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According to harmonic analysis (Fourier analysis), any function f(x), periodic over the interval [-L, L], which satisfies the Dirichlet conditions, can be developed into an infinite sum (known in the literature as the trigonometric series, and for which, for reasons which will become evident in the course of this work, we will use the name of sinusoidal series), consisting of the weighted components of a complete biortogonal base, formed of the unitary function 1, of the fundamental harmonics sin(πx/L), even and cos(πx/L), odd (2L-periodic functions) and of the secondary harmonics sin(nπx/L) and cos(nπx/L) (periodic functions, with period 2L/n, where nZ + , positive integers). The coefficients of these expansions (Fourier coefficients) can be calculated using Euler formulas. We will generalize this statement and show that the function f(x) can also be developed into nonsinusoidal periodic series, formed from the sum of the weighted components of a complete, non-orthogonal base: the unit function 1, the fundamental quasi-harmonics g(x), even and h(x), odd (2L-periodic functions, with zero mean value over the definition interval) and the secondary quasi-harmonics gn(x) and hn(x) (2L/n-periodic functions), where nZ + . The fundamental quasi-harmonics g(x) and h(x) are any functions which admit expansions in sinusoidal series (satisfy Dirichlet conditions, or belong to L 2 space). The coefficients of these expansions are obtained with the help of certain algebraic relationships between the Fourier coefficients of the expansions of the functions f(x), g(x) and h(x). In addition to their obvious theoretical importance, these types of expansions can have practical importance in the approximation of functions and in the numerical and analytical resolution of certain classes of differential equations.

Introduction

Let g (x) be any function of R, defined on a real interval I (open, closed or semi-open), delimited by x1 and xm+1, introduced by a single expression g (x)=g1 (x) on any I (m=1), or by m different expressions: g(x)=gi (x), i=1, 2, ..., m, each valid on one of the adjacent disjoint subintervals bounded by xi and xi+1, 1≤ i ≤ m. To define simultaneously the function g (x), as well as its definition domain, we will introduce a system to simultaneously mark the limits xi of (sub)intervals of definition and also the expressions of the function valid on these (sub)intervals:

  ] [ 2 1 1      x g x G x g , or   ] [ 2 1 1 x g x G x g    , or     ] [ 2 1 1      x g x G x g
, or

    ] [ 2 1 1    x g x G x g , for I closed,                         1 1 1 2 2 1 1 ... ... m m m m i i i i i x g x x x x g x x x x g x G x g     , or     1 1 1 2 2 1 1 ... ...               m m m m i i i i i x g x x x x g x x x x g x G x g     , or                  1 1 1 1 1 1 2 2 2 1 1 ) ( ) )...( ( ) ( ) )...( ( ) ( m m m m m i i i i i i i x g x x g g x x g x x g g x x g x G x g     , etc. for I= [x1, x2)  [x2, x3)  ...  [xi, xi+1)  ...  [xm, xm+1]
The upper index attached to the limits xi of these intervals mean:

 + :   ) ( lim x g x g i x x i     -:   ) ( lim x g x g i x x i   
 without index: the function g (x) is undefined in xi, or it has a fixed value g(xi)=aR. Therefore: -for g (x) ):(x1, x2), we will use one of the notations: (b) For these last two examples, if gi (x) are the same, for i=1, 2, ..., m+1, the two functions (as well as other gr (x) functions which fulfill this condition, and moreover the condition gr(xi)=ri ≠ ∞), are equals almost everywhere. If they are square-integrable, their Fourier expansions   

                   ) ( lim ) ( lim 2 1 1 1 1 1 x f x f x g x g m x x x x m and               ) ( lim ) ( lim 2 1 x f x f x g i i x x x x i
, for i≠1, m+1

We will note gF(x) a function of type gr (x), for which gr(xi)=   , equality almost everywhere. The Fourier expansion of the discontinuous function g (x) is a continuous function which approaches as much as we want of gF (x). We can assign to the continuous function   x g (which is an approximation as much as we want close to the function gF (x))), the designation of Fourierfunction, or F-function. In many situations, including the majority of this paper, the values ri of the function gr (x) at the points of discontinuity are not relevant. Consequently, when we analyze functions of this type, without losing the character of generality, but for the sake of simplification of the exposure, we will always consider (except the cases expressly specified) that it is a function of type gF (x), and we will use the simplest equivalent notation, that of gb (x) For the Haar function: why(x) = Ψ [0 + >1<1/2 + >-1<1] For any real function g (x), where

  2 1 , x x I x  
, which has finites reals values in the codomenium g(I) and for which g(x1)=g(x2)=a, we can construct, by successive translations, a

periodic extension on R:       k R pk R p k x g x g
, where, for  kZ and    

(1a) So, for  R x R  ,    2 1 , x x x 
, xR=x+KT. By definition: g(xR)=g(x+KT)=g(x) For the function gp(x)=sin (x), defined on the R axis, the relation ( 1) is true, in the form sin(xR)=sin (x), for  xR=x+2πk, implicitly, simultaneously, for any kZ and for all intervals [(2k-1)π, (2k+1)π] that correspond to them. For a certain function g (x): [x1, x2], outside this interval gp(x) must be explicitly specified, by successive translations, for all validity intervals x1+kT<x<x1+(k+1)T: gp(xR)=g(xR-kT)=g (x), for all kZ, or implicitly, simultaneously: (x).

gp(xR)= g[xR-T•E((xR -x1)/T)]=g
(1b) According to the theory developed by Fourier, the 2L-periodic function fp(x):(-∞, ∞), the extension on the real axis of the square-integrable function f(x):[-L, L], can be decomposed into a sum:

              1 0 sin cos n n n n n x b x a f x f  
where, for all nN,

L n n   
. Here, f0 is the average value of the function f (x), on the interval [-L, L], cos (ωnx) and sin(ωnx) are continuous functions (called unitary even secondary harmonics, respectively odd unitary secondary harmonics), which come from the continuous functions cos(ω0x) and sin(ω0x), for ω0=π/L (called unitary even fundamental harmonic, respectively unitary odd fundamental harmonic) by multiplying their arguments with a positive natural integer nN + . The zero mean value functions sin(nω0x) and cos(nω0x) take over the interval [-L/n, L/n], the same values as the fundamental harmonics takes over the interval [-L, L] and they implicitly satisfy: sin(nω0x)=sin[n(ω0x+2πk)] and cos(nω0x)=cos[n(ω0x+2πk)], for all intervals [(2k-1)ω0/n, (2k+1)ω0/n], where kZ.

Let be the function g (x) of real variable x[-L, L], which has finite real values in the codomenium Im(g) and check for equality g(-L)=g(L). Similar to sinusoids, from function gp(x)→(-∞, ∞), which is the 2L-periodic extension on the real axis of the function g (x) )). The function g (x) and the functions gn (x) have over the interval [-L,L], the same mean value g0.

We will call the function gn (x), restricted to the interval [-L, L], the g-harmonic of order n of the function g (x) and the function g1(x)=g (x), the fundamental g-harmonic. We are also going to introduce a reduced notation for the g-harmonic of order n: gn(x)=G[-L/n<g(nx)>L/n]n , nN + .

(1c)

These translation and expansion operations are similar to those used to create the wavelet functions ψnk (x), from a mother function Ψ(x) [3]: ψnk (x)=kΨ [(x-b)/a], for b=2k/n and a=1/n.

If the function g (x) has on the interval [x1, xm+1], a finite number m of discontinuities, the function gn(x) (the g-harmonic of order n) will have a number m•n of such discontinuities, which tends to infinity if n→∞. For this reason, the function g (x) is unsuitable for generating a base for a subspace of functions. But, if the function g (x) is square-integrable (belong to the space L 2 [x1,xm+1]), or if it satisfies the Dirichlet conditions, it can be developed into a series [1,9]: is a convergent series of continuous functions, it is a continuous function (a Fourier-function  

             
x g F ) and can be taken into account to generate a basis for the functions of the space L 2 [x1, xm+1]. Obviously, all continuous functions are F-functions. At all points of continuity,   x g →gF(x),   x g →gF(x), while in the vicinity of a point of discontinuity, g (x-h)→ ) ( lim x g An F-function can be constructed by definition: let be the function g (x), defined in the interval [x1, x2], with a jump discontinuity at the point xi. The corresponding F-function is:

gF(x)=                                 2 1 0 2 lim x g h x h h x g h x g x h x g x G d d d d h , h real. ( 1d 
)
As we have already mentioned, in this paper, when we analyze the g-harmonics gn(x), continuous by pieces, we will always consider (except the cases expressly specified) that they are the Fourier functions g F (x).

For the phenomena of Nature, described by the evolution of certain functions, at least for energy considerations, the discontinuous functions give way to the functions which approach the Fourier functions.

It's obvious that the functions   x g n , n=1, 2, ..., ∞ are, two by two, independents. Consequently, they form a generating base of a subspace of L 2 . We will call this base: the base generated by g(x) or, more simply, the base g(x), denoted Bg .

Non-sinusoidal periodic Fourier series

In the previous section, we noted the existence of some formal analogy between the real finite functions cos(ω0x), sin(ω0x), defined on the interval [-L, L], and the other real finite functions g (x), defined on the same interval. In this section, we will try to discover those categories of functions g (x) which accentuate this analogy, so that it becomes a functional analogy, useful for creating complete bases of independent functions.

We will use the notations f , f ˆand f ~, for the expansions in sinusoidal Fourier series, in non-sinusoidal Fourier series and respectively, in orthogonal non-sinusoidal Fourier series.

For the formulas for the expansions in Fourier series and their properties, we have consulted renowned works [4][5][6][7][8][9][10][11][12][13].

Non-sinusoidal periodic Fourier series of even functions

Theorem 1. The base Bg of a pair function g (x) defined on the interval [-L, L] of the L 2 space (denoted L 2 [-L, L]), having the mean value g0 null on this interval, constitutes a complete basis for the FE system of all the even functions fe (x), real, of L 2 -space, periodic of period 2L, having the mean value zero on this interval.

The proof of this theorem also includes, how to calculate the coefficients An of the expansion in non-sinusoidal Fourier series of the even function fe(x) de L 2 :

  x f e  =     1 n n n x g A , where   x g n are Fourier series (2) 
The function fe (x) which is, by definition, of zero mean value over the interval [-L, L], can be developed, according to Fourier's thesis, unequivocally, into an infinite sum of even cosine functions:

        1 cos n n n e x a x f  , where 0    n L n n   . (2.1)
At the same time, all quasi-harmonics gn(x) can be written as a linear combination of the function cosωnx and the other cosines of higher rank: 

  ... 4 cos 3 cos 2 cos cos 0 4 0 3 0 2 0 1 1      x c x c x c x c x g       ... 8 cos 6 cos 4 cos 2 cos 0 4 0 3 0 2 0 1 2      x c x c x c x c x g       ... 12 cos 9 cos 6 cos 3 cos 0 4 0 3 0 2 0 1 3      x c x c x c x c
                        ...
0 3 0 2 2 1 2 0 3 0 2 1 1 1 0 0 0 4 0 3 0 2 0 1 x c x c g c a x c x c g c a x n a x i a x a x a x a x a x f n i e                         ... ... 12 cos 8 cos ... 9 cos 6 cos 0 3 0 2 4 1 4 0 3 0 2 3 1 3 x c x c g c a x c x c g c a                                     1 5 5 4 4 3 3 2 2 1 1 0 3 0 2 1 ... ... 3 cos 2 cos n n n e n n x g A x g A x g A x g A x g A x g A x f x n c x n c g c a    The equality of   x f e with   x f e 
is unequivocal, which had to be proven. So: (2.2)

1 1 1 1 K c a A   ,           1 2 1 2 1 2 c c a a K A ,           1 3 1 3 1 3 c c a a K A ,             2 1 2 2 1 4 1 2 1 2 1 4 1 4 c c c c c c a a a a K A ,           1 5 1 5 1 5 c c a a K A              2 1 3 2 1 6 1 2 1 3 1 3 1 2 1 6 1 6 2 c c c c c c c a a c c a a a a K A ,           1 7 1 7 1 7 c c a a K A ,                3 1 3 2 2 1 2 2 1 2 2 1 4 2 1 8 1 2 1 4 1 4 1 2 1 8 1 8 2 c c c c a a c c c c c c c a a c c a a a a K A ,             2 1 2 3 1 9 1 3 1 3 1 9 1 9 c c c c c c a a a a K A ,              2 1 5 2 1 10 1 2 1 5 1 5 1 2 1 10 1 10 2 c c c c c c c a a c c a a a a K A ,             1 11 1 11 1 2 1 11 1 1 11 11 c c a a K c c a c a A ,                               
In conclusion, because any even function fe(x) of the subspace L 2 [-L, L], can be developed in a sinusoidal Fourier series (2.1), it can also be developed in a non-sinusoidal Fourier series (2) . To calculate the coefficients of this expansion, it is necessary to know the coefficients an of the Fourier expansion of the function fe (x) as well as cn, the coefficients of the function g (x), which implies the calculation of the integrals

    L L n e xdx x f  cos , respectively     L L n xdx x g  cos . Of course, for another even function f(x)=f0(x)+fe(x), f0(x)≠0,   x f  = f0(x)+     1 n n n x g A
. The approximation of order N is written:

  x f N  = f0(x)+     N n n n x g A 1 , where        N m n m n x m c x g 1 cos  . If N→∞,   x g n →   x g
To illustrate the calculation method, let be the function f2(x)=G[-1 + >x 2 <1 -], which is a second degree polynomial, with no discontinuities, and which has the Fourier expansion:

    x n n x n a f x f n n n n    cos 1 4 3 1 cos 1 2 2 1 0 2            (2a) 
We want to develop it into a base generated by the even function (rectangular pulses of zero mean value)

ge=g dr = Ge[-1>-1<-1/2>1<1/2>-1<1] :          1 2 3 1 n dr n n x g A x f  , (2b) 
The expansion in trigonometric series of the function ge(x) is:

             1 1 1 2 ) 1 2 cos( ) 1 ( 2 ) 1 2 cos( ) ( n n n n e n x n x n c x g    (2c)
The relations (2a) and (2c), provide the following coefficients: a1=-4/π 2 , a2=1/π 2 , a3=-4/9π 2 , a4=1/4π 2 , a5=-4/25π 2 , a6=1/9π 2 , a7=-4/49π 2 , a8=1/16π 2 , a9=-4/81π 2 , a10=1/25π2, a11=-4/121π 2 , a12=1/36 π 2 , ... and c1=2/π, c2=0, c3=-2/3π, c4=0, c5=2/5π, c6=0, c7=-2/7π, c8=0, c9=2/9π, c10=0, c11=-2/11π, c12=0, ... According to (2.2), the expansion coefficients (2b) are: A1=-2/π, A2=1/2π, A3=-8/9π, A4=1/8π, A5=8/25π, A6=2/9π, A7=-16/49π, A8=1/32π, A9=-8/81π, A10=-2/25π, A11=-24/121π, A12=1/18 π, ... The representation of the corresponding quasi-harmonics and the resulting partial sums is given in figure 1. Here, we have represented the functions  

x g en instead of the functions   x g en . Since the function ge (x) has two points of discontinuity, the partial sums SN of the non-sinusoidal expansion, have jump points in increasing number, as the rank N increases. One can notice a low speed of convergence, compared to the traditional method of approximation of the same curve, by horizontal line segments a1=-4/π 2 , a2=1/π 2 , a3=-4/9π 2 , a4=1/4π 

           1 2 2 1 2 1 2 cos 4 ) ( n n x n x g   provides: (2d) c1=-4/π 2 , c2=0, c3=-4/9π 2 , c4=0, c5=-4/25π 2 , c6=0, c7=-4/49π 2 , c8=0, c9=-4/81π 2 , c10=0, c11=-4/121π 2 , c12=0, ... Using relations (2.
2), we can develop the function f2(x) into an infinite series of triangle-

functions:          1 2 3 1 n n n x g A x f



, where: 2 shows the first quasi-harmonics and the first partial sums.

A1=1, A2=-1/4, A3=0, A4=-1/16, A5=0, A6=0, A7=0, A8=-1/64, A9=0, A10=0, A11=0,A12=0, ...       n n n n n n n n n n x x x x x g x g x f 2 1 1 2 1 2 ] [ ] [ 2 1 2 1 2 0 2 1 2 2 1 4 1 1 2 1 0 2 1 1 3 1 4 3 1                                Figure

Fig. 2. The approximation of the function x 2 -1/3 by a sum of even triangle functions gi: quasi-harmonics of order i; Si: partial sums

The functions fe(x) and g (x) being both pairs, we can also do the expansion in the

opposite direction:          1 ˆn en n x f A x g
, for a1 ≠ 0 , where: 

(2.3) 1 1 1 a c A   , 2 1 2 1 1 2 2 a a c a c A    , 2 1 
3 1 1 3 3 a a c a c A    , 3 1 2 2 1 2 1 4 1 2 2 1 4 4 a a c a a c a c a c A      , 2 1 
0 3 0 2 0 1 4 0 3 0 2 0 1 3 0 3 0 2 0 1 2 0 3 0 2 0 1 1 3 3 2 2 1 1 1 0                            x c x c x c A x c x c x c A x c x c x c A x c x c x c A x g A x g A x g A x g A x n n n             
This relation leads to the following system of coefficients:

(2.4)

1 1 1 c A  , 2 1 2 2 c c A   , 2 1 
3 3 c c A   , 3 1 2 2 4 1 4 c c c c A    , 2 1 5 5 c c A   , 3 1 3 2 6 1 6 2 c c c c c A    , 2 1 7 7 c c A   , ... If the pair function g(x)
that generates the basis of the expansion is a function with the mean value g0≠0 over the interval [-L, L]:

  1 4 3 2 0 / .... 4 cos 3 cos 2 cos cos c x c x c x c g g x n n n n n          
, for nN and if the function f(x) also has an average value f0≠0 over this interval:

            1 0 0 n n n g x g A f x f  (2.5)

Non sinusoidal periodic Fourier series of odd functions

The problem of the odd function fo (x), which belongs to the FO space of the odd functions of L 2 [-L, L] is treated in the same way.

Theorem 2. The basis Bh generated by any odd function h(x) of L 2 [-L, L] is a complete basis for the FO system of all odd functions fo (x), real, of L 2 -space, of 2L-period.

According to Fourier's thesis, the odd function fo(x) (whose average value over the interval [-L, L] is always zero) can be unambiguously developed into an infinite sum of odd sinusoidal functions:

        1 sin n n n o x b x f  , where L n n n      0 . (2.6)
Any other expansion of the function fo(x) must also be an infinite sum of odd functions:

        1 n n n o x h B x f  , where   x h n =G[-1/n<   nx h >1/n]n , nN, (2.7) 
 

x h n are F-functions 2L/n-periodic. For each such function:

        1 sin i n i n x i d x h



As in the previous demonstration, this system of equations allows us to determine the Bn coefficients of expansion:

(2.8)

2 1 1 1 K d b B   ,           1 2 1 2 2 2 d d b b K B ,           1 3 1 3 2 3 d d b b K B ,             2 2 1 4 1 2 1 2 1 4 2 4 1 2 d d d d d d b b b b K B ,           1 5 1 5 2 5 d d b b K B ,              2 1 3 2 1 6 1 2 1 3 1 3 1 2 1 6 2 6 2 d d d d d d d b b d d b b b b K B ,           1 7 1 7 2 7 d d b b K B , etc.
We can conclude that any odd function fo(x) of the subspace L 2 [-L, L], which can be developed in sinusoidal Fourier series (2.6), can also be developed in non-sinusoidal Fourier series (2.7). To calculate the coefficients of this expansion, (as well as those of the inverse expansion), it is necessary to know the coefficients bn of the Fourier expansion of the function fo (x), as well as those of the function h (x), which involves the calculation of integrals

    L L n o xdx x f  sin , respectively     L L n xdx x h  sin .
To illustrate the calculation method, let be the odd functions fo(x)=Fo[-1>-1<0>1<1] (the odd rectangular pulses), for which:

      1 1 2 ) 1 2 sin( 4 ) ( n o n x n x f  
, and go(x)=G [-1>x<1] (the sawtooth wave), for which:

            1 1 1 sin 1 2 sin ) ( n n n n o n x n x n d x g   
, from where: b1=4/π, b2=0, b3=4/3π, b4=0, b5=4/5π, b6=0, b7=4/7π, b8=0, b9=4/9π, b10=0, b11=4/10π, ..., d1=2/π, d2=-2/2π, d3=2/3π, d4=-2/4π, d5=2/5π, d6=-2/6π, d7=2/7π, d8=-2/8π, d9=2/9π, d10=-2/10π, d11=2/11π, d12=-2/12π, ...

Consequently, the expansion

      1 ) ( n n n o x g B x f



will have the following coefficients:

2 1  B , 1 2  B , 0 3  B , 1 4  B , 0 5  B , 0 6  B , 0 7  B , 2 / 1 8  B , 0 9  B , 5 / 1 10  B , 0 11  B , 0 12  B
, B13=0, B14=0, B15= -2/15, ..., Figure 3 presents the graphs of these two functions (3a and 3b), the first quasiharmonics of the expansion (c) and the first partial sums (d). We note that, as N→∞, the sum SN (x) tends very slowly towards the function fo (x).

The coefficients of the inverse expansions are (for b1 ≠ 0):

(2.9)

1 1 1 b d B   , 2 1 2 1 1 2 2 b d b b d B    , 2 1 3 1 1 3 3 b b d b d B    , 3 1 2 2 1 2 1 4 1 2 2 1 4 4 b b d b b d b d b d B      , 2 1 5 1 1 5 5 b b d b d B    ,
For the two previous functions fo

(x)=Fo[-1>-1<0>1<1] et go(x)=G[-1>x<1]: 2 / 1 1   B , 4 / 1 2   B , 0 3   B , 8 / 1 4   B , 0 5   B , 0 6   B , 0 7   B , 16 / 1 8   B , 0 9   B , 0 10   B , 0 11   B , 0 12   B , 0 13   B , 0 14   B , 0 15   B , 32 / 1 16   B
, ..., and we can write: ω0x), the coefficients of a non-sinusoidal expansion are:

      F n n n n o n o n o o n F L F F x G x g n 2 1 1 1 2 1 1 0 1 2 1 2 1 2 1 1 1 0 1 1 2 2 1 2 1 1 1 2                                       If f(x)=sin(
(2.10) 

1 1 1 d B  , 2 1 2 2 d d B   , 2 1 
3 3 d d B   , 3 1 2 2 4 1 4 d d d d B    , 2 1 5 5 d d B   , 2 1 3 2 6 1 6 2 d d d d d B    ,
              1 2 1 1 1 2 1 2 sin 1 4 ) ( n n n n g   
, fournit les coefficients: d1=4/π, d2=0, d3=-4/9π, d4=0, d5=4/25π, d6=0, d7=-4/49π, d8=0, d9=4/81π, d10=0, d11=-4/121π, d12=0, ..., pour lesquelles, pour f(θ)=sinθ, on obtient:

4 1   B , 0 2  B , 36 3   B , 0 4  B , 100 5    B , 0 6  B , 196 7   B , 0 8  B , 0 9  B , ... (2.l1) , 0 2  n B , but 0 2  n B
, for n= 2, 3, .., ∞

Non-sinusoidal periodic Fourier series of any function

In the general case, a certain function f(x) of L 2 [-L, L]-space, can be written as the sum of its mean value f0 over this interval, of its even component fe(x) (by definition, of zero mean value over the interval [-L, L]) and of its odd component fo(x): f(x)=f0+fe(x)+fo (x). Following the two previous theorems, we can say: Theorem 3. Any function f(x) of L 2 [-L, L], can be developed in non-sinusoidal Fourier series into a base composed of f0 (its mean value over this interval), of a certain even base Bg-g0 and of a certain odd base Bh of L 2 [-L, L], where the even function g (x) and the odd function h (x), are any functions of L 2 [-L, L] :

                  1 1 0 0 n n n n n n x h B g x g A f x f



, where g0=

    L L dx x g
We can see that the sinusoidal Fourier expansion is a special case of the nonsinusoidal Fourier expansion.

To illustrate, let be the function f(x)=F[-1>0<-1/2>-2<0>0<1/2>2<1] which is the sum of f0 (=0), of the even function fe=Fe[-1>1<-1/2>-1<1/2>1<1] and of the odd function fo= Fo[-1>-1<0 >1<1], whose Fourier expansions are [5]:

               1 1 1 1 2 ) 1 2 cos( ) 1 ( 4 cos ) ( n n n n e n x n x n a x f    , respectively               1 1 1 2 1 2 sin 4 sin ) ( n n n o n x n x n b x f   
The following coefficients are obtained: a1=4/π, a2=0, a3=-4/3π, a4=0, a5=4/5π, a6=0, a7=-4/7π, a8=0, a9=4/9π,a10=0, a11=-4/11π,... b1=4/π, b2=0, b3=4/3π, b4=0, b5=4/5π, b6=0, b7=4/7π, b8=0, b9=4/9π, b10=0, b11=4/11π, ... For the expansion of the function f(x) in an exponential basis g(x)=e x , given that over the interval [-1, 1], g0=sinh1, we will choose the set consisting of the functions ge(x)=coshx-sinh1 and go(x)=sinhx, whose expansions in Fourier series are:

            1 2 2 cos 1 1 2 1 sinh n n e x n n x g   , and                1 2 2 1 sin 1 1 2 1 sinh n n o x n n n x g   
, so:

c1=-2sinh1/(1+π 2 ), c2=2sinh1/(1+4π 2 ), c3=-2sinh1/(1+9π 2 ), c4=2sinh1/(1+16π 2 ),c5=-2sinh1/(1+25π 2 ) c6=2sinh1/(1+36π 2 ), c7=-2sinh1/(1+49π 2 ), c8=2sinh1/(1+64π 2 ), c9=-2sinh1/(1+81π 2 ), c10=2sinh1/(1+100π 2 ), c11=-2sinh1/(1+121π 2 ), c12= 2sinh1/(1+144π 2 ), ...     2 1 2 1 2 1 4      n B n n  d1=2πsinh1/(1+π 2 ), d2=-4πsinh1/(1+4π 2 ), d3=6πsinh1/(1+9π 2 ), d4=-8πsinh1/(1+16π 2 ), d5=10πsinh1/(1+25π 2 ), d6=-12πsinh1/(1+36π 2 ), d7=14πsinh1/(1+49π 2 ), d8=-16πsinh1/(1+64π 2 ), d9=18πsinh1/(1+81π 2 ), d10= -20πsinh1/(1+100π 2 ), d11=22πsinh1/(1+121π 2 ), d12=-24π•sinh1/(1+144π 2 )
This results in a non-sinusoidal Fourier series expansion of the form:

                       1 1 sinh 1 sinh cosh ˆn Fn n n Fn n o e x B x A x f x f x f
where coshFn and sinhFn are the extensions on the real axis of the F-functions coshF(nx), respectively sinhF(nx), defined on the intervals [-1/n, 1/n]), and the coefficients An , Bn are:

for   1 sinh 1 2 2 1 1 1        c a K and      1 2 2 1 1 2 1 sinh 1 2 K d b K       : 1 1 K A  , 2 2 1 2 4 1 1      K A , 2 2 1 3 9 1 3 1 3 4        K A ,                   2 2 2 2 2 2 1 4 4 1 1 16 1 1     K A , 2 2 1 5 25 1 5 1 5 4        K A       2 2 2 2 1 6 4 1 36 16 7 1           K A , 2 2 1 7 49 1 7 1 7 8        K A ,       3 2 4 2 2 1 8 4 1 4 12 17 7 1           K A ,... 2 1 K B  , 2 2 2 2 4 1 1 2      K B , 2 2 3 9 1 1 3 8       K B ,         2 2 2 4 2 2 2 4 4 1 16 1 32 25 2 1 4               K B 2 2 5 25 1 1 5 24       K B ,         2 2 2 2 2 6 9 1 4 1 2 3 1 3              K B , 2 2 7 49 1 1 7 48       K B ,       3 2 4 2 2 2 8 4 1 16 21 9 1 2            K B , 4 2 9 9 1     K B , 2 2 2 2 2 10 10 4 3 4 1 1            K B , ... Over the interval [-1/2, 1/2]: ge(x)2=coshx-g02=1/2(e x +e -x )-2sinh(1/2) and go(x)2=sinhx, so              1 2 2 2 2 cos 4 1 1 4 2 1 sinh n n e x n n x g   , and                 1 2 2 1 2 2 sin 4 1 1 4 2 1 sinh n n o x n n n x g

  

We can note that for values L<1, the function ges(x)=ge(x)L/sinhL is approximated with acceptable deviations by the function gep(x)=x 2 , and the function gos(x)=go(x)L/sinhL is approximated with acceptable deviations by the function gop(x)=x, the deviations being so small that L is smaller. When we ask for the expansion of the function f(x)=f0+fe+fo into a base generated by any function g(x)=g0+ge(x)+go(x) of L 2 [-L, L], we must find the expansion coefficients Cn of:

            0 0 0 n Fn n g x g C f x f  , where gFn(x)=GF[-L/n<gF(nx)>L/n]n , nN.
(2.11) To simplify, consider the particular case f0= g0=0:

                                                 1 1 1 1 ˆn n F n en F n n n on F n n n F n n on F n n en F n o e x g B x g B A x g A B x g A x g B x g A x f x f x f
equality which coincides with (2.11), only if An=Bn=Cn . Therefore, no function gF(x) alone can generate a base for the entire space L 2 [-L, L], requiring the help of another base, generated by a function hF (x) with a different parity. If we consider the identities:

        x g x g x g n n en    2 1 and         x g x g x g n n on    2 
1
, one obtains, in the general case:

                           1 0 0 0 2 2 ˆn n F n n n F n n g x g B A g x g B A f x f
, or

(2.12)

             n Fn n g x g C f x f 0 0



In conclusion, we can formulate the following theorem:

Theorem 4. Any function f(x) of L 2 [-L, L]
, can be developed into non-sinusoidal Fourier series, into a base composed of f0 (its mean value over this interval) and the bases generated by the functions [g(x)-g0] and [g(-x)-g0]. Here, g (x) is anything function of L 2 [-L, L] which has both two components (even and odd) non-zero, g(-x) is also of L 2 [-L, L], and g0 is the average value of g (x) over

[-L, L].
Consequently, the expansion of the function f(x) analyzed earlier, on the interval [-L,L], can be performed in a base generated by the functions e x et e -x :

                                                                  1 0 1 1 0 1 1 0 0 1 sinh 2 1 sinh 2 1 sinh 2 2 sinh 1 sinh cosh ˆ ˆn x Fn n n x Fn n n n n x Fn n n n x Fn n n n n F n n n F n o e e B A e B A f A e B A e B A f x B x A f x f x f f x f
where x Fn e and

x Fn e  are the quasi-harmonics of the n order of the F-functions (e x )n, respectively (e -x )n (the extensions on the real axis of the F-functions e nx , respectively e -nx , defined on the intervals [-1/n, 1/n]).

The palette of functions that can serve as a basis for non-sinusoidal Fourier expansion is extremely wide:

 if g(x) is a polynomial in [-L, L]
, its even component ge(x) contains the even powers of x, while its odd component go(x) contains the odd powers  if g(x) is an exponential function, gFe(x) can be an even function GFe(coshx) and gFo (x) can be an odd function GFo(sinhx)  if g(x) is logarithmic: ln(A+x) (where A>0), f(x) can be developed only on a sub-interval [a, b], included in the interval (-A, A), with the bases rational functions of the form:

    0 2 2 ln 2 1 g x A x G Fe    and   x A x A x G Fo    ln 2 1  if g(x)
is a rational function of the form 1/(A+x), A>0, the function f(x) can be developed only on a sub-interval [a, b], included in the interval (-A, A), with the bases:

  0 2 2 0 1 1 2 1 g x A A g x A x A x G Fe               and   2 2 1 1 2 1 x A x x A x A x G Fo               if g(x) is an irrational function of the form x A  , A>0, the function f(x) can be developed only on a sub-interval [a, b], included in the interval (-A, A), with the bases:     0 2 1 g x A x A x G Fe      and     x A x A x G Fo     2 1 

Quasi -sinusoidal periodic Fourier series

Another way to combine two functions g(x) and h(x), in order to form a basis for the L 2 [-L, L]-space, is to choose the function h(x) as a translation of the function g(x): h(x)=g(x+αT), where α  (0, 1). Among the bases obtained by this modality, there are a few that are complete and have a special property: the function g(x) has a single component (even or odd), and for α=1/4, h(x) has the opposite parity, property that they have the functions sin(ω0x), respectively cos(ω0x), also. Because this property is extremely useful for solving some practical problems, in this section we will pay some attention to them.

If g(x) is a function of L 2 -space defined on the interval [0, L/2], we can construct the functions g&(x), composed of 4 segments, each segment explicitly defined with the help of the function g (x), on a quarter of the interval [-L, L]. We impose that the functions g& (x) obtained have the mean value zero over the interval [-L, L], and that they have internal symmetries similar to those of the sine, respectively cosine functions: the two branches (this for x<0 and this for x>0) of the odd g&(x) functions are symmetrical with respect to their mid-axis, and the two branches of the g&(x) even functions are symmetric with respect to their mid-point. In addition, by translation, to the left or to the right, with L/2, an opposite parity function is obtained. We will call the functions g (x), the kernel of the expansion, and the g&(x) derived functions, the quasi-sinusoids. We will use the notations:

gs(x)=S[g(x)]L=Gs[-L<-g(x+L)>-L/2<-g(-x)>0<g(x)>L/2<g(L-x)>L], respectively gc(x)=C[g(x)]L=Gc[-L<-g(x+L)>-L/2<g(-x)>0<g(x)>L/2<-g(L-x)>L] For example, if g(x)=x, for x  [0, π/2] gs(x)=S[x]π=Gs[-π<-x-π)>-π/2<x>π/2<π-x>π], gc(x)=C[x]π=Gc[-π<-x-π)>-π/2<-x>0<x>π/2<-π+x)>π]
The functions gs(x) and gc(x) satisfy all the conditions required by Theorem 3, therefore we can conclude:

Theorem 5: Let g(x) be any function of L 2 [0, L/2]-space. Any function f(x) of L 2 [0, L/2

]-space can be developed in a quasi-sinusoidal Fourier series, into a base composed of f0 (its mean value over this interval) and the bases generated by the functions S[g(x)]L and C[g(x+L/2)]L, or C[g(x)]L and S[g(x+L/2)]L.

In the general case, the quasi-sinusoids and/or their first order derivatives have discontinuities which can be eliminated by adding quasi-sinusoids formed by rectangular pulses (one for each jump) and/or quasi-sinusoids formed by ramp-functions correctly chosen (for the odd quasi-sinusoids with a discontinuity at the origin, the ramp is -2[g(L/2)-g(0)]/L, while for even quasi-sinusoids, the ramp has the value of -dg/dx at point x=0). For the functions obtained, we will use the name of smooth quasi-sinusoids, or almost-sinusoids, or approximate sinusoids, respectively almost-cosinusoids, or approximate cosinusoids. They are particularly useful in certain practical problems (resolution of certain differential equations with partial derivatives).

For example, to obtain the almost-sinusoids S[x 2 -2x]2 of Fig. 4a, we will choose two even functions f2p(x)=-x 2 and f2p(x)=x 2 , for -1≤x≤1 , and by vertical (by adding rectangular waves) and horizontal (by changes of variables) translations, we superimpose at the origin (x=0), the last point of the negative wave, with the first point of the positive wave. The almost-cosine C[1-x 2 ]2 is obtained by changing the variable x with x -1. The functions obtained are defined over the interval [-2, 2], therefore having half of the angular frequency of the initial functions:

gs(x)2L = S[x 2 -2x]2L =Gs[-2L<-x 2 -2x>0< x 2 -2x >2L], respectively gc(x)2L = C[1-x 2 ]2L =Gc[-2L<-1+(x+2) 2 >-L<1-x 2 >L<-1+(x-2) 2 >L]
or, going back to the initial interval of definition: 2 >L] The function gc(x)L is shown in Fig. 4b.

gs(x)L = S[x 2 -2x]L =Gs[-L<-4x 2 -4x>0< 4x 2 -4x >L], respectively gc(x)L = C[1-x 2 ]L =Gc[-L<-1+4(x+1) 2 >-L/2<1-4x 2 >L/2<-1+4(x-1)
Similar to the Fourier series expansions, the presence of discontinuities inside or at the ends of the definition interval of the function f(x) produces, for non-sinusoidal series expansions, additional terms (provided with coefficients of the an/n form) and an effect similar to the Gibbs phenomenon. Likewise, the discontinuities of the first derivative generate other additional terms (provided with coefficients of the an/n 2 form) and additional oscillation phenomena with a significant amplitude. The almost-sinusoids are part of the C 1 class of regularity (functions whose first derivative is continuous) and, because of their symmetry properties, similar to those of the sine and cosine functions, are best suited when series expansions of Fourier are required. Similarly, as in the practice of Fourier expansions, when the other data of the problem allow it, it is advantageous to construct for the developed function f(x) also, defined on an interval [x1, x2], an extension quasi-sinusoidal smooth, defined on an interval [x1e, x2e], which includes the interval of definition. By such an approach, the "residual terms" of expansion are removed.

For clarification, we will develop in non-sinusoidal series the almost-sinusoid: 

gc(x)L=C[1-x 2 ]L=Gc[-L<-1+4(x+1) 2 >-L/2<1-4x 2 >L/2<-1+4(x-
             1 1 1 2 ) 1 2 cos( ) 1 ( 2 ) 1 2 cos( ) ( n n n n e n x n x n c x g    and            1 2 2 12 1 2 1 2 cos 4 ) ( n n x n x f  
In order to compare these expansions with those of the section 2.1, we will use the coefficients of the Fourier expansion of the function -1/2•gc(x), defined on the same interval. Its expansion in Fourier series generates the coefficients: a1=-16/π 3 , a2=0, a3=16/27π 3 , a4=0, a5=-16/125π 3 , a6=0, a7=16/343π 3 , a8=0, a9=-16/729π 3 , a10=0, a11=16/1331π 3 , a12=0, ... For the rectangular wave, the relationships (2.2) lead us to: A1=-8/π 2 , A2=0, A3=-64/27π 2 , A4=0, A5=192/125π 2 , A6=0, A7=-384/343π 2 , A8=0, A9=64/729π 2 , A10=0, A11=-960/1331π 2 , A12=0, ... For the triangle wave, with the same relations, we calculate: A1=4/π, A2=0, A3=-16/27π, A4=0, A5=-16/125π, A6=0, A7=-32/343π, A8=0, A9=16/729π, A10=0, A11=-48/1331π, A12=0,... With the values thus obtained, we can construct the secondary quasi-harmonics and the first partial sums of the corresponding quasi-sinusoidal expansions: Figures 5 and6. 

The approximation of the quasi-sinusoid -gc /2 by a sum of triangle waves

The aspect of the expansion of quasi-sinusoids in almost-sinusoidal series is reflected in the inverse expansion of the functions analyzed above. Figures 7 and8 show the first quasiharmonics and the partial sums of order 12 for the inverse expansions

         1 ˆn n c dn e g A x g and        1 12 ) ( ˆn n c tn g A x f
. According to (2.3): 

(x) =Go2[-1<     1 5 . 0 cosh 5 . 0 cosh 5 . 0 cosh    x >0<     1 5 . 0 cosh 5 . 0 cosh 5 . 0 cosh     x >1]
go2(x) is generated by the odd almost-sinusoid of exponential type (Fig. 10.a) which has a kernel of the type g(x)=K+cosh(x+T/4), where K=constant: 2 ), d8=0, ... , For K=8.8372: B1=K, B2=0, B3=K/(1+4π 2 ), B4=0, B5=K/(1+9π 2 ), B6=0, B7=K/(1+16π 2 ), B8=0, B9=K/(1+25π 2 ), B10=0, B11=K/(1+36π 2 ), B12=0, ... A graphic representation of the partial sum S12 is given in the figure 10.b.

In the interval [-1, 1]: fo0=go10=go20=0,           1 1 1 2 ) 1 2 sin( 4 cos ) ( n n n o n x n x n b x f    , so: b1=4/π, b2=0, b3=4/3π, b4=0, b5=4/5π, b6=0, b7=4/7π, b8=0, ... ,                        1 2 2 1 1 1 1 sin 1 1 2 1 sinh sin n n n n o x n n n x n c x g                            1 2 2 1 2 sin 1 2 1 1 2 1 5 . 0 cosh 5 . 0 cosh 4 sin ) ( n n n o x n n n x n d x g     , so: d1=8.8372•(4/π), d2=0, d3=8.8372•(4/3π)•1/(1+4π 2 ), d4=0, d5=8.8372•(4/5π)•1/(1+9π 2 ), d6=0, d7=8.8372•(4/7π)•1/(1+16π
For sub unitary values of L, the exponential quasi-sinusoid go2(x) is satisfactorily approximated by the quadratic quasi-sinusoid gc(x)1=C[1-x 2 ]1, described in Figure 4.b of section 3. Between the coefficients of the expansion of the function fo (x) in the two bases generated by the quasi-sinusoids gc(x)1 and go2(x), the differences are negligible.

Orthogonal bases composed of non-sinusoidal periodic functions

Neither the even quasi-harmonics gn(x)-g0 nor the odd hn (x), analyzed in the previous sections, are orthogonal to each other, which does not allow the calculation of the coefficients of these expansions from formulas similar to Euler's formulas. But, any even quasi-harmonic is orthogonal to all odd quasi-harmonics. This allows us, by the Gram-Schmidt orthogonalization process [4], to construct an orthogonal basis (which can be normalized by the same method) for each of the systems generated by the Fourier-functions gFn(x)-g0 and hFn (x). By combining them and adding the function f0, a complete biorthogonal basis is obtained. The Gram-Schmidt orthogonalization process does not claim, for the g-harmonics of the non-orthogonal basis, the need to be continuous (to be Fourier-functions), but this functionality is imposed by our intention to create a complete base for the space L 2 [-L, L]. Because of this, we consider the functions gFn(x) and hFn(x) to be Fourier-functions by definition (1.d).

For example, from some two functions g(x) even and h(x) odd, which have the mean zero value, defined over a certain interval [a, b], we obtain a biorthogonal basis formed by the functions 1, Φn (x) et Ψn(x), n=1, 2, 3,..., where: 

              1 1 1 1 2                n i Fi in Fn j n j j b a j n Fn n x g C x g x dx x x g x g x and                              1 1 1 1 2 n i Fi in Fn n j j j b a j n Fn n x h D x h x dx x x h x h x (4.1) with       b a j j dx x
                1 0 0 0 ~n n n n n x B x A A x f (4.2)
Thanks to the orthogonality of the system, to calculate the coefficients of this expansion, are valid the formulas of Euler:

     b a dx x f a b A 1 0         b a n n n dx x x f A 2 0 1 n= 1, 2, 3,... (4.3)         b a n n n dx x x f B 2 0 1 n=1, 2, 3,...
Obtaining these expressions is based on relationships:

                x x f x x f x f x x f n e n o e n                       x x f x x f x f x x f n o n o e n      
which are true for Φn(x)=cos(nω0x), respectively Ψn(x)=sin(nω0x), too.

We can see that Φn(x), the components of order n (n=1, 2, 3,...) of the orthogonal system, generated by the even functions gFn(x)-g0, as well as Ψn (x), generated by the odd functions hFn (x), are linear combinations between the quasi-harmonics of order n and the quasi-harmonics of lower order of the respective non-orthogonal expansions. Consequently, we can establish a correspondence between the coefficients An and Bn of the expansion in the non-orthogonal base generated by the functions gF(x) and hF (x) and those of the expansion in the orthogonal base Φn(x) and Ψn(x):

                                        1 1 1 0 1 1 1 0 0 ~n n i i F in Fn n n n i i F in n F n x h D x h B x g C x g A A x f                                                 1 1 0 1 1 0 0 1 1 0 0 0 n Fn n n Fn n n Fn n i ni n n n Fn n i ni n n x h B x g A A x h D B B x g C A A A
We note that for the calculation of the coefficients An=

     1 0 0 n i ni n n C A A and Bn =      1 0 0 n i ni n n D B B ,
it is necessary to calculate certain integrals of the type:

   dx x g x f b a n e  ,    dx x h x f b a n o  ,    dx x g x g b a j i  ,    dx x h x h b a j i



, for i, j=1, 2, 3, ... By this method of calculating the coefficients, it is no longer necessary to know the coefficients of the expansions in sinusoidal series neither for the function f(x), nor for the functions g(x) and h (x).

We are going to exemplify by building an orthogonal base, starting from a base generated by the system of periodic square unitary pair functions:

fe=Fe[-1>1<-1/2>-1<1/2>1<1]
In the case chosen here, the calculation will be simplified thanks to the symmetry properties of the chosen quasi-sinusoid. Thanks to relations (4.1), it follows: 

    x g x 1 1   ,   2 1 1 2 1 2 1      dx x g             x g x g dx x g x g x g x 2 1 1 1 1 2 2 2 2       ,   2 1 1 2 2 2 2      dx x g                         x g C x g x g x g x g dx x g x g x g dx x g x g x g x F F 1 13 3 1 3 2 1 1 2 3 1 1 1 1 3 3 3 3 1 2 2                 9 16 3 1 1 1 2 1 3 2 3             dx x g x g                                     x g x g C x g C x g C x g x g x g dx x g x g x g x g dx x g x g x g dx x g x g x g x
                                 2 1 1 2 4 2 4      dx x g                                            x g x g dx x g x g x g x g dx x g x g x g x 1 3 1 1 1 3 5 1 1 1 1 5 5 5 3 1 16 3 1 9 2             x g C x g C x g x g x g x g
             dx x g x g x g
and so on.

Through similar relationships:

            1 1 n i i F in n F n x h D x h x
is obtained the orthogonal system Ψn(x), from the function fo(x), unitary odd periodic rectangular waves:

fo(x)=Fo[-1>-1<0>1<1]

Properties of non-sinusoidal Fourier series

Work on expansions in trigonometric (sinusoidal) Fourier series has shown that a real function f(x) from the space L 2 [-L, L], can be expressed as a sum of its projections on the components of an orthogonal base of a space of functions, if it fulfills several conditions. The series resulting from these expansions have several properties: convergence, summability, differentiability, integrability.

The expansions into non-sinusoidal Fourier series in g(x)-basis of the function f(x) analyzed in the previous sections have resulted from the sinusoidal series of this function, by a redistribution of its coefficients. This redistribution reconstruct the coefficients of expansion into sinusoidal series of the components gn(x) of a complete base of non-orthogonal functions. Therefore, new expansions in non-sinusoidal Fourier series transfer from the expansions in sinusoidal Fourier series a palette of conditionalities and properties. Undoubtedly, this subject merits further study, but for the moment, we boil down to a few obvious conclusions:

 if the function f(x) is integrable, the sequence of the coefficients of its expansion in non-sinusoidal series converges towards 0 (the Riemann-Lebesgue theorem)

 if                 1 0 0 0 ~n n n n n x B x A A x f
is the expansion of the function f(x) into a base of periodic non-sinusoidal orthogonal functions, then

                1 2 2 0 2 0 2 0 2 1 2 1 n L L n n dx x f L B A A
(the Parceval theorem)

 if the 2L-periodic functions f(x), g (x), and h(x), in the interval [-L, L] are continuous by pieces and differentiable on the left and on the right in all the point of the interval,

the series       x h B x g A f x f n n n n n n          1 1 0 ˆ converges to               ) ( lim ) ( lim 2 1 ˆx f x f x f i i x x x x i
in all points xi.  the Fourier series resulting from the expansion in any non-sinusoidal base, of an f (x) function, 2L-periodic, continuous and differentiable by pieces, converges uniformly on R towards this function.  the non-sinusoidal Fourier series of a 2L-periodic, square-integrable function that can be integrated over a period, converges in norm of L 2 to the considered function (the Riesz-Fischer theorem)  the non-sinusoidal Fourier series of a square-integrable functions converges almost everywhere to this function (Carleson's theorem)  two 2L-periodic functions, having the same coefficients of their expansion in the same non-sinusoidal Fourier base, are equal almost everywhere. In particular, in the case of continuity by pieces, they coincide in all the points of the interval [-L, L], except a finite number

 let be f(x) a function 2L-periodic, continues in the interval [-L, L]. Its Fourier expansion       x h B x g A f x f n n n n n n          1 1 0
, sinusoidal or not, convergent or not, can be integrated term by term, between all integration limits:

     dx x h B dx x g A x f d dx x f n n n n n n              1 1 0 0
, where d0 is an arbitrary constant.

 let be f(x) a 2L-periodic function, continuous in the interval [-L, L], with f(-L)=f(L)
and with the derivative f' (x) smooth by pieces in this interval. The Fourier expansion, sinusoidal or not, of the function f' (x), can be obtained by deriving term by term the Fourier expansion of the function f (x). The series obtained converges punctually towards f' (x) in all the points of continuity and towards [f'(x)+ f'(-x)]/2 in those of

discontinuity. If       x h B x g A f x f n n n n n n          1 1 0 →       x h B x g A x f n n n n n n            1 1
The condition f(-L)=f(L) imposed in this statement is quite restrictive and reduces the usefulness of the theorem. We can get around this condition if we take into account that the even type component fe of the function f(x) always satisfies the differentiability condition, and that the odd component fo can be written as a sum of the differentiable function fos and of the ramp-function: fr=x•fo(L)/L . So:

          L L f x f dx d x L L f x f dx d x f dx d o os o os o          
For example, in the case of sinusoidal Fourier series expansion:

                                 1 sin 1 2 cos n n o n n n n n n o x L L f a x b L L f x f    
which requires the knowledge of the boundary conditions fo(-L) and fo(L). This relation makes it possible to solve certain differential equations by determining the coefficients of the sinusoidal Fourier series expansion of the unknown function (similar to the expansion in series of Taylor).

Conclusions

We noted in the previous sections that any function f(x):[-L, L], 2L-periodic, which belongs to the L 2 -subspace, can be developed, in a similar way to that indicated by Fourier, there is over 200 years ago, in a multitude of variants, in bases formed by f0, the average value of the function f(x) in the interval [-L, L] and two sets of quasi-harmonics: a set of even functions gn(x) and a set of odd functions hn(x), (n=1, 2, 3, ..., ∞), periodic functions, with the period 2L/n. In the most general case, the fundamental quasi-harmonics (for n=1) are all functions which satisfy the Dirichlet conditions. They can therefore be non-trigonometric functions and the base can be non-orthogonal.

The expansion in Fourier sinusoidal series is only one particular case of this expansion, namely the case where the fundamental quasi-harmonics are sinusoidal: go1(x)=sin(ω0x) and ge1(x)=cos(ω0x).

These results generate a wide range of theoretical results. First, a new, extremely broad perspective opens up in the analysis of function spaces, in their spectral analysis, in the development of new types of integral transforms, in the construction of wavelet function systems, etc.

Fig.11. Comparison between the curves cos(xπ/2) (red), 1-|x| 1.75 (green) and 1-x 2 (blue) on the interval [-1, 1]

The comparison of the expansions of a function f(x) in different complete bases (the number of accessible bases has now become very large), makes it possible to solve new problems of convergence of the numerical series and series of functions, to find new correlations between different types of functions, etc. Second, the practical consequences are also extremely important. This new type of expansion leads to the development of new methods of approximation of functions, in which the precision of the approximation can be increased by the possibility of choosing from a wider range of possibilities. For example, in Figure 11, two possibilities of approximating a cosine are illustrated.

A perspective of extremely promising use of these types of series expansion is offered by the field of numerical and analytical resolution of broad categories of ordinary differential equations and with partial derivatives, linear and nonlinear.
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Introduction

Pour définir simultanément à la fois la fonction g(x) et son domaine de définition, pour une quelconque fonction g(x) de R, définie sur un intervalle réel I (ouvert, fermé ou semi-ouvert), délimité par x1 et xm+1, introduite par une seule expression g(x)=g1(x) sur toute I (m=1), ou par m différentes expressions: g(x)=gi(x), i=1, 2, ..., m, valables chacune sur l'un des sous-intervalles disjoints adjacents bornés par xi et xi+1, 1≤ i ≤ m, nous utiliserons un système pour marquer simultanément les limites xi des (sous)intervalles de définition et aussi les expressions de la fonction valables sur ces (sous)intervalles:

  ] ) ( [ 2 1 1      x x g x G x g , ou   ] ) ( [ 2 1 1 x x g x G x g    , ou   ] ) ( [ 2 1 1      x x g x G x g , ou     ] ) ( [ 2 1 1    x x g x G x g , au lieu de g(x)= g1(x) si x1 ≤ x ≤ x2. Ici I= [x1, x2]                         1 1 1 2 2 1 1 ... ... m m m m i i i i i x g x x x x g x x x x g x G x g     , ou     1 1 1 2 2 1 1 ... ...               m m m m i i i i i x g x x x x g x x x x g x G x g     , ou                  1 1 1 1 1 1 2 2 2 1 1 ) ( ) )...( ( ) ( ) )...( ( ) ( m m m m m i i i i i i i x g x x g g x x g x x g g x x g x G x g    
, etc au lieu de g(x)={g1(x) si x1 ≤ x < x2, ..., gi(x) si xi ≤ x < xi+1, ..., gm (x) 

si xm ≤ x ≤ xm+1} Ici I= [x1, x2)  [x2, x3)  ...  [xi, xi+1)  ...  [xm, xm+1] = [x1, x2].
Les indices supérieurs attachés aux bornes xi de ces intervalles signifient:

 + :   ) ( lim x g x g i x x i     -:   ) ( lim x g x g i x x i   
 sans indice : la fonction g(x) est indéfinie en xi , ou elle a une valeur fixé g(xi)=aR. Par conséquent: -pour g(x):(x1, x2) nous allons utiliser l'une des notations:

g(x)=G[x1>g<x2], ou g(x)=G[x1*(g)*x2], ou g(x)=G[x1(g)x2] -pour g(x):[x1, x2], avec g(x)=g1(x) si x(x1, x2) ; g(x1)=a, g(x2)=b, nous allons utiliser : g(x)=G[a<x1>g1<x2>b], g(x)= G[(a)*x1*(g1)*x2*(b)] , ou g(x)= G[(a)x1(g1)x2(b)] -pour g(x):(x1, x2)  (x2, x3), avec g(x)=g1(x) si x(x1, x2) et g(x)=g2(x) si x(x2, x3) : g(x)=G[x1>g1<x2>g2<x3], etc. -pour g(x):[x1, x2)  (x3, x4], avec g(x)=g1(x) si x(x1, x2) et g(x)=g2(x) si x(x3, x4): g(x)=G[x1 + >g1<x2>  <x3>g2<x4 -], ou g(x)=G[x1≥g1<x2>  <x3>g2≤x4] -pour ga(x):[x1, xm+1], avec ga(x)=gi(x) si x(xi , xi+1), et ga(xi)=ai ≠ ∞, i=1, 2, ..., m+1: ga(x)=G[a1<x1>g1<x2>a2<x2>g2< x3> a3 ... am<xm>gm<xm+1>am+1] (a) -pour gb(x):    m i i i x x 1 1 ,   , avec gb(x)=gi(x) si x(xi, xi+1), i=1, 2, ..., m+1, et gb(xi,) indéfinies: gb(x)= G[x1>g1<x2>g2< x3>... <xm>gm<xm+1].
(b) Pour ces deux derniers exemples, si gi(x) sont les mêmes, pour i=1, 2, ..., m+1, les deux fonctions (ainsi que d'autres fonctions gr(x) qui accomplies cette condition et, encore la condition gr(xi)=ri ≠ ∞), sont égaux presque partout. S'ils sont de carré intégrable, leurs développements de Fourier   x g a ,   

                   ) ( lim ) ( lim 2 1 1 1 1 1 x f x f x g x g m x x x x m et               ) ( lim ) ( lim 2 1 x f x f x g i i x x x x i

, pour i≠1, m+1

Nous noterons gF(x) une fonction de type gr(x), pour laquelle gr

(xi)=   i x g
, i=1, 2, ..., m+1:

gF(x)= G[   1 x g <x1>g1<x2>   2 x g <x2>g2< x3>   3 x g ...   m x g <xm>gm<xm+1>   1 x g ] (c) On peut noter ga(x) F  gb(x) F  gr(x) F  gF(x) F    x g N lim  
, où F  veux dire que l'égalitée est presque partout. Le développement de Fourier de la fonction discontinue g(x) est une fonction continue   x g qui s'approche autant que possible de gF(x). On peut assigner à la fonction continue  

x g F (qui est une approximation autant que nous voulons de proche de la fonction gF(x)), l'appellation de Fourier-fonction, ou F-fonction. Dans des nombreuses situations, y compris la majorité de cet article, les valeurs ri de la fonction gr(x) en les points de discontinuité ne sont pas pertinentes. Par conséquent, lorsque nous analyserons des fonctions de ce type, sans perdre le caractère de généralité, mais dans un souci de simplification de l'exposition, nous allons considérer toujours (sauf les cas spécifiés expressément) qu'il s'agit d'une fonction du type gF (x) 

      k R pk R p k x g x g
, , tel que :

gpk(xR,k)=gpk(x+kT)=g(xR-kT)=g(x) si  R x [x1+kT, x2+kT] et (1) gpk(xR)=0, si  R x [x1+kT, x2+kT], pour  kZ et    2 1 , x x x  . Ici T=x2-x1 Si k=0, on obtienne pour   2 1 , x x x 
: gp0(x,0)=g (x). Pour une définition dans laquelle la valeur de k (dépendant de xR), apparaît implicitement, on peut appeler à la fonction partie entière (par défaut) E(x)=   

gp(xR)= g[xR-T•E((xR -x1)/T)]=g(x).

(1b) Selon la théorie développée par Fourier, la fonction 2L-périodique fp(x):(-∞, ∞), l'extension sur l'axe réel de la fonction de carré intégrable f(x):[-L, L], peut être décomposée en une somme:

              1 0 sin cos n n n n n x b x a f x f   où, pour toute nN, L n n   
. Ici, f0 est la valeur moyenne de la fonction f(x), sur l'intervalle [-L, L], cos(ωnx) et sin(ωnx) sont des fonctions continues (appelées harmoniques secondaires paires unitaires, respectivement harmoniques secondaires impaires unitaires), qui proviennent des fonctions continues cos(ω0x) et sin(ω0x), pour ω0=π/L (appelées harmonique fondamentale paire unitaire, respectivement harmonique fondamentale impaire unitaire) par la multiplication de leurs argument avec un entier naturel positifs nN + . Les fonctions de valeur moyenne nulle, sin(nω0x) et cos(nω0x) prennent sur l'intervalle [-L/n, L/n], les mêmes valeurs que les harmoniques fondamentales les prennent sur l'intervalle [-L, L] et ils satisfont implicitement: sin(nω0x)=sin[n(ω0x+2πk)] et cos(nω0x)=cos[n(ω0x+2πk)], pour tous les intervalles [(2k-1)ω0/n, (2k+1)ω0/n], où k est un entier relatif.

Soit la fonction g(x) de variable réelle x[-L, L], qui a des valeurs réelles finies dans l'ensemble image Im(g) et vérifie l'égalité g(-L)=g(L). Semblable aux sinusoïdes, à partir de la fonction gp(x)→(-∞, ∞), qui est l'extension 2L-périodique sur l'axe réel de la fonction g (x), on peut obtenir pour chaque nN + , par dilatation, une fonction 2L/n-périodique: Nous appellerons la fonction gn(x), restreinte à l'intervalle [-L, L], la g-harmonique de l'ordre n de la fonction g(x) et la fonction g1(x)=g (x), la g-harmonique fondamental. Nous allons également, introduire pour la g-harmonique de l'ordre n une notation réduite: gn(x)=G[-L/n<g(nx)>L/n]n , nN + .

gn(x)=          k nk p k nx g nx g , :(-∞, ∞),
(1c) Ces opérations de translation et de dilatation sont similaires à celles utilisées pour créer les fonctions ondelettes ψnk(x), à partir d'une fonction mère Ψ(x) [3]:

ψnk(x)=kΨ[(x-b)/a], pour b=2k/n et a=1/n.
Si la fonction g(x) a, dans l'intervalle [x1, xm+1], un nombre fini m de discontinuités, la fonction gn(x) (la g-harmonique de l'ordre n) aura un nombre m•n de telles discontinuités, qui tend vers l'infini si n→∞. Pour cette raison, la fonction g(x) est impropre pour générer une base pour un sous-espace de fonctions. Mais, si la fonction g(x) est de carré intégrable (appartiennent à l'espace L 2 [x1, xm+1]), ou si elle satisfait les conditions aux limites de Dirichlet, elle peut être développé en une série [1,9]:

              1 0 sin cos n n n n n x b x a g x g   , où ωn=nπ/L, N  n . Ici,        1 1 cos 1 m x x n n dx x x g L a  et        1 1 sin 1 m x x n n dx x x g L b  ;      1 1 cos 1 0 m x x dx x g L g Parce que   x g
est une série convergente des fonctions continues, elle est une fonction continue (une Fourier-fonction  

x g F ) et peut être pris en compte pour générer une base pour les fonctions de l'espace L 2 [x1, xm+1]. Évidemment, toutes les fonctions continues sont des Ffonctions. En tous les points de continuités,   x g →gF(x), alors que dans les environs d'un point de discontinuité,

g (x-h)→ ) ( lim x g F x x i   , et g (x+h)→ ) ( lim x g F x x i   , si h→0. Dans l'intervalle [xi-h, xi+h], pour h→0, la fonction   x g approche la droit gF(x)=x[gF(xi+h)+gF(xi-h)]/2h et g (xi)
approche la valeur [gF(xi+h)+gF(xi-h)]/2. En consequence, toutes les g-harmoniques gn(x), fondamental ou secondaires sont des fonctions continues dans tout l' intervalle I.

Une F-fonction peut être construite par définition: soit, une fonction g (x), définie dans l'intervalle [x1, x2], avec une discontinuité de saut au point xi. La F-fonction correspondante est:

gF(x)=                                 2 1 0 2 lim x g h x h h x g h x g x h x g x G d d d d h , h réel. ( 1d 
)
Comme nous l'avons déjà mentionné, dans cet article, lorsque nous analyserons des gharmoniques gn(x), continues par morceaux, nous allons considérer toujours (sauf les cas spécifiés expressément) qu'il s'agit de fonctions g F(x) de Fourier.

Pour les phénomènes de la Nature, décrits par l'évolution de certaines fonctions, du moins pour des considérations énergétiques, les fonctions discontinues cèdent leur place aux fonctions qui approchent les fonctions de Fourier.

C'est évident que les fonctions  

x g n , n=1, 2, ..., ∞ sont, deux à deux, indépendantes. Par conséquent, ils forment une base génératrice d'un sous-espace de L 2 . Nous appellerons cette base: la base générée par g(x) ou, plus simplement, la base g(x), notée Bg .

Séries de Fourier périodiques non sinusoïdales

Dans la section précédente, nous avons constaté l'existence d'une quelconque analogie formelle entre les fonctions réelles et finies cos(ω0x), sin(ω0x), définies sur l'intervalle [-L,L], et les autres fonctions réelles et finies g (x), définies sur le même intervalle. Dans cette section, nous allons essayer de découvrir ceux catégories des fonctions g(x) qui accentuent cette analogie, de sorte qu'elle devienne une analogie fonctionnelle, utile pour créer des bases de fonctions complètes et indépendantes.

Nous utiliserons les notations f , f ˆet f ~, pour les développements en série de Fourier sinusoïdale, en série de Fourier non sinusoïdale, respectivement en série de Fourier non sinusoïdale orthogonale. Pour les formules de développement des fonctions en série de Fourier et pour leures propriétés, nous avons consulté des travails réputés [4][5][6][7][8][9][10][11][12][13]. La démonstration de ce théorème inclut également, la manière de calculer les coefficients An du développement de Fourier non sinusoïdale de la fonction paire fe(x) de L 2 :

  x f e  =     1 n n n x g A , où
 

x g n sont des séries de Fourier

(2)

La fonction fe(x) qui est, par définition, de valeur moyenne nulle sur l'intervalle [-L, L], peut être développée, selon la thèse de Fourier, de manière univoque, en une somme infinie de fonctions cosinus paires: 

        1 cos n n n e x a x f  , où 0    n L n n   . ( 2 
                        ...
0 3 0 2 2 1 2 0 3 0 2 1 1 1 0 0 0 4 0 3 0 2 0 1 x c x c g c a x c x c g c a x n a x i a x a x a x a x a x f n i e                         ... ... 12 cos 8 cos ... 9 cos 6 cos 0 3 0 2 4 1 4 0 3 0 2 3 1 3 x c x c g c a x c x c g c a                                     1 5 5 4 4 3 3 2 2 1 1 0 3 0 2 1 ... ... 3 cos 2 cos n n n e n n x g A x g A x g A x g A x g A x g A x f x n c x n c g c a    L'égalité de   x f e avec   x f e 
est univoque, ce qui devait être prouvé. Donc: (2.2) En conclusion, parce que toute fonction paire fe(x) du sous-espace L 2 [-L, L], peut être développée en série de Fourier sinusoïdale (2.1), elle peut également être développée en série de Fourier non sinusoïdale (2). Pour calculer les coefficients de ce développement, il est nécessaire de connaître les coefficients an du développement de Fourier de la fonction fe(x) ainsi que cn, les coefficients de la fonction g (x), ce qui implique le calcul des intégrales

1 1 1 1 K c a A   ,           1 2 1 2 1 2 c c a a K A ,           1 3 1 3 1 3 c c a a K A ,             2 1 2 2 1 4 1 2 1 2 1 4 1 4 c c c c c c a a a a K A ,           1 5 1 5 1 5 c c a a K A              2 1 3 2 1 6 1 2 1 3 1 3 1 2 1 6 1 6 2 c c c c c c c a a c c a a a a K A ,           1 7 1 7 1 7 c c a a K A ,                3 1 3 2 2 1 2 2 1 2 2 1 4 2 1 8 1 2 1 4 1 4 1 2 1 8 1 8 2 c c c c a a c c c c c c c a a c c a a a a K A ,             2 1 2 3 1 9 1 3 1 3 1 9 1 9 c c c c c c a a a a K A ,             
K A ,             1 11 1 11 1 2 1 11 1 1 11 11 c c a a K c c a c a A ,                                3 1 3 2 2 2 1 2 2 1 3 2 1
    L L n e xdx x f  cos , respectivement     L L n xdx x g  cos .
Bien sûr, pour une autre fonction paire

f(x)=f0(x)+fe(x), f0(x)≠0,   x f  = f0(x)+     1 n n n x g A . L'aproximation d'ordre N s'écrit :   x f N  = f0(x)+     N n n n x g A 1 , où        N m n m n x m c x g 1 cos  . Si N→∞,   x g n →   x g
Pour illustrer la méthode de calcul, soit la fonction f2(x)=G[-1 + >x 2 <1 -], qui est un polynôme du second degré, sans des discontinuités, et qui a le développement de Fourier:

    x n n x n a f x f n n n n    cos 1 4 3 1 cos 1 2 2 1 0 2            (2a) 
Nous voulons de la développer en une base générée par la fonction paire (impulsions rectangulaires de valeur moyenne nulle)

ge=g dr = Ge[-1>-1<-1/2>1<1/2>-1<1] :          1 2 3 1 n dr n n x g A x f  , (2b) 
Le développement en série trigonométrique de la fonction ge(x) est:

             1 1 1 2 ) 1 2 cos( ) 1 ( 2 ) 1 2 cos( ) ( n n n n e n x n x n c x g    (2c)
Les relations (2a) et (2c), fournissent les coefficients suivants: a1=-4/π 2 , a2=1/π 2 , a3=-4/9π 2 , a4=1/4π 2 , a5=-4/25π 2 , a6=1/9π 2 , a7=-4/49π 2 , a8=1/16π 2 , a9=-4/81π 2 , a10=1/25π2, a11=-4/121π 2 , a12=1/36 π 2 , ... et c1=2/π, c2=0, c3=-2/3π, c4=0, c5=2/5π, c6=0, c7=-2/7π, c8=0, c9=2/9π, c10=0, c11=-2/11π, c12=0, ... Selon (2.2), les coefficients du développement (2b) sont: A1=-2/π, A2=1/2π, A3=-8/9π, A4=1/8π, A5=8/25π, A6=2/9π, A7=-16/49π, A8=1/32π, A9=-8/81π, A10=-2/25π, A11=-24/121π, A12=1/18 π, ... La représentation des quasi-harmoniques correspondantes et des sommes partielles résultantes est donnée à la figure 1. Ici, nous avons représenté les fonction  

x g en au lieu des fonctions  

x g en . Puisque la fonction ge(x) a deux points de discontinuité, les sommes partielles SN du développement non sinusoïdal, ont des points de saut en nombre croissant, à mesure que le rang N augmente.

Fig.1. L'approximation de la fonction x 2 -1/3 par une somme d'impulsions rectangulaires gi: composante i des sommes partielles, Si: somme partielle de l'ordre i

On peut remarquer une basse vitesse de convergence, par rapport à la méthode classique d'approximation de la même courbe, par le biais de segments des droits horizontaux.

Examinons, pour une comparaison, le développement de la même fonction par une somme des fonctions-rampe continues. Soit la même fonction f2

(x)=F2[-1 + >x 2 <1 -] et la fonction g(x)=G[-1 + >x-1/2<0>x-1/2<1 -].     x n n x f n n   cos 1 4 3 1 1 2 2 2       fournit:
a1=-4/π 2 , a2=1/π 2 , a3=-4/9π 2 , a4=1/4π 2 , a5=-4/25π 2 , a6=1/9π 2 , a7=-4/49π 2 , a8=1/16π 2 , a9=-4/81π 2 , a10=1/25π2, a11=-4/121π 2 , a12=1/36 π 2 , ...

et            1 2 2 1 2 1 2 cos 4 ) ( n n x n x g   fournit: (2d) c1=-4/π 2 , c2=0, c3=-4/9π 2 , c4=0, c5=-4/25π 2 , c6=0, c7=-4/49π 2 , c8=0, c9=-4/81π 2 , c10=0, c11=-4/121π 2 , c12=0, ... A l'aide des relations (2.
2), nous pouvons développer la fonction f2(x) en une série infinie de

signal triangle:          1 2 3 1 n n n x g A x f



, où: 2 montre les premiers quasi-harmoniques et les premières sommes partielles Fig. 2. L'approximation de la fonction x 2 -1/3 par une somme de signal triangle paires gi: quasi-harmoniques d'ordre i; Si: sommes partielles Les fonctions fe(x) et g (x) étant tous les deux paires, on peut faire aussi le développement en le sens inverse:

A1=1, A2=-1/4, A3=0, A4=-1/16, A5=0, A6=0, A7=0, A8=-1/64, A9=0, A10=0, A11=0,A12=0, ...       n n n n n n n n n n x x x x x g x g x f 2 1 1 2 1 2 ] [ ] [ 2 1 2 1 2 0 2 1 2 2 1 4 1 1 2 1 0 2 1 1 3 1 4 3 1                                La figure
         1 ˆn en n x f A x g
, pour a1 ≠ 0 , où :

(2.3) 1 1 1 a c A   , 2 1 2 1 1 2 2 a a c a c A    , 2 1 3 1 1 3 3 a a c a c A    , 3 1 2 2 1 2 1 4 1 2 2 1 4 4 a a c a a c a c a c A      , 2 1 5 1 1 5 5 a a c a c A    , ...
Si la fonction fe(x) est même la fonction f=cosω0x, on écrit: 

                ... ..
0 3 0 2 0 1 4 0 3 0 2 0 1 3 0 3 0 2 0 1 2 0 3 0 2 0 1 1 3 3 2 2 1 1 1 0                            x c x c x c A x c x c x c A x c x c x c A x c x c x c A x g A x g A x g A x g A x n n n             
Cette relation conduit au suivant système de coefficients:

(2.4)

1 1 1 c A  , 2 1 2 2 c c A   , 2 1 3 3 c c A   , 3 1 2 2 4 1 4 c c c c A    , 2 1 5 5 c c A   , 3 1 3 2 6 1 6 2 c c c c c A    , 2 1 7 7 c c A   , ...
Si la fonction paire g(x) qui génère la base du développement est une fonction avec valeur moyenne g0≠0 sur l'intervalle [-L, L]:

  1 4 3 2 0 / .... 4 cos 3 cos 2 cos cos c x c x c x c g g x n n n n n          
, pour nN et si la fonction f(x) a aussi une valeur moyenne f0≠0 sur cet intervalle:

            1 0 0 n n n g x g A f x f  (2.5)

Séries de Fourier périodiques non sinusoïdales des fonctions impaires

De la même manière est traité le problème de la fonction impaire fo(x), qui appartienne à l'espace FO des fonctions impaires de L 2 [-L, L].

Théorème 2. La base Bh d'une quiconque fonction impaire h(x) de L 2 [-L, L] constitue une base complète pour le système FO des toutes les fonctions impaires fo(x), réelles, de L 2 , périodique de période 2L.

Selon la thèse de Fourier, la fonction impaire fo(x) (dont la valeur moyenne sur l'intervalle [-L, L] est toujours zéro) peut être développée d'une manière univoque en une somme infinie de fonctions sinusoïdales impaires:

        1 sin n n n o x b x f  , où L n n n      0 . ( 2.6) 
Tout autre développement de la fonction fo(x) doit être également une somme infinie de

fonctions impairs:         1 n n n o x h B x f  , où   x h n sont des séries de Fourier (2.7) Ici,   x h n →G[-1/n<   nx h >1/n]n , où nN, sont des F-fonctions 2L/n-périodiques. Pour chacun telle fonction:         1 sin i n i n x i d x h  , où L n n    .
Comme dans la démonstration précédente, ce système d'équations nous permet de déterminer les coefficients Bn du développement:

(2.8) 

2 1 1 1 K d b B   ,           1 2 1 2 2 2 d d b b K B ,           1 3 1 3 2 3 d d b b K B ,             2 2 1 4 1 2 1 2 1 4 2 4 1 2 d d d d d d b b b b K B ,           1 5 1 5 2 5 d d b b K B ,             
K B ,           1 7 1 7 2 7 d d b b K B , etc.
Nous pouvons conclure, que toute fonction impaire fo(x) du sous-espace L 2 [-L, L], pouvant être développée en série de Fourier sinusoïdale (2.6), elle peut également être développée en série de Fourier non sinusoïdale (2.7). Pour calculer les coefficients de ce développement, (ainsi que ceux du développement inverse), il est nécessaire de connaître les coefficients bn du développement de Fourier de la fonction fo(x), ainsi que celles de la fonction h(x), ce qui implique le calcul des intégrales

    L L n o xdx x f  sin , respectivement     L L n xdx x h  sin .
Cette fois, pour illustrer la méthode de calcul, soit les fonctions impaires fo(x)=Fo[-1>-1<0>1<1] (la fonction créneau), pour laquelle

      1 1 2 ) 1 2 sin( 4 ) ( n o n x n x f   , et go(x)=G[-1>x<1] (la fonction dents de scie), pour laquelle             1 1 1 sin 1 2 sin ) ( n n n n o n x n x n d x g    , d'où:
b1=4/π, b2=0, b3=4/3π, b4=0, b5=4/5π, b6=0, b7=4/7π, b8=0, b9=4/9π, b10=0, b11=4/10π, ..., d1=2/π, d2=-2/2π, d3=2/3π, d4=-2/4π, d5=2/5π, d6=-2/6π, d7=2/7π, d8=-2/8π, d9=2/9π, d10=-2/10π, d11=2/11π, d12=-2/12π, ...

Par conséquence, le développement       1 ) ( n n n o x g B x f F n n n n o n n o n o o n F L F F x G x g 2 1 1 2 1 2 1 1 0 1 2 1 2 1 2 1 1 1 0 1 1 2 2 1 2 1 1 1                                       
Si f(x)=sin(ω0x), les coefficients d'un développement non sinusoïdal sont:

(2.10) 

1 1 1 d B  , 2 1 2 2 d d B   , 2 1 3 3 d d B   ,
                  1 1 0 0 n n n n n n x h B g x g A f x f  , où g0=     L L dx x g
On peut voir que le développement de Fourier sinusoïdale est un cas particulier du développement de Fourier non sinusoïdale.

Pour illustrer, soit la fonction f(x)=F[-1>0<-1/2>-2<0>0<1/2>2<1] qui est la somme de f0 (=0), de la fonction paire fe=Fe[-1>1<-1/2>-1<1/2>1<1] et de la fonction impaire fo= Fo[-1>-1<0 >1<1], dont les développements de Fourier sont [5]:

               1 1 1 1 2 ) 1 2 cos( ) 1 ( 4 cos ) ( n n n n e n x n x n a x f    , respectivement               1 1 1 2 1 2 sin 4 sin ) ( n n n o n x n x n b x f   
Les coefficients suivants sont obtenus: a1=4/π, a2=0, a3=-4/3π, a4=0, a5=4/5π, a6=0, a7=-4/7π, a8=0, a9=4/9π,a10=0, a11=-4/11π,... b1=4/π, b2=0, b3=4/3π, b4=0, b5=4/5π, b6=0, b7=4/7π, b8=0, b9=4/9π, b10=0, b11=4/11π, ...

1 2 1 4 1 2      n B n      2 1 2 1 2 1 4      n B n n 
Pour un développement de la fonction f(x) en une base exponentielle g(x)=e x , étant donné que sur l'intervalle [-1, 1], g0=sinh1, nous choisirons l'ensemble constitué des fonctions ge(x)=coshx-sinh1 et go(x)=sinhx, dont les développements en série de Fourier sont:

            1 2 2 cos 1 1 2 1 sinh n n e x n n x g   , et                1 2 2 1 sin 1 1 2 1 sinh n n o x n n n x g   
, donc: 

c1=-2sinh1/(1+π
                      
  1 sinh 1 2 2 1 1 1        c a K et      1 2 2 1 1 2 1 sinh 1 2 K d b K       : 1 1 K A  , 2 2 1 2 4 1 1      K A , 2 2 1 3 9 1 3 1 3 4        K A ,                   2 2 2 2 2 2 1 4 4 1 1 16 1 1     K A , 2 2 1 5 25 1 5 1 5 4        K A       2 2 2 2 1 6 4 1 36 16 7 1           K A , 2 2 1 7 49 1 7 1 7 8        K A ,       3 2 4 2 2 1 8 4 1 4 12 17 7 1           K A ,... 2 1 K B  , 2 2 2 2 4 1 1 2      K B , 2 2 3 9 1 1 3 8       K B ,         2 2 2 4 2 2 2 4 4 1 16 1 32 25 2 1 4               K B 2 2 5 25 1 1 5 24       K B ,         2 2 2 2 2 6 9 1 4 1 2 3 1 3              K B , 2 2 7 49 1 1 7 48       K B ,       3 2 4 2 2 2 8 4 1 16 21 9 1 2            K B , 4 2 9 9 1     K B ,
donc              1 2 2 2 2 cos 4 1 1 4 2 1 sinh n n e x n n x g   , et                 1 2 2 1 2 2 sin 4 1 1 4 2 1 sinh n n o x n n n x g

  

Nous pouvons notez que pour des valeurs L<1, la fonction ges(x)=ge(x)L/sinhL est approximée avec des déviations acceptables par la fonction gep(x)=x 2 , et la fonction gos(x)=go(x)L/sinhL est approximé avec des déviations acceptables par la fonction gop(x)=x, les déviations étant tant petites que L est plus petites.

Lorsque on demande le développement de la fonction f(x)=f0+fe+fo en une base générée par une fonction quelconque g(x)=g0+ge(x)+go(x) de L 2 [-L, L], il faut trouver les coefficients Cn du développement :

            0 0 0 n Fn n g x g C f x f  , où gFn(x)=GF[-L/n<gF(nx)>L/n]n , nN. (2.11)
Pour simplifier, considérons le cas particulier f0= g0=0:

                                                 1 1 1 1 ˆn n F n en F n n n on F n n n F n n on F n n en F n o e x g B x g B A x g A B x g A x g B x g A x f x f x f
égalité qui coïncide avec (2.11), seulement si An=Bn=Cn . Donc, aucune fonction gF(x) ne peut pas seul générer une base pour l'espace L 2 [-L, L] entière, exigeant l'aide d'une autre base, générée par une fonction hF(x) avec un indice de parité différent. Si on considère les identités:

        x g x g x g n n en    2 1 et         x g x g x g n n on    2 1 
, on obtient, dans le cas général:

                           1 0 0 0 2 2 ˆn n F n n n F n n g x g B A g x g B A f x f
, ou (2.12) (x).

             n Fn n g x g C f x f 0 0  En conclusion,
En conséquence, le développement de la fonction f(x) analysé plus tôt, sur l'intervalle [-L, L], peut être effectué en une base générée par les fonctions e x et e -x : L'éventail des fonctions pouvant servir comme base pour le développement de Fourier non sinusoïdal est extrêmement large:  si g(x) est un polynôme dans [-L, L], son composant paire ge(x) contient les puissances paires de x, pendant que son composant impaire go(x) contient les puissances impaires  si g(x) est une fonction exponentielle, gFe(x) peut être une fonction paire GFe(coshx) et gFo(x) peut être une fonction impaire GFo(sinhx)  si g(x) est logarithmique: ln(A+x) (où A>0), f(x) peut être développée uniquement sur un sous-intervalle [a, b], compris dans l'intervalle (-A, A), avec les bases:

                                                                 
    0 2 2 ln 2 1 g x A x G Fe    et   x A x A x G Fo    ln 2 1  si g(x)
est une fonction rationnelle de la forme 1/(A+x), A>0, la fonction f(x) peut être développée sur un sous-intervalle [a, b] de l'intervalle (-A, A), avec les bases:

  0 2 2 0 1 1 2 1 g x A A g x A x A x G Fe               et   2 2 1 1 2 1 x A x x A x A x G Fo               si g(x)
est une fonction irrationnelle de la forme x A  , A>0, la fonction f(x) peut être développée en un sous-intervalle [a, b] de l'intervalle (-A, A), avec les bases: Semblable aux développements en série de Fourier, la présence des discontinuités à l'intérieur ou aux extrémités de l'intervalle de définition de la fonction développées f(x) produit, pour les développements en série non sinusoïdale, des termes supplémentaires (munies avec des coefficients de forme an/n) et un effet similaire au phénomène de Gibbs. De même, les discontinuités de la première dérivée génèrent des autres termes supplémentaires (munies avec des coefficients de forme an/n 2 ) et des phénomènes supplémentaires d'oscillation avec une amplitude significative. Les presque-sinusoïdes font partie de la classe C 1 de régularité (fonctions dont la première dérivée est continue) et, en raison des leurs propriétés de symétrie, semblable à ceux des fonctions sinus et cosinus, sont les mieux adaptés lorsque des développements en série de Fourier sont nécessaires. De même, comme dans la pratique des développements de Fourier, lorsque les autres données du problème le permettent, il est avantageux de construire pour la fonction développée f(x) aussi, définie sur un intervalle [x1, x2], une extension quasi-sinusoïdale lisse, définie sur un intervalle [x1e, x2e], qui inclut l'intervalle de définition. Par une telle approche, les "termes résiduels" du développement sont supprimés.

    0 2 1 g x A x A x G Fe      et     x A x A x G Fo     2 1 gs(x)2L = S[x 2 -2x]2L =Gs[-2L<-x 2 -2x>0< x 2 -2x >2L], respectivement gc(x)2L = C[1-x 2 ]2L =Gc[-2L<-1+(x+2) 2 >-L<1-x 2 >L<-1+(x-2) 2 >L] ou,
Pour plus de clarté, nous allons développer en série non sinusoïdale la quasi-sinusoïde:

gc(x)L=C[1-x 2 ]L=Gc[-L<-1+4(x+1) 2 >-L/2<1-4x 2 >L/2<-1+4(x-1) 2 >L], lequel a le développement en série de Fourier:                     1 3 3 1 1 2 cos 1 2 ) 1 ( 32 n n c x n n x g   , pour deux bases : 1) l'onde rectangulaire (2.c): ge=Ge[-1>-1<-1/2>1<1/2>-1<1] et 2) l'onde triangulaire (2.d): f12(x)=F12[-1>-x-1/2<0>x-1/2<1] de la section 2.1.
Leurs développements en des séries trigonométriques de Fourier sont:

             1 1 1 2 ) 1 2 cos( ) 1 ( 2 ) 1 2 cos( ) ( n n n n e n x n x n c x g    et            1 2 2 12 1 2 1 2 cos 4 ) ( n n x n x f  
Afin de pouvoir comparer ces développements avec ceux de la section 2.1, nous allons utiliser les coefficients du développement de Fourier de la fonction -1/2•gc(x), défini sur le même intervalle. Son développement en série de Fourier génère les coefficients: a1=-16/π 3 , a2=0, a3=16/27π 3 , a4=0, a5=-16/125π 3 , a6=0, a7=16/343π 3 , a8=0, a9=-16/729π 3 , a10=0, a11=16/1331π 

         1 ˆn n c dn e g A x g et        1 12 ) ( ˆn n c tn g A x f
. Selon (2. (x) , générée par la presque-sinusoïde impaire de type exponentiel (Fig. 10.a) qui a un noyau de type g(x)=K+cosh(x+T/4), où K=constat: 

go2(x) =Go2[-1<     1 5 . 0 cosh 5 . 0 cosh 5 . 0 cosh    x >0<     1 5 . 0 cosh 5 . 0 cosh 5 . 0 cosh     x >1] Dans l'intervalle [-1, 1]: fo0=go10=go20=0,           1 1 1 2 ) 1 2 sin( 4 cos ) ( n n n o n x n x n b x f    , donc: b1=4/π, b2=0, b3=4/3π, b4=0, b5=4/5π, b6=0, b7=4/7π, b8=0, ... ,                        1 2 2 1 1 1 1 sin 1 1 2 1 sinh sin n n n n o x n n n x n c x g                            1 2 2 1 2 sin 1 2 1 1 2 1 5 . 0 cosh 5 . 0 cosh 4 sin ) ( n n n o x n n n x n d x g     , donc:
              1 1 1 1 2                n i Fi in Fn j n j j b a j n Fn n x g C x g x dx x x g x g x et                              1 1 1 1 2 n i Fi in Fn n j j j b a j n Fn n x h D x h x dx x x h x h x (4.1) avec       b a j j dx x 2 2 et       b a j j dx x
                1 0 0 0 ~n n n n n x B x A A x f (4.2)
Grâce à l'orthogonalité du système, pour calculer les coefficients de ce développement, sont valables les formules de Euler:

     b a dx x f a b A 1 0         b a n n n dx x x f A 2 0 1 n= 1, 2, 3,... (4.3)         b a n n n dx x x f B 2 0 1
n=1, 2, 3,... L'obtention de ces expressions est basée sur les relations: Nous allons exemplifier en construisant une base orthogonale, à partir d'une base générée par le système des fonctions créneau périodiques paires unitaires: fe=Fe[-1>1<-1/2>-1<1/2>1<1] Dans le cas choisi ici, le calcul sera simplifié grâce aux propriétés de symétrie de la quasisinusoïde choisie. Grâce aux relations (4.1), il en résulte: 

                x x f x x f x f x x f n e n o e n                       x x f x x f x f x x
                                        1 1 1 0 1 1 1 0 0 ~n n i i F in Fn n n n i i F in n F n x h D x h B x g C x g A A x f                                                
    x g x 1 1   ,   2 1 1 2 1 2 1      dx x g             x g x g dx x g x g x g x 2 1 1 1 1 2 2 2 2       ,   2 1 1 2 2 2 2      dx x g                        
            dx x g x g                                     x g
                                 2 1 1 2 4 2 4      dx x g                                           

Propriétés des séries de Fourier non sinusoïdales

Les travaux sur les développements en série de Fourier trigonométrique (sinusoïdales) ont montré qu'une fonction réelle f(x):[-L, L], 2L-périodique, peut être exprimée sous la forme d'une somme de ses projections sur les composantes d'une base orthogonal d'un espace de fonctions, s'il remplit plusieurs conditions. Les séries résultant à la suite de ces développements ont plusieurs propriétés: convergence, sommabilité, dérivabilité, intégrabilité.

Les séries de Fourier non sinusoïdales de la fonction f(x) analysée dans les sections précédentes ont résulté à partir des série sinusoïdale de cette fonction, par une redistribution de ses coefficients. Cette redistribution reconstitue les coefficients des développements en des séries sinusoïdales des composantes d'une base complète des fonctions non orthogonaux. Par conséquent, les nouvelles méthodes de développement en série transfèrent des développements de Fourier sinusoïdales une série de conditionnalités et de propriétés. Sans aucun doute, ce sujet mérite une étude plus approfondie, mais pour le moment, nous nous résumons à quelques conclusions évidentes:

 toutes les fonctions f(x) développées en séries de Fourier non sinusoïdales, ainsi que toutes les quasi-harmoniques (gn(x), gn(-x), hn (x), Φn(x), Ψn(x), etc.) de ces développements sont des fonctions de Fourier.

 si la fonction f(x) est intégrable, la suite des coefficients de son développement en série non sinusoïdale converge vers 0 (le théorème de Riemann-Lebesgue) 

 si                
                                 1 sin 1 2 cos n n o n n n n n n o x L L f a x b L L f x f    
ce qui nécessite la connaissance des conditions aux limites fo(-L) et fo(L). Cette relation permet de résoudre certaines équations différentielles en déterminant les coefficients du développement en série sinusoïdale de Fourier de la fonction inconnue (similaire au développement en série de Taylor).

Conclusions

Nous avons constaté dans les sections précédentes que toute fonction f(x):[-L, L], 2Lpériodique, qui appartient au sous-espace L 2 , peut être développée, d'une manière similaire à celle indiquée par Fourier il y a plus de 200 ans, dans une multitude de variantes, en des bases formées par la valeur moyenne de la fonction f(x) dans l'intervalle [-L, L] et deux ensembles de quasi-harmoniques: un ensemble de fonctions paires gn(x) et un ensemble de fonctions

  g(x)=G[x1>g<x2], or g(x)=G[x1*(g)*x2], or g(x)=G[x1(g)x2] -for g(x):[x1, x2], with g(x)=g1(x) if x(x1, x2), g(x1)=a, g(x2)=b, we will use: g(x)=G[a<x1>g1<x2>b], g(x)= G[(a)*x1*(g1)*x2*(b)] , or g(x)= G[(a)x1(g1)x2(b)] -for g(x):(x1, x2)  (x2, x3), with g(x)=g1(x) if x(x1, x2) and g(x)=g2(x) if x(x2, x3) : g(x)=G[x1>g1<x2>g2<x3], etc. -for g(x):[x1, x2)  (x3, x4], with g(x)=g1(x) if x(x1, x2) and g(x)=g2(x) if x(x3, x4): g(x)=G[x1 + >g1<x2>  <x3>g2<x4 -], or g(x)=G[x1≥g1<x2>  <x3>g2≤x4] -for ga(x):[x1, xm+1], with ga(x)=gi(x) if x(xi ,xi+1), and ga(xi)=ai ≠ ∞, i=1, 2, ..., m+1: ga(x)=G[a1<x1>g1<x2>a2<x2>g2< x3> a3 ... am<xm>gm<xm+1>am+1] (a) -for gb(x):   gb(x)=gi(x) if x(xi, xi+1), i=1, 2, ..., m+1, and gb(xi,) undefined: gb(x)= G[x1>g1<x2>g2< x3>... <xm>gm<xm+1].

  the points of discontinuity, converges towards:

  , the relation (b): gF(x)=G[x1>g1<x2>g2< x3>... <xm>gm<xm+1] Other examples: for the Heaviside function: H(x)=G[-∞>0<0>1/2<0>1<∞] for the Dirac function: δ(x) = Δ[-∞>0<0>∞<0>0<∞]

  )=gpk(x+kT)=g(xR-kT)=g(x) if  R x[x1+kT, x2+kT] and(1)gpk(xR)=0, if  R x [x1+kT,x2+kT]. Here T=x2-x1, For each k, there is on the real axis, an interval [x1+kT, x2+kT], with T=x2-x1, for which relation (1) is true. If k = 0, we obtain for x, 0)=g(x). For a definition in which the value of k (dependent on xR), appears implicitly, we can use the floor function: E(x)=   x = the biggest integer less than or equal to x: E(x)≤ x<E(x)+1. For every R  R x , we define the function K(xR)=E((xR -x1)/T)

  h→0. On the interval [xi-h, xi+h], for h→0, the function   x g approach the line gF(x)=x[gF(xi+h)+gF(xi-h)]/2h and g (xi) approach the value [gF(xi+h)+gF(xi-h)]/2. Consequently, all the g-harmonics gn(x), fundamental or secondary are continuous functions throughout the interval I.

  ..................... ..................... From these relations, for the general case, we obtain, for c1 ≠ 0: n=1, 2, ..., ∞ Here, all   x g n functions are F-functions (therefore, continuous)

Fig. 1 .

 1 Fig. 1. The approximation of the function x 2 -1/3 by a sum of rectangular pulses gi= component i of partial sums, Si= partial sum of order i

Fig. 3 .

 3 function Π1(θ)= Π[-π>-1<0>1<π], for which Πn(θ)= Π[-π/n>-1<0>1<π/n]n , and The expansion of the function fo(x) into the base go(x) a: fo(x) b: go(x) c: quasi-harmonics g1(x), g2(x), g4(x), g8(x), g10(x), g15(x) d: the first partial sums

  a b Fig. 4: Almost-sinusoids of the 2 nd degree a: the odd function S[x 2 -2x]2; b: the even function C[1-x 2 ]1

  1) 2 >L], what have the expansion in Fourier series: rectangular wave (2.c): ge=Ge[-1>-1<-1/2>1<1/2>-1<1] and 2) the triangle wave (2.d): f12(x)=F12[-1>-x-1/2<0>x-1/2<1] of the section 2.1. Their expansions in Fourier sinusoidal series are:

Fig. 5 .

 5 Fig.5. The approximation of the quasi-sinusoid -gc /2 by a sum of rectangular waves

Fig. 7 .Fig. 8 .

 78 Fig.7. The approximation of the rectangular waves by almost-sinusoids

  go2

Fig. 9 .Fig. 10 . 6 :

 9106 Fig. 10. The expansion of the function fo(x) in the base go2(x) a: go2(x) b: the partial sum S12(x)

  les points de discontinuité, converge vers:

2. 1 . 1 .

 11 Séries de Fourier périodiques non sinusoïdales des fonctions paires Théorème La base Bg d'une fonction paire g(x) définie sur l'intervalle [-L, L] d'une espace L 2 (notée L 2 [-L, L]), ayant la valeur moyenne g0 nulle sur cet intervalle, constitue une base complète pour le système FE des toutes les fonctions paires fe(x), réelles, de L 2 , périodique de période 2L, ayant la valeur moyenne nulle sur cet intervalle.

. 1 ),

 1 Dans le même temps, toutes les quasi-harmoniques gn(x) peuvent être écrites comme une combinaison linéaire de la fonction cosωnx et des autres cosinusoïdes de rang supérieur: ..................... ..................... A partir de ces relations, pour le cas général, on obtient, pour c1 ≠ 0: pour n=1, 2, ..., ∞ Ici, toutes les fonctions   x g n sont des F-fonctions (donc, continues)

2 . 3 . 3 .

 233 dn sont les coefficients du développement    Séries de Fourier périodiques non sinusoïdales de quelconques fonctions Dans le cas général, une certaine fonction f(x) de L 2 [-L, L], peut être écrite comme la somme de sa valeur moyenne f0 sur cet intervalle, de son composant paire fe(x) (par definition, de valeur moyenne nulle sur l'intervalle [-L, L]) et de son composant impair fo(x): f(x)=f0+fe(x)+fo(x). À la suite des deux théorèmes précédents, on peut affirmer: Théorème Tout fonction f(x) de L 2 [-L, L], peut être développé en série de Fourier non sinusoïdale en une base composée de f0 (sa valeur moyenne sur cet intervalle), d'une certain base paire Bg-g0 et d'une certain base impaire Bh de L 2 [-L, L], où la fonction paire g(x) et la fonction impaire h(x), sont des quelconques fonctions de L 2 [-L, L] :

  intervalle [-1/2, 1/2]: ge(x)2=coshx-g02=1/2(e x +e -x ) -2sinh(1/2) et go(x)2=sinhx,

  les quasi-harmoniques de l'ordre n des F-fonctions (e x )n, respectivement (e -x )n (les extensions sur l'axe réel des F-fonctions e nx , respectivement e -nx , définies sur les intervalles [-1/n, 1/n]).

  en revenant à l'intervalle de définition initial:gs(x)L = S[x 2 -2x]L =Gs[-L<-4x 2 -4x>0< 4x 2 -4x >L], respectivement gc(x)L = C[1-x 2 ]L =Gc[-L<-1+4(x+1) 2 >-L/2<1-4x 2 >L/2<-1+4(x-1) 2 >L] La fonction gc(x)L est représentée dans la Fig.4b. a b Fig.4.Des presque-sinusoïdes de 2-ème degré a: la fonction impaire S[x 2 -2x]2; b: la fonction paire C[1-x 2 ]1

  3):A'1=-π 2 /8, A'2=0, A'3=π 2 /27, A'4=0, A'5=-3π 2 /125, A'6=0, A'7=6π 2 /343, A'8=0, A'9=-π 2 /81, A'10=0, A'11=15 π 2 /1331, A'12=0, ... , respectivement: A'1=-π/4, A'2=0, A'3=-π/27, A'4=0, A'5=-π/125, A'6=0, A'7=-2π/343, A'8=0, A'9=-π/243, A'10=0, A'11=-3π/1331, A'12=0, ... Dans les deux cas, les coefficients des développements ont des valeurs proches de celles obtenues par les développements en série sinusoïdale (Fourier). Les différences deviennent encore plus petites si le noyau du développement est remplacé par g(x)=1-x1,75 .

Fig. 7 .

 7 Fig.7. L'approximation de la fonction créneau par des presque-sinusoïdes

Fig. 10 . 4 .

 104 Fig. 10. Le développement de la fonction fo(x) en la base go2(x) a: go2(x) b: la somme partiels S12(x)

2 2 Ces considérations nous permettent de formuler le Théorème 6 :

 226 Soit deux certaines F-fonctions gF(x)-paire et hF(x)-impaire de L 2 [a, b]. Toute fonction f(x) de L 2 [a, b] peut être développée en une série complète, basée sur le système bi orthogonal 1, Φn(x) et Ψn(x), où Φn(x) et Ψn(x) sont généré par les fonctions gFn(x)-g0 et hFn(x) par une procédé d'orthogonalisation:

  i, j=1, 2, 3, ... Par cette méthode de calculer les coefficients, il n'est plus nécessaire de connaître les coefficients des développements en série sinusoïdale ni pour la fonction f(x), ni pour les fonctions g(x) et h(x).

  système orthogonal Ψn(x), à partir de fo(x), la fonction créneau périodique impaire unitaire: fo(x)=Fo[-1>-1<0>1<1].

1 )

 1 de la fonction f(x) en une base des fonctions orthogonales non sinusoïdales périodiques, alors de Parceval)  si les fonctions f(x), g(x), et h(x), sont 2L-périodiques, et dans l'intervalle [-L, L] ils sont continus par morceaux et dérivables à gauche et à droite en tous les point de l'intervalle, dans tous les points xi.  la série de Fourier résulté à la suite d'un développement en une quelconque base 2Lpériodique non sinusoïdale d'une fonction f(x) 2L-périodique, continûment dérivable par morceaux et continue, converge uniformément sur R vers cette fonction.  la série non sinusoïdale de Fourier d'une fonction 2L-périodique de carré intégrable sur une période, converge en norme L 2 vers la fonction considérée  la série non sinusoïdale de Fourier d'une fonction de carré sommable converge presque partout vers cette fonction (le théorème de Carleson)  deux fonctions 2L-périodiques, ayant les mêmes coefficients de leurs développement en la même base non sinusoïdale Fourier, sont égales presque partout. Notamment, dans le cas continu par morceaux, elles coïncident en tous les points de [-L, L] sauf un nombre fini  soit f(x) une fonction 2L-périodique, continue dans l'intervalle [-L, L]. Son développement de Fourier  non, convergent ou non, peut être intégré terme par terme, entre toutes limites d'intégration: d0 est une constante arbitraire. soit f(x) une fonction 2L-périodique, continue dans l'intervalle [-L, L], avec f(-L)=f(L) et avec la dérivée f'(x) lisse par portions dans cet intervalle. Le développement de Fourier, sinusoïdal ou non, de la fonction f'(x), peut être obtenu en dérivant terme par terme le développement de Fourier de la fonction f(x). La série obtenue converge ponctuellement vers f'(x) en tous les points de continuité et vers [f'(x)+ f'(-x)]/2 en ceux de discontinuité.La condition f(-L)=f(L) imposée dans cette affirmation est assez restrictive, ce qui réduit l'utilité du théorème. Nous pouvons contourner cette condition si nous prenons en compte le fait que le composant de type pair fe de la fonction f(x) vérifie toujours la condition de différentiabilité, et que le composant impair fo peut être écrit comme une somme de la fonction différenciable fos et de la fonction-rampe: fr=x•fo(L)/L . Alors: Par exemple, dans le cas du développement en série de Fourier sinusoïdale:

  

  

  

  

  

  Pour la fonction gp(x)=sin(x), définie sur l'axe R, la relation(1) est vrai, sous la forme sin(xR)=sin(x), pour  xR=x+2πk, implicitement, simultanément, pour toute kZ et pour tous les intervalles [(2k-1)π, (2k+1)π] que leurs correspondent. Pour une certain fonction g(x):[x1, x2], en dehors de cet intervalle gp(x) doit être spécifiée explicitement, par des translations successives, pour tous les intervalles de validité x1+kT<x<x1+(k+1)T: gp(xR)=g(xR-kT)=g(x), pour toute kZ, ou implicitement, simultanément:

								x =le plus
	grand entier inférieur ou égal à x: E(x)≤ x<E(x)+1 (floor function, dans la littérature anglo-
	saxonne) [1]. Pour tout	x	R		R	, on définit la fonction K(xR)=E((xR -x1)/T)	(1a)
	Alors, pour 	R x R  , 	x 	  2 1 , x x	, xR=x+KT. Par définition: g(xR)=g(x+KT)=g(x).

  où coshFn et sinhFn sont les extensions sur l'axe réel des F-fonctions coshF(nx), respectivement sinhF(nx), définies sur les intervalles [-1/n, 1/n]), et les coefficients An , Bn sont:

	f	x	f	e	x	1 ˆn 1 sinh cosh n Fn n o x A x f	1	n B	sinh	Fn	x
	pour									

  nous pouvons formuler le théorème suivant: Théorème 4. Tout fonction f(x) de L 2 [-L, L], peut être développé en série de Fourier non sinusoïdale, en une base composée de f0 (sa valeur moyenne sur cet intervalle) et les bases générées par les fonctions [g(x)-g0] et [g(-x)-g0]. Ici, g(x) est n'importe quoi fonction de L 2 [-L, L] qui a tous ces deux composants (paire et impaire) non nulles, g(-x) est aussi de L 2 [-L, L], et g0 est la valeur moyenne de g

  3 , a12=0, ... Pour la fonction créneau, les relations (2.2) nous conduire à: et 8, sont présentées les premières quasi-harmoniques et les sommes partielles d'ordre 12 pour les développements inverses

  Φn(x)=cos(nω0x), respectivement Ψn(x)=sin(nω0x), aussi. On peut voir que les composantes Φn(x), d'ordre n (n=1, 2, 3,...), du système orthogonal générés par les fonctions paires gFn(x)-g0, ainsi que Ψn(x), du système orthogonal généré par les fonctions impaires hFn(x), sont des combinaisons linéaires entre la quasiharmoniques d'ordre n et les quasi-harmoniques d'ordre inférieur des respectifs développements non orthogonaux. Par conséquence, on peut établir une correspondance entre les coefficients An et Bn du développement en la base non orthogonale générés par les fonctions gF(x) et hF(x) et ceux du développement en la base orthogonale Φn(x) et Ψn(x):

	f	n 		e		o	n 		o	n 
	qui sont vrais pour						

2



aura les coefficients suivants: (2.9)

, ..., et nous pouvons écrire:

, on utilise les formules (2.10) et on obtient:

, pour n= 2, 3, .., ∞ Tous les coefficients du développement, sauf le coefficient de la fondamentale sont négatifs.

Pour la fonction g1(θ)=Xo[-π<-θ-π >-π/2<θ >π/2<-θ+π >π], le développement: