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MAIN TOPICS OF THE NUMHYP–2015’ DISCUSSION

SESSION

Denys Dutykh & Laurent Gosse

Abstract. — Three main topics were raised in this discussion session which
took place on the 19th of June at NumHyp–2015 meeting: nonlinear resonance
for 1D systems of balance laws, dispersive extensions of standard hyperbolic
conservation laws, and the validation of weakly dispersive shallow water wave
models. An introductory overview with many bibliographic references is pro-
vided for all these topics. A numerical strategy, based on kinetic formulation,
able to overcome resonance issues is presented as well as a Well-Balanced (WB)
technique for Vlasov–Fokker–Planck equations are outlined. This WB scheme
relies on spectral representation of stationary solutions.

Résumé. — Trois sujets principaux ont été soulevés lors de la session de
discussions qui a eu lieu en début d’après-midi le 19 juin 2015 au colloque
NumHyp–2015 : résonances nonlinéaires pour les systèmes 1D des lois de
conservation, la prise en compte des effets dispersifs dans des lois de conser-
vation et la validation des modèles faiblement dispersifs pour la propagation
des ondes longues. Une brève révu de la bibliographie est donnée pour tous les
sujets abordés. Une stratégie numérique, basée sur la formulation adaptée, qui
permet de contourner les résonances nonlinéaires est présentée. En plus, nous
décrivons une technique bien équilibrée pour les équations de Vlasov–Fokker–
Planck qui est basée sur la représentation spéctrale des solutions stationnaires.
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Key words and phrases. — Conservation and balance laws; well-balanced scheme;

nonlinear resonance; water waves; dispersive wave propagation.
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1. Nonlinear resonance: issues and advances

In the context of 1D scalar balance laws, nonlinear resonance, i.e. superim-

position and mutual reinforcement of convective waves with a source term of

bounded extent is an old problem: see for instance, [1, 4, 76, 21, 38, 40, 49,

53, 52, 79, 54, 55, 59, 60, 62]. Just to scratch the surface of this delicate

subject, let us say that nonlinear resonance occurs when convective waves can

see their speed of propagation vanish inside a given domain where the source

term is active, possibly yielding strong amplification effects, or even general

blow-up of the weak solution.

1.1. Non-interacting asymptotic states and Temple system. — For

concreteness, consider a 1D convex scalar balance law, where g′(u) has no

definite sign,

∂tu + ∂xf(u) = k(x)g(u), t, x ∈ R
+
∗ × R, (1)

u(t = 0, x) = u0(x) ∈ L1 ∩BV (R).

The (possibly position-dependent) coefficient k(x) is not anecdotal: indeed, it

rules somehow the large-time behavior of (1) by making it switch
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– from a bunch of (possibly weak) traveling waves connecting (isolated)

zeros of g when k(x) ≡ C ∈ R
+, a given constant, see e.g. [34, 50, 64],

– to an ordered “scattering state” when 0 6 k ∈ L1(R), described in

[59, 61], consisting in a “steady wave”, solution of the stationary equa-

tion, close to the origin, surrounded by homogeneous, non-interacting

convective waves far away from the support of k(x).

Obviously, the “steady wave” belonging to the scattering state can be seen as

a traveling wave with zero speed. By following the canvas suggested in [39, 7],

one reformulates (1) as a peculiar 2×2 Temple system [58], just by introducing

a fake variable a(x), such that ∂xa = k. Requiring k to be integrable means

that a ∈ BV (R), the functions of bounded variation.

∂tu + ∂xf(u) − g(u)∂xa = 0, (2)

∂ta = 0. (3)

Such a reformulation is the central topic of [55], and more tacitly of [83,

Eqn. (3.1)]. It is the main stepping stone to build very accurate well-balanced

schemes because it is homogeneous, hence given a reliable Riemann solver

including the non-conservative product g(u)∂xa, the Godunov scheme will

result exact at numerical steady-state. Such a Godunov scheme typically

contains one supplementary, very linearly degenerate, wave associated to the

null eigenvalue.

According to Glimm–Sharp terminology [39], such a reformulation of

position-dependent balance laws (1), given a source term of bounded extent,

consists in handling it as a countable collection of “ local scattering centers”

(that is to say, Dirac masses where the source’s effects are localized). This

meets with the usual picture of building a numerical scheme from the juxtapo-

sition of self-similar Riemann profiles, which match the asymptotic behavior

(indeed, “a Riemann solver is Moeller’s outgoing wave operator W+ of a

scattering problem”, [37]).

1.2. Non-strict hyperbolicity and wave trapping effects. — A numer-

ical scheme involving (2) as its building block raises the question of its stability;

for instance, starting from a smooth k(x), hence a smooth a(x), and its corre-

sponding piecewise-constant approximation P∆xa, given a mesh-size ∆x > 0,

what happens to a sequence of solutions uε, aε, where aε → P∆xa as ε → 0?

This question (of continuous dependence with respect to data) was eluded in

[55, 83, 46] but fully addressed in [41, §3.3], relying on previous estimates in

[65] and convenient BV bounds.
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Compactness holds under the “non-resonance assumption”, roughly f ′(u) 6=
0 (see also [67] or even [48]), essentially for two reasons:

1. In order to take full advantage of Temple’s theory, i.e. Riemann invariants

seeing their total variation decay in time [58], one needs the mapping

(u, a) 7→ (w, a), with w the Riemann invariant written in [41, Eqn. (37)],

to be a diffeomorphism.

2. Later, to exploit [65] and give a sense to the product g(u)∂x a when

a is discontinuous, one needs “outgoing traces” which are available if

characteristic velocities don’t vanish.

Worse, it was found that L1 stability estimates, with respect to both time and

data, blow up when resonance occurs because some constants are of the order

of |1/f ′|: see [4, 2, 48].

For 1D nonlinear systems of conservation laws, both Glimm’s theory and L1

stability mostly rely on strict hyperbolicity, which constraints the correspond-

ing dynamics to decay, as times passes, from a very complex picture of inter-

acting elementary waves, to a well-ordered, non-interacting, scattering state

involving only non-approaching waves. Such a decay takes place as Glimm’s

interaction potential slowly decays, and both information and entropy are dissi-

pated in shocks [61, 38]. Instead, nonlinear resonance corresponds to a formal

merging of both the static and convective characteristic families in (2), namely

f ′(u) = 0. The classical Lax’s theorem doesn’t ensure existence and uniqueness

for the Riemann problem. In the scalar case, despite non-uniqueness issues, a

quite complete catalog of Riemann solutions was published in [55], together

with numerical applications in [68]. When it comes to general 1D systems,

the picture worsens: see [40, 53, 52, 79, 54]. Stability was further studied in

[60, 49].

In [15, Ex. 11, page 71], Bressan presents an illuminating counter-example

which reveals why one should not expect any continuous dependence of BV

solutions to a simple system of the form (2) when strict hyperbolicity fails (in

the sense that eigenvalues coalesce). Accordingly,

∂tu + ∂xf(a, u) = 0, f(a, u) = 8au− u2,

∂ta = 0,

models car traffic on a highway, with a(x) the number of lanes opened. Eigen-

values are Λ = {0, 8a − 2u}, so resonance occurs when u = 4a. If some repair

works take place, a(x) switches from 2 to 1: it is thus possible to cook up

an admissible Riemann fan, containing a resonant state a = 1, u = 4 and

continuous dependence with respect to initial data is violated.
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A more favorable situation emerges when only a linearly degenerate field

superimposes with the standing wave: this is essentially what is discussed

in [28]. Ill-posedness seems to be confined to resonance between genuinely

nonlinear fields and the standing wave. Besides, in the scalar case, it appears

that an astute change of variables, originally proposed in [62], allows to set up a

resonant wave front tracking algorithm [57], or a Godunov scheme [4, 55, 68].

1.3. A numerical case-study for isentropic Euler with γ = 3. —

Hereafter, we follow [42, Ch. 6 pp. 107-110] (see also [74]) in order to take

fully advantage of a particular kinetic formulation for a genuinely nonlinear,

non-Temple, hyperbolic system of balance laws. Let the initial-boundary value

problem (IBVP) be posed in x ∈ (−1, 1), t > 0,

∂tρ + ∂x(ρu) = 0, (4)

∂t(ρu) + ∂x
(
ρu2 +

ρ3

12

)
+ ρ∂xφ +

ρu

τ(x)
= 0, (5)

where the electric field E = −∂xφ and φ satisfies a repulsive Poisson equation:

λ(x)∂xxφ = ρD(x) − ρ, (6)

φ(t, x = −1) = 0,

φ(t, x = 1) = −V > 0.

The positive parameters τ(x), λ(x) are the damping coefficient and scaled

Debye’s length: they are related to the material inside which electronic con-

duction takes place. Generically, a strongly doped material induces both a

small τ and λ. The doping profile is given by ρD: a rescaling of the system

allows to get ρD ∈ (0, 1). Thus, in a n+nn+ device, we should always get

discontinuous parameters like (for instance) in [42, page 235]. The pressure

law with adiabatic exponent γ = 3 has the nice property that the quasi-linear

system (4), (5) admits a “pure” kinetic formulation, called “K-multi-branch

entropy solution” after [14]. Here, we just pick K = 2 in order to realize the

moments ρ, ρu, so the kinetic density f(t, x, v) solves,

∂tf + v ·∂xf + E∂vf = −∂vvµ, −∂vvµ = lim
ε→0

1

ε

(

MK=2(v; ρ, ρu) − f
)

,

and the “2-branch Maxwellian” is given by two Heaviside functions, (see first

pages of [14])

MK=2(v; ρ, ρu) = Y (v − u−) − Y (v − u+), u± = u ± ρ

2
, (7)
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where u± are Riemann invariants for (4), (5):

ρ = u+ − u−, ρu =
1

2

(
|u+|2 − |u−|2

)
.

This property was extensively used in [81] to prove regularity properties for Lp

weak solutions of the homogeneous isentropic Euler system with γ = 3. Here,

the main goal with (4)–(6) is to derive the so–called “current-voltage” relation

for the device under consideration: that is to say, a curve giving the stationary

circulating current as a function of the potential drop,

V 7→ Jstat(x), with Jstat(x) = ρu(x) is the (constant) stationary current.

Hence it is highly desirable to have at hand a method able to deliver a constant

momentum at numerical steady-state: this is a similar situation to a “shallow

water system with a ρ-dependent topography”. However, such methods do not

really exist, see for instance [8].

1.4. A fictitious (but resonant) model of 1D semiconductor. — We

intend to build the numerical method on the following approximate kinetic

formulation,

∂tf + v · ∂xf + E(t, x)∂vf =
∑

n∈N

(

MK=2(v; ρ, ρu) − f
)

δ(t − n∆t), (8)

E = −∂xφ,
first when τ → +∞ (no damping), which reduces to a time-marching, splitting

algorithm:

– In the open layers (tn, tn+1), a collision-less Vlasov equation is solved,

– At discrete times tn = n∆t, f is projected onto its local 2-branch

Maxwellian (7).

– Finally, the self-consistent Poisson equation is solved by standard finite-

differences.

The resulting well-balanced numerical fluxes are given for any K ∈ N in [42,

(6.31) p. 110].

ρ(t, x) =

∫

R

f(t, x, v) dv = (u+ − u−)(t, x),

u(t, x) =

∫

R
vf(t, x, v) dv

∫

R
f(t, x, v) dv

=
(u+ + u−)(t, x)

2
.

Let f(ρ, ρu) (or equivalently f(u+, u−)) stand for the flux function in (4), (5):

f(ρ, ρu) =

∫

R

(v, v2)MK=2(v; ρ, ρu) dv =

( |u+|2 − |u−|2
2

,
(u+)3 − (u−)3

3

)

.
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A kinetic flux-vector splitting scheme rests on the definition of f± as follows,

f±(ρ, ρu) =

(
∫ ±max(0,±u+)

0
−
∫ ±max(0,±u−)

0

)

(v, v2)MK=2(v; ρ, ρu) dv

Letting ~mn
j = (ρnj , ρu

n
j ) stand for the numerical approximation of the moment

vector,

~mn+1
j = ~mn

j − ∆t

∆x

[

(F−
K=2)j+ 1

2

− f−(~mn
j ) + f+(~mn

j )− (F+
K=2)j− 1

2

]

, (9)

with ~u = (u+, u−), ∆φ be Riemann invariants and potential jump at each

interface,






f±(~m) = f(±max(0,±~u)), → there is a typo in [42, (6.31)],

F+
K=2 = f

(√

max
(
0, (max(0, ~uleft)2 − 2∆φ

))

−f
(

min(max(0,−~uright),
√

max(0,−2∆φ))
)

,

F−
K=2 = f

(

−
√

max
(
0, (min(0, ~uright)2 + 2∆φ

))

−f
(

−min
(
max(0, ~uleft),

√

max(0, 2∆φ)
))

.

(10)

In (10), each F±
K=2 contains 2 terms: the first one is the standard well-balanced

flux, where the effects of the potential jump ∆φ is included in the convective

terms. This first term can be derived with standard considerations without

invoking any kinetic formulation. However, there’s now a second term, specific

to the kinetic formalism, which accounts for particles whose kinetic energy is

too low to pass through the potential barrier; hence they are reflected (like

in [74, p. 210]) and this term strongly contributes when nonlinear resonance

(that is, sonic points) occurs within numerical simulations of the tricky model

(4)–(6).

– the kinetic formulation involving the Vlasov model (8) leads to stationary

regimes usually endowed with 2 sonic points: one in a rarefying region

located inside the channel, the other inside the drain, but attached to a

strong transonic shock: see Fig. 1. Despite the well-balanced character

of the scheme, there is a strong spike in the stationary current located at

the place of the transonic shock (the Mach number 2u
ρ

passes from 8.5 to

0.2), because of shock fitting on the Cartesian grid (which is coarse, with

26 points in the interval (−1, 1)).

– This feature shows the shortcomings of “ lake at rest ” ideas, since imposing

zero volt at the edges of the device V = 0 brings a perfect numerical

(smooth) solution: see Fig. 2.
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Figure 1. Numerical results for V = −0.15, λ = 0.15, 0.5 and no damping.

Figure 2. Numerical results on ρ, ρu for V = 0, λ = 0.15, 0.5 and no damping.

– Now, the damping term ρu
τ

is helpful in order to tame the dynamics,

as it cancels sonic shocks for moderate values of V . A simple manner to

include the damping effect into the kinetic scheme consists in substituting

the “potential jumps” in (10) with “augmented potential jumps” which
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Figure 3. Numerical results for V = −0.9, λ = 0.15, 0.5 and damp-

ing τ ≡ 1.

contain a supplementary term − 1
2τ (uleft + uright). However, this cannot

handle discontinuous dampings τ(x). For uniform, constant dampings,

a perfect stabilization emerges, without sonic shocks: see Fig. 3 where

τ ≡ 1 and V = −0.9.

Despite its simplicity, such an example can be extended to more involved

moment systems based on the formalism of K-multibranch solutions, but one

quickly needs the so–called “Markov moment inversion”, see [43, page 1621], in

order to express numerical fluxes. Results in [60] indicate that one may expect

stability in resonant cases only when the source (a “sink ”) dissipates strongly

in order to prevent trapped waves from being amplified beyond control.
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2. Disperse flows and hyperbolic-kinetic couplings

Transport of pollutants in a river can be modeled, in first approximation,

by means of a supplementary conservation law which induces a contact dis-

continuity moving at the material velocity in the Riemann problem. However,

the characteristic scale of the considered particles suggests that a hyperbolic-

kinetic coupling is probably more adequate, as it is of current use in several

spray modelings and simulations. We follow [17, 18, 45, 72, 73] and [42,

Ch. 12].

2.1. Sediment transport in shallow water models. — An elementary

1D coupled system of pollutant transport [51] (see also [5, 22]) is described,

∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + ρ2

2 ) =
∫

R
(v − u)f(t, x, v) dv,

∂tf + v · ∂xf = ∂v
[
(v − u)f − ∂vf

]
,

inspired by e.g. [45], and where gravity potentials or various dimensional pa-

rameters were ignored for simplicity. The kinetic density f(t, x, v) stands for

the disperse, rarefied phase, the pollutant, explicitly depending on a micro-

scopic velocity variable, v ∈ R. Beside the usual Fokker–Planck friction term,

the right-hand side of the kinetic equation displays an acceleration term in-

volving the macroscopic velocity u(t, x), so that pollutants evolve according

to both a drift effect of the underlying flow and a stochastic diffusion in v.

Both macroscopic and microscopic descriptions are weakly coupled by means

of their right-hand sides which renders a drag effect of one phase onto the

other. Within a standard spitting approach, Fokker–Planck and shallow wa-

ter models are solved independently of each other, so they inevitably involve

position-dependent coefficients inside their respective source terms,

u(tn, x) in the kinetic equation,

f(tn, x, ·) in the momentum equation,

indicating that a well-balanced strategy may be desirable.

2.2. A simple Burgers/Vlasov–Fokker–Planck toy model. — A more

tractable model is obtained by reducing the shallow water system to Burgers

equation,

∂tu + ∂x
(u2

2

)
=

∫

R

(v − u)f(t, x, v)dv,

∂tf + v · ∂xf = ∂v
(
(v − u)f − κ∂vf

)
,
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as suggested in [29], where existence and stability results were established.

Such a weakly coupled system is simple enough to be numerically solved within

an overall well-balanced approach, itself based on a Godunov discretization

involving the reformulation (2) for the macroscopic part, and the so-called

“elementary solutions” framework for the kinetic one.

It is well-known that a good knowledge of stationary “standing wave” solu-

tions is a decisive advantage when setting up WB discretizations, a way to gen-

erate extra-accuracy [2, 3] when position-dependent coefficients are involved.

By rewriting one right-hand side as,

∫

R

(v − u)f(t, x, v)dv = J(t, x) − u(t, x)

∫

R

f(t, x, v) dv,

J(t, x) =

∫

R

vf(t, x, v) dv,

given f , it is possible to solve the stationary equation by means of Lambert’s

W -function. Yet, the stationary solutions of various linear kinetic equations

(with incoming boundary conditions) was the object of intensive research

(sometimes called “Caseology”, after the seminal 1960 paper by Kenneth Case)

for several decades: see e.g. the books [63, 19, 47, 56].

In contrast with kinetic equations rendering neutron transport or linearized

BGK models [19, Ch. VII], the stationary problem for Fokker–Planck equa-

tions in slab geometry can be solved analytically by means of Sturm–Liouville

theory and Hermite functions, [9, 10, 16, 20, 71]. Moreover, the inclusion of

a constant force field (here u(t, x), approximated in each cell by a piecewise

constant function) doesn’t ask for big changes in spectral representations; this

feature is specific to Fokker–Planck models as the ones related to integral col-

lision terms hardly support forcing terms expressed by first-order derivatives

in v, see [27, 80].

In the realm of a discrete-ordinates approximation in the v variable, let us

consider

∂tf + v · ∂xf + u · ∂vf = ∂v(f + κ∂vf), u ∈ R, κ ∈ R
+
∗ . (11)

By assuming a rather standard translation-invariant ansatz ψ(x, v) =

exp(−λx − µv)ϕ(v) in the context of the stationary problem for (11), one is

led to a Sturm–Liouville problem,

(

κ
d2

dv2
+ (v − 2µκ− u)

d

dv
+ (λ− µ)v + µ2κ+ µu

)

ϕ(v) = 0.
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The rescaled Sturm–Liouville operator which is used in the absence of any

forcing field is:

Sκ(v) :=
d

dv

(

v(·) + κ
d(·)
dv

)

= κ
d2(·)
dv2

+ v
d(·)
dv

+ (·)

In order to recover an expression involving Sκ, the natural choice is:

λ = µ, κµ2 + uµ− n = 0 for n ∈ N.

It yields Sκ(v − 2µκ− u)[ϕ] = 0, so the eigenvalues read for any n ∈ N:

µ±n =
−u±

√
u2 + 4κn

2κ

u→0−→ ±
√
n

κ
.

The eigenfunctions for (11), originally published in [16], can be expressed as:

Ψ±n(x, v) = exp (−µ±n[x+ v])Hn (ṽ±n) exp
(
−ṽ2±n

)
,

being Hn the nth Hermite polynomial and the translated velocities given by,

ṽ±n =
v − 2µ±nκ− u√

2κ
=

v ∓
√
u2 + 4κn√
2κ

u→0−→ v√
2κ

∓
√
2n.

It remains to derive both the two Chapman–Enskog eigenfunctions associated

to n = 0. However, even for u 6= 0, they are easily found because plugging

n = 0 leads to:






µ+0 =
−u+ |u|

2κ
= − inf(u, 0)

κ
, ṽ+0 =

v − |u|√
2κ

,

µ−0 =
−u− |u|

2κ
= −sup(u, 0)

κ
, ṽ−0 =

v + |u|√
2κ

.

Thus the “diffusion eigenfunctions” corresponding to n = 0 and u 6= 0 read:

Ψ+
0 (x, v) = exp

(

inf(u, 0) (x+v)
κ

− (v−|u|)2

2κ

)

= exp
(

− (v−|u|)2

2κ

)

χE>0 + exp
(

−u2

2κ

)

exp
(
ux
κ
− v2

2κ

)

χE<0,

Ψ−
0 (x, v) = exp

(

sup(u, 0) (x+v)
κ

− (v+|u|)2

2κ

)

→ there is a typo in [42, p.251],

= exp
(

− (v+|u|)2

2κ

)

χu<0 + exp
(

−u2

2κ

)

exp
(
ux
κ

− v2

2κ

)

χE>0.

Finally, any stationary solution f̄(x, v) of (11) spectrally decomposes into,

f̄(x, v) = αΨ+
0 (x, v) + βΨ−

0 (x, v)
︸ ︷︷ ︸

macroscopic behavior

+
∑

n∈N∗

AnΨn(x, v) +BnΨ−n(x, v)

︸ ︷︷ ︸

6=0 in the Knudsen layers

.

With these expressions at hand, it suffices to follow the calculations in [42,

Ch. 12] to derive the scattering matrices which lead to a kinetic well-balanced
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scheme for (11); an example where this technique was set up in a delicate

context of high-field limits is provided in [44].

3. Dispersive wave modelling

In this part we shall focus on free surface wave modelling as a practically

important example of nonlinear dispersive wave propagation. As it was pointed

out by R. Feynman, the usual water waves are in no respect like the light

(electro-magnetics) or acoustics (pressure waves) [35].

3.1. Water wave propblem. — We consider surface gravity waves in an

ideal incompressible and irrotational fluid of finite depth. A two-dimensional

Cartesian coordinate system xOy is chosen such that the ordinate axis Oy is

directed vertically upwards and the horizontal axis Ox coincides with the still

water level. The fluid layer is bounded above by the free surface y = η(x, t)

and below by the flat bottom y = −h. The governing equations for the flow

are [78]

∆φ = φxx + φyy = 0, −h < y < η(x, t), (12)

ηt + φx · ηx = φy, y = η(x, t), (13)

φt +
1
2 |∇φ|2 + gy = 0, y = η(x, t), (14)

φy = 0, y = −h, (15)

where φ(x, y, t) is the velocity potential and g is the acceleration due to grav-

ity. The Laplace equation (12) expresses the combination of fluid incompress-

ibility and flow irrotationality. This equation is completed by the boundary

conditions (13)–(15). There is one kinematic (13) and one dynamic isobarity

condition (14) on the free surface. On the solid bottom we require that the

impermeability condition (15) is satisfied.

The set of equations (12)–(15) is referred to as the full water wave problem.

It has been shown to provide an excellent description for free surface flows [78],

despite its apparent simplicity.

3.2. The method of holomorphic variables. — One of the main difficul-

ties of the water wave problem (12) – (15) is that the fluid domain is unknown

a priori and has to be determined amongst other unknowns. Consequently, in

order to simplify the solution procedure, it would be advantageous to transform

the dynamic physical domain into a fixed computational one. For numerical

purposes the idea to use time-dependent conformal maps was formalized and
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x

y

O

ξ

ζ

x = x(ξ, ζ, t)
y = y(ξ, ζ, t)

h

h0

O

y = η(x, t)

Figure 4. Conformal map of the physical domain into a uniform strip.

implemented for the first time by A. Dyachenko et al. (1996) [33]. However,

this formulation was put forward for the first time presumably by L. Ovsyan-

nikov (1974) [70].

The main idea behind handling the unknown free surface computationally

is to reformulate the system using a time-dependent conformal map from the

physical domain on a uniform strip. This transformation is schematically

depicted in Figure 4. The new horizontal and vertical coordinates are denoted

by ξ and ζ respectively. The complete derivation of governing equations in the

conformal domain can be found, e.g. in [66, Appendix A]. Here we just provide

the final set of equations:

γt = γξ H
[ψξ

J

]

− χξ

ψξ

J
, (16)

ϕt =
1

2

ψ2
ξ − ϕ2

ξ

J
− gγ + ϕξ H

[ψξ

J

]

. (17)

where γ(ξ, t) := η(χ(ξ, t), t), χ(ξ, t) := x(ξ, 0, t) and the Jacobian J := χ2
ξ +

γ2ξ . Two evolution equations above have to be completed by two additional
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relations in order to close the system

ψξ = T [ϕξ], χξ = 1−H[γξ],

where ψ is the stream function (or equivalently the imaginary part of the

complex potential). The pseudo-differential operators H and T are defined as

Ĥ = i coth(kh0), H[f ](x) =
1

2h0

∫

R

f(y) coth
( π

2h0
(y − x)

)

dy,

T̂ = i tanh(kh0), T [f ](x) =
1

2h0

∫

R

f(y) cosech
( π

2h0
(y − x)

)

dy.

In order to discretize the free surface Euler system (16), (17) one can use a

Fourier-type pseudospectral method, where all derivatives along with nonlocal

pseudo-differential operators are computed spectrally [13]. Nonlinear products

are computed in real space and antialiased using the 3/2 rule. The overall

implementation is very efficient thanks to the FFT algorithm [36]. As a result,

we have an efficient solver for the full Euler equations with the free surface.

The results of these simulations can provide the reference solution to validate

and to assess the accuracy of various approximate models, see e.g. [66]. The

method described above was generalized recently to arbitrary bottoms in [82].

However, the derivation becomes significantly trickier and we do not enter into

these details in this document.

3.3. Computation of steady fully nonlinear solutions. — The same

conformal mapping technique can be used to compute efficiently steady travel-

ling wave solutions to the full Euler equations with the free surface. Namely, we

use the formulation found by K. Babenko (1987) [6], which has an advantage

to have the same degree of nonlinearity (i.e. quadratic for gravity waves) as

the original Euler equations. See [25, 30] for more details on the derivation of

Babenko’s equation for gravity solitary waves. The resulting Babenko’s equa-

tion is solved numerically using the iterative Petviashvili scheme [75]. This

method can be implemented in a very elegant way within fifty lines of Matlab

code (for the computational core). The code is freely available in Open Source

at the Matlab File Exchange server [23]. Another advantage of this formu-

lation is that it allows to compute physical fields in the fluid bulk as well (not

only at the free surface). For the sake of illustration we show the velocity field

on Figure 5. This formulation has been recently extended for the computation

of capillary–gravity waves as well [26]. As above, these numerically exact so-

lutions can be used to validate various approximate long wave models which
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Figure 5. Iso-horizontal (left) and iso-vertical (right) velocities un-

der a large solitary wave. Lines correspond to the iso-values computed

in the ‘fixed’ Frame of reference where the the fluid is at rest in the

far field x→ ±∞. Taken from [30].

have to reproduce the corresponding solitary wave solutions of the base model

with high physical fidelity.

4. Extended fully nonlinear shallow water equations

For two-dimensional surface water waves propagating in shallow water of

constant depth, one can approximate the velocity field by [31]

u(x, y, t) ≈ ū(x, t), v(x, y, t) ≈ − (y + d) ūx

where d is the mean water depth and ū is the horizontal velocity averaged

over the water column — i.e. ū ≡ h−1
∫ η

−d
udy — y = η and y = 0 being

the equations of the free surface and of the still water level, respectively. The

horizontal velocity u is thus uniform along the water column and the vertical

velocity v is chosen so that the fluid incompressibility if fulfilled. Serre

(1953) [77] derived the following approximate system of equations

ht + ∂x[ h ū ] = 0, (18)

∂t[h ū ] + ∂x
[
h ū2 + 1

2 g h
2 + 1

3 h
2 γ
]
= 0, (19)

where

γ = h (ū 2
x − ūxt − ūūxx) = 2h ū 2

x − h∂x[ ūt + ū ūx ] , (20)
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is the vertical acceleration of the fluid at the free surface [24]. Physically,

equations (18) and (19) describe, respectively, the mass and momentum flux

conservations.

It is however possible to obtain a more general system by intoducing a free

parameter into the model using Bona–Smith–Nwogu’s trick [12, 69]. Here we

provide only the final result, while the computations can be found in [31]:

ht + ∂x[h ū ] = 0, (21)

∂t[h ū ] + ∂x
[
h ū2 + 1

2 g h
2 + 1

3 h
2 γ
]
= 0, (22)

2h ū 2
x + (1− α) g hhxx − α h∂x[ ūt + ū ūx ] = γ, (23)

where α is a constant at our disposal. We note however that we were not

able to find the energy conservation equation for the last system, even if it is

Galilean invariant [31].

4.1. Linear approximation. — For infinitesimal waves, η and ū being both

small, it is reasonable to linearise the equations around η = 0 and ū = 0. We

obtain thus the linear system of equations

ηt + d ūx = 0, (24)

ūt + g ηx + 1
3 d γx = 0, (25)

(1− α) g d ηxx − α d ūxt = γ. (26)

Seeking for traveling waves of the form η = a cos
(
k(x − ct)

)
, we obtain the

(linear) dispersion relation

c2

gd
=

3 + (α− 1)(kd)2

3 + α(kd)2
= 1 − 1

3(kd)
2 + 1

9α(kd)
4 − 1

27α
2(kd)6 + · · · . (27)

We note that this relation is well-posed (i.e. c2 > 0 for all k) only if α > 1. In

order to find a suitable choice for α, the relation (27) can be compared with

the dispersion relation of linear waves on finite depth

c2 / g d = thc(kd) = 1 − 1
3(kd)

2 + 2
15 (kd)

4 − 17
315 (kd)

6 + 62
2835 (kd)

8 + · · · ,
where thc(x) ≡ tanh(x)/x if x 6= 0 and thc(0) ≡ 1. Comparing the Taylor

expansions, it is clear that (27) matches the exact one only up to the second-

order in general, except when α = 6/5 in which case it matches up to the

fourth-order. Therefore, αopt = 6/5 is a suitable choice having the advantage

of being independent of the wave characteristics. This method of choosing the

optimal α has been used by many authors starting from the pioneering works

[12, 69, 11].
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Model/Amplitude a/d = 0.1 a/d = 0.45 a/d = 0.70

SGN speed, cs/
√
gd 1.04880 1.2041 1.3038

eSGN speed, cs/
√
gd 1.04856 1.1999 1.2946

Full Euler speed, cs/
√
gd 1.048548 1.1973 1.2788

Table 1. Comparison of the solitary wave speeds for several fixed

values of the wave amplitude. The parameter α = 6/5.

4.2. Validation on solitary waves. — We will compare the solitary wave

solutions to the three following models:

– SGN equations

– eSGN equations (with optimal α)

– the full Euler equations (the reference solution)

The solitary waves to the classical SGN equations are known analytically. The

solitary wave solutions for the full Euler equations are computed using the

method of conformal variables [25, 30]. The Matlab script used to generate

the solitary waves can be downloaded at [23]. Unfortunately, we did not

succeed in finding analytical solutions to the eSGN equations for a general

α. Consequently, we had to employ the numerical methods. The propagation

speeds predicted by various models are reported in Table 1. One can already

see that the eSGN predictions are always closer to the full Euler equations. We

computed the speed–amplitude relation for the whole range of amplitudes (see

Figure 6). One can see that the eSGN model approximates better the reference

solution again. It is somehow surprising, since the model was tuned on linear

solution and this “tuning” turns out to improve the description of nonlinear

solutions as well. Currently, we are looking for a model which does possess

the full set of conservation laws together with improved dispersion relation

properties.

Appendix A

Shallow water waves on rough bottoms

In this final section we would like to mention a result, which appeared

in a Physics Journal (PRL) [32] and it remains essentially unknown in the

hyperbolic community. The authors considered the wave run-up problem on

random rough bottoms. Our stochastic computations were compared to several

simulations using classical friction terms routinely used to model the bottom
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Figure 6. Speed–amplitude relations for solitary waves in SGN,

eSGN and the full Euler equations (α = 6/5).

rugosity. Surprisingly, a very good qualitative agreement was obtained with

the Manning–Strickler law, while the Chézy and Darcy–Weisbach laws provide

too strong momentum damping. See Figure 7 for the numerical results and [32]

for more details. As a conclusion, we recommend to use the Manning–Strickler

law to take into account the wave propagation on rough bottoms.
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