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On a problem of team hiring

Given two positive integers n and k with k ≤ n, let X denote the family of all the k-subsets of [n] := {1, 2, . . . , n}. In this paper, assuming that the

k-subsets hold some order of ranks, we consider the expected number of left-to-right maxima in some sequential ordering of X , under a random permutation of [n]. In the case k = 1, it is well-known that the answer is the nth harmonic number

, the expected numbers of left-to-right maxima respectively in the lexicographical and colexicographical orderings of X , achieved when the k-subsets in X hold their respective worst orders of ranks (to make the two values as large as possible). We show that E ⋆ lex (n, k) = E ⋆ col (n, k), and give an exact formula (not in closed form) for them. For estimating them, we further show that when k ′ := min{k, n -k} is fixed and n is big enough, they are asymptotic to 1 k ′ ! (ln n) k ′ . The problem we consider here can be viewed as an extension to the assistant-hiring problem, presented in the textbook Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein, for introducing probabilistic analysis and randomized algorithms.

Introduction

In their legendary textbook Introduction to Algorithms [5, Section 5.1, both the second and third editions], Cormen et al. take an assistant-hiring problem as the primary example to introduce probabilistic analysis and randomized algorithms. Here, we extend that hiring problem to a team-hiring scenario, which may lead to closer insight into these two subjects. To adapt with team hiring, let us alter their original story to some extent. Suppose that our organization wish to find the best-qualified k-person team from n applicants and hire them permanently. The qualification of a team can only be determined by a sophisticated test (for collaborative capability, etc.), and the result of the test is unpredictable. For the work at hand not to be postponed, we decide to adopt an exhaustive testing-and-hiring process to accomplish our task. At the beginning of the process, the applicants are assumed to have been randomly numbered from 1 to n, and a least-qualified dummy team has been hired. Then, each k-person team is tested each morning, one by one in accordance with some ordering of all the ( n k ) teams. If the team just tested is better than the current hired team, we discard the old team and hire the new team until a more qualified team is determined.

In the end, the lastly hired team will be hired permanently. Now, under the assumption that the qualifications of all the teams are distinct, we have two concerns in our team-hiring problem: the time and space requirements for generating the ordering of all the teams, and the expected number of hired teams in the whole testing-and-hiring process (because discarding an old team and organizing a new team costs money and energy). Clearly, the latter is affected by two factors: the order in which we test the teams, and the order of qualifications (ranks) that the ( n k ) teams hold. In the case k = 1, as analyzed in the textbook [START_REF] Cormen | Introduction to Algorithms[END_REF] and noted in many other references (e.g., [START_REF] Glick | Breaking records and breaking boards[END_REF]), the expected number of hired teams is the nth harmonic number [START_REF] Adamchik | On Stirling numbers and Euler sums[END_REF], no matter in what order we test the n applicants, and no matter what is the order of ranks that the n applicants hold. In the case k > 1, if we assume that the

H n = 1 + 1 2 + • • • + 1 n = ln n+O
( n k )
teams hold a random order of ranks, the expected number of hired teams is ideally H ( n k ) = O(k ′ ln n) with k ′ := min{k, n -k}, no matter in what order we test the teams (see Proposition 1). However, for a sequential order to test the teams, this result is not of probabilistic analysis to the team-hiring problem, because the assumption that "the teams hold a random order of ranks", unlike the assumption that "the applicants are randomly numbered", is not a proper assumption on the inputs (of which the "teams" are not a part).

If we want to achieve the goal that the expected number of hired teams is always H ( n k ) for k > 1 without any assumption on the order of ranks that the teams hold, to test the teams in a random order may be of first choice, such that we get a randomized process. To fulfil this, we need the Knuth shuffle (or called Fisher-Yates Shuffle) [12, Algorithm P] to generate a random ordering of all the teams, either by shuffling all the k-subsets of {1, 2, ..., n} directly, or by shuffling the set {1, 2, . . . , ( n k ) } firstly and then reconstructing the k-subsets with an UNRANK procedure which follows some sequential ordering [14, Algorithms 2.8, 2.10, or 2.12]. Although the Knuth shuffle depends on a pseudorandom number generator for implementation on computers, it is widely accepted as a uniform random permutation generator [START_REF] Cormen | Introduction to Algorithms[END_REF]. The drawback of applying it here is that the shuffling process needs Ω( ( n

) ) working space.

If the above random ordering cannot be accepted for the sake of space requirements, some pseudorandom or quasi-random orderings may be of consideration. To generate such orderings, we need in a stateless way to generate a pseudorandom or quasi-random permutation of {1, 2, ...,

( n k )
}, where we can use the linear congruential sequence with period length

( n k ) [12, Theorem A],
or use the truncated bit-reversal permutation [15, Section V]. With such methods, the space requirements are cut down, but we still need an UNRANK procedure to reconstruct each k-subset, in which a quantity of binomial coefficients need to be computed and big numbers must be involved if

( n k
) is big (see [START_REF] Kreher | Combinatorial Agorithms: Generation, Enumberation, and Search[END_REF] for detail). What is worse is that we (at least the author) are not sure that these pseudorandom or quasi-random orderings can achieve the same or a similar result as the real random ordering.

In this paper, we focus on two well-known sequential orderings: the lexicographical (or lexical) and colexicographical (or colex) orderings. Compared with the above random, pseudorandom or quasi-random orderings, the sequences of k-subsets obeying these two orderings can be generated very efficiently in both time and space. As shown in [START_REF] Knuth | The Art of Computer Programming[END_REF], [START_REF] Kreher | Combinatorial Agorithms: Generation, Enumberation, and Search[END_REF], [START_REF] Nijenhuis | Combinatorial Algorithms for Computers and Calculators[END_REF], and [START_REF] Semba | An efficient algorithm for generating all k-subsets (1≤k≤m≤n) of the set {1, 2, ..., n} in lexicographical order[END_REF], the current k-subset to be generated is only dependent on its predecessor, so all the k-subsets can be generated with a SUCCESSOR procedure, in O(k) time per subset (indeed amortized constant time if k≤n/2 and the time for output is excluded), and in O(k) working space, with no big numbers involved if n is not big. Although they are quite nice in this regard, we have the intuition that they should be bad in term of the expected number of hired teams they induce in the worst case. But how bad are they? This paper tries to give a quantitative answer to this question.

Problem formalization and our results

Throughout this paper, an ordering of a family of subsets, is referred to the sequence of these subsets generated in some ordering way. Here, we follow [START_REF] Kreher | Combinatorial Agorithms: Generation, Enumberation, and Search[END_REF] (rather than [START_REF] Knuth | The Art of Computer Programming[END_REF]), for the normal forms of the lexical and colex orderings of all the k-subsets of the set {1, 2, ..., n}, which can be seen from the examples hereafter. Given a sequence of elements from a wellorder set, a (strong) left-to-right maximum of the sequence is the element which is greater than any element preceding it.

Given two positive integer n and k with k ≤ n, the team-hiring problem in this paper is only determined by n and k, so we call it (n, k)-THP for short. We formalize it with the following notations:

• [n] := {1, 2, . . . , n}; • X : the family of all the ( n k ) k-subsets of [n];
• ord: the variable tag for an ordering way to generate an ordering of X ; • X ord : the ordering of X generated in the way of ord;

• σ : [n] → [n], a permutation of [n]; • S n : the set of all the n! permutations of [n]; • {t 1 , t 2 , . . . , t k } σ := {σ(t 1 ), σ(t 2 ), . . . , σ(t k )}, supposing that {t 1 , t 2 , . . . , t k } ∈ X ; • X σ ord := ⟨X σ 1 , X σ 2 , . . . , X σ ( n k ) ⟩, supposing that X ord = ⟨X 1 , X 2 , . . . , X ( n k ) ⟩; • f : X → [ ( n k ) ], a bijective ranking function on X ; • M σ,f ord := {X σ j ∈ X σ ord : 1≤j≤ ( n k ) , f (X σ i ) < f (X σ j
) for all i < j}, the collection of left-to-right maximum k-subsets in X σ ord , for a fixed σ and a fixed f ;

• E f ord (n, k) := (1/n!) ∑ σ∈Sn |M σ,f ord |, the expected number of left-to-right maximum k- subsets in X σ
ord , for a random σ∈S n and a fixed f . Additionally, we let "lex" and "col" be the tags of the lexical and colex orderings respectively, and (from now on) we use the convention that a permutation of [n] is written as a n-word and a k-subset of [n] is written as a k-word with elements in the ascending order. (When the ascending order cannot be guaranteed, we still use the form {...} for a subset.) For a ranking function f on X , we generally write it as an ordering of X to express it. That is

, f = ⟨X 1 , X 2 , ..., X ( n k ) ⟩ means that f (X 1 ) = 1, f (X 2 ) = 2, ..., f (X ( n k ) ) = ( n k ) . Besides, the inequality f (X 1 ) < f (X 2 ) is generally written as X 1 < f X 2 .
To illustrate the above notations, let's consider (4, 2)-THP. If we choose f = ⟨13, 23, 34, 24, 12, 14⟩, then for a fixed σ = 3214, we have !. Here, we concentrate on the average and the worst behavior of f ∈ F, and only is the latter essential to the probabilistic analysis of the team-hiring problem. Precisely, we have two definitions that

X lex = ⟨12,
E ⋄ ord (n, k) := (1/ ( n k ) !) ∑ f ∈F E f ord (n, k), and E ⋆ ord (n, k) := max f ∈F E f ord (n, k).
Our first result of this paper is about how much E ⋄ ord (n, k) is, which is both obvious and intriguing. It belongs to the rare cases in the world that the "average" is easier to solve than the "worst".

Proposition 1. For any ordering ord

of X , E ⋄ ord (n, k) = H ( n k ) .
Proof. For any fixed σ∈S n , (1/

( n k ) !) ∑ f ∈F |M σ,f ord | = H ( n k ) .
Our main result of this paper is an exact formula (not in closed form) for E ⋆ lex (n, k) and

E ⋆ col (n, k). Theorem 1. For 1 ≤ k ≤ n, we have E ⋆ lex (n, k) = E ⋆ col (n, k) = ∑ 1≤t 1 <•••<t k ≤n P (t 1 • • •t k ),
where

P (t 1 • • •t k ) = { 1/t 1 if k = 1 (1/t k ) ∑ 1≤j≤k P ( t 1 • • •t j-1 (t j+1 -1)• • •(t k -1) ) otherwise. ( 1 
)
In recurrence (1), the expression

t 1 • • •t j-1 (t j+1 -1)• • •(t k -1) is understood to be a (k-1)- subset of [n-1] obtained from the k-subset t 1 • • •t k of [n]
, by removing t j and decrementing the elements larger than t j (if any), and P (•) can be temporally viewed as a function which can take any nonempty subset of [n] as its argument. In Section 2, we will see that

P (t 1 • • •t k )
really corresponds to the probability that the subset t 1 • • •t k achieves left-to-right maxima in X lex or X col . To illustrate recurrence (1), letting 247 be a 3-subset, we have P (247) = which can be verified by a simple computer program. We will give the proof of Theorem 1 for the general case in Section 2. From Theorem 1 we know that

E ⋆ lex (n, k) = E ⋆ col (n, k), thus we use a unified E ⋆ lc (n, k) to denote both E ⋆ lex (n, k) and E ⋆ col (n, k))
. Now, it is not difficult to derive a formula in closed form for E ⋆ lc (n, 2), a formula in summation form for E ⋆ lc (n, 3), and the subsequent asymptotics for them as well. Corollary 1. We have

E ⋆ lc (n, 2) = 1 2 (H 2 n -H (2) n ) + H n -1 = 1 2 ln 2 n + O(ln n),
and

E ⋆ lc (n, 3) = ∑ 3≤i≤n ( 1 2i (H 2 i-2 -H (2) i-2 ) + ( 1 i + 1 i-1 )H i-2 + 1 i(i-1) ) = 1 6 ln 3 n + O(ln 2 n),
where H

(2)

n = ∑ 1≤i≤n 1/i 2 < π 2 6
, which is the second-order nth harmonic number. The sequence of n!E ⋆ lc (n, 2) for n ≥ 2 is ⟨2, 11, 61, 379, 2668, . . .⟩, and the sequence of n!E ⋆ lc (n, 3) for n ≥ 3 is ⟨6, 50, 379, 3023, 26193, . . .⟩. These two sequences have been submitted to the On-line Encyclopedia of the Integer Sequences(OEIS) [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF], and published at the entries A308729 and A308860 respectively.

For general k and n, analogous to the symmetry of binomial coefficients, E ⋆ lc (n, k) is symmetric in k and n -k, as might be expected. And it holds the bounds in terms of unsigned Stirling numbers of the first kind.

Corollary 2. Specially define E

⋆ lc (n, 0) := 1. Then for 0 ≤ k ≤ n, we have E ⋆ lc (n, k) = E ⋆ lc (n, n -k), and 1 n! [ n+1 k+1 ] ≤ E ⋆ lc (n, k) ≤ k! n! [ n+1 k+1
] .

The proof of Corollary 2 will be given in Section 3. By applying the well-known asymptotic formula 4.6]), we can immediately give a conditional asymptotic bound in terms of big-theta for

1 n! [ n+1 k+1 ] ∼ 1 k! (ln n) k for fixed k (see [19, Table
E ⋆ lc (n, k): E ⋆ lc (n, k) = Θ((ln n) k ′ ) for fixed k ′ := min{k, n -k}.
However, Corollary 1 hints that the coefficient of (ln n) k in the asymptotic expansion of E ⋆ lc (n, k) for fixed k seems to be 1/k!, so that we can derive a more accurate estimate. This is true, and consequently we have the following corollary, whose proof will be given in Section 4.

Corollary 3.

For fixed k ′ := min{k, n -k} and as n → ∞, we have

E ⋆ lc (n, k) = (1/k ′ !)(ln n) k ′ + O((ln n) k ′ -1
).

Related work

In previous references, the left-to-right maxima of a sequence were often given other names, such as records and outstanding elements. Wilf [START_REF] Wilf | On the outstanding elements of permutations[END_REF] attributed to A. Rényi the result that the number of permutations of n letters that have exactly k left-to-right maxima is

[ n k ]
, an unsigned Stirling number of the first kind. It seems to be of the folklore that the expected number of left-to-right maxima in a random permutation of n letters is H n , and the variance is

H n -H (2)
n . Wilf [START_REF] Wilf | On the outstanding elements of permutations[END_REF] presented plenty of other properties of left-to-right maxima in permutations of n letters. In recent years, the (strong or weak) left-to-right maxima in other types of sequences have also been analyzed by many authors. For example, see [START_REF] Key | On the number of records on an iid discrete sequence[END_REF], [START_REF] Knopfmacher | Record statistics in a random decompasition[END_REF], [START_REF] Myers | Left-to-right maxima in words and multiset permutations[END_REF], and [START_REF] Prodinger | Records in geometrically distributed words: sum of positions[END_REF].

For a special problem (identifying stars from a set U of n spikes with queries on ksubsets of U ), Mueller et al. [START_REF] Mueller | Optimal orderings of k-subsets for star identification[END_REF] compared several orderings of k-subsets with experiments, and showed that the quasi-random ordering based on bit reversals is superior to the lexical ordering, in terms of the time for discovering all possible sets of stars.

There are another class of "hiring problems" (e.g., [START_REF] Helmi | Analysis of the "hiring above the median" selection strategy for the hiring problem[END_REF] and references therein), where an applicant is either irrevocably rejected or permanently hired at once after an evaluation of her/his capabilities, and the objective is to hire one or several possibly top employee(s). These problems originated from the famous "secretary problem" [START_REF] Ferguson | Who solved the secretaty problem?[END_REF], and from the practical point of view, what they model is much closer to realistic hiring situations.

There are another kind of maxima -vector maxima, which deserve to mention. A vector in a set of d-dimensional vectors is said to be maximal if it is not dominated by (in all dimensions smaller than) any other vector. A set of n d-vectors is said to be random if for each dimension, the components in the same dimension independently correspond to a random permutation of [n], i.e, it is uniformly chosen from n! d possible vector sets. Under this assumption on randomness (or its equivalences), it is amazing that our E ⋆ lc (n, k) is numerically related to A(n, d), the expected number of maxima in a random set of n dvectors. Bentley et al. [START_REF] Bentley | On the average number of maxima in a set of vectors and applications[END_REF] showed that A(n, d) holds the recurrence

A(n, d) = A(n -1, d) + (1/n)A(n, d -1)
with the initial conditions A(1, d) = 1 and A(n, 1) = 1, and gave it the bound O((ln n) d-1 ) for fixed d. Buchta [4] derived a summation formula for A(n, d) and gave it an asymptotic expansion for fixed d, whose first term is (

1/(d-1)!)(ln n) d-1 . For small d, we have A(n, 2) = H n , A(n, 3) = 1 2 H 2 n + 1 2 H (2)
n , and

A(n, 4) = 1 6 H 3 n + 1 2 H n H (2) n + 1 3 H (3)
n , so we can observe that

A(n, d) is very close to E ⋆ lc (n, d -1)
. But there should be a large gap between them when d is large, because d may be greater than n, and A(n, d) does not hold the property of symmetry in d and n -d. The variance of the number of maxima in a random vector set has also received attention, but its exact formula for general d is very complicated. Bai et al. [START_REF] Bai | On the variance of the number of maxima in random vectors and its applications[END_REF] gave an asymptotic formula for the variance, whose form is still not simple by any means.

Proof of Theorem 1

Preliminaries and Proof Outline

First, let's consider general ord and general f . Let X ord = ⟨X 1 , X 2 , . . . , X ( n k ) ⟩, and let

f = ⟨Y 1 , Y 2 , . . . , Y ( n k ) ⟩. Then, we say that T f ord (X i , Y l ) is the contribution of Y l to X i , with T f ord (X i , Y l )
being defined as follows:

T f ord (X i , Y l ) := {σ∈S n : X σ i = Y l , X σ i ∈ M σ,f ord } . Observation 1. (i) T f ord (X i , Y l ) = 0 for l < i. (ii) Suppose that f is variable. Then T f ord (X i , Y l ), T f ord (X i , Y l+1 ), . . . , T f ord (X i , Y ( n k ) ) all remain unchanged if the consecutive subse- quence ⟨Y l , Y l+1 , . . . , Y ( n k ) ⟩ remains unchanged.
In terms of contributions, we have another formula for E f ord (n, k):

E f ord (n, k) = (1/n!) ∑ 1≤i≤l≤( n k ) T f ord (X i , Y l ).
Next, let's consider two special ranking functions which are respectively consistent with X lex and X col in their normal forms. We respectively name them lex and col. That is, in our simplified language, we can say that lex = X lex and col = X col , or say that < lex and < col are two strict well-order relations on X . Without any confusion, we always stipulate that < lex and < col can be used to compare any two distinct subsets of [n] with the same cardinality.

Now let

s 1 • • •s k and t 1 • • •t k be two distinct k-subsets of [n]
. The definitions of < lex and < col can be given recursively as follows:

• s 1 • • •s k < lex t 1 • • •t k if s 1 < t 1 , or s 1 = t 1 and s 2 • • •s k < lex t 2 • • •t k . • s 1 • • •s k < col t 1 • • •t k if s k < t k , or s k = t k and s 1 • • •s k-1 < col t 1 • • •t k-1 . Observation 2. Let c ∈ s 1 • • •s k ∩ t 1 ..t k . Then both < lex and < col hold that s 1 • • •s k < lex(col) t 1 • • •t k ⇐⇒ s 1 • • •s k \ {c} < lex(col) t 1 • • •t k \ {c}. Let d ∈ [n]. Then the mapping δ d : [n]\{d} → [n-1] is called d-pivoted decrement (of order n) if it satisfies δ d (i) = { i if i < d i -1 otherwise. Clearly, δ d is a bijection. Letting d / ∈ t 1 • • •t k , like the labeling of a permutation on a subset, we use (t 1 • • •t k ) δ d to denote the subset δ d (t 1 )δ d (t 2 )• • •δ d (t k ). (It is guaranteed that δ d (t 1 ) < δ d (t 2 ) < • • • < δ d (t k ) if d / ∈ t 1 • • •t k .)
Then it is not difficult to verify the following observation.

Observation 3. Let d ∈ [n] and d / ∈ s 1 • • •s k ∪ t 1 • • •t k . Then both < lex and < col hold that s 1 • • •s k < lex(col) t 1 • • •t k ⇐⇒ (s 1 • • •s k ) δ d < lex(col) (t 1 • • •t k ) δ d . Now let c ∈ t 1 • • •t k . Then (t 1 • • •t k \{c}) δc is a valid (k -1)-subset of [n -1]. For con- venience, we use t 1 • • •t k ⊖c to denote it. That is, when c ∈ t 1 • • •t k , we have the definition that t 1 • • •t k ⊖c := (t 1 • • •t k \{c}) δc := t 1 • • •t i-1 (t i+1 -1)• • •(t k -1),
where i satisfies t i = c. Combining Observations 3 and 2 together, we immediately have the following Observation 4.

Observation 4. Let c ∈ s 1 • • •s k ∩ t 1 • • •t k . Then both < lex and < col hold that s 1 • • •s k < lex(col) t 1 • • •t k ⇐⇒ s 1 • • •s k ⊖c < lex(col) t 1 • • •t k ⊖c.
After presenting the above preliminaries, the following part of this section focuses on showing that lex and col are just the worst ranking functions for X lex and X col respectively, and they induce the quantity given in Theorem 1. We present the proof by sequentially arguing the following assertions:

(I) E col col (n, k) = ∑ 1≤t 1 <•••<t k ≤n P (t 1 • • •t k ), with P (t 1 • • •t k ) holding recurrence (1). (II) For any f ∈ F , E f col (n, k) ≤ E col col (n, k). (III) E lex lex (n, k) = E col col (n, k). (IV) For any f ∈ F , E f lex (n, k) ≤ E lex lex (n, k).

Proof of (I)

We now formally define P (t 1 • • •t k ) to be the probability that the subset t 1 • • •t k in X col achieves left-to-right maxima under a random σ and the fixed ranking function col. Precisely, we have the definition that

P (t 1 • • •t k ) := (1/n!) {σ∈S n : (t 1 • • •t k ) σ ∈M σ,col col } .
Since the summation

∑ 1≤t 1 <•••<t k ≤n P (t 1 • • •t k ) traverses all the k-subsets of [n]
, what we need to argue in the rest of this subsection, is only that in term of its probability meaning, recurrence (1) really holds. We now prove this by induction on n and k.

From recurrence (1), we have P (t 1 ) = 1/t 1 when k = 1, and

P (t 1 • • •t k ) = P (1• • •k) = 1 when n = k,
so recurrence (1) holds for the basic (n, 1)-THP and (k, k)-THP. In the inductive step, our assumption is that recurrence (1) holds for (n-1, k -1)-THP and (n-1, k)-THP with 1 < k < n, and our goal is to argue that it holds for (n, k)-THP. Now we carry out the induction by separately considering two cases.

Case 1: t k = n. In this case, the induction is from (n -1, k -1)-THP. To make the exposition non-confusing, for (n -1, k -1)-THP, we use the notations X , σ, and Mσ,col col , corresponding to X , σ, and M σ,col col respectively. First, let's consider the k-subset t 1 • • •t k with t k = n in the left-hand side of recurrence (1). It appears in both X col and col, which are the same sequence indeed. By the property of the colex ordering, we know that all the last

( n-1 k-1
) k-subsets in X col include n, one of which is t 1 • • •t k ; by Observation 1, we know that only the k-subsets in the consecutive subsequence of col starting from

t 1 • • •t k can have contribution to t 1 • • •t k in X col . So if (t 1 • • •t k ) σ ∈M σ,col
col , then there must be 1 ≤ j ≤ k such that σ(t j ) = n. Therefore in case 1, it holds that

P (t 1 • • •t k ) = (1/n!) ∑ 1≤j≤k {σ∈S n : σ(t j ) = n, (t 1 • • •t k ) σ ∈ M σ,col col } . ( 2 
)
Next, for 1 ≤ j ≤ k, let's consider the (k-1)-subset corresponding to the current j in the right-hand side of recurrence [START_REF] Adamchik | On Stirling numbers and Euler sums[END_REF]. We observe that

t 1 • • •t j-1 (t j+1 -1) • • • (t k -1) is just t 1 • • •t k ⊖t j .
Then according to the assumption that recurrence (1) holds for (n-1, k-1)-THP, we have

P (t 1 • • •t k ⊖t j ) = (1/(n-1)!) {σ∈S n-1 : (t 1 • • •t k ⊖t j ) σ ∈ Mσ,col col } . ( 3 
)
Now substituting their formulas (respectively in ( 2) and ( 3) [START_REF] Adamchik | On Stirling numbers and Euler sums[END_REF], we find that the holding of recurrence (1) for (n, k)-THP is implied by the following equation for 1 ≤ j ≤ k:

) for P (t 1 • • •t k ) and P (t 1 • • •t k ⊖t j ) in recurrence
{σ∈S n : σ(t j ) = n, (t 1 • • •t k ) σ ∈ M σ,col col } = {σ∈S n-1 : (t 1 • • •t k ⊖t j ) σ ∈ Mσ,col col } . ( 4 
)
To prove equation ( 4), we note that for 1 ≤ j ≤ k, there is a bijection

∆ j : {σ ∈ S n : σ(t j ) = n} → S n-1 defined by σ → σ(1)• • •σ(t j -1)σ(t j +1)• • •σ(n).
In other words, ∆ j (σ) is obtained by removing σ(t j ) = n, and shifting the sub-word σ(t j + 1)• • •σ(n) left (if any). Let (σ, σ) ∈ ∆ j , and r 1 • • •r k be a k-subset of [n] with some r i = t j . Then we can see bijection ∆ j holds that

(r 1 • • •r k ) σ = (r 1 • • •r i-1 t j r i+1 • • •r k ) σ = {σ(r 1 ), . . . , σ(r i-1 ), σ(r i+1 ), . . . , σ(r k )}∪{σ(t j )} = {σ(r 1 ), . . . , σ(r i-1 ), σ(r i+1 -1), . . . , σ(r k -1)}∪{n} = (r 1 • • •r i-1 (r i+1 -1)• • •(r k -1)) σ ∪ {n} = (r 1 • • •r k ⊖t j ) σ ∪ {n} (5)
With bijection ∆ j , to prove equation ( 4), what we need to argue is only the following assertion for 1 ≤ j ≤ k and (σ, σ) ∈ ∆ j :

(t 1 • • •t k ) σ ∈ M σ,col col ⇐⇒ (t 1 • • •t k ⊖t j ) σ ∈ Mσ,col col . ( 6 
)
To prove assertion (6), we note that for 1 ≤ j ≤ k, there is a bijection

Λ j : {r 1 • • •r k ∈X : t j ∈r 1 • • •r k } → X defined by r 1 • • •r k → r 1 • • •r k ⊖t j .
The bijectiveness of Λ j is based on Observation 3: In terms of < lex or < col , Λ j is orderpreserving. So we immediately see that the mapping rule

r 1 • • •r k → r 1 • • •r k ⊖t j also establish the bijection Λ ′ j : {s 1 • • •s k ∈X : t j ∈s 1 • • •s k , s 1 • • •s k < col t 1 • • •t k } → {r 1 • • •r k-1 ∈ X : r 1 • • •r k-1 < col t 1 • • •t k ⊖t j }.
To illustrate bijection Λ ′ j , let's consider (6, 3)-THP, and suppose that t 1 t 2 t 3 = 236 and the current j = 2 (i.e., t j = 3). Then, bijection Λ ′ j is as follows: With bijection ∆ j and Λ ′ j , we are ready for proving assertion [START_REF] Ferguson | Who solved the secretaty problem?[END_REF]. Combining equation ( 5) and Observation 2, we have the following assertion for 1 ≤ j ≤ k, (σ, σ) ∈ ∆ j , and

(s 1 • • •s k , s 1 • • •s k ⊖t j )∈Λ ′ j : (s 1 • • •s k ) σ < col (t 1 • • •t k ) σ ⇐⇒ (s 1 • • •s k ⊖t j ) σ∪{n} < col (t 1 • • •t k ⊖t j
) σ∪{n} (by Eq. ( 5))

⇐⇒ (s 1 • • •s k ⊖t j ) σ < col (t 1 • • •t k ⊖t j ) σ (by Obs. 2). (7) 
Since bijection Λ ′ j establishes an injection from

{r 1 • • •r k-1 ∈ X : r 1 • • •r k-1 < col t 1 • • •t k ⊖t j } to {s 1 • • •s k ∈X : s 1 • • •s k < col t 1 • • •t k },
we find that assertion (7) directly implies the ⇒ direction of assertion [START_REF] Ferguson | Who solved the secretaty problem?[END_REF]. How about its ⇐ direction? Consider such

s 1 • • •s k with s 1 • • •s k < col t 1 • • •t k and t j / ∈ s 1 • • •s k . We find that n / ∈ (s 1 • • •s k ) σ
, and thus it inherently holds that (s

1 • • •s k ) σ < col (t 1 • • •t k ) σ .
Therefore, the ⇐ direction of assertion (6) also holds.

With assertion (6) being proved, we accomplish the argument for case 1.

Case 2: t k < n. In this case, we know that recurrence (1) has already held for (t k , k)-THP, by the conclusion of case 1. What we need to argue is only that P (t 1 • • •t k ) remains unchanged if we extend the problem from (t k , k)-THP to (n, k)-THP. We argue this also by induction. That is, under the assumption that P (t 1 • • •t k ) remains unchanged from (t k , k)-THP to (n-1, k)-THP, our goal is to argue that it remains unchanged from (n-1, k)-THP to (n, k)-THP.

By the property of the colex ordering, we know that every 

s 1 • • •s k with s 1 • • •s k < col t 1 • • •t k remains unchanged if we extend the problem from (n -1, k)-THP to (n, k)-THP,
{σ∈S n : σ(n) = d, (t 1 • • •t k ) σ ∈ M σ,col col } = {σ∈S n-1 : (t 1 • • •t k ) σ ∈ Mσ,col col } , ( 8 
)
where Mσ,col col is understood to be the notation of (n-1, k)-THP, corresponding to M σ,col col . To prove equation ( 8), we note that for 1 ≤ d ≤ n, there is a bijection

Υ d : {σ ∈ S n : σ(n) = d} → S n-1 defined by σ → δ d (σ(1))δ d (σ(2))• • •δ d (σ(n -1)).
In other words, Υ d (σ) is obtained by removing σ(n) = d and decrementing all the elements larger than d. Now, letting (σ, σ) ∈ Υ d , and

r 1 • • •r k be a k-subset of [n] with r k < n (i.e., d / ∈ (r 1 • • •r k ) σ ), we can see bijection Υ d holds that ((r 1 • • •r k ) σ ) δ d = {δ d (σ(r 1 )), δ d (σ(r 2 )), . . . , δ d (σ(r k ))} = {σ(r 1 ), σ(r 2 ), . . . , σ(r k )} = (r 1 • • •r k ) σ. (9) 
Then, combining equation ( 9) and Observation 3, we have the following assertion for 1 ≤ d ≤ n, (σ, σ) ∈ Υ d , and any

s 1 • • •s k < col t 1 • • •t k : (s 1 • • •s k ) σ < col (t 1 • • •t k ) σ ⇐⇒ ((s 1 • • •s k ) σ ) δ d < col ((t 1 • • •t k ) σ ) δ d (by Obs. 3) ⇐⇒ (s 1 • • •s k ) σ < col (t 1 • • •t k ) σ
(by Eq. ( 9)).

That directly implies equation [START_REF] Graham | Concrete Mathmathics: A Foundation for Computer Science[END_REF].

With the argument for case 2 being completed, we accomplish the proof of (I).

Proof of (II)

In this subsection, we continue to use the definition of P (t 

R f col (t 1 • • •t k ) := (1/n!) {σ∈S n : (t 1 • • •t k ) σ ∈M σ,f col } .
(That is, under this new definition,

P (t 1 • • •t k ) is just R col col (t 1 • • •t k ).
) Then we can see that the inequality E f col (n, k) ≤ E col col (n, k) we want to prove is definitely implied by the following stronger inequality for any

t 1 • • •t k ∈X : R f col (t 1 • • •t k ) ≤ P (t 1 • • •t k ). ( 10 
)
So the remainder of this subsection rests on proving inequality [START_REF] Key | On the number of records on an iid discrete sequence[END_REF], by using an induction similar to the one in the proof of (I). We first note that inequality [START_REF] Key | On the number of records on an iid discrete sequence[END_REF] holds for the basic (n, 1)-THP and (k, k)-THP with equalities. In the inductive step, our goal is to argue that it holds for (n, k)-THP under the assumption that it holds for (n-1, k-1)-THP and (n-1, k)-THP with 1 < k < n. We achieve this goal also by separately considering two cases.

Case 1: t k = n. In this case, the induction is also from (n-1, k-1)-THP. To make the notations distinguished, we still add ˆto the relevant symbols of (n-1, k-1)-THP.

Letting f = ⟨Y 1 , Y 2 , . . . , Y ( n k ) ⟩, we now consider two subcases for case 1.

Case 1.1:

There is 1 ≤ c ≤ n such that c∈ ∩ ( n-1 k )<l≤( n k ) Y l .
In other words, in this subcase, c appears only in the last

( n-1 k-1 ) k-subsets of f . Let's construct f = ⟨ Ŷ1 , Ŷ2 , . . . , Ŷ( n-1 k-1 ) ⟩ from f with the rule Ŷl := Y ( n-1 k )+l ⊖ c for 1 ≤ l ≤ ( n-1 k-1
)

. For example, if f = ⟨. . . , 234, 125, 245, 124, 123, 235⟩ (i.e., c = 2) in (5, 3)-THP , then f = ⟨23, 14, 34, 13, 12, 24⟩. This mapping rule establishes a surjection

Φ c : {f ∈F : c ∈ ∩ ( n-1 k )<l≤( n k ) Y l } → F, since similar to bijection Λ j , the bijection from {Y ( n-1 k )+1 , Y ( n-1 k )+2 , . . . , Y ( n k ) } to { Ŷ1 , Ŷ2 , . . . , Ŷ( n-1 k-1
) } is order-preserving in terms of < f and < f . So we have the following assertion for c ∈ r

1 • • •r k ∩s 1 • • •s k and (f, f ) ∈ Φ c : r 1 • • •r k < f s 1 • • •s k ⇐⇒ r 1 • • •r k ⊖c < f s 1 • • •s k ⊖c. ( 11 
)
In (n-1, k-1)-THP, for general f ∈ F and 1

≤ j ≤ k, it is naturally understood that R f col (t 1 • • •t k ⊖t j ) = (1/(n-1)!) {σ∈S n-1 : (t 1 • • •t k ⊖t j ) σ ∈ Mσ, f col } , ( 12 
)
and according to the assumption on (n-1, k-1)-THP, it holds that

R f col (t 1 • • •t k ⊖t j ) ≤ P (t 1 • • •t k ⊖t j ). ( 13 
)
Now we claim that inequality [START_REF] Key | On the number of records on an iid discrete sequence[END_REF] is implied by the following equation for (f, f ) ∈ Φ c :

R f col (t 1 • • •t k ) = (1/n) ∑ 1≤j≤k R f col (t 1 • • •t k ⊖t j ). ( 14 
)
That is because if equation ( 14) is true, then we immediately have

R f col (t 1 • • •t k ) ≤ (1/n) ∑ 1≤j≤k P (t 1 • • •t k ⊖t j ) (by ineqality (13)) = P (t 1 • • •t k ) (by recurrence (1)).
All that remains for case 1.1 is to prove equation [START_REF] Kreher | Combinatorial Agorithms: Generation, Enumberation, and Search[END_REF]. In fact, it can be proved along the way to argue case 1 of Section 2.2. Since

t k = n, t 1 • • •t k is one of the last ( n-1 k-1 ) k-subsets in X col ; so if (t 1 • • •t k ) σ ∈M σ,f col , then there must be 1 ≤ j ≤ k such that σ(t j ) = c. Therefore in case 1.1, it holds that R f col (t 1 • • •t k ) = (1/n!) ∑ 1≤j≤k {σ∈S n : σ(t j ) = c, (t 1 • • •t k ) σ ∈ M σ,f col } . ( 15 
)
Substituting their formulas (respectively in ( 15) and ( 12) 14), we find that the holding of equation ( 14) is implied by the following equation for 1 ≤ j ≤ k and (f, f ) ∈ Φ c :

) for R f col (t 1 • • •t k ) and R f col (t 1 • • •t k ⊖t j ) in equation (
{σ∈S n : σ(t j ) = c, (t 1 • • •t k ) σ ∈M σ,f col } = {σ∈S n-1 : (t 1 • • •t k ⊖t j ) σ∈ Mσ, f col } . ( 16 
)
Now we can check the similarity between ( 16) and ( 4); nevertheless, a self-contained argument for equation ( 16) is necessary, though it looks somewhat redundant.

To prove equation ( 16), we first need a bijection Ψ j,c :

{σ∈S n : σ(t j ) = c} → S n-1 defined by σ → δ c (σ(1))• • •δ c (σ(t j -1))δ c (σ(t j + 1))• • •δ c (n),
which can be viewed as a generalization of bijection ∆ j from the special case c = n to the general case. Letting (σ, σ) ∈ Ψ j,c , and r 1 • • •r k be a k-subset with some r i = t j , we can see bijection Ψ j,c holds that

(r 1 • • •r k ) σ ⊖c = ((r 1 • • •r i-1 t j r i+1 • • •r k ) σ \ {σ(t j )}) δc = {δ c (σ(r 1 )), . . . , δ c (σ(r i-1 )), δ c (σ(r i+1 )), . . . , δ c (σ(r k ))} = {σ(r 1 ), . . . , σ(r i-1 ), σ(r i+1 -1), . . . , σ(r k -1)} = (r 1 • • •r i-1 (r i+1 -1)• • •(r k -1)) σ = (r 1 • • •r k ⊖t j ) σ. ( 17 
)
Another bijection we need is the bijection

Λ ′ j : {s 1 • • •s k ∈X : t j ∈s 1 • • •s k , s 1 • • •s k < col t 1 ..t k } → {r 1 • • •r k-1 ∈ X : r 1 • • •r k-1 < col t 1 • • •t k ⊖t j }, which is the same as the one in Section 2.2.
With bijections Ψ j,c and Λ ′ j , as well as surjection Φ c , we are ready for proving equation [START_REF] Myers | Left-to-right maxima in words and multiset permutations[END_REF]. Combining equation [START_REF] Nijenhuis | Combinatorial Algorithms for Computers and Calculators[END_REF] and assertion [START_REF] Knopfmacher | Record statistics in a random decompasition[END_REF], we have the following assertion for 1 ≤ j ≤ k, (f, f ) ∈ Φ c , (σ, σ) ∈ Ψ j,c , and (s

1 • • •s k , s 1 • • •s k ⊖t j )∈Λ ′ j : (s 1 • • •s k ) σ < f (t 1 • • •t k ) σ ⇐⇒ (s 1 • • •s k ) σ ⊖c < f (t 1 • • •t k ) σ ⊖c (by assertion (11)) ⇐⇒ (s 1 • • •s k ⊖t j ) σ < f (t 1 • • •t k ⊖t j ) σ (by Eq. ( 17 
)). (18) 
Assertion (18) directly implies

(t 1 • • •t k ) σ ∈M σ,f col ⇒ (t 1 • • •t k ⊖t j ) σ∈ Mσ, f col , since |{s 1 • • •s k ∈X : s 1 • • •s k < col t 1 • • •t k }| > |{r 1 • • •r k-1 ∈ X : r 1 • • •r k-1 < col t 1 • • •t k ⊖t j }|. How about such s 1 • • •s k with s 1 • • •s k < col t 1 • • •t k and t j / ∈ s 1 • • •s k ? We can find it inherently holds that (s 1 • • •s k ) σ < f (t 1 • • •t k ) σ , because c / ∈ (s 1 • • •s k ) σ and c ∈ (t 1 • • •t k ) σ . Therefore, it also holds that (t 1 • • •t k ) σ ∈M σ,f col ⇐ (t 1 • • •t k ⊖t j ) σ∈ Mσ, f col .
This completes the proof of equation ( 16), and completes the argument for case 1.1 as well.

Case 1.2:

∩ ( n-1 k )<l≤( n k ) Y l = ∅. Let v be the smallest number such that ∩ v≤l≤( n k ) Y l ̸ = ∅, and for convenience, let X col = ⟨C 1 , C 2 , . . . , C ( n k ) ⟩ and t 1 • • •t k = C u with ( n-1 k ) < u ≤ ( n k ) .
We divide the representation of R f col (C u ) in terms of contributions into two parts:

R f col (C u ) = (1/n!) ∑ u≤l<v T f col (C u , Y l ) + (1/n!) ∑ v≤l≤( n k ) T f col (C u , Y l ). First consider (1/n!) ∑ u≤l<v T f col (C u , Y l ). It is null if v ≤ u; otherwise we claim that it is equal to 0. Why? From ∩ u≤i≤( n k ) C i ̸ = ∅ (all including n), we know that ∩ u≤i≤( n k ) C σ i ̸ = ∅ for any σ∈S n . However, for any l with u ≤ l < v, ∩ l≤i≤( n k ) Y i = ∅, so anyway we have {Y l , Y l+1 , . . . , Y ( n k ) } {C σ u , C σ u+1 , . . . , C σ ( n k ) }. That is, when C σ u = Y l with u ≤ l < v, C σ u cannot be a left-to-right maximum in X σ col , under f . Next, consider (1/n!) ∑ v≤l≤( n k ) T f col (C u , Y l ).
We claim that it cannot exceed P (C u ). Indeed, let's construct a valid ranking function

g = ⟨Z 1 , Z 2 , . . . , Z ( n k ) ⟩ from f such that it satisfies ⟨Z v , Z v+1 , . . . , Z ( n k ) ⟩ = ⟨Y v , Y v+1 , . . . , Y ( n k ) ⟩ and ∩ ( n-1 k )<l≤( n k ) Z l ̸ = ∅.
That is, g satisfies the condition of case 1.1, and keeps the last

( n k ) -v+1 k-subsets unchanged. Such construction is possible because ∩ v≤l≤( n k ) Y l ̸ = ∅. Then we have (1/n!) ∑ v≤l≤( n k ) T f col (C u , Y l ) = (1/n!) ∑ v≤l≤( n k ) T g col (C u , Z l ) (by Obs. 1(ii)) ≤ (1/n!) ∑ u≤l≤( n k ) T g col (C u , Z l ) (being = if v ≤ u) = R g col (C u ) ≤ P (C u ) (from case 1.1).
Summarizing these two parts results in the inequality R f col (C u ) ≤ P (C u ) (i.e., inequality (10)).

Case 2: t k < n. In this case, we know that inequality [START_REF] Key | On the number of records on an iid discrete sequence[END_REF] has already held for (t k , k)-THP, by the conclusion of case 1. We still use induction to prove that it holds for (n, k)-THP. That is, under the assumption that inequality [START_REF] Key | On the number of records on an iid discrete sequence[END_REF] holds for (n -1, k)-THP, we argue its holding for (n, k)-THP. To distinguish the notations of (n-1, k)-THP from (n, k)-THP, we add ˜to the relevant symbols of (n-1, k)-THP.

Still let f = ⟨Y 1 , Y 2 , . . . , Y ( n k ) ⟩. For 1 ≤ d ≤ n, we note that there is a surjection Ω d : F → F, in which f = ⟨ Ỹ1 , Ỹ2 , ..., Ỹ( n-1 k )
⟩ is obtained from f as follows: remove all the k-subsets including d and conduct δ d to the remaining

( n-1 k ) k-subsets. Precisely, letting ⟨Y i 1 , Y i 2 , . . . , Y i ( n-1 k ) ⟩ with i 1 < i 2 < • • • < i ( n-1 k ) be the subsequence of f in which no k-subset includes d, we construct f by the rule Ỹj := (Y i j ) δ d for 1 ≤ j ≤ ( n-1 k )
. For instance, in Ω 3 of ( 

/ ∈ r 1 • • •r k ∪s 1 • • •s k and (f, f ) ∈ Ω d : r 1 • • •r k < f s 1 • • •s k ⇐⇒ (r 1 • • •r k ) δ d < f (s 1 • • •s k ) δ d . ( 19 
)
Now we claim that the holding of inequality (10) for case 2 is implied by the following equation for 1 ≤ d ≤ n and (f, f ) ∈ Ω d :

{σ∈S n : σ(n) = d, (t 1 • • •t k ) σ ∈ M σ,f col } = {σ∈S n-1 : (t 1 • • •t k ) σ ∈ Mσ, f col } , ( 20 
)
which is quite similar to equation [START_REF] Graham | Concrete Mathmathics: A Foundation for Computer Science[END_REF]. Indeed, if equation ( 20) is true, we immediately have

R f col (t 1 • • •t k ) = (1/n!) ∑ 1≤d≤n (the left-hand side of (20)) ≤ (1/(n -1)!) {σ∈S n-1 : (t 1 • • •t k ) σ ∈ Mσ,col col } (by the assumption) = Rcol col (t 1 • • •t k ) = P (t 1 • • •t k ) (from case 2 of Sec. 2.2).
To prove equation ( 20), we can use the same bijection Υ d : {σ ∈ S n : σ(n) = d}→S n-1 for 1 ≤ d ≤ n as the one in Section 2.2. Recall that for (σ, σ) ∈ Υ d and a k-subset r 1 • • •r k with r k < n, bijection Υ d holds equation ( 9), i.e., ((r

1 • • •r k ) σ ) δ d = (r 1 • • •r k ) σ,
as being restated. Then, combining this equation and assertion [START_REF] Sedgewick | An Introduction to the Analysis of Algorithms[END_REF], we have the following assertion for 1

≤ d ≤ n, (σ, σ) ∈ Υ d , (f, f ) ∈ Ω d , and any s 1 • • •s k < col t 1 • • •t k : (s 1 • • •s k ) σ < f (t 1 • • •t k ) σ ⇐⇒ ((s 1 • • •s k ) σ ) δ d < f ((t 1 • • •t k ) σ ) δ d
(by assertion ( 19))

⇐⇒ (s 1 • • •s k ) σ < f (t 1 • • •t k ) σ
(by Eq. ( 9)).

To explain it further, we should see that when σ(n) = d, every (s

1 • • •s k ) σ with s 1 • • •s k < col t 1 • • •t k does't include d,
so the k-subsets in f including d are as ineffective as nothing.

Since assertion [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF] directly implies equation [START_REF] Semba | An efficient algorithm for generating all k-subsets (1≤k≤m≤n) of the set {1, 2, ..., n} in lexicographical order[END_REF], we accomplish the argument for case 2, and so accomplish the proof of (II) as well.

Proof of (III)

Obviously, the equation E lex lex (n, k) = E col col (n, k) we want to prove is implied by the following stronger assertion for any σ ∈ S n and any

t 1 • • •t k ∈ X : (t 1 • • •t k ) σ ∈ M σ,lex lex ⇐⇒ (t 1 • • •t k ) σ ∈ M σ,col col . ( 22 
)
We now prove this assertion by contradiction. ⇐: We have the assumption that (s

1 • • •s k ) σ < col (t 1 • • •t k ) σ for all s 1 • • •s k < col t 1 • • •t k .
We now suppose for the purpose of contradiction that there is a

r 1 • • •r k with r 1 • • •r k < lex t 1 • • •t k and (t 1 • • •t k ) σ < lex (r 1 • • •r k ) σ . Our objective is to find a s 1 • • •s k with s 1 • • •s k < col t 1 • • •t k and (t 1 • • •t k ) σ < col (s 1 • • •s k ) σ ,
which contradicts the assumption.

To do this, we let

c 1 • • •c l = r 1 • • •r k ∩ t 1 • • •t k , and let r ′ 1 • • •r ′ j = r 1 • • •r k \c 1 • • •c l , t ′ 1 • • •t ′ j = t 1 • • •t k \c 1 • • •c l .
Clearly, j ≥ 1 and j + l = k. Then, by the property of lexical ordering, we have that r ′ 1 < t ′ 1 , and min 1≤i≤j σ(t

′ i ) < min 1≤i≤j σ(r ′ i ). Now, let (t ′ 1 • • •t ′ j ) σ = σ(t ′′ 1 )σ(t ′′ 2 )• • •σ(t ′′ j ) (with σ(t ′′ 1 ) < σ(t ′′ 2 ) < • • • < σ(t ′′ j ))
. Then, we claim that the k-subset {r ′ 1 , t ′′ 2 , . . . , t ′′ j , c 1 , . . . , c l } is just what we want to find.

We claim that E f ord (n, k) holds the following complementary-equivalence property:

E f ord (n, k) = E f ord (n, n -k). ( 27 
)
Indeed, for any σ∈S n , we observe that

X σ i = [n]\X σ i = [n] σ \X σ i = ([n]\X i ) σ = X i σ , so we have ⟨f (X σ i )⟩ 1≤i≤( n k ) = ⟨f (X σ i )⟩ 1≤i≤( n k ) = ⟨f (X i σ )⟩ 1≤i≤( n k ) , from which equation (27) follows.
Let π, ω ∈ S n . We define ord π and f ω as follows:

• X ord π := ⟨X π 1 , X π 2 , • • •, X π ( n k ) ⟩; • f ω := ⟨Y ω 1 , Y ω 2 , . . . , Y ω ( n k ) ⟩, a ranking function of (n, k)-THP satisfying that f ω (X ω i ) = f (X i ) for 1≤i≤ ( n k
) .

We claim that E f ord (n, k) holds the following permuting-equivalence property:

E f ord (n, k) = E f ω ord π (n, k). ( 28 
)
Indeed, for any σ∈S n , we observe that f (X

σ i ) = f ((X π i ) π -1 •σ ) = f ω ((X π i ) π -1 •σ•ω ). That is, whenever there is a σ∈S n incurring the sequence ⟨f (X σ i )⟩ 1≤i≤( n k ) , there is only one σ ′ = π -1 • σ • ω such that ⟨f ω ((X π i ) σ ′ )⟩ 1≤i≤( n k ) = ⟨f (X σ i )⟩ 1≤i≤( n k )
. Therefore, equation (28) follows. It is a common knowledge that the lexical and colex orderings are complementary to each other. If we only use their normal forms, letting π = n(n -1)• • •1, we have that in symbols, col = lex π , col = lex π , and vice versa. Therefore for any f , we have

E f lex (n, k) = E f lex π (n, n -k) = E f col (n, n -k) ≤ E col col (n, n -k) = E col π col π (n, k) = E lex lex (n, k),
where the inequality comes from assertion (II). This completes the proof of assertion (IV).

Proof of Corollary 2

Let us first prove the symmetry of E ⋆ lc (n, k) in k and n -k. Indeed, it has been implied by the results of the previous section: By assertions (I)-(IV), we know that

E ⋆ lc (n, k) = E lex lex (n, k) = E col col (n, k)
, and from Section 2.5, we know that

E lex lex (n, k) = E col col (n, n -k); consequently, combining these two results gives the equation E ⋆ lc (n, k) = E ⋆ lc (n, n -k).
As a by-product of the above proof, we have established, and given a probabilistic interpretation to, the following identity involving P (•) defined by recurrence (1): A numerical interpretation of this mysterious identity will lead to an alterative proof of the equation E ⋆ lc (n, k) = E ⋆ lc (n, n -k). It is left to readers as a challenging exercise. Now, let us prove the bounds of E ⋆ lc (n, k) presented in Corollary 2, directly from the formulas in Theorem 1. We start by claiming that P (•) holds the following inequality:

P (t 1 • • •t k ) = P (([n]\t 1 • • •t k ) π ), where π = n(n-1) • • • 1, 1≤t 1 < • • • < t k ≤n. ( 29 
P (s 1 • • •s k ) ≥ P (t 1 • • •t k ), for s 1 ≤t 1 , s 2 ≤t 2 , . . . , s k ≤t k . ( 30 
)
Indeed, inequality (30) can be easily proved by induction. Since 1/s 1 ≥ 1/t 1 in the case k = 1, inequality (30) holds for the basic (n, 1)-THP. We now assume that inequality (30) holds for (n-1, k-1)-THP with 1 < k ≤ n. Under this assumption, we observe that

P (s 1 • • •s k ) = (1/s k ) ∑ 1≤j≤k P (s 1 • • •s j-1 (s j+1 -1)• • •(s k -1)) ≥ (1/t k ) ∑ 1≤j≤k P (t 1 • • •t j-1 (t j+1 -1)• • •(t k -1)) = P (t 1 • • •t k ).
That is, inequality (30) holds for (n, k)-THP.

Then, looking at the right-hand side of recurrence (1), we find that

P (t 1 • • •t k-1 ) = max 1≤j≤k P (t 1 • • •t j-1 (t j+1 -1)• • •(t k -1)). (31) 
Therefore, by (31), we have

P (t 1 • • •t k ) ≤ k t k P (t 1 • • •t k-1 ) ≤ k(k-1) t k t k-1 P (t 1 • • •t k-2 ) ≤ • • • ≤ k! t k t k-1 • • •t 1 ,
and at the same time, also have

P (t 1 • • •t k ) ≥ 1 t k P (t 1 • • •t k-1 ) ≥ 1 t k t k-1 P (t 1 • • •t k-2 ) ≥ • • • ≥ 1 t k t k-1 • • •t 1 .
So far, we have obtained the following bounds for E ⋆ lc (n, k):

∑ 1≤t 1 <•••<t k ≤n 1 t 1 t 2 • • •t k ≤ E ⋆ lc (n, k) ≤ k! ∑ 1≤t 1 <•••<t k ≤n 1 t 1 t 2 • • •t k .
At last, all that remains for the inequality in Corollary 2 is the identity

∑ 1≤t 1 <•••<t k ≤n 1 t 1 t 2 • • •t k = 1 n! [ n + 1 k + 1 ] , ( 32 
)
which can be found in [1, pp.120-121] (without interpretation), or other references. Indeed, recalling that

[ n+1 k+1 ] is the coefficient of x k+1 in the polynomial x(x+1) • • • (x+n), we have [ n+1 k+1 ] = ∑ 1≤s 1 <•••<s n-k ≤n s 1 s 2 • • •s n-k . Whenever there is a product s 1 s 2 • • •s n-k with 1 ≤ s 1 < • • • < s n-k ≤ n, there is a fraction n!/(t 1 t 2 • • •t k ) with 1 ≤ t 1 < • • • < t k ≤ n,
which is both one-to-one corresponding to and equal to it. Hence, identity (32) follows.

Proof of Corollary 3

Suppose that 2 < k < n. We start by separating the summation formula in Theorem 1 for E ⋆ lc (n, k):

E ⋆ lc (n, k) = ∑ 1≤t 1 <•••<t k <n P (t 1 • • •t k ) + ∑ 1≤t 1 <•••<t k =n P (t 1 • • •t k ) = E ⋆ lc (n-1, k) + 1 n ∑ 1≤t 1 <•••<t k-1 <n ( P (t 1 • • •t k-1 ) + ∑ 1≤j<k P (t 1 • • •t k-1 n⊖t j ) ) = E ⋆ lc (n-1, k) + 1 n E ⋆ lc (n-1, k-1) + 1 n ∑ 1≤t 1 <•••<t k-1 <n ∑ 1≤j<k P (t 1 • • •t k-1 n⊖t j ),
where we recall that t 1 

≤ k -1 n ∑ 1≤t 1 <•••<t k-1 <n k -1 n -1 P (t 1 • • •t k-2 ) (
≤ (k -1) 2 n E ⋆ lc (n -2, k -2) (since k > 2).
So far, we have obtained the following recursive formula for E ⋆ lc (n, k):

E ⋆ lc (n, k) = E ⋆ lc (n-1, k) + 1 n E ⋆ lc (n-1, k-1) + tail(n, k), with tail(n, k) ≤ (k -1) 2 n E ⋆ lc (n -2, k -2) (2 < k < n). ( 33 
)
Now, we claim that E ⋆ lc (n, k) holds the bound

E ⋆ lc (n, k) ≤ 1 k! H k n + cH k-1 n (∃c > 0, n → ∞), ( 34 
)
with c being independent of n. To prove this bound by induction, we first note that E ⋆ lc (n, 1), E ⋆ lc (n, 2), and E ⋆ lc (k, k) hold it for any c > 1. For 2 < k < n, we assume that E ⋆ lc (n -1, k), E ⋆ lc (n -1, k -1), and E ⋆ lc (n -2, k -2) all hold this bound. Then, substituting the assumed bounds into (33), we have

E ⋆ lc (n, k) ≤ 1 k! H k n-1 + cH k-1 n-1 + 1 n ( 1 (k -1)! H k-1 n-1 + cH k-2 n-1 ) + tail(n, k) = 1 k! ( H k n-1 + k n H k-1 n-1 ) + c ( H k-1 n-1 + k -1 n H k-2 n-1 ) + tail(n, k) - c(k -2) n H k-2 n-1 ≤ 1 k! ( H n-1 + 1 n ) k + c ( H n-1 + 1 n ) k-1 + tail(n, k) - c(k -2) n H k-2 n-1 ≤ 1 k! H k n + cH k-1 n + (k -1) 2 n ( 1 (k -2)! H k-2 n-2 + cH k-3 n-2 ) - c(k -2) n H k-2 n-1 ≤ 1 k! H k n + cH k-1 n + c(k -1) 2 n H k-3 n-1 + (k -1) 2 /(k -2)! -c(k -2) n H k-2 n-1 ≤ 1 k! H k n + cH k-1 n ,
where the last step holds as long as c > (k-1) 2 (k-2)(k-2)! and n → ∞. Combining the base cases and the inductive case accomplishes the argument for the bound in (34).

Since H n = ln n + O(1), the bound in (34) implies that

E ⋆ lc (n, k) ≤ 1 k! (ln n) k + b(ln n) k-1 (∃b > 0, k = O(1), n → ∞), (35) 
with b being independent of n. From Corollary 2, we also know that

E ⋆ lc (n, k) ≥ 1 n! [ n + 1 k + 1 ] ∼ 1 k! (ln n) k (k = O(1), n → ∞). ( 36 
)
The bounds in (35) and (36) together implies that

E ⋆ lc (n, k) = 1 k! (ln n) k + O((ln n) k-1 ) (k = O(1), n → ∞).
Finally, by considering the symmetry of E ⋆ lc (n, k) in n and n -k, we accomplish the proof of Corollary 3.

Concluding remarks

Letting X ord = ⟨X i ⟩ 1≤i≤( n k ) , we denote the sequence ⟨f (X σ i )⟩ 1≤i≤( n k ) by X σ,f ord . Then, under a uniformly random σ∈S n , and for a fixed ord and f , X σ,f ord forms a "partly random" permutation of [

( n k )
] when k > 1. In the previous sections, we only quantify the expected-value measure for one statistic of X σ,f ord -the number of left-to-right maxima-for two special pairs of ord and f : (lex, lex) and (col, col). It should be of interest to explore other statistics on X σ,f ord , under general or special ord and f . Among all the other statistics discussed in the textbooks [START_REF] Graham | Concrete Mathmathics: A Foundation for Computer Science[END_REF], [START_REF] Sedgewick | An Introduction to the Analysis of Algorithms[END_REF], and [START_REF] Stanley | Enumerative Combinatorics[END_REF] for permutations, what we can immediately answer are the expected numbers of descents (consecutive descending pairs) and inversions (any descending pairs): In terms of the expected-value measure of these two statistics, X σ,f ord is as "random" as a uniformly random permutation of [

( n k )
].

)

  For example, by applying identity (29) to the subset 245 with n = 5, 6, 7, 8, ..., we have P (245) = P (35) = P (146) = P (1257) = P (12368) = • • • = 7 60 .

2 ∑

 2 by choosing the max P (1≤t 1 <•••<t k-2 ≤j P (t 1 • • •t k-2 ) (by letting j = t k-1 -

  and it doesn't include n. So what we need to argue for case 2 is implied by the following equation for 1 ≤ d ≤ n:

  • • •t k-1 n⊖t j can be written as t 1 • • •t j-1 (t j+1 -1)• • •(t k-1 -1)(n-1).For convenience, let tail(n, k) denote the last term of the above formula. Then by inequality (30), we have

tail(n, k) ≤ 1 n ∑ 1≤t 1 <•••<t k-1 <n (k -1)P (t 1 • • •t k-2 (n -1))

(by choosing the max P (•))

 

In fact, since r ′ 1 < t 

In inequality [START_REF] Wilf | On the outstanding elements of permutations[END_REF], as well as (24),(25), and (26) hereafter, the reason why both < lex and < col hold is that there is only one distinct element between those two k-subsets.

On the other hand, since

Inequalities ( 23) and ( 24) together form a contradiction to the assumption of the ⇐ direction.

⇒: This time we have the assumption that (s

We now suppose for the purpose of contradiction that there is a

Then, by the property of colex ordering, we have that r ′ j < t ′ j , and max 1≤i≤j σ(

Then in this time, we rely on the

On the other hand, since max 1≤i≤j σ(t ′ i ) < max 1≤i≤j σ(r ′ i ) = σ(r ′′ j ), we have

Inequalities ( 25) and (26) together form a contradiction to the assumption of the ⇒ direction.

Proof of (IV)

We start by presenting two properties of E f ord (n, k) for general ord and f . Then the assertion we want to prove here can be viewed as a corollary of assertion (II) plus these two properties.

Let

We define a series of "complements" as follows:

⟩, the ordering of all the (n -k)-subsets of [n] in the way of ord;

Proposition 2. For any fixed ord and f , the expected number of descents in X σ,f ord is (

and the expected number of inversions in X σ,f ord is

Then, these two cardinalities are both equal to 0 if |Y 1 ∩Y 2 | ̸ = k-j, and both equal to (k-j)!(j!) 2 (n-k-j)! otherwise. We have shown that for any pair of k-subsets X 1 and X 2 in X ord , the probability that f

For further analysis of the team-hiring problem, perhaps the next concern should be of the variances of the left-to-right maxima in X σ,f ord under a random σ. To obtain a probabilistic analysis, as dealing with expectations, we should focus on the worst variance over all f . Precisely, for a fixed ordering, what we are concerned with should be

Under this definition, even V ⋆ lex (n, k) and V ⋆ col (n, k) are difficult to solve. We don't know whether or not

Apart from the lexical and colex orderings for listing all k-subsets of [n], there is another well-known sequential ordering, called the revolving-door or minimal-change ordering (see [START_REF] Kreher | Combinatorial Agorithms: Generation, Enumberation, and Search[END_REF]Section 2.3.3]). The sequence of k-subsets in accordance with this ordering can also be generated efficiently in both time and space, and it looks somewhat more "disorderly" than the lexical and colex orderings. Let "rev" be the tag of this revolving-door ordering. Is E ⋆ rev (n, k) asymptotically smaller than E ⋆ lc (n, k)? That is the final question we are mostly concerned with.