocity changes sign. In that case, the

electric field should make the texture rotate in the oppo-

site direction of the Lehmann effect. It turns out that I

observe such a phenomenon with a sample of MBBA (p-

methoxybenzylidene-p’-butylaniline) doped with 1.5 wt%

R811. In this mixture, the droplets deform very little but

slow down and start to rotate in the opposite direction

when an increasing electric field is applied. Unfortunately,

the experiments with MBBA are complicated because the

texture of the droplets change under electric field, the he-

lix tending to align along the field because of the nega-

tive dielectric anisotropy of the LC. For this reason, it is

difficult to determine whether this effect is due to a tex-

ture change or to a reversal of the flows. In addition, the

polymercaptan dissolves in MBBA, so that the transition

temperature of the samples constantly decreases. For this

reason, the droplets melt during the measurements, which

become very imprecise. A solution to solve this issue could

be to change the surface treatment, for instance by us-

ing the azobenzene polymer poly(ethylene oxide-b-11-[4-

(4-butylphenylazo)phenoxy]-undecyl methacrylate which

becomes sliding under UV [36]. It would also be interest-

ing to make the dielectric anisotropy of the LC vanish,

for instance by mixing MBBA with a small amount of

8CB (or 5CB [37]), to avoid texture changes under elec-

tric field. Finally, it would be interesting to visualize the

flows by doping the LC with colloids, as in the experi-

ments of Auernhammer et al. [14]. Such experiments are

planed for the future.
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A Measurement of the charge relaxation

frequency

In the leaky dielectric model, the liquid crystal is treated

as a dielectric medium with an Ohmic resistance. Let ε be

the dielectric constant and σ the conductivity of the LC.

The charge relaxation frequency

fr =
σ

2πε0ε
(A.1)

defines the limit between the conducting regime (f < fr)

and the dielectric regime (f > ff ). It can be calculated if

the resistance Rp = d
σS and the capacitance Cp = ε0ε

S
d =

εC0 of the sample are known (Fig. A.1), by denoting by d

the sample thickness, S its surface area and C0 its capac-

itance without the LC.

To obtain Cp and Rp, the complex impedance R+ jX

of the sample is measured as a function of frequency f and



P. Oswald: Role of an oscillatory electric field on the Lehmann rotation of cholesteric droplets 15

Rp Cp

RD CD

RITO

V

Fig. A.1. Electric representation of the sample. The LC layer

is modeled by a resistance Rp in parallel with a capacitance

Cp. The resistance RD and the capacitance CD are introduced

to simulate the effect of the Debye layers that form at low

frequency close to the electrodes [40]. The two ITO layers are

replaced by the resistance RITO.

is then fitted with formulas

R = RITO +
Rp

1 + 4π2R2
pC

2
pf

2
+

RD
1 + 4π2R2

DC
2
Df

2
(A.2)

X = −
2πR2

pCpf

1 + 4π2R2
pC

2
pf

2
− 2πR2

DCpf

1 + 4π2R2
DC

2
Df

2
(A.3)

Two examples of global fit performed with IGOR pro (Ver-

sion 6.37. WaveMetrics, Inc.) are shown in Fig. A.2. Their

good quality is a clear indication that the leaky dielectric

model is well suited to describe the electric behavior of

the LC when it is pure (Fig. A.2a) or doped with TBAB

(Fig. A.2b). From each fit, the values of Rp and Cp are de-

duced from which fr = 1/(2πRpCp) is calculated as well

as the dielectric constant ε = Cp/C0 and the conductivity

σ = 2πεfr.

In practice, these measurements are performed for each

sample in the isotropic liquid just above the liquidus tem-

perature, and in the cholesteric phase just below the solidus
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Fig. A.2. (a) Complex impedance of sample 3 measured in the

planar orientation just below the solidus temperature and their

fits with Eqs. (A.2) and (A.3) using a global fit procedure. From

the fit parameters RITO = 100 Ω, Rp = 147 kΩ, Cp = 843 pF,

CD = 726 nF, RD = 4.4 kΩ, I calculate f⊥r = 1280 Hz and

ε⊥ = 7.6, knowing that C0 = 111 pF; (b) Complex impedance

of sample 4 (doped with TBAB) measured in the isotropic

liquid just above the transition and their fits with Eqs. (A.2)

and (A.3) using a global fit procedure. From the fit parameters

RITO = 80 Ω, Rp = 1.96 kΩ, Cp = 1074 pF, CD = 102 nF,

RD = 0.5 kΩ, I calculate fIr = 75600 Hz and εI = 9.6, knowing

that C0 = 112 pF.

temperature. In the latter case, measurements are per-

formed at low voltage (0.5 Vrms) when the cholesteric

phase is in planar orientation (director perpendicular to

the field) and at large voltage (20 Vrms) when the cholesteric
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phase is completely unwound and in homeotropic orienta-

tion (director parallel to the field). From these measure-

ments, I obtain the values of fr, ε and σ in the isotropic

liquid (f Ir , εI and σI) and in the cholesteric phase under

planar (f⊥r , ε⊥ and σ⊥) and homeotropic (f
‖
r , ε‖ and σ‖)

orientations. For 8CB, I find that in all samples ε⊥ ≈ 7.5,

ε‖ ≈ 13 and εI ≈ 9.6. These values compare well with

the ones given in the literature [38,39]. The values of fr

for the different samples are given in Table 1. Contrary to

the dielectric constants, they depend on the purity of the

sample and its content in ionic impurities.
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