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Abstract

Given two positive integers n and k with k ≤ n, let X denote the family of all the k-subsets
of [n] := {1, 2, . . . , n}. In this paper, assuming that the

(
n
k

)
k-subsets hold some order of

ranks, we consider the expected number of left-to-right maxima in some sequential ordering
of X , under a random permutation of [n]. In the case k = 1, it is well-known that the
answer is the nth harmonic number Hn = 1 + 1

2
+ · · · + 1

n
= lnn + O(1). For general k,

the contribution of this paper is about E⋆
lex(n, k) and E⋆

col(n, k), the expected numbers of
left-to-right maxima respectively in the lexicographical and colexicographical orderings of
X , achieved when the k-subsets in X hold their respective worst orders of ranks (to make
the two values as large as possible). We show that E⋆

lex(n, k) = E⋆
col(n, k), and give an

exact formula (not in closed form) for them. For estimating them, we further show that
when k′ := min{k, n− k} is fixed and n is big enough, they are asymptotic to 1

k′!
(lnn)k

′
.

The problem we consider here can be viewed as an extension to the assistant-hiring
problem, presented in the textbook Introduction to Algorithms by Cormen, Leiserson, Rivest,
and Stein, for introducing probabilistic analysis and randomized algorithms.

1. Introduction

In their legendary textbook Introduction to Algorithms [5, Section 5.1, both the second and
third editions], Cormen et al. take an assistant-hiring problem as the primary example to
introduce probabilistic analysis and randomized algorithms. Here, we extend that hiring
problem to a team-hiring scenario, which may lead to closer insight into these two subjects.
To adapt with team hiring, let us alter their original story to some extent. Suppose that
our organization wish to find the best-qualified k-person team from n applicants and hire
them permanently. The qualification of a team can only be determined by a sophisticated
test (for collaborative capability, etc.), and the result of the test is unpredictable. For the
work at hand not to be postponed, we decide to adopt an exhaustive testing-and-hiring
process to accomplish our task. At the beginning of the process, the applicants are assumed
to have been randomly numbered from 1 to n, and a least-qualified dummy team has been
hired. Then, each k-person team is tested each morning, one by one in accordance with some
ordering of all the

(
n
k

)
teams. If the team just tested is better than the current hired team,
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we discard the old team and hire the new team until a more qualified team is determined.
In the end, the lastly hired team will be hired permanently. Now, under the assumption
that the qualifications of all the teams are distinct, we have two concerns in our team-hiring
problem: the time and space requirements for generating the ordering of all the teams,
and the expected number of hired teams in the whole testing-and-hiring process (because
discarding an old team and organizing a new team costs money and energy). Clearly, the
latter is affected by two factors: the order in which we test the teams, and the order of
qualifications (ranks) that the

(
n
k

)
teams hold.

In the case k = 1, as analyzed in the textbook [5] and noted in many other references (e.g.,
[7]), the expected number of hired teams is the nth harmonic number Hn = 1+ 1

2
+ · · ·+ 1

n
=

lnn+O(1), no matter in what order we test the n applicants, and no matter what is the order
of ranks that the n applicants hold. In the case k > 1, if we assume that the

(
n
k

)
teams hold

a random order of ranks, the expected number of hired teams is ideally H(nk)
= O(k′ lnn)

with k′ := min{k, n − k}, no matter in what order we test the teams (see Proposition 1).
However, for a sequential order to test the teams, this result is not of probabilistic analysis
to the team-hiring problem, because the assumption that “the teams hold a random order
of ranks”, unlike the assumption that “the applicants are randomly numbered”, is not a
proper assumption on the inputs (of which the “teams” are not a part).

If we want to achieve the goal that the expected number of hired teams is always H(nk)
for k > 1 without any assumption on the order of ranks that the teams hold, to test the
teams in a random order may be of first choice, such that we get a randomized process.
To fulfil this, we need the Knuth shuffle (or called Fisher-Yates Shuffle) [12, Algorithm
P] to generate a random ordering of all the teams, either by shuffling all the k-subsets of
{1, 2, ..., n} directly, or by shuffling the set {1, 2, . . . ,

(
n
k

)
} firstly and then reconstructing the

k-subsets with an UNRANK procedure which follows some sequential ordering [14, Algorithms
2.8, 2.10, or 2.12]. Although the Knuth shuffle depends on a pseudorandom number generator
for implementation on computers, it is widely accepted as a uniform random permutation
generator [5]. The drawback of applying it here is that the shuffling process needs Ω(

(
n
k

)
)

working space.
If the above random ordering cannot be accepted for the sake of space requirements,

some pseudorandom or quasi-random orderings may be of consideration. To generate such
orderings, we need in a stateless way to generate a pseudorandom or quasi-random per-
mutation of {1, 2, ...,

(
n
k

)
}, where we can use the linear congruential sequence with period

length
(
n
k

)
[12, Theorem A], or use the truncated bit-reversal permutation [15, Section V].

With such methods, the space requirements are cut down, but we still need an UNRANK

procedure to reconstruct each k-subset, in which a quantity of binomial coefficients need to
be computed and big numbers must be involved if

(
n
k

)
is big (see [14] for detail). What is

worse is that we (at least the author) are not sure that these pseudorandom or quasi-random
orderings can achieve the same or a similar result as the real random ordering.

In this paper, we focus on two well-known sequential orderings: the lexicographical (or
lexical) and colexicographical (or colex) orderings. Compared with the above random, pseu-
dorandom or quasi-random orderings, the sequences of k-subsets obeying these two orderings
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can be generated very efficiently in both time and space. As shown in [13], [14], [17], and [20],
the current k-subset to be generated is only dependent on its predecessor, so all the k-subsets
can be generated with a SUCCESSOR procedure, in O(k) time per subset (indeed amortized
constant time if k≤n/2 and the time for output is excluded), and in O(k) working space,
with no big numbers involved if n is not big. Although they are quite nice in this regard, we
have the intuition that they should be bad in term of the expected number of hired teams
they induce in the worst case. But how bad are they? This paper tries to give a quantitative
answer to this question.

1.1. Problem formalization and our results

Throughout this paper, an ordering of a family of subsets, is referred to the sequence of
these subsets generated in some ordering way. Here, we follow [14] (rather than [13]), for
the normal forms of the lexical and colex orderings of all the k-subsets of the set {1, 2, ..., n},
which can be seen from the examples hereafter. Given a sequence of elements from a well-
order set, a (strong) left-to-right maximum of the sequence is the element which is greater
than any element preceding it.

Given two positive integer n and k with k ≤ n, the team-hiring problem in this paper
is only determined by n and k, so we call it (n, k)-THP for short. We formalize it with the
following notations:

• [n] := {1, 2, . . . , n};
• X : the family of all the

(
n
k

)
k-subsets of [n];

• ord: the variable tag for an ordering way to generate an ordering of X ;
• Xord: the ordering of X generated in the way of ord;
• σ : [n]→ [n], a permutation of [n];
• Sn: the set of all the n! permutations of [n];
• {t1, t2, . . . , tk}σ := {σ(t1), σ(t2), . . . , σ(tk)}, supposing that {t1, t2, . . . , tk} ∈ X ;
• X σ

ord := ⟨Xσ
1 , X

σ
2 , . . . , X

σ

(nk)
⟩, supposing that Xord = ⟨X1, X2, . . . , X(nk)

⟩;

• f : X → [
(
n
k

)
], a bijective ranking function on X ;

• Mσ,f
ord := {Xσ

j ∈ X σ
ord : 1≤j≤

(
n
k

)
, f(Xσ

i ) < f(Xσ
j ) for all i < j}, the collection of

left-to-right maximum k-subsets in X σ
ord, for a fixed σ and a fixed f ;

• Ef
ord(n, k) := (1/n!)

∑
σ∈Sn

|Mσ,f
ord|, the expected number of left-to-right maximum k-

subsets in X σ
ord, for a random σ∈Sn and a fixed f .

Additionally, we let “lex” and “col” be the tags of the lexical and colex orderings
respectively, and (from now on) we use the convention that a permutation of [n] is written
as a n-word and a k-subset of [n] is written as a k-word with elements in the ascending order.
(When the ascending order cannot be guaranteed, we still use the form {...} for a subset.)
For a ranking function f on X , we generally write it as an ordering of X to express it. That
is, f = ⟨X1, X2, ..., X(nk)

⟩ means that f(X1) = 1, f(X2) = 2, ..., f(X(nk)
) =

(
n
k

)
. Besides, the

inequality f(X1) < f(X2) is generally written as X1 <f X2.
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To illustrate the above notations, let’s consider (4, 2)-THP. If we choose f = ⟨13, 23, 34,
24, 12, 14⟩, then for a fixed σ = 3214, we have

Xlex = ⟨12, 13, 14, 23, 24, 34⟩, Xcol = ⟨12, 13, 23, 14, 24, 34⟩,
X σ

lex = ⟨23, 13, 34, 12, 24, 14⟩, X σ
col = ⟨23, 13, 12, 34, 24, 14⟩,

Mσ,f
lex = {23, 34, 12, 14}, Mσ,f

col = {23, 12, 14},
|Mσ,f

lex| = 4, |Mσ,f
col| = 3.

Summarizing over all σ ∈ S4, we can further obtain that

Ef
lex(4, 2) =

61
24
, and Ef

col(4, 2) =
59
24
.

Let F be the collection of all the ranking functions on X . Although F can be partitioned
into at most

(
n
k

)
!/n! equivalence classes (see Section 2.5), where the functions f in the same

class induce the same Ef
ord(n, k) for any fixed ord, we simply think of F as |F| =

(
n
k

)
!.

Here, we concentrate on the average and the worst behavior of f ∈ F , and only is the latter
essential to the probabilistic analysis of the team-hiring problem. Precisely, we have two
definitions that

E⋄
ord(n, k) := (1/

(
n
k

)
!)
∑

f∈F Ef
ord(n, k), and E⋆

ord(n, k) := maxf∈F Ef
ord(n, k).

Our first result of this paper is about how much E⋄
ord(n, k) is, which is both obvious and

intriguing. It belongs to the rare cases in the world that the “average” is easier to solve
than the “worst”.

Proposition 1. For any ordering ord of X , E⋄
ord(n, k) = H(nk)

.

Proof. For any fixed σ∈Sn, (1/
(
n
k

)
!)
∑

f∈F |Mσ,f
ord| = H(nk)

.

Our main result of this paper is an exact formula (not in closed form) for E⋆
lex(n, k) and

E⋆
col(n, k).

Theorem 1. For 1 ≤ k ≤ n, we have

E⋆
lex(n, k) = E⋆

col(n, k) =
∑

1≤t1<···<tk≤n P (t1· · ·tk),

where

P (t1· · ·tk) =
{

1/t1 if k = 1
(1/tk)

∑
1≤j≤k P

(
t1· · ·tj−1(tj+1−1)· · ·(tk−1)

)
otherwise.

(1)

In recurrence (1), the expression t1· · ·tj−1(tj+1−1)· · ·(tk−1) is understood to be a (k−1)-
subset of [n−1] obtained from the k-subset t1· · ·tk of [n], by removing tj and decrementing
the elements larger than tj (if any), and P (·) can be temporally viewed as a function which
can take any nonempty subset of [n] as its argument. In Section 2, we will see that P (t1· · ·tk)
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really corresponds to the probability that the subset t1· · ·tk achieves left-to-right maxima
in Xlex or Xcol. To illustrate recurrence (1), letting 247 be a 3-subset, we have P (247) =
1
7
[P (24) + P (26) + P (36)] = 1

7
[1
4
(1
2
+ 1

3
) + 1

6
(1
2
+ 1

5
) + 1

6
(1
3
+ 1

5
)].

We can immediately check that Theorem 1 well fits the cases k = 1 and n = k. Applying
Theorem 1 to (4, 2)-THP, we have

E⋆
lex(4, 2) = E⋆

col(4, 2) = P (12) + P (13) + P (23) + P (14) + P (24) + P (34)
= 1 + 1

2 + 1
3 + 1

3 + 5
24 + 1

6
= 61

24 ,

which can be verified by a simple computer program. We will give the proof of Theorem 1
for the general case in Section 2. From Theorem 1 we know that E⋆

lex(n, k) = E⋆
col(n, k),

thus we use a unified E⋆
lc(n, k) to denote both E⋆

lex(n, k) and E⋆
col(n, k)). Now, it is not

difficult to derive a formula in closed form for E⋆
lc(n, 2), a formula in summation form for

E⋆
lc(n, 3), and the subsequent asymptotics for them as well.

Corollary 1. We have

E⋆
lc(n, 2) =

1
2
(H2

n −H
(2)
n ) +Hn − 1 = 1

2
ln2n+O(lnn), and

E⋆
lc(n, 3) =

∑
3≤i≤n

(
1
2i
(H2

i−2 −H
(2)
i−2) + (1

i
+ 1

i−1
)Hi−2 +

1
i(i−1)

)
= 1

6
ln3n+O(ln2n),

where H
(2)
n =

∑
1≤i≤n 1/i

2 < π2

6
, which is the second-order nth harmonic number.

The sequence of n!E⋆
lc(n, 2) for n ≥ 2 is ⟨2, 11, 61, 379, 2668, . . .⟩, and the sequence of

n!E⋆
lc(n, 3) for n ≥ 3 is ⟨6, 50, 379, 3023, 26193, . . .⟩. These two sequences have been submit-

ted to the On-line Encyclopedia of the Integer Sequences(OEIS) [21], and published at the
entries A308729 and A308860 respectively.

For general k and n, analogous to the symmetry of binomial coefficients, E⋆
lc(n, k) is

symmetric in k and n − k, as might be expected. And it holds the bounds in terms of
unsigned Stirling numbers of the first kind.

Corollary 2. Specially define E⋆
lc(n, 0) := 1. Then for 0 ≤ k ≤ n, we have

E⋆
lc(n, k) = E⋆

lc(n, n− k), and 1
n!

[
n+1
k+1

]
≤ E⋆

lc(n, k) ≤ k!
n!

[
n+1
k+1

]
.

The proof of Corollary 2 will be given in Section 3. By applying the well-known asymp-
totic formula 1

n!

[
n+1
k+1

]
∼ 1

k!
(lnn)k for fixed k (see [19, Table 4.6]), we can immediately give a

conditional asymptotic bound in terms of big-theta for E⋆
lc(n, k): E⋆

lc(n, k) = Θ((lnn)k
′
)

for fixed k′ := min{k, n − k}. However, Corollary 1 hints that the coefficient of (lnn)k in
the asymptotic expansion of E⋆

lc(n, k) for fixed k seems to be 1/k!, so that we can derive
a more accurate estimate. This is true, and consequently we have the following corollary,
whose proof will be given in Section 4.

Corollary 3. For fixed k′ := min{k, n− k} and as n → ∞, we have

E⋆
lc(n, k) = (1/k′!)(lnn)k

′
+O((lnn)k

′−1).
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1.2. Related work

In previous references, the left-to-right maxima of a sequence were often given other names,
such as records and outstanding elements. Wilf [23] attributed to A. Rényi the result that
the number of permutations of n letters that have exactly k left-to-right maxima is

[
n
k

]
, an

unsigned Stirling number of the first kind. It seems to be of the folklore that the expected
number of left-to-right maxima in a random permutation of n letters is Hn, and the variance
is Hn − H

(2)
n . Wilf [23] presented plenty of other properties of left-to-right maxima in

permutations of n letters. In recent years, the (strong or weak) left-to-right maxima in
other types of sequences have also been analyzed by many authors. For example, see [10],
[11], [16], and [18].

For a special problem (identifying stars from a set U of n spikes with queries on k-
subsets of U), Mueller et al. [15] compared several orderings of k-subsets with experiments,
and showed that the quasi-random ordering based on bit reversals is superior to the lexical
ordering, in terms of the time for discovering all possible sets of stars.

There are another class of “hiring problems” (e.g., [9] and references therein), where an
applicant is either irrevocably rejected or permanently hired at once after an evaluation of
her/his capabilities, and the objective is to hire one or several possibly top employee(s).
These problems originated from the famous “secretary problem” [6], and from the practical
point of view, what they model is much closer to realistic hiring situations.

There are another kind of maxima – vector maxima, which deserve to mention. A vector
in a set of d-dimensional vectors is said to be maximal if it is not dominated by (in all
dimensions smaller than) any other vector. A set of n d-vectors is said to be random if
for each dimension, the components in the same dimension independently correspond to a
random permutation of [n], i.e, it is uniformly chosen from n!d possible vector sets. Under
this assumption on randomness (or its equivalences), it is amazing that our E⋆

lc(n, k) is
numerically related to A(n, d), the expected number of maxima in a random set of n d-
vectors. Bentley et al. [3] showed that A(n, d) holds the recurrence

A(n, d) = A(n− 1, d) + (1/n)A(n, d− 1)

with the initial conditions A(1, d) = 1 and A(n, 1) = 1, and gave it the bound O((lnn)d−1)
for fixed d. Buchta [4] derived a summation formula for A(n, d) and gave it an asymptotic
expansion for fixed d, whose first term is (1/(d−1)!)(lnn)d−1. For small d, we have A(n, 2) =

Hn, A(n, 3) =
1
2
H2

n +
1
2
H

(2)
n , and A(n, 4) = 1

6
H3

n +
1
2
HnH

(2)
n + 1

3
H

(3)
n , so we can observe that

A(n, d) is very close to E⋆
lc(n, d − 1). But there should be a large gap between them when

d is large, because d may be greater than n, and A(n, d) does not hold the property of
symmetry in d and n − d. The variance of the number of maxima in a random vector set
has also received attention, but its exact formula for general d is very complicated. Bai et
al. [2] gave an asymptotic formula for the variance, whose form is still not simple by any
means.
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2. Proof of Theorem 1

2.1. Preliminaries and Proof Outline

First, let’s consider general ord and general f . Let Xord = ⟨X1, X2, . . . , X(nk)
⟩, and let

f = ⟨Y1, Y2, . . . , Y(nk)
⟩. Then, we say that T f

ord(Xi, Yl) is the contribution of Yl to Xi, with

T f
ord(Xi, Yl) being defined as follows:

T f
ord(Xi, Yl) :=

∣∣{σ∈Sn : Xσ
i = Yl, X

σ
i ∈ Mσ,f

ord}
∣∣.

Observation 1. (i) T f
ord(Xi, Yl) = 0 for l < i. (ii) Suppose that f is variable. Then

T f
ord(Xi, Yl), T

f
ord(Xi, Yl+1), . . . , T

f
ord(Xi, Y(nk)

) all remain unchanged if the consecutive subse-

quence ⟨Yl, Yl+1, . . . , Y(nk)
⟩ remains unchanged.

In terms of contributions, we have another formula for Ef
ord(n, k):

Ef
ord(n, k) = (1/n!)

∑
1≤i≤l≤(nk)

T f
ord(Xi, Yl).

Next, let’s consider two special ranking functions which are respectively consistent with
Xlex and Xcol in their normal forms. We respectively name them lex and col. That is, in
our simplified language, we can say that lex = Xlex and col = Xcol, or say that <lex and
<col are two strict well-order relations on X . Without any confusion, we always stipulate
that <lex and <col can be used to compare any two distinct subsets of [n] with the same
cardinality.

Now let s1· · ·sk and t1· · ·tk be two distinct k-subsets of [n]. The definitions of <lex and
<col can be given recursively as follows:

• s1· · ·sk <lex t1· · ·tk if s1 < t1, or s1 = t1 and s2· · ·sk <lex t2· · ·tk.
• s1· · ·sk <col t1· · ·tk if sk < tk, or sk = tk and s1· · ·sk−1 <col t1· · ·tk−1.

Observation 2. Let c∈ s1· · ·sk ∩ t1..tk. Then both <lex and <col hold that

s1· · ·sk <lex(col) t1· · ·tk ⇐⇒ s1· · ·sk \ {c} <lex(col) t1· · ·tk \ {c}.

Let d ∈ [n]. Then the mapping δd : [n]\{d}→ [n−1] is called d-pivoted decrement (of
order n) if it satisfies

δd(i) =

{
i if i < d
i− 1 otherwise.

Clearly, δd is a bijection. Letting d /∈ t1· · ·tk, like the labeling of a permutation on a subset,
we use (t1· · ·tk)δd to denote the subset δd(t1)δd(t2)· · ·δd(tk). (It is guaranteed that δd(t1) <
δd(t2) < · · · < δd(tk) if d /∈ t1· · ·tk.) Then it is not difficult to verify the following observation.

Observation 3. Let d∈ [n] and d /∈ s1· · ·sk ∪ t1· · ·tk. Then both <lex and <col hold that

s1· · ·sk <lex(col) t1· · ·tk ⇐⇒ (s1· · ·sk)δd <lex(col) (t1· · ·tk)δd .

7



Now let c∈ t1· · ·tk. Then (t1· · ·tk\{c})δc is a valid (k − 1)-subset of [n − 1]. For con-
venience, we use t1· · ·tk⊖c to denote it. That is, when c ∈ t1· · ·tk, we have the definition
that

t1· · ·tk⊖c := (t1· · ·tk\{c})δc := t1· · ·ti−1(ti+1−1)· · ·(tk−1),

where i satisfies ti = c. Combining Observations 3 and 2 together, we immediately have the
following Observation 4.

Observation 4. Let c∈ s1· · ·sk ∩ t1· · ·tk. Then both <lex and <col hold that

s1· · ·sk <lex(col) t1· · ·tk ⇐⇒ s1· · ·sk⊖c <lex(col) t1· · ·tk⊖c.

After presenting the above preliminaries, the following part of this section focuses on
showing that lex and col are just the worst ranking functions for Xlex and Xcol respectively,
and they induce the quantity given in Theorem 1. We present the proof by sequentially
arguing the following assertions:

(I) Ecol
col(n, k) =

∑
1≤t1<···<tk≤n P (t1· · ·tk), with P (t1· · ·tk) holding recurrence (1).

(II) For any f ∈ F , Ef
col(n, k) ≤ Ecol

col(n, k).

(III) Elex
lex(n, k) = Ecol

col(n, k).

(IV) For any f ∈ F , Ef
lex(n, k) ≤ Elex

lex(n, k).

2.2. Proof of (I)

We now formally define P (t1· · ·tk) to be the probability that the subset t1· · ·tk in Xcol

achieves left-to-right maxima under a random σ and the fixed ranking function col. Precisely,
we have the definition that

P (t1· · ·tk) := (1/n!)
∣∣{σ∈Sn : (t1· · ·tk)σ∈Mσ,col

col }
∣∣.

Since the summation
∑

1≤t1<···<tk≤n P (t1· · ·tk) traverses all the k-subsets of [n], what we
need to argue in the rest of this subsection, is only that in term of its probability meaning,
recurrence (1) really holds. We now prove this by induction on n and k.

From recurrence (1), we have P (t1) = 1/t1 when k = 1, and P (t1· · ·tk) = P (1· · ·k) = 1
when n = k, so recurrence (1) holds for the basic (n, 1)-THP and (k, k)-THP. In the inductive
step, our assumption is that recurrence (1) holds for (n−1, k−1)-THP and (n−1, k)-THP
with 1 < k < n, and our goal is to argue that it holds for (n, k)-THP. Now we carry out the
induction by separately considering two cases.

Case 1: tk = n. In this case, the induction is from (n−1, k−1)-THP. To make the
exposition non-confusing, for (n−1, k−1)-THP, we use the notations X̂ , σ̂, and M̂σ̂,col

col ,
corresponding to X , σ, and Mσ,col

col respectively.
First, let’s consider the k-subset t1· · ·tk with tk = n in the left-hand side of recurrence

(1). It appears in both Xcol and col, which are the same sequence indeed. By the property of

8



the colex ordering, we know that all the last
(
n−1
k−1

)
k-subsets in Xcol include n, one of which

is t1· · ·tk; by Observation 1, we know that only the k-subsets in the consecutive subsequence
of col starting from t1· · ·tk can have contribution to t1· · ·tk in Xcol. So if (t1· · ·tk)σ∈Mσ,col

col ,
then there must be 1≤ j≤ k such that σ(tj) = n. Therefore in case 1, it holds that

P (t1· · ·tk) = (1/n!)
∑

1≤j≤k

∣∣{σ∈Sn : σ(tj) = n, (t1· · ·tk)σ ∈Mσ,col
col }

∣∣. (2)

Next, for 1≤ j≤ k, let’s consider the (k−1)-subset corresponding to the current j in the
right-hand side of recurrence (1). We observe that t1· · ·tj−1(tj+1−1) · · · (tk−1) is just

t1· · ·tk⊖tj.

Then according to the assumption that recurrence (1) holds for (n−1, k−1)-THP, we have

P (t1· · ·tk⊖tj) = (1/(n−1)!)
∣∣{σ̂∈Sn−1 : (t1· · ·tk⊖tj)

σ̂ ∈M̂σ̂,col
col }

∣∣. (3)

Now substituting their formulas (respectively in (2) and (3)) for P (t1· · ·tk) and P (t1· · ·tk⊖tj)
in recurrence (1), we find that the holding of recurrence (1) for (n, k)-THP is implied by the
following equation for 1≤ j≤ k:∣∣{σ∈Sn : σ(tj) = n, (t1· · ·tk)σ ∈Mσ,col

col }
∣∣ = ∣∣{σ̂∈Sn−1 : (t1· · ·tk⊖tj)

σ̂ ∈M̂σ̂,col
col }

∣∣. (4)

To prove equation (4), we note that for 1≤ j≤ k, there is a bijection ∆j : {σ ∈ Sn :
σ(tj) = n}→Sn−1 defined by

σ 7→ σ(1)· · ·σ(tj−1)σ(tj+1)· · ·σ(n).

In other words, ∆j(σ) is obtained by removing σ(tj) = n, and shifting the sub-word σ(tj+
1)· · ·σ(n) left (if any). Let (σ, σ̂) ∈ ∆j, and r1· · ·rk be a k-subset of [n] with some ri = tj.
Then we can see bijection ∆j holds that

(r1· · ·rk)σ = (r1· · ·ri−1tjri+1· · ·rk)σ

= {σ(r1), . . . , σ(ri−1), σ(ri+1), . . . , σ(rk)}∪{σ(tj)}
= {σ̂(r1), . . . , σ̂(ri−1), σ̂(ri+1−1), . . . , σ̂(rk − 1)}∪{n}
= (r1· · ·ri−1(ri+1−1)· · ·(rk−1))σ̂ ∪ {n}
= (r1· · ·rk⊖tj)

σ̂ ∪ {n} (5)

With bijection ∆j, to prove equation (4), what we need to argue is only the following
assertion for 1≤ j≤ k and (σ, σ̂) ∈ ∆j:

(t1· · ·tk)σ ∈ Mσ,col
col ⇐⇒ (t1· · ·tk⊖tj)

σ̂ ∈ M̂σ̂,col
col . (6)

To prove assertion (6), we note that for 1≤ j≤ k, there is a bijection Λj : {r1· · ·rk∈X :

tj∈r1· · ·rk}→ X̂ defined by

r1· · ·rk 7→ r1· · ·rk⊖tj.

9



The bijectiveness of Λj is based on Observation 3: In terms of <lex or <col, Λj is order-
preserving. So we immediately see that the mapping rule r1· · ·rk 7→ r1· · ·rk⊖tj also establish
the bijection

Λ′
j : {s1· · ·sk∈X : tj∈s1· · ·sk, s1· · ·sk <col t1· · ·tk}→{r1· · ·rk−1∈X̂ : r1· · ·rk−1 <col t1· · ·tk⊖tj}.

To illustrate bijection Λ′
j, let’s consider (6, 3)-THP, and suppose that t1t2t3 = 236 and the

current j = 2 (i.e., tj = 3). Then, bijection Λ′
j is as follows:

123 (124) 134 234 (125) 135 235 (145) (245) 345 (126) 136 (236)
↕ ↕ ↕ ↕ ↕ ↕ ↕
12 13 23 14 24 34 15 (25)

With bijection ∆j and Λ′
j, we are ready for proving assertion (6). Combining equation

(5) and Observation 2, we have the following assertion for 1≤ j≤ k, (σ, σ̂) ∈ ∆j, and
(s1· · ·sk, s1· · ·sk⊖tj)∈Λ′

j:

(s1· · ·sk)σ <col (t1· · ·tk)σ ⇐⇒ (s1· · ·sk⊖tj)
σ̂∪{n} <col (t1· · ·tk⊖tj)

σ̂∪{n} (by Eq. (5))

⇐⇒ (s1· · ·sk⊖tj)
σ̂ <col (t1· · ·tk⊖tj)

σ̂ (by Obs. 2).
(7)

Since bijection Λ′
j establishes an injection from {r1· · ·rk−1∈X̂ : r1· · ·rk−1 <col t1· · ·tk⊖tj} to

{s1· · ·sk∈X : s1· · ·sk <col t1· · ·tk}, we find that assertion (7) directly implies the ⇒ direction
of assertion (6). How about its ⇐ direction? Consider such s1· · ·sk with s1· · ·sk <col t1· · ·tk
and tj /∈ s1· · ·sk. We find that n /∈ (s1· · ·sk)σ, and thus it inherently holds that (s1· · ·sk)σ <col

(t1· · ·tk)σ. Therefore, the ⇐ direction of assertion (6) also holds.
With assertion (6) being proved, we accomplish the argument for case 1.

Case 2: tk < n. In this case, we know that recurrence (1) has already held for (tk, k)-
THP, by the conclusion of case 1. What we need to argue is only that P (t1· · ·tk) remains
unchanged if we extend the problem from (tk, k)-THP to (n, k)-THP. We argue this also by
induction. That is, under the assumption that P (t1· · ·tk) remains unchanged from (tk, k)-
THP to (n−1, k)-THP, our goal is to argue that it remains unchanged from (n−1, k)-THP
to (n, k)-THP.

By the property of the colex ordering, we know that every s1· · ·sk with s1· · ·sk <col t1· · ·tk
remains unchanged if we extend the problem from (n−1, k)-THP to (n, k)-THP, and it
doesn’t include n. So what we need to argue for case 2 is implied by the following equation
for 1≤ d≤n:∣∣{σ∈Sn : σ(n) = d, (t1· · ·tk)σ ∈ Mσ,col

col }
∣∣ = ∣∣{σ̃∈Sn−1 : (t1· · ·tk)σ̃ ∈ M̃σ̃,col

col }
∣∣, (8)

where M̃σ̃,col
col is understood to be the notation of (n−1, k)-THP, corresponding to Mσ,col

col .
To prove equation (8), we note that for 1≤ d≤n, there is a bijection Υd : {σ ∈ Sn :

σ(n) = d}→Sn−1 defined by

σ 7→ δd(σ(1))δd(σ(2))· · ·δd(σ(n− 1)).
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In other words, Υd(σ) is obtained by removing σ(n) = d and decrementing all the elements
larger than d. Now, letting (σ, σ̃) ∈ Υd, and r1· · ·rk be a k-subset of [n] with rk < n (i.e.,
d /∈ (r1· · ·rk)σ), we can see bijection Υd holds that

((r1· · ·rk)σ)δd = {δd(σ(r1)), δd(σ(r2)), . . . , δd(σ(rk))}
= {σ̃(r1), σ̃(r2), . . . , σ̃(rk)}
= (r1· · ·rk)σ̃. (9)

Then, combining equation (9) and Observation 3, we have the following assertion for 1≤ d≤n,
(σ, σ̃) ∈ Υd, and any s1· · ·sk <col t1· · ·tk:

(s1· · ·sk)σ <col (t1· · ·tk)σ ⇐⇒ ((s1· · ·sk)σ)δd <col ((t1· · ·tk)σ)δd (by Obs. 3)

⇐⇒ (s1· · ·sk)σ̃ <col (t1· · ·tk)σ̃ (by Eq. (9)).

That directly implies equation (8).
With the argument for case 2 being completed, we accomplish the proof of (I).

2.3. Proof of (II)

In this subsection, we continue to use the definition of P (t1· · ·tk) as in Section 2.2, i.e., it is
the probability that the subset t1· · ·tk in Xcol achieves left-to-right maxima under a random
σ and the fixed col, and it holds recurrence (1) by the conclusion of Section 2.2. When
the ranking function f is general, we use Rf

col(t1· · ·tk) to denote the probability that the
subset t1· · ·tk in Xcol achieves left-to-right maxima under a random σ. Precisely, we have
the definition that

Rf
col(t1· · ·tk) := (1/n!)

∣∣{σ∈Sn : (t1· · ·tk)σ∈Mσ,f
col}

∣∣.
(That is, under this new definition, P (t1· · ·tk) is just Rcol

col(t1· · ·tk).) Then we can see that
the inequality Ef

col(n, k) ≤ Ecol
col(n, k) we want to prove is definitely implied by the following

stronger inequality for any t1· · ·tk∈X :

Rf
col(t1· · ·tk) ≤ P (t1· · ·tk). (10)

So the remainder of this subsection rests on proving inequality (10), by using an induction
similar to the one in the proof of (I).

We first note that inequality (10) holds for the basic (n, 1)-THP and (k, k)-THP with
equalities. In the inductive step, our goal is to argue that it holds for (n, k)-THP under
the assumption that it holds for (n−1, k−1)-THP and (n−1, k)-THP with 1 < k < n. We
achieve this goal also by separately considering two cases.

Case 1: tk = n. In this case, the induction is also from (n−1, k−1)-THP. To make the
notations distinguished, we still add ˆ to the relevant symbols of (n−1, k−1)-THP.

Letting f = ⟨Y1, Y2, . . . , Y(nk)
⟩, we now consider two subcases for case 1.
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Case 1.1: There is 1≤ c≤n such that c∈
∩
(n−1

k )<l≤(nk)
Yl. In other words, in this subcase,

c appears only in the last
(
n−1
k−1

)
k-subsets of f . Let’s construct f̂ = ⟨Ŷ1, Ŷ2, . . . , Ŷ(n−1

k−1)
⟩ from

f with the rule

Ŷl := Y(n−1
k )+l ⊖ c

for 1≤ l≤
(
n−1
k−1

)
. For example, if f = ⟨. . . , 234, 125, 245, 124, 123, 235⟩ (i.e., c = 2) in (5, 3)-

THP , then f̂ = ⟨23, 14, 34, 13, 12, 24⟩. This mapping rule establishes a surjection

Φc : {f∈F : c∈
∩
(n−1

k )<l≤(nk)
Yl} → F̂ ,

since similar to bijection Λj, the bijection from {Y(n−1
k )+1, Y(n−1

k )+2, . . . , Y(nk)
} to {Ŷ1, Ŷ2, . . . , Ŷ(n−1

k−1)
}

is order-preserving in terms of<f and<f̂ . So we have the following assertion for c∈ r1· · ·rk∩s1· · ·sk
and (f, f̂) ∈ Φc:

r1· · ·rk <f s1· · ·sk ⇐⇒ r1· · ·rk⊖c <f̂ s1· · ·sk⊖c. (11)

In (n−1, k−1)-THP, for general f̂ ∈ F̂ and 1≤ j≤ k, it is naturally understood that

R̂f̂
col(t1· · ·tk⊖tj) = (1/(n−1)!)

∣∣{σ̂∈Sn−1 : (t1· · ·tk⊖tj)
σ̂ ∈ M̂σ̂,f̂

col}
∣∣, (12)

and according to the assumption on (n−1, k−1)-THP, it holds that

R̂f̂
col(t1· · ·tk⊖tj) ≤ P (t1· · ·tk⊖tj). (13)

Now we claim that inequality (10) is implied by the following equation for (f, f̂) ∈ Φc:

Rf
col(t1· · ·tk) = (1/n)

∑
1≤j≤k R̂

f̂
col(t1· · ·tk⊖tj). (14)

That is because if equation (14) is true, then we immediately have

Rf
col(t1· · ·tk) ≤ (1/n)

∑
1≤j≤k P (t1· · ·tk⊖tj) (by ineqality (13))

= P (t1· · ·tk) (by recurrence (1)).

All that remains for case 1.1 is to prove equation (14). In fact, it can be proved along the
way to argue case 1 of Section 2.2. Since tk = n, t1· · ·tk is one of the last

(
n−1
k−1

)
k-subsets in

Xcol; so if (t1· · ·tk)σ∈Mσ,f
col, then there must be 1 ≤ j ≤ k such that σ(tj) = c. Therefore

in case 1.1, it holds that

Rf
col(t1· · ·tk) = (1/n!)

∑
1≤j≤k

∣∣{σ∈Sn : σ(tj) = c, (t1· · ·tk)σ ∈ Mσ,f
col}

∣∣. (15)

Substituting their formulas (respectively in (15) and (12)) forRf
col(t1· · ·tk) and R̂f̂

col(t1· · ·tk⊖tj)
in equation (14), we find that the holding of equation (14) is implied by the following equa-
tion for 1≤ j≤ k and (f, f̂) ∈ Φc:∣∣{σ∈Sn : σ(tj) = c, (t1· · ·tk)σ∈Mσ,f

col}
∣∣ = ∣∣{σ̂∈Sn−1 : (t1· · ·tk⊖tj)

σ̂∈M̂σ̂,f̂
col}

∣∣. (16)
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Now we can check the similarity between (16) and (4); nevertheless, a self-contained argu-
ment for equation (16) is necessary, though it looks somewhat redundant.

To prove equation (16), we first need a bijection Ψj,c : {σ∈Sn : σ(tj) = c}→Sn−1 defined
by

σ 7→ δc(σ(1))· · ·δc(σ(tj − 1))δc(σ(tj + 1))· · ·δc(n),

which can be viewed as a generalization of bijection ∆j from the special case c = n to the
general case. Letting (σ, σ̂) ∈ Ψj,c, and r1· · ·rk be a k-subset with some ri = tj, we can see
bijection Ψj,c holds that

(r1· · ·rk)σ⊖c = ((r1· · ·ri−1tjri+1· · ·rk)σ \ {σ(tj)})δc

= {δc(σ(r1)), . . . , δc(σ(ri−1)), δc(σ(ri+1)), . . . , δc(σ(rk))}
= {σ̂(r1), . . . , σ̂(ri−1), σ̂(ri+1−1), . . . , σ̂(rk − 1)}
= (r1· · ·ri−1(ri+1−1)· · ·(rk−1))σ̂

= (r1· · ·rk⊖tj)
σ̂. (17)

Another bijection we need is the bijection

Λ′
j : {s1· · ·sk∈X : tj∈s1· · ·sk, s1· · ·sk <col t1..tk}→{r1· · ·rk−1∈X̂ : r1· · ·rk−1 <col t1· · ·tk⊖tj},

which is the same as the one in Section 2.2.
With bijections Ψj,c and Λ′

j, as well as surjection Φc, we are ready for proving equa-
tion (16). Combining equation (17) and assertion (11), we have the following assertion for
1≤ j≤ k, (f, f̂) ∈ Φc, (σ, σ̂) ∈ Ψj,c, and (s1· · ·sk, s1· · ·sk⊖tj)∈Λ′

j:

(s1· · ·sk)σ <f (t1· · ·tk)σ ⇐⇒ (s1· · ·sk)σ⊖c <f̂ (t1· · ·tk)σ⊖c (by assertion (11))

⇐⇒ (s1· · ·sk⊖tj)
σ̂ <f̂ (t1· · ·tk⊖tj)

σ̂ (by Eq. (17)). (18)

Assertion (18) directly implies

(t1· · ·tk)σ∈Mσ,f
col ⇒ (t1· · ·tk⊖tj)

σ̂∈M̂σ̂,f̂
col,

since |{s1· · ·sk∈X : s1· · ·sk <col t1· · ·tk}| > |{r1· · ·rk−1∈X̂ : r1· · ·rk−1 <col t1· · ·tk⊖tj}|. How
about such s1· · ·sk with s1· · ·sk <col t1· · ·tk and tj /∈ s1· · ·sk? We can find it inherently holds
that (s1· · ·sk)σ <f (t1· · ·tk)σ, because c /∈ (s1· · ·sk)σ and c ∈ (t1· · ·tk)σ. Therefore, it also
holds that

(t1· · ·tk)σ∈Mσ,f
col ⇐ (t1· · ·tk⊖tj)

σ̂∈M̂σ̂,f̂
col.

This completes the proof of equation (16), and completes the argument for case 1.1 as well.

Case 1.2:
∩
(n−1

k )<l≤(nk)
Yl = ∅. Let v be the smallest number such that

∩
v≤l≤(nk)

Yl ̸= ∅,
and for convenience, let Xcol = ⟨C1, C2, . . . , C(nk)

⟩ and t1· · ·tk = Cu with
(
n−1
k

)
< u ≤

(
n
k

)
.

We divide the representation of Rf
col(Cu) in terms of contributions into two parts:

Rf
col(Cu) = (1/n!)

∑
u≤l<v T

f
col(Cu, Yl) + (1/n!)

∑
v≤l≤(nk)

T f
col(Cu, Yl).
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First consider (1/n!)
∑

u≤l<v T
f
col(Cu, Yl). It is null if v≤u; otherwise we claim that it is

equal to 0. Why? From
∩

u≤i≤(nk)
Ci ̸= ∅ (all including n), we know that

∩
u≤i≤(nk)

Cσ
i ̸= ∅

for any σ∈Sn. However, for any l with u ≤ l < v,
∩

l≤i≤(nk)
Yi = ∅, so anyway we have

{Yl, Yl+1, . . . , Y(nk)
} * {Cσ

u , C
σ
u+1, . . . , C

σ

(nk)
}. That is, when Cσ

u = Yl with u ≤ l < v, Cσ
u

cannot be a left-to-right maximum in X σ
col, under f .

Next, consider (1/n!)
∑

v≤l≤(nk)
T f
col(Cu, Yl). We claim that it cannot exceed P (Cu).

Indeed, let’s construct a valid ranking function g = ⟨Z1, Z2, . . . , Z(nk)
⟩ from f such that

it satisfies

⟨Zv, Zv+1, . . . , Z(nk)
⟩ = ⟨Yv, Yv+1, . . . , Y(nk)

⟩ and
∩
(n−1

k )<l≤(nk)
Zl ̸= ∅.

That is, g satisfies the condition of case 1.1, and keeps the last
(
n
k

)
−v+1 k-subsets unchanged.

Such construction is possible because
∩

v≤l≤(nk)
Yl ̸= ∅. Then we have

(1/n!)
∑

v≤l≤(nk)
T f
col(Cu, Yl) = (1/n!)

∑
v≤l≤(nk)

T g
col(Cu, Zl) (by Obs. 1(ii))

≤ (1/n!)
∑

u≤l≤(nk)
T g
col(Cu, Zl) (being = if v≤u)

= Rg
col(Cu)

≤ P (Cu) (from case 1.1).

Summarizing these two parts results in the inequality Rf
col(Cu) ≤ P (Cu) (i.e., inequality

(10)).

Case 2: tk < n. In this case, we know that inequality (10) has already held for (tk, k)-
THP, by the conclusion of case 1. We still use induction to prove that it holds for (n, k)-THP.
That is, under the assumption that inequality (10) holds for (n−1, k)-THP, we argue its
holding for (n, k)-THP. To distinguish the notations of (n−1, k)-THP from (n, k)-THP, we
add ˜ to the relevant symbols of (n−1, k)-THP.

Still let f = ⟨Y1, Y2, . . . , Y(nk)
⟩. For 1≤ d≤n, we note that there is a surjection Ωd :

F → F̃ , in which f̃ = ⟨Ỹ1, Ỹ2, ..., Ỹ(n−1
k )⟩ is obtained from f as follows: remove all the

k-subsets including d and conduct δd to the remaining
(
n−1
k

)
k-subsets. Precisely, letting

⟨Yi1 , Yi2 , . . . , Yi
(n−1

k )
⟩ with i1 < i2 < · · · < i(n−1

k ) be the subsequence of f in which no k-subset

includes d, we construct f̃ by the rule

Ỹj := (Yij)
δd

for 1≤ j≤
(
n−1
k

)
. For instance, in Ω3 of (5, 2)-THP,

⟨15, 34, 35, 23, 25, 24, 13, 12, 45, 14⟩ 7→ ⟨14, 24, 23, 12, 34, 13⟩,

where the underlined subsets are neglected. By the mapping rule of Ωd, we have the following
assertion for d /∈ r1· · ·rk∪s1· · ·sk and (f, f̃) ∈ Ωd:

r1· · ·rk <f s1· · ·sk ⇐⇒ (r1· · ·rk)δd <f̃ (s1· · ·sk)δd . (19)
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Now we claim that the holding of inequality (10) for case 2 is implied by the following
equation for 1≤ d≤n and (f, f̃) ∈ Ωd:∣∣{σ∈Sn : σ(n) = d, (t1· · ·tk)σ ∈Mσ,f

col}
∣∣ = ∣∣{σ̃∈Sn−1 : (t1· · ·tk)σ̃ ∈M̃σ̃,f̃

col}
∣∣, (20)

which is quite similar to equation (8). Indeed, if equation (20) is true, we immediately have

Rf
col(t1· · ·tk) = (1/n!)

∑
1≤d≤n (the left-hand side of (20))

≤ (1/(n− 1)!)
∣∣{σ̃∈Sn−1 : (t1· · ·tk)σ̃ ∈ M̃σ̃,col

col }
∣∣ (by the assumption)

= R̃col
col(t1· · ·tk)

= P (t1· · ·tk) (from case 2 of Sec. 2.2).

To prove equation (20), we can use the same bijection Υd : {σ ∈ Sn : σ(n) = d}→Sn−1

for 1≤ d≤n as the one in Section 2.2. Recall that for (σ, σ̃) ∈ Υd and a k-subset r1· · ·rk
with rk < n, bijection Υd holds equation (9), i.e., ((r1· · ·rk)σ)δd = (r1· · ·rk)σ̃, as being
restated. Then, combining this equation and assertion (19), we have the following assertion
for 1≤ d≤n, (σ, σ̃) ∈ Υd, (f, f̃) ∈ Ωd, and any s1· · ·sk <col t1· · ·tk:

(s1· · ·sk)σ <f (t1· · ·tk)σ ⇐⇒ ((s1· · ·sk)σ)δd <f̃ ((t1· · ·tk)σ)δd (by assertion (19))

⇐⇒ (s1· · ·sk)σ̃ <f̃ (t1· · ·tk)σ̃ (by Eq. (9)). (21)

To explain it further, we should see that when σ(n) = d, every (s1· · ·sk)σ with s1· · ·sk <col

t1· · ·tk does’t include d, so the k-subsets in f including d are as ineffective as nothing.
Since assertion (21) directly implies equation (20), we accomplish the argument for case

2, and so accomplish the proof of (II) as well.

2.4. Proof of (III)

Obviously, the equation Elex
lex(n, k) = Ecol

col(n, k) we want to prove is implied by the following
stronger assertion for any σ ∈ Sn and any t1· · ·tk ∈ X :

(t1· · ·tk)σ ∈ Mσ,lex
lex ⇐⇒ (t1· · ·tk)σ ∈ Mσ,col

col . (22)

We now prove this assertion by contradiction.
⇐: We have the assumption that (s1· · ·sk)σ <col (t1· · ·tk)σ for all s1· · ·sk <col t1· · ·tk. We

now suppose for the purpose of contradiction that there is a r1· · ·rk with r1· · ·rk <lex t1· · ·tk
and (t1· · ·tk)σ<lex(r1· · ·rk)σ. Our objective is to find a s1· · ·sk with s1· · ·sk <col t1· · ·tk and
(t1· · ·tk)σ <col (s1· · ·sk)σ, which contradicts the assumption.

To do this, we let c1· · ·cl = r1· · ·rk ∩ t1· · ·tk, and let r′1· · ·r′j = r1· · ·rk\c1· · ·cl, t′1· · ·t′j =
t1· · ·tk\c1· · ·cl. Clearly, j ≥ 1 and j + l = k. Then, by the property of lexical order-
ing, we have that r′1 < t′1, and min1≤i≤j σ(t

′
i) < min1≤i≤j σ(r

′
i). Now, let (t′1· · ·t′j)σ =

σ(t′′1)σ(t
′′
2)· · ·σ(t′′j ) (with σ(t′′1) < σ(t′′2) < · · · < σ(t′′j )). Then, we claim that the k-subset

{r′1, t′′2, . . . , t′′j , c1, . . . , cl} is just what we want to find.
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In fact, since r′1 < t′1 and {t′′2, . . . , t′′j}⊂ t′1· · ·t′j, we have

{r′1, t′′2, . . . , t′′j , c1, . . . , cl} <lex(col) {t′1, t′2, . . . , t′j, c1, . . . , cl} = t1· · ·tk. (23)

In inequality (23), as well as (24),(25), and (26) hereafter, the reason why both <lex and
<col hold is that there is only one distinct element between those two k-subsets.

On the other hand, since σ(t′′1) = min1≤i≤j σ(t
′
i) < min1≤i≤j σ(r

′
i) ≤ σ(r′1), we have

(t1· · ·tk)σ = {t′1, t′2, . . . , t′j, c1, . . . , cl}σ <lex(col) {r′1, t′′2, . . . , t′′j , c1, . . . , cl}σ. (24)

Inequalities (23) and (24) together form a contradiction to the assumption of the ⇐
direction.

⇒: This time we have the assumption that (s1· · ·sk)σ <lex (t1· · ·tk)σ for all s1· · ·sk <lex

t1· · ·tk. We now suppose for the purpose of contradiction that there is a r1· · ·rk with
r1· · ·rk <col t1· · ·tk and (t1· · ·tk)σ<col(r1· · ·rk)σ. We still let c1· · ·cl = r1· · ·rk ∩ t1· · ·tk,
and let r′1· · ·r′j = r1· · ·rk\c1· · ·cl, t′1· · ·t′j = t1· · ·tk\c1· · ·cl. Then, by the property of colex
ordering, we have that r′j < t′j, and max1≤i≤j σ(t

′
i) < max1≤i≤j σ(r

′
i). Now, let (r′1· · ·r′j)σ =

σ(r′′1)σ(r
′′
2)· · ·σ(r′′j ) (with σ(r′′1) < σ(r′′2) < · · · < σ(r′′j )). Then in this time, we rely on the

k-subset {t′1, · · ·, t′j−1, r
′′
j , c1, · · ·, cl} to derive contradiction.

Indeed, noting that r′′j < t′j (because r′′j ∈ r′1· · ·r′j and r′j < t′j), we have

{t′1, . . . , t′j−1, r
′′
j , c1, . . . , cl} <col(lex) {t′1, . . . , t′j, c1, . . . , cl} = t1· · ·tk. (25)

On the other hand, since max1≤i≤j σ(t
′
i) < max1≤i≤j σ(r

′
i) = σ(r′′j ), we have

(t1· · ·tk)σ = {t′1, . . . , t′j, c1, . . . , cl}σ <col(lex) {t′1, . . . , t′j−1, r
′′
j , c1, . . . , cl}σ. (26)

Inequalities (25) and (26) together form a contradiction to the assumption of the ⇒
direction.

2.5. Proof of (IV)

We start by presenting two properties of Ef
ord(n, k) for general ord and f . Then the assertion

we want to prove here can be viewed as a corollary of assertion (II) plus these two properties.
Let Xord = ⟨X1, X2, . . . , X(nk)

⟩ and f = ⟨Y1, Y2, . . . , Y(nk)
⟩. We define a series of “comple-

ments” as follows:

• Xi := [n] \Xi;
• X ord := ⟨X1, X2, . . . , X(nk)

⟩, the ordering of all the (n− k)-subsets of [n] in the way of

ord;
• f := ⟨Y1, Y2, . . . , Y(nk)

⟩, a ranking function of (n, n − k)-THP satisfying that f(Xi) =

f(Xi) for 1≤i≤
(
n
k

)
.
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We claim that Ef
ord(n, k) holds the following complementary-equivalence property:

Ef
ord(n, k) = Ef

ord
(n, n− k). (27)

Indeed, for any σ∈Sn, we observe that Xσ
i = [n]\Xσ

i = [n]σ\Xσ
i = ([n]\Xi)

σ = Xi
σ
,

so we have ⟨f(Xσ
i )⟩1≤i≤(nk)

= ⟨f(Xσ
i )⟩1≤i≤(nk)

= ⟨f(Xi
σ
)⟩1≤i≤(nk)

, from which equation (27)

follows.
Let π, ω ∈ Sn. We define ordπ and fω as follows:

• Xordπ := ⟨Xπ
1 , X

π
2 , · · ·, Xπ

(nk)
⟩;

• fω := ⟨Y ω
1 , Y ω

2 , . . . , Y ω

(nk)
⟩, a ranking function of (n, k)-THP satisfying that fω(Xω

i ) =

f(Xi) for 1≤i≤
(
n
k

)
.

We claim that Ef
ord(n, k) holds the following permuting-equivalence property:

Ef
ord(n, k) = Efω

ordπ(n, k). (28)

Indeed, for any σ∈Sn, we observe that f(Xσ
i ) = f((Xπ

i )
π−1·σ) = fω((Xπ

i )
π−1·σ·ω). That

is, whenever there is a σ∈Sn incurring the sequence ⟨f(Xσ
i )⟩1≤i≤(nk)

, there is only one σ′ =

π−1 ·σ ·ω such that ⟨fω((Xπ
i )

σ′
)⟩1≤i≤(nk)

= ⟨f(Xσ
i )⟩1≤i≤(nk)

. Therefore, equation (28) follows.

It is a common knowledge that the lexical and colex orderings are complementary to
each other. If we only use their normal forms, letting π = n(n−1)· · ·1, we have that in
symbols, col = lexπ, col = lex

π
, and vice versa. Therefore for any f , we have

Ef
lex(n, k) = Ef

lexπ(n, n− k) = Ef
col(n, n− k)

≤ Ecol
col(n, n− k) = Ecol

π

colπ(n, k) = Elex
lex(n, k),

where the inequality comes from assertion (II). This completes the proof of assertion (IV).

3. Proof of Corollary 2

Let us first prove the symmetry of E⋆
lc(n, k) in k and n − k. Indeed, it has been implied

by the results of the previous section: By assertions (I)–(IV), we know that E⋆
lc(n, k) =

Elex
lex(n, k) = Ecol

col(n, k), and from Section 2.5, we know that Elex
lex(n, k) = Ecol

col(n, n − k);
consequently, combining these two results gives the equation E⋆

lc(n, k) = E⋆
lc(n, n− k).

As a by-product of the above proof, we have established, and given a probabilistic inter-
pretation to, the following identity involving P (·) defined by recurrence (1):

P (t1· · ·tk) = P (([n]\t1· · ·tk)π), where π = n(n−1) · · · 1, 1≤t1 < · · · < tk≤n. (29)

For example, by applying identity (29) to the subset 245 with n = 5, 6, 7, 8, ..., we have

P (245) = P (35) = P (146) = P (1257) = P (12368) = · · · = 7
60
.
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A numerical interpretation of this mysterious identity will lead to an alterative proof of the
equation E⋆

lc(n, k) = E⋆
lc(n, n− k). It is left to readers as a challenging exercise.

Now, let us prove the bounds of E⋆
lc(n, k) presented in Corollary 2, directly from the

formulas in Theorem 1. We start by claiming that P (·) holds the following inequality:

P (s1· · ·sk) ≥ P (t1· · ·tk), for s1≤t1, s2≤t2, . . . , sk≤tk. (30)

Indeed, inequality (30) can be easily proved by induction. Since 1/s1 ≥ 1/t1 in the case
k = 1, inequality (30) holds for the basic (n, 1)-THP. We now assume that inequality (30)
holds for (n−1, k−1)-THP with 1 < k ≤ n. Under this assumption, we observe that

P (s1· · ·sk) = (1/sk)
∑

1≤j≤k P (s1· · ·sj−1(sj+1−1)· · ·(sk−1))

≥ (1/tk)
∑

1≤j≤k P (t1· · ·tj−1(tj+1−1)· · ·(tk−1))

= P (t1· · ·tk).

That is, inequality (30) holds for (n, k)-THP.
Then, looking at the right-hand side of recurrence (1), we find that

P (t1· · ·tk−1) = max1≤j≤k P (t1· · ·tj−1(tj+1−1)· · ·(tk−1)). (31)

Therefore, by (31), we have

P (t1· · ·tk) ≤ k

tk
P (t1· · ·tk−1) ≤ k(k−1)

tktk−1

P (t1· · ·tk−2) ≤ · · · ≤ k!

tktk−1· · ·t1
,

and at the same time, also have

P (t1· · ·tk) ≥ 1

tk
P (t1· · ·tk−1) ≥ 1

tktk−1

P (t1· · ·tk−2) ≥ · · · ≥ 1

tktk−1· · ·t1
.

So far, we have obtained the following bounds for E⋆
lc(n, k):∑

1≤t1<···<tk≤n

1

t1t2· · ·tk
≤ E⋆

lc(n, k) ≤ k!
∑

1≤t1<···<tk≤n

1

t1t2· · ·tk
.

At last, all that remains for the inequality in Corollary 2 is the identity∑
1≤t1<···<tk≤n

1

t1t2· · ·tk
=

1

n!

[
n+ 1

k + 1

]
, (32)

which can be found in [1, pp.120-121] (without interpretation), or other references.
Indeed, recalling that

[
n+1
k+1

]
is the coefficient of xk+1 in the polynomial x(x+1) · · · (x+n),

we have
[
n+1
k+1

]
=

∑
1≤s1<···<sn−k≤n s1s2· · ·sn−k. Whenever there is a product s1s2· · ·sn−k with

1 ≤ s1< · · ·<sn−k ≤ n, there is a fraction n!/(t1t2· · ·tk) with 1 ≤ t1< · · ·<tk ≤ n, which is
both one-to-one corresponding to and equal to it. Hence, identity (32) follows.
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4. Proof of Corollary 3

Suppose that 2<k <n. We start by separating the summation formula in Theorem 1 for
E⋆

lc(n, k):

E⋆
lc(n, k) =

∑
1≤t1<···<tk<n

P (t1· · ·tk) +
∑

1≤t1<···<tk=n

P (t1· · ·tk)

= E⋆
lc(n−1, k) +

1

n

∑
1≤t1<···<tk−1<n

(
P (t1· · ·tk−1) +

∑
1≤j<k

P (t1· · ·tk−1n⊖tj)
)

= E⋆
lc(n−1, k) +

1

n
E⋆

lc(n−1, k−1) +
1

n

∑
1≤t1<···<tk−1<n

∑
1≤j<k

P (t1· · ·tk−1n⊖tj),

where we recall that t1· · ·tk−1n⊖tj can be written as t1· · ·tj−1(tj+1−1)· · ·(tk−1−1)(n−1). For
convenience, let tail(n, k) denote the last term of the above formula. Then by inequality
(30), we have

tail(n, k) ≤ 1

n

∑
1≤t1<···<tk−1<n

(k − 1)P (t1· · ·tk−2(n− 1)) (by choosing the max P (·))

≤ k − 1

n

∑
1≤t1<···<tk−1<n

k − 1

n− 1
P (t1· · ·tk−2) (by choosing the max P (·))

=
(k − 1)2

n(n− 1)

∑
k−2≤j≤n−2

∑
1≤t1<···<tk−2≤j

P (t1· · ·tk−2) (by letting j = tk−1 − 1)

=
(k − 1)2

n(n− 1)

∑
k−2≤j≤n−2

E⋆
lc(j, k − 2)

≤ (k − 1)2

n
E⋆

lc(n− 2, k − 2) (since k > 2).

So far, we have obtained the following recursive formula for E⋆
lc(n, k):

E⋆
lc(n, k) = E⋆

lc(n−1, k) +
1

n
E⋆

lc(n−1, k−1) + tail(n, k),

with tail(n, k) ≤ (k − 1)2

n
E⋆

lc(n− 2, k − 2) (2<k<n). (33)

Now, we claim that E⋆
lc(n, k) holds the bound

E⋆
lc(n, k) ≤ 1

k!
Hk

n + cHk−1
n (∃c > 0, n → ∞), (34)

with c being independent of n. To prove this bound by induction, we first note that E⋆
lc(n, 1),

E⋆
lc(n, 2), and E⋆

lc(k, k) hold it for any c > 1. For 2<k<n, we assume that E⋆
lc(n − 1, k),
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E⋆
lc(n− 1, k− 1), and E⋆

lc(n− 2, k− 2) all hold this bound. Then, substituting the assumed
bounds into (33), we have

E⋆
lc(n, k) ≤

1

k!
Hk

n−1 + cHk−1
n−1 +

1

n

( 1

(k − 1)!
Hk−1

n−1 + cHk−2
n−1

)
+ tail(n, k)

=
1

k!

(
Hk

n−1 +
k

n
Hk−1

n−1

)
+ c

(
Hk−1

n−1 +
k − 1

n
Hk−2

n−1

)
+ tail(n, k)− c(k − 2)

n
Hk−2

n−1

≤ 1

k!

(
Hn−1 +

1

n

)k
+ c

(
Hn−1 +

1

n

)k−1
+ tail(n, k)− c(k − 2)

n
Hk−2

n−1

≤ 1

k!
Hk

n + cHk−1
n +

(k − 1)2

n

( 1

(k − 2)!
Hk−2

n−2 + cHk−3
n−2

)
− c(k − 2)

n
Hk−2

n−1

≤ 1

k!
Hk

n + cHk−1
n +

c(k − 1)2

n
Hk−3

n−1 +
(k − 1)2/(k − 2)!− c(k − 2)

n
Hk−2

n−1

≤ 1

k!
Hk

n + cHk−1
n ,

where the last step holds as long as c > (k−1)2

(k−2)(k−2)!
and n → ∞. Combining the base cases

and the inductive case accomplishes the argument for the bound in (34).
Since Hn = lnn+O(1), the bound in (34) implies that

E⋆
lc(n, k) ≤ 1

k!
(lnn)k + b(lnn)k−1 (∃b > 0, k = O(1), n → ∞), (35)

with b being independent of n. From Corollary 2, we also know that

E⋆
lc(n, k) ≥ 1

n!

[
n+ 1

k + 1

]
∼ 1

k!
(lnn)k (k = O(1), n → ∞). (36)

The bounds in (35) and (36) together implies that

E⋆
lc(n, k) =

1

k!
(lnn)k +O((lnn)k−1) (k = O(1), n → ∞).

Finally, by considering the symmetry of E⋆
lc(n, k) in n and n− k, we accomplish the proof

of Corollary 3.

5. Concluding remarks

Letting Xord = ⟨Xi⟩1≤i≤(nk)
, we denote the sequence ⟨f(Xσ

i )⟩1≤i≤(nk)
by X σ,f

ord . Then, under a

uniformly random σ∈Sn, and for a fixed ord and f , X σ,f
ord forms a “partly random” permu-

tation of [
(
n
k

)
] when k > 1. In the previous sections, we only quantify the expected-value

measure for one statistic of X σ,f
ord—the number of left-to-right maxima—for two special pairs

of ord and f : (lex, lex) and (col, col). It should be of interest to explore other statistics
on X σ,f

ord , under general or special ord and f . Among all the other statistics discussed in the
textbooks [8], [19], and [22] for permutations, what we can immediately answer are the ex-
pected numbers of descents (consecutive descending pairs) and inversions (any descending
pairs): In terms of the expected-value measure of these two statistics, X σ,f

ord is as “random”
as a uniformly random permutation of [

(
n
k

)
].
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Proposition 2. For any fixed ord and f , the expected number of descents in X σ,f
ord is (

(
n
k

)
−

1)/2, and the expected number of inversions in X σ,f
ord is

(
n
k

)
(
(
n
k

)
− 1)/4.

Proof. Let X1, X2 ∈ X with X1 ̸=X2, and let Y1, Y2 ∈ X with Y1 ̸=Y2. We claim that

|{σ∈Sn : Xσ
1 = Y1, X

σ
2 = Y2}| = |{σ∈Sn : Xσ

1 = Y2, X
σ
2 = Y1}|.

Why? Let |X1∩X2| = k−j with 1≤j≤k. Then, these two cardinalities are both equal to 0
if |Y1∩Y2| ̸= k−j, and both equal to (k−j)!(j!)2(n−k−j)! otherwise. We have shown that
for any pair of k-subsets X1 and X2 in Xord, the probability that f(Xσ

1 ) > f(Xσ
2 ) is always

1/2.

For further analysis of the team-hiring problem, perhaps the next concern should be of the
variances of the left-to-right maxima in X σ,f

ord under a random σ. To obtain a probabilistic
analysis, as dealing with expectations, we should focus on the worst variance over all f .
Precisely, for a fixed ordering, what we are concerned with should be

V ⋆
ord(n, k) := maxf∈F V f

ord(n, k) := (1/n!)maxf∈F
∑

σ∈Sn

(
|Mσ,f

ord| − Ef
ord(n, k)

)2
.

Under this definition, even V ⋆
lex(n, k) and V ⋆

col(n, k) are difficult to solve. We don’t know
whether or not V ⋆

lex(n, k) = V lex
lex(n, k) and V ⋆

col(n, k) = V col
col(n, k), let alone their formulas.

What can be sure now is only that V lex
lex(n, k) = V col

col(n, k), according to assertion (22) in
Section 2.4.

Apart from the lexical and colex orderings for listing all k-subsets of [n], there is another
well-known sequential ordering, called the revolving-door or minimal-change ordering (see
[14, Section 2.3.3]). The sequence of k-subsets in accordance with this ordering can also be
generated efficiently in both time and space, and it looks somewhat more “disorderly” than
the lexical and colex orderings. Let “rev” be the tag of this revolving-door ordering. Is
E⋆

rev(n, k) asymptotically smaller than E⋆
lc(n, k)? That is the final question we are mostly

concerned with.

References

[1] V. Adamchik. On Stirling numbers and Euler sums, Journal of Computational and Applied Mathemat-
ics, 79:119-130, 1997.

[2] Z.-D. Bai, C.-C. Chao, H.-K. Hwang, and W.-Q. Liang. On the variance of the number of maxima in
random vectors and its applications. The Annals of Applied Probability, 8:886-895, 1998.

[3] J. L. Bentley, T. H. Kung, M. Schkolnick, and C. D. Thompson. On the average number of maxima in
a set of vectors and applications. Journal of ACM, 25:536-543, 1978.

[4] C. Buchta. On the average number of maxima in a set of vectors. Information Processing Letters,
33:63-65, 1989.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. MIT Press,
2nd edition, 1998, 3rd edition, 2009.

[6] T. Ferguson. Who solved the secretaty problem? Statistical Science, 4:282-296, 1989.
[7] N. Glick. Breaking records and breaking boards. American Mathematical Monthly, 85:2-26, 1978.
[8] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathmathics: A Foundation for Computer

Science. Addison-Wesley, 2nd edition, 1994.

21



[9] A. Helmi and A. Panholzer. Analysis of the “hiring above the median” selection strategy for the hiring
problem. Algorithmica, 66:762-803, 2013.

[10] E. S. Key. On the number of records on an iid discrete sequence. Journal of Theoretical Probability,
18:99-107, 2005.

[11] A. Knopfmacher and T. Mansour. Record statistics in a random decompasition. Discrete Applied Math-
ematics, 160:593-603, 2012.

[12] D. E. Knuth. The Art of Computer Programming. Volume 2: Seminumerical Algorithms, Addison-
Wesley, 3rd edition, 1997.

[13] D. E. Knuth, The Art of Computer Programming. Volume 4A: Combinatorial Algorithms, Part 1,
Addison-Wesley, 2011.

[14] D. L. Kreher and D. R. Stinson. Combinatorial Agorithms: Generation, Enumberation, and Search.
CRC Press, 1998.

[15] J. H. Mueller, C. Sánchet-Sánchet, L. F. Simões, and D. Izzo, Optimal orderings of k-subsets for star
identification, In IEEE Symposium Series on Computational Intelligence (SSCI), 2016, pp.1-8.

[16] A. N. Myers and H. S. Wilf. Left-to-right maxima in words and multiset permutations. Israel Journal
of Mathematics, 166:167-183, 2008.

[17] A. Nijenhuis and H. S. Wilf. Combinatorial Algorithms for Computers and Calculators. Academic Press,
2nd edition, 1978.

[18] H. Prodinger. Records in geometrically distributed words: sum of positions. Applicable Analysis and
Discrete Mathematics, 2:234-240, 2008.

[19] R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms. Addison-Wesley, 2nd
edition, 2013.

[20] I. Semba. An efficient algorithm for generating all k-subsets (1≤k≤m≤n) of the set {1, 2, ..., n} in
lexicographical order. Journal of Algorithms, 5:281-283, 1984.

[21] N. J. A. Sloane. editor, The On-Line Encyclopedia of Integer Sequences. Published electronically at
http://oeis.org.

[22] R. P. Stanley. Enumerative Combinatorics, Volume 1. Cambridge University Press, 2nd edition, 1997.
[23] H. S. Wilf. On the outstanding elements of permutations, Jan. 1995. Available at

http://www.math.upenn.edu/˜wilf/website/outstelmts.pdf.

22


	Introduction
	Problem formalization and our results
	Related work

	Proof of Theorem 1
	Preliminaries and Proof Outline
	Proof of (I)
	Proof of (II)
	Proof of (III)
	Proof of (IV)

	Proof of Corollary 2
	Proof of Corollary 3
	Concluding remarks

