
HAL Id: hal-02484620
https://hal.science/hal-02484620v1

Submitted on 19 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Insight into Local Coin-Based Randomized
Consensus

Achour Mostefaoui, Matthieu Perrin, Michel Raynal

To cite this version:
Achour Mostefaoui, Matthieu Perrin, Michel Raynal. A New Insight into Local Coin-Based Ran-
domized Consensus. PRDC 2019 - 24th IEEE Pacific Rim International Symposium on Dependable
Computing, Dec 2019, Kyoto, Japan. pp.207-216, �10.1109/PRDC47002.2019.00051�. �hal-02484620�

https://hal.science/hal-02484620v1
https://hal.archives-ouvertes.fr

A New Insight into Local Coin-Based Randomized Consensus

Achour Mostéfaoui† Matthieu Perrin† Michel Raynal?,‡
† LS2N, Université de Nantes, 44322 Nantes Cedex, France
? IRISA, Université de Rennes 35042 Rennes Cedex, France

‡ Department of Computing, Polytechnic University of Hong Kong
Achour.Mostefaoui@univ-nantes.fr Matthieu.Perrin@univ-nantes.fr raynal@irisa.fr

This submission is a regular paper.
Abstract—This paper presents a binary randomized con-

sensus algorithm for n-process asynchronous message-passing
systems in which (1) up to t < n/2 processes may crash, and (2)
an asynchrony adversary can read the content of the messages
and re-order their deliveries according to their values.

In addition to its simplicity, the main property of this
algorithm lies in the fact it allows the processes to decide in
a constant number of rounds when t ∈ O(

√
n). To attain this

goal the algorithm combines Ben-Or’s randomized consensus
algorithm (PODC 1983) and the condition-based approach to
solve consensus (JACM 2003). (Among other points, if the most
frequent proposed value appears more than t times than the
other value, decision requires three communication steps.) An
improvement of the proposed algorithm is given for the case
where t < n/4.

We conjecture that if t > O(
√
n) it is no longer possible

to implement a randomized consensus algorithm ensuring
a constant number of communication steps despite unfair
channels.

Keywords-Binary consensus, Condition, Local coin, Message-
passing asynchronous system, Process crash failure,

I. INTRODUCTION

Consensus in crash-prone message-passing systems:
Consensus is one of the most fundamental problems (from
both practical and theoretical point of views) of fault-
tolerant distributed computing. This paper considers n-
process systems, where communication is by asynchronous
message-passing and where up to t processes may crash.

In a consensus instance, each process is assumed to invoke
once the operation propose(), that allows it to propose a
value (called proposed value), and returns it a value (called
decided value). If only 0 and 1 can be proposed, consensus
is binary, otherwise it is multivalued. In the context we
consider, consensus is defined by the following properties.
• C-Validity. A decided value is a proposed value.
• C-Agreement. No two processes decide different values.
• C-Termination. If a process does not crash, it decides a

value.
C-Validity relates the output to the inputs, C-Agreement
relates the outputs of all processes, and C-Termination is the
natural liveness property.

One of the most celebrated results of fault-tolerant
distributed computing is the famous FLP impossibility

result [12], namely, there is no deterministic consensus
algorithm in the asynchronous message-passing model in
which even a single process may crash (t = 1).

Circumventing FLP - enriched models: Several ap-
proaches have been proposed to circumvent the previous
impossibility. One consists in enriching the system with ad-
ditional synchrony assumptions [10], [11]. Another approach
consists in enriching the system with additional devices
providing the processes with information on failures. This is
the failure-detector-based approach [8], for which is known
the weakest failure detector (named Ω), i.e., the weakest
information on failures that allows consensus to be solved
despite asynchrony and t < n/2 [9]. A third approach, named
condition-based approach, consists in reducing the space of
input vectors that the processes can collectively propose
(each entry of the vector containing the value proposed by a
process) [16]. For example, it is possible to solve consensus
under the hypothesis that more than 3

4 of the processes
propose the same value (which is called the Cmfv condition).

Yet another approach that has been proposed consists in
enriching each process with a random number generator, and
weakening the termination property as follows. C-Termination
becomes (where R stands for “randomized”):
• RC-Termination. If a process does not crash, it decides

with probability 1.
Randomized binary consensus algorithms belong to the family
of Las Vegas randomized algorithms, which means that (1)
their safety properties are always ensured, and (2) while it
is technically possible that an execution does not terminate,
it requires an infinite sequence of unlucky random number
which makes termination certain in practice. Algorithms
have been proposed since the early eighties [6], [23]. A
more extensive presentation of these algorithms can be found
in [24].

Hybrid consensus algorithms have also been designed,
which use additional assumptions of several kinds. For
example, algorithms based on failure detectors and random-
ization are presented in [1], [21], and algorithms based
on failure detectors and conditions are described in [17].
The advantage of hybrid algorithms lies in their greater
assumption coverage [22].

In all consensus algorithms, the processes execute a
sequence of asynchronous rounds, each round including one

B83 AW04 AAKS14 Algo1 Algo2
t-resilience t < n/2 t < n/2 t < n/2 t < n/2 t < n/4

Com. steps for the common coin 0 3 O(n(logn)3) 0 0
Bias of the common coin 1/2n 1/4 1/4 1/2n 1/2n

Message re-ordering allowed forbidden allowed allowed allowed
Expected number of com. steps O(2n) 36 O(n(logn)3) 3

1−erf
(
α√
2

) 2

1−erf
(
α√
2

)
When α = 1 and t <

√
n O(t(log t)3) ' 9 ' 6

Table I: Comparison and content of the paper

or more communication steps. Let us also notice that it
is possible to design multivalued consensus algorithms on
top of binary consensus algorithms despite asynchrony and
process crashes (with a constant or bounded number of
communication steps) [19], [20], [25].

Binary coin-based consensus algorithms: As defined
in [5], a common coin with bias ρ, is a coin shared by all
processes, that returns the same value v ∈ {0, 1} to all of
them with probability at least ρ. This means it can return
different values to different processes with probability at
most 1− 2ρ. Hence, a common coin with bias 1/2 is perfect
in the sense it returns the same value to all processes.

A coin is local to a process, if it is used only by this
process, and returns the value 0 with some probability pb
and the value 1 with probability 1− pb, where pb is known.
Hence, n local coins such that pb = 1/2, provides us, without
additional computation or communication –i.e. for free–, with
a common coin whose bias is ρ = 1

2n .
In shared memory systems, the step complexity for a

process is the number of its own steps. The step complexity
of a program is the total number of steps taken by all the
processes. In message-passing systems, a process depends
on messages sent to and received from the other processes.
A communication steps represents the time between the
sending and the receiving of a message. One can count these
steps even though the considered system is asynchronous.
For instance, if a process broadcasts a message and waits
for a given number of responses, the time complexity
would be 2 (one round-trip). In message-passing consensus
algorithms, once a process has terminated its execution, it
usually broadcasts a message containing the decided value,
allowing other processes to terminate within only one more
communication step. We define the step complexity of an
execution as the number of communication steps taken by
the first process that terminated.

Attiya and Censor [4] proved the total step complexity of
randomized consensus is O(n2) in an asynchronous shared
memory system. There is abundant literature on common
coins in shared memory but the lower bound on time
complexity cannot be directly translated to message-passing.
By the pigeonhole theorem, such a lower bound translates
to Ω(n) communication steps. The closest known message-
passing algorithm to this bound is the one presented in [2]
that has a step complexity of O(n log3(n)).

The time complexity of a consensus algorithm built on top

of a common coin is inversely proportional to the bias of the
common coin when the number t of possible failures is high.
The algorithms proposed in [2], [4] build a common coin
with a very small bias. This induces big constants (around
105) in the step complexity which makes them impractical.
Hence the importance of having a constant bias or a "small"
t. As shown in [5], it is possible at the price of some
communication steps and assumptions on the asynchrony
adversary to build a common coin with known bias from local
coins. On the other hand, the implementation of common
coins with a constant bias has been extensively studied in
the shared memory model [3], [4] for both the crash and
the Byzantine failure models. The most efficient translation
into the message-passing crash-failure model of these results
[2] leads to a time complexity in O(n(log n)3) when
t < n/2 (the implementation needs at least O(n2) local coin
flips). In this paper we focus on the case where a constant
number of communication steps can be reached even when
the asynchrony adversary can re-order messages according to
their content. Let us call AAKS14 any common-coin based
consensus algorithm used with the common coin of [2]. Such
an algorithm needs Ω(n(log n)3) communication steps as
each round of the algorithm needs a common coin flip. Let
us also consider the randomized binary message-passing
consensus algorithms presented in [6] (denoted B83), and
in [5] (denoted AW04). We have the following (see also
Table I).
• B83 uses local coins only, and its expected number of

communication steps is 2n. It allows the asynchrony
adversary to re-order message receptions according to
their content. (This is due to the fact that, as it is based
on local coins only, any message re-ordering strategy
yields the same result when the processes obtain the
same value from their local coins.)

• According to its authors, AW04 is a simplified version of
an algorithm proposed in [7] suited to Byzantine process
failures. It considers local coins where the probability
that the output is 0 is pb = 1/n, and consequently the
probability that the output is 1 is 1− 1/n, from which
it constructs a common coin whose bias is 1/4, i.e.,
this common coin is such that both the probability to
output 0 and the probability to output 1 are ≥ 1/4. This
construction requires three communication steps. Then,
using an appropriate communication pattern (called
CORE), AW04 implements binary consensus with an

expected number of communication steps equal to 36
(the expected number of rounds is 1/ρ = 4, each round
involving nine communication steps). Moreover, while
the adversary can re-order message receptions, it is
not allowed to read their content (re-ordering messages
based on their content would allow the adversary to
control the output of the common coin, resulting in an
exponential number of communication steps).

These algorithms strive to produce a round in which the
vector defined by the current estimates of the decision value of
the processes is the vector [0, . . . , 0] or the vector [1, . . . , 1].
When this is attained, decision trivially follows. These two
vectors can be considered as fixed points (or attractors), and
the algorithms have to attain one of them. To this end, they
use random numbers so that the path defined by the sequence
of the vectors of the decision current estimates associated
with each round can be seen as a “distributed random walk”
ending in [0, . . . , 0] or [1, . . . , 1].

Content of the paper: This paper presents a constant
expected time consensus algorithm based on local coins. It
combines the condition-based approach with randomization
to obtain a hybrid binary consensus algorithm, denoted
Algo1 in Table I that is based on both a condition and
local coins. In the condition-based approach, all vectors
contained in the condition are fixed points in which the
random walk terminates. Hence, the “termination space”
contains all vectors that respect the condition, which is much
bigger than the set {[0, . . . , 0], [1, . . . , 1]}.

This algorithm, which assumes t < n/2 (a necessary
condition in asynchronous message-passing), is pretty simple.
Each round is made up of 3 communication steps, the first
one tries to benefit from the condition, the second one
can be seen as a “cleaning” step, while the third one is
a “decision/adoption/random help” step. If the input vector
belongs to the condition, decision is obtained in 3 com-
munication steps (and randomization is unnecessary).When
t < α

√
n, with 0 < α <

√
n (a reasonable case in

practice as, while failures can happen, they are not frequent),
the expected number of communication steps to decide is
3
(
1−erf

(
α√
2

))−1
, where erf denotes the Gauss error function.

For α = 1, this number is smaller than 10, divided in 3.2
rounds of three communication steps. For α ≤ 0.67 (e.g.
n = 4 and t = 1), the algorithm needs less than the 2 rounds
required in average by the best known algorithm using a
common coin [15] regardless the number of faults.

It has already been observed that in practice when failures
are rare, local coin protocols can terminate within few rounds
[14]. Especially, when t =

√
n, a common coin can be built

whatever is the message scheduler. In the present paper, this
becomes a particular case of the proposed hybrid algorithm.
Moreover, due to the fact that there is no explicit common
coin construction there is a gain in the complexity of the
consensus algorithm as there is no protocol stacking as it
can be seen in [5] in Table I.

A main property of the algorithm lies in the strong
asynchrony adversary it tolerates, namely the adversary
controls all aspects regarding asynchrony and failure. In
particular, it is allowed to read messages and re-order their
reception according to their content. The only restrictions
of the adversary are that (1) processes are bound to respect
their protocole and (2) the adversary cannot predict nor chose
the values of the local coins drawn by the processes. B83
copes with this adversary but has an expected number of
communication steps which is exponential, while AW04 has
a constant expected number of communication steps but
does not tolerate the previous strong adversary. The other
contribution consists of a second algorithm (denoted Algo2),
which converges faster, but requires a stronger assumption
on t, namely t < n/4.

As far as we know, these are the first randomized consensus
algorithms that need so few communication steps despite
content-based message re-ordering when t < O(

√
n). The

problem of designing a randomized consensus algorithm
whose expected number of communication steps is constant
(or sublinear) when t > O(

√
n) and the adversary can re-

order messages according to their content is still open.
Let us notice that, if the adversary is not allowed to read the

content of the messages, it is possible to apply the condition-
based approach to AW04, and obtain an algorithm with a
reduced number of communication steps.

Roadmap: The paper is composed of 6 sections. Sec-
tion II presents the distributed computation model and the
condition-based approach. Section III presents the binary
condition-helped randomized consensus algorithm Algo1,
and Section IV proves the bound on its expected number of
communication steps to decide. Section V presents Algo2,
which reduces the number of communication steps per round
from three to two when t < n/4. Finally, Section VI
concludes the paper.

II. DISTRIBUTED COMPUTING MODEL AND THE
CONDITION-BASED APPROACH

A. Basic Distributed Computing Model

As the constraint t < n/2 is a necessary requirement to
solve consensus in asynchronous message-passing systems,
the distributed computing model described below is denoted
CAMPn,t [t < n/2]1.

Process model: The computing model is composed of
a set of n sequential processes denoted p1, ..., pn. Each
process is asynchronous which means that it proceeds at
its own speed, which can be arbitrary and remains always
unknown to the other processes.

A process may halt prematurely (crash failure), but
executes correctly its local algorithm until it crashes (if
it ever does). The model parameter t denotes the maximal
number of processes that may crash in a run. A process that

1CAMP stands for Crash-tolerant Asynchronous Message Passing

crashes in a run is said to be faulty. Otherwise, it is correct
or non-faulty. Given a run, Correct will denote the set of
processes that are correct in this run.

Communication: Each pair of processes communicate
by sending and receiving messages through a bidirectional
channel. Hence, the communication network is a complete
network: any process pi can directly send a message to
any process pj (including itself). A process pi invokes the
operation “send TYPE(m) to pj” to send to pj the message
m, whose type is TYPE. The operation “receive()” allows pi
to receive a message.

The unreliable macro-operation broadcast TYPE(m) is a
shortcut for “for each j ∈ {1, ..., n} do “send TYPE(m) to
pj”. If the invoking process crashes when it executes it, an
arbitrary subset of processes receive the message.

Each channel is reliable (neither loss, corruption, nor
creation of messages), not necessarily first-in/first-out, and
asynchronous (while the transit time of each message is finite,
there is no upper bound on message transit times).

Asynchrony adversary: It is not assumed any restriction
on the ability of the adversary controlling message asyn-
chrony to read their content, and use this information to
re-order message receptions at any process.

B. Enriching the Basic Computing Model with Local Coins

Local coin: The computability power of each process pi
is enriched with a local function denoted random(). When a
process pi invokes it, it obtains either the value 0 or the value
1, each with probability 0.5. The local functions random()
are independent from the others, which means they implement
for free a common coin with bias 1/2n.
Notation The model CAMPn,t [t < n/2] enriched with local
coins is denoted CAMPn,t [t < n/2,LC].

C. The Condition-based Approach

The condition-based approach to solve consensus in failure-
prone asynchronous systems was introduced in [16].

Definition: Let an input vector be a vector I[1..n] such
that I[i] contains the value proposed by pi. In the case of
binary consensus there are 2n possible input vectors. Let us
call condition any subset of input vectors.

The condition-based approach to solve asynchronous
consensus consists in identifying subsets of input vectors,
such that if the actual input vector belongs to the considered
subset, consensus can be solved. Such a subset is called a
t-legal condition. If adding another vector to the condition
makes it not t-legal, the condition is maximal.

Let dist(I1, I2) be the Hamming distance between the
input vectors I1 and I2 (number of entries in which they
differ), and nb(a, I) be the number of entries of I whose
value is a. It is shown in [16] that a subset of input vectors
C is a t-legal condition if, and only if, there is a function
h() : C 7→ V (where V is the set of values that can be
proposed, in our case V = {0, 1}) such that

• ∀I ∈ C : nb(h(I), I) > t,
• ∀I1, I2 ∈ C :

(
h(I1) 6= h(I2)

)
⇒
(
dist(I1, I2) > t

)
.

The intuition that underlies the condition-based approach is
the following. Given a condition C, each of its input vectors
allows a proposed value to be selected as the decided value.
This value is extracted from the input vector with the function
h(), i.e., h(I) is the value decided from I . When looking
at the definition of t-legality, the first item states that, to be
decided, a value must be “present enough” in the input vector,
while the second item states that input vectors from which
different values are decided must be “far enough apart” to
prevent ambiguity. A relation linking the consensus condition-
based approach and error-correcting code was established
in [13].

The condition: Cmfv : The condition used in this paper
is the condition Cmfv introduced in [16]. This condition
favors the most present value. Given a vector I , let first(I)
be its most frequent value, and second(I) its second most
frequent value. Cmfv is defined as follows (by definition
nb(second(I), I) = 0 when I contains a single value).

Cmfv = {I ∈ Vn s.t.
(
nb(first(I), I)−nb(second(I), I)

)
> t}

Symmetric condition: The condition Cmfv is symmetric
in the sense that it does not depend on the specific values
in a vector, it depends only on their occurrence numbers. In
the case of binary consensus, changing all 0 in 1 and all 1
in 0 in a vector I produces a vector I ′ that belongs to the
condition.

As an example, let us consider the condition Cmax ,
where the greatest value appearing in an input vector I
must appear more than t times, namely Cmax = {I ∈
Vn such that nb(max(I), I) > t}. This condition is t-legal
but not symmetric.
Notation: In the rest of the paper, Cmfv is abbreviated as C.

D. Characterization of Cmfv for Binary Input Values

Let us assume that the vector I only contains values 0
and 1. Hence, nb(0, I) + nb(1, I) = n.

Theorem 1: (I ∈ Cmfv) ⇔
(∑n

i=1 I[i] < n−t
2

)
∨(∑n

i=1 I[i] > n+t
2

)
.

Proof: Direction “⇒”.

• Case nb(1, I) − nb(0, I) > t). Replacing nb(0, I) by
n − nb(1, I), gives nb(1, I) − n + nb(1, I) > t, i.e.,
2× nb(1, I) > n+ t.

• Case nb(0, I) − nb(1, I) > t). Replacing nb(0, I) by
n − nb(1, I), gives n − nb(1, I) − nb(1, I) > t, i.e.,
n− t > 2× nb(1, I).

Direction “⇐”. As nb(0, I) + nb(1, I) = n, the previous
reasoning works in both directions.

operation propose (vi) is % vi ∈ {0, 1} %
(1) est1i ← vi; ri ← 0;
(2) while true do
(3) ri ← ri + 1;
—— % Phase 1: Exchange of current estimate values ——————————————————————-
(4) broadcast EST (ri, esti);
(5) wait

(
EST (ri,−) received from (n− t) processes

)
;

(6) for x ∈ {0, 1} do nbi[x]← number of messages (EST (ri, x) received) end for:
(7) if (nbi[1] ≥ nbi[0]) then aux1i ← 1 else aux1i ← 0 end if;
———— % Here: P1(r)

def
=

(
(est(r − 1) ∈ C) ⇒ (∀ i, j : aux1(r)[i] = aux1(r)[j])

)
—— % Phase 2: Exchange of current aux1 values ———————————————————————–
(8) broadcast AUX1 (ri, aux1i);
(9) wait

(
AUX1 (ri,−) received from (n− t) processes

)
;

(10) rec2i ← multiset of the values aux1 received;
(11) if

(
rec2i = {v, v, . . . , v}

)
then aux2i ← v else aux2i ← ⊥ end if;

———— % Here: P2(r)
def
=

(
∀ i, j :

(
(aux2(r)[i] = v 6= ⊥) ⇒ (aux2(r)[j] ∈ {v,⊥})

))
—— % Phase 3: Try to decide a value from the aux2 values (decide/adopt/random) ———————————
(12) broadcast AUX2 (ri, aux2i);
(13) wait (AUX2 (ri,−) received from (n− t) processes);
(14) rec3i ← multiset of the values aux2 received; % The values in rec3i are from either {0,⊥}, or {1,⊥}
———— % Here: P3(r)

def
= ∀i, j : i 6= j : (rec3i(r) = {v, . . . , v} where v 6= ⊥) XOR (rec3j(r) = {⊥, . . . ,⊥})

(15) case (∃v 6= ⊥ : nb(v, rec3i) > t) do broadcast DECIDE(ri, v); return(v) % decision
(16) (∃v 6= ⊥ : 0 < nb(v, rec3i) ≤ t) do esti ← v % adoption
(17) otherwise do esti ← random() % random help
(18) end case
(19) end while.

Algorithm 1: Condition-helped binary consensus in the model CAMPn,t [t < n/2,LC] (code for pi)

III. A SIMPLE CONSENSUS ALGORITHM BASED ON A
CONDITION AND LOCAL COINS

A. Binary Consensus in CAMPn,t [t < n/2,LC]

Algorithm 1 (denoted Algo1 in Table I) is a simple
asynchronous binary consensus algorithm for the randomized
model CAMPn,t [t < n/2,LC]. It is a round-based algo-
rithm, each round being composed of three communication
phases (each including an all-to-all communication step).
As indicated in the introduction, Algo1 accepts any of 2n

possible input vectors, and terminates in one round when the
input vector I belongs to the condition. Otherwise, Algo1
strives -with the help of randomization- to produce a vector
of decision estimates that belongs to the condition.

Local variables at a process: Each process pi manages
the following local variables.

• ri: current round number.
• esti: current local estimate of the decision value.
• nbi[x], where x ∈ {0, 1}: number of messages

EST(ri, x) received during the current round.
• aux1i (aux2i): auxiliary variable used in the first

(second) phase of each round. They contain either a
proposed value or the default value ⊥.

• rec2i (rec3i): multiset of the values received during
the second (third) phase of the current round. (A
multiset –also called bag– is a “set” that may contain
several copies of a same value. As an example, while
{a, a, b, c, c, c} and {a, b, c} are the same set, they are
different multisets.)

The function nb(v, rec3i) returns the occurrence number
of v in the multiset rec3i.
Notion of a ghost execution: Let us consider an

execution E of the algorithm, in which P is the set of
processes that decide and Q is the set of processes that crash
before deciding. We associate with E a ghost execution2

E′ in which (i) no process crashes nor terminates, and (ii)
the processes decide the same value v as in E. As E′ is
an extension of E, all safety properties verified by E′ are
also verifies by E. Thanks to this property, ghost executions
allow us to reason only on executions where no crash occurs,
assuming correct processes terminate, which significantly
simplifies the explanations in this section and Section IV.

The ghost execution E′ of E is an extension of E defined
as follows, where τ is a finite time after which all the
processes that decide in E, have decided.
• Let pi ∈ P . Process pi behaves as in E until it decides,

and, after it has decided, pauses until time τ .
• Let pi ∈ Q. Process pi behaves as in E until its crash,

and then pauses until time τ .
• After time τ , all the processes are resumed, and execute

forever.
Additional notations: Considering a global observer

point of view, the following notations are used in this section
and Section IV.
• aux1(r) and aux2(r): vectors associated with round r,

such that aux1(r)[i] (resp., aux2(r)[i]) is the current

2This is similar to the notion of a ghost variable in program verification.

value of aux1i (resp., aux2i) at round r in E′.
• rec3i(r): value of the multiset rec3i after the assign-

ment at line 14 of round r in E′.
• est(r): vector defined by the estimate values computed

at the end of round r in E′ (lines 16 or 17). Moreover,
let est(0) denote the input vector I .
Process behavior: As already indicated, from a struc-

tural point of view, each round is composed of three phases,
each including a communication step. An initial phase, which
strives to exploit the condition C if the input vector est(r)
associated with the current round belongs to the condition,
is followed by two phases which are close to the ones used
in the B83 algorithm [6], and the ones used in the failure
detector-based algorithm presented in [18]. The effect of each
phase is captured by a round invariant (denoted P1(r), P2(r),
and P3(r) in the following) that form the main lemmas to
prove correctness of the algorithm (Properties 2 to 4).
• Phase 1 (lines 4-7).

A process pi first broadcasts its current estimate (mes-
sage EST(ri, esti), and waits until it has received a
message EST(ri,−) from at least (n−t) processes. Then,
it determines the most often received value x ∈ {0, 1} in
the current round, and assigns it to aux1i (if both values
are equally received, the value 1 is arbitrarily selected).
At this point of round r, we have the following global
property P1(r)

def
=

(est(r−1) ∈ C)⇒ (∀ i, j : aux1(r)[i] = aux1(r)[j])

• Phase 2 (lines 8-11).
The all-to-all communication pattern, is the same in the
three phases. The processes exchange the values of their
variables aux1i, which (due to (P1(ri)) are identical
if the input vector of the estimates at the beginning of
the round belongs to the condition C.
Then, if a process pi receives the same value v ∈ {0, 1}
from (n−t) processes, it assigns it to aux2i. Otherwise,
it assigns the default value ⊥ to aux2i. The meaning
of aux2i = v 6= ⊥ is “pi champions v to be decided”;
The meaning of aux2i = ⊥ is “pi has not enough
information to champion a value”. At this point of
a round r, we have the following global property
P2(r)

def
=

∀ i, j : (aux2(r)[i] = v 6= ⊥)⇒ (aux2(r)[j] ∈ {v,⊥})

• Phase 3 (lines 12-18).
After the exchange of their aux2i values, each process
pi stores the values it has received in its multiset
rec3i. Then, it strives to decide, without compromising
consensus agreement. To this end it does the following.

– If rec3i contains more than t copies of a non-
⊥ value v, pi decides it by invoking return(v)
(line 15). However, before deciding pi broadcasts
a message DEC(ri, v). This message is interpreted

by receivers as a digest containing three messages:
EST(ri+1, v), AUX1(ri+1, v), and AUX2(ri+1, v).
This is required to prevent a process pj from waiting
forever messages that will never be sent by pi.

– If rec3i contains a non-⊥ value v which appears
at most t times, pi adopts it as its new estimate
(line 16).

– Finally, if rec3i contains only ⊥, pi invokes
random() and considers the value returned as its
new estimate (line 17).

At this point of a round r, we have the following global
property (mutex), where v 6= ⊥: P3(r)

def
= ∀i, j, i 6= j :

(rec3i(r) = {v, . . . , v})⊕ (rec3j(r) = {⊥, . . . ,⊥})

B. Proof of the Algorithm

Property 2: P1(r) :
(est(r − 1) ∈ C) ⇒ (∀ i, j : aux1(r)(i) = aux1(r)[j]).

Proof: If the vector est(r− 1) ∈ C, there is v ∈ {0, 1}
such that (nb(v, est(r))− nb(1− v, est(r))

)
> t. It follows

that, even if a process pi misses the message EST(r, v) from
up to t processes, it receives more messages carrying v
than messages carrying (1 − v) (line 5). Hence, we have
aux1i(r) = v (line 7). As this is true at any process that
terminates round r, the property follows.

Property 3: P2(r) :
∀ i, j :

(
(aux2(r)[i] = v 6= ⊥) ⇒ (aux2(r)[j] ∈ {v,⊥})

)
.

Proof: Let pi be such that, at round r, we have
aux2i = v 6= ⊥. It follows from lines 9-11 that pi received
AUX(r, v) from a set Q1 including at least (n− t) processes.

Any process pj that executes line 11 during round r,
received a message AUX(r,−) from a set Q2 including at
least (n−t) processes. As n > 2t, |Q1|+|Q2| ≥ 2n−2t > n,
from which we conclude that there is a process pk ∈ Q1∩Q2.
As pk sends the same message to pi and pj , it follows
that v ∈ rec2j line 10). Then, due to line 11, we have
aux2j ∈ {v,⊥} at round r.

The next corollary follows from Property P2(r).
Corollary 1: ∀ i, j :

(
(aux2(r)[i] = v 6= ⊥) ∧

(aux2(r)[j] = w 6= ⊥)
)
⇒ (v = w).

Property 4: P3(r) : ∀i, j : (rec3i(r) = {v, . . . , v}
(where v 6= ⊥) ⊕ (rec3j(r) = {⊥, . . . ,⊥}) (mutex).

Proof: Let us assume that, at round r, rec3i contains
(t+1) copies of the same non-⊥ value v, while rec3j contains
only copies of ⊥. This means that pi received the message
AUX2(r, v) from a set Q1 of (t + 1) processes, while pj
received the message AUX2(r,⊥) from a set Q2 of (n− t)
processes. Similarly to the proof of Property P2(r), we have
|Q1|+|Q2| = (t+1)+(n−t) > n, from which we conclude
that there is a process pk ∈ Q1 ∩Q2. As this process sent
the same message AUX2(r,−) to pi and pj , rec3j contains
a copy of v, which concludes the proof.

Theorem 5: Algorithm 1 solves binary consensus in the
system model CAMPn,t [t < n/2,LC]. Moreover, if the

input vector belongs to the condition C, A process decides
in three communication steps.

Proof: Let us first consider the case where the input
vector I = est(0) ∈ C. Then, due to the property P1(1),
all the local variables aux1i are equal to the same proposed
value v (the value obtained from the condition C). It directly
follows from the text of algorithm that any multiset rec2i
contains only copies of v. Due to Corollary 1, no local
variable aux2i is different from v. It then follows that any
multiset rec3i can contain v only, from which we conclude
that the processes decide the same proposed value v, and
decision occurs in three communication steps.

Let us now consider that I /∈ C. In this case, both 0
and 1 have been proposed, from which follows the validity
property.

Let r be the first round during which a process pi decides,
and v the value it decides. It then follows from Property
P2(r) and P3(r) that any other process pj that executes
round r is such that rec3j contains v. Hence, if pj decides
at round r it decides v (line 15), and if it progresses to round
(r+1), it assigns v to estj (line 16), which means that, from
round (r+ 1), no process can have (1− v) as estimate value.
The agreement property follows from this observation.

If there is a round r such that est(r) ∈ C, we are in the
case of the first paragraph, and decision is obtained at the
latest in round r. The proof that there is a round r such
est(r) ∈ C is the same as the proof of the Termination
of the B83 algorithm (which implicitly considers the very
poor condition C ′ = {[0, . . . , 0], [1, . . . , 1]} (C). Let p
be the probability that at end of a round r, est(r) ∈ C.
We have p > 0. Let P (r) be the probability that there is
a round r′ ≤ r such that est(r′) ∈ C. We have P (r) =
p+ (1−p)p+ (1−p)2p+ · · ·+ (1−p)r−1p = 1− (1−p)r.
It follows that limr→+∞ P (r) = 1 which concludes the
proof. (Let us notice that, when est(r) ∈ C, the re-ordering
of message reception by the adversary is inoperative.)

IV. EXPECTED NUMBER OF COMMUNICATION STEPS:
THEORETICAL VIEW

The previous section presented a local coin-based binary
consensus algorithm, which benefits from the fact that, at
some round r, the input vector defined by the estimate values
at the beginning of r belongs to the symmetric condition C.
This section, which constitutes the second and noteworthy
contribution of the paper, shows that its expected number of
communication steps is 3

(
1− erf

(
α√
2

))−1
(for α = 1, it is

smaller than 10) when t < α
√
n.

Notations

• erf(x): Gauss error function 2√
π

∫ x
0
e−t

2

dt.
• λ(α) = 1

1−erf
(
α√
2

) .

• [⊥] = [⊥, . . . ,⊥].

• Reminder: P() is the probability function, and
Pk(n) = P (est(r) ∈ C | nb(0, aux2(r)) = k).

The lemma that follows explores the best strategy for
the asynchronous adversary during round r. According to
property P1(r+1), the adversary must avoid that est(r) ∈ C,
otherwise termination will be reached in round r+1. Lemma 1
proves that the best strategy for the asynchrony adversary,
consists in ensuring that all processes invoke random() at
the end of round r, or in other words aux2(r) = [⊥]. This
lemma actually defines the “worst case” scenario in terms
of probability, from a decision point of view. Note that the
proof does not use the hypothesis that the adversary cannot
read messages, which implies that it is also valid in models
where the adversary can re-order messages based on their
content.

Lemma 1:
∀r : P (est(r) ∈ C) ≥ P (est(r) ∈ C | aux2(r) = [⊥]) .

Proof: The first part of the proof consists in showing
that, for any round r, P (est(r) ∈ C | aux2(r) 6= [⊥]) ≥
P (est ∈ C | aux2(r) = [⊥]) . To this end, let us consider
the case where, at round r, aux2(r)[i] ∈ {⊥, 0} for all pi
(the case aux2(r)[i]i ∈ {⊥, 1} is symmetric), and prove the
result by induction on the number of processes pi such that
aux2(r)[i] = 0.

We have P0(n) = P (est(r) ∈ C | aux2(r) = [⊥]). Sup-
pose (by induction) that, for some k such that 0 ≤ k < n,
Pk(n) ≥ P (est(r) ∈ C | aux2(r) = [⊥]). By the character-
ization of the condition for the binary consensus, we have:

Pk(n) =P
(∑n

i=1 est(r)[i] <
n−t
2

∣∣ nb(0, aux2(r)) = k
)

+P
(∑n

i=1 est(r)[i] >
n+t
2

∣∣ nb(0, aux2(r)) = k
)
.

(1)
As the processes play a symmetric role, we can assume

without loss of generality that the processes pi such that
aux2(r)[i] = 0 are processes pn−k+1, ..., pn. Therefore, we
have

Pk(n) = P
(∑n−k

i=1 est(r)[i] <
n−t
2

)
+P
(∑n−k

i=1 est(r)[i] >
n+t
2

)
.

(2)

We now use the law of total probabilities to isolate the
value drawn by process pn−k. There are two possibilities
with probabilities P(est(r)[n−k] = 0) = P(est(r)[n−k] =
1) = 1

2 , which gives

2Pk(n) = P
(∑n−k−1

i=1 est(r)[i] < n−t
2

)
+P
(∑n−k−1

i=1 est(r)[i] > n+t
2

)
+P
(∑n−k−1

i=1 est(r)[i] < n−t
2

)
−P
(
n−t
2 − 1 ≤

∑n−k−1
i=1 est(r)[i] < n−t

2

)
+P
(∑n−k−1

i=1 est(r)[i] > n+t
2

)
+P
(
n+t
2 − 1 <

∑n−k−1
i=1 est(r)[i] ≤ n+t

2

)
.

(3)

We can now piece together the parts forming Pk+1(n).
Moreover, as

∑n−k−1
i=1 est(r)[i] is an integer, the intervals

–of length 1– of the two remaining parts contain one value
only. This gives:

2(Pk(n)− Pk+1(n))

= P
(∑n−k−1

i=1 est(r)[i] =
⌊
n+t
2

⌋)
−P
(∑n−k−1

i=1 est(r)[i] =
⌊
n−t
2

⌋
− 1
)
.

(4)

If k > n−t+1
2 , then P

(∑n−k−1
i=1 est(r)[i] =

⌊
n+t
2

⌋)
= 0

and Pk(n)− Pk+1(n) ≤ 0. Otherwise, the probability that∑n−k−1
i=1 est(r)[i] = x is 2−(n−k−1)

(
n−k−1

x

)
. If k ≥ t,

we have n−k−1
2 ≤

⌊
n−t
2

⌋
− 1 ≤

⌊
n+t
2

⌋
. As

(
n−k−1

x

)
is decreasing when x varies from n−k−1

2 to n − k − 1,
we have Pk(n) − Pk+1(n) ≤ 0. In the last case, k < t.
We use the identity

(n−k−1
bn+t

2 c
)

=
(n−k−1
n−k−1−bn+t

2 c
)
. Then,

n − k − 1 −
⌊
n+t
2

⌋
≤
⌊
n−t
2

⌋
− 1 ≤ n−k−1

2 . As
(
n−k−1

x

)
is increasing when x varies from 0 to n−k−1

2 , we have
Pk(n)− Pk+1(n) ≤ 0.

In all cases, this inequality concludes the induction:
Pk+1(n) ≥ Pk(n) ≥ P (est(r) ∈ C | [aux2(r) = ⊥]) .

Finally, the second part of the proof consists in using the
previous equations and invoking the law of total probability.
To this end, let SET be the set of vectors of size n, where
x/⊥ means “x or ⊥”, (0/⊥)n ∪ (1/⊥)n (i.e., SET contains
all vectors made up of 0 and ⊥, plus all vectors made up of
1 and ⊥). We have:

P (est(r) ∈ C)
=

∑
V ∈SET P(aux2(r) = V)

×P (est(r) ∈ C | aux2(r) = V))
≥

∑
V ∈SET P(aux2(r) = V)

×P (est(r) ∈ C | aux2(r) = [⊥])
≥ P (est(r) ∈ C | aux2(r) = [⊥]) .

(5)

The next lemma proves that, even when the asynchrony
adversary uses its best strategy (given by Lemma 1) at round
r, there is still a lower-bounded probability to terminate at
round r + 1 when t < α

√
(n). To obtain a lower bound,

let us now consider the size n of the vectors (number of
processes) and look at how n impacts P (est(r) ∈ C) when
it increases.

Lemma 2: Let α ∈]0,
√
n[and t < α

√
n. The probability

that, for any r, est(r) ∈ C is lower-bounded when n→∞.
Namely, limn→∞ P (est(r) ∈ C) ≥ 1

λ(α) .

Proof: Let 0 < α <
√
n, and let us denote by σ = 1

2
the standard deviation of the local coins and by µ = 1

2 their
expected value. By Lemma 1, we have :

P (est(r) ∈ C)
≥ P (est(r) ∈ C | aux2(r) = [⊥]) ;

≥ P
(∑n

i=1 est(r)[i] <
n−α

√
n

2 | aux2(r) = [⊥]
)

+P
(∑n

i=1 est(r)[i] >
n+α

√
n

2 | aux2(r) = [⊥]
)

≥ P
(∑n

i=1 est(r)[i]−nµ
σ
√
n

< −α | aux2(r) = [⊥]
)

+P
(∑n

i=1 est(r)[i]−nµ
σ
√
n

> α | aux2(r) = [⊥]
)
.

(6)
Under the hypothesis aux2(r) = [⊥], the est(r)[i] for

1 ≤ i ≤ n are independent random variables following the
same uniform Bernoulli law. Therefore, by the central limit
theorem, and as the function erf() is odd, we have

lim
n→∞

P (est(r) ∈ C) ≥ 1
2

(
1 + erf

(
−α√

2

))
+(

1− 1
2

(
1 + erf

(
α√
2

)))
≥ 1− erf

(
α√
2

)
= 1

λ(α) .

(7)

Theorem 6: Let α ∈]0,
√
n[. Assuming t < α

√
n, the

expected number of communication steps for Algorithm 1
to terminate is bounded. Moreover, this number tends to
3λ(α)when n→∞.

Proof: The random draws done at each round are
independent, so the probability to terminate at each round
is lower-bounded by a geometric distribution of parameter
P0(n), with an expected value of 1

P0(n)
. By Lemma 2,

limn→∞ P0(n) = 1
λ(α) . Therefore, limn→∞

1
P0(n)

= λ(α).
By definition of the limit, for ε = 1, there exists a Nε ∈ N

such that, for all n > Nε, λ(α) − ε < 1
P0(n)

< λ(α) + ε.
Therefore, the expected number of rounds is bounded by
max (λ(α) + 1,maxn≤NεP0(n)) and its limit when n grows
to infinity is λ(α) =

(
1− erf

(
α√
2

))−1
.

As each round is made up of three communication steps,
the theorem follows.

V. AN IMPROVED ALGORITHM FOR t < n/4

The algorithm: Algorithm 2 (denoted Algo2 in Table I)
is a version of Algo1 customized for t < n/4 (model
CAMPn,t [t < n/4,LC]). It shows that, decreasing t-
resilience from t < n/2 to t < n/4, allows the saving of one
communication step per round. To make the understanding
easier, the lines with the same statement in both algorithms
are identified with the same number, and the lines that are
modified are postfixed by the letter “M”. There is no new
line.

The modified lines: In Algo2, the second phase of Algo1
is suppressed (lines 10-13), which entails the disappearance
of the default value ⊥. Consequently, lines 14-16 are modified
as follows.

operation propose (vi) is % vi ∈ {0, 1} %
(1) est1i ← vi; ri ← 0;
(2) while true do
(3) ri ← ri + 1;
—— % Phase 1: Exchange of current estimate values ————————————————————–
(4) broadcast EST (ri, esti);
(5) wait

(
EST (ri,−) received from (n− t) processes

)
;

(6) for x ∈ {0, 1} do nbi[x]← number of messages (EST (ri, x) received) end for:
(7) if (nbi[1] ≥ nbi[0]) then aux1i ← 1 else aux1i ← 0 end if;
———— % Here: P1(r)

def
=

(
(est(r − 1) ∈ C) ⇒ (∀ i, j : aux1(r)[i] = aux1(r)[j])

)
—— % Phase 2+3: Exchange of current aux1 values and try to decide —————————————
(8) broadcast AUX1 (ri, aux1i);
(9) wait

(
AUX1 (ri,−) received from (n− t) processes

)
;

(14.M) rec3i ← multiset of the values aux1 received; % The values in rec3i are from the set {0, 1}
———— % Here: P3′(r)

def
=
∀i, j, v, r :

(
nb(v, rec3i(r)) ≥ n− t

)
⇒

(
nb(v, rec3j(r)) ≥ n− 2t)

∧
(
nb(v, rec3i(r)) ≥ n− 2t

)
⇒

(
nb(1− v, rec3j(r)) < n− 2t).

(15.M) case (∃v : nb(v, rec3i) = n− t) do broadcast DECIDE(ri, v); return(v) % decision
(16.M)

(
∃v : n− 2t ≤ nb(v, rec3i) < n− t

)
do esti ← v % adoption

(17) otherwise do esti ← random() % random help
(18) end case
(19) end while.

Algorithm 2: Improved version for the model CAMPn,t [t < n/4,LC] (code for pi)

• Line 14.M. During a round r, the multiset rec3i
contains now (n− t) elements, each being 0 or 1.
A central part of Algo1 is the mutual exclusion captured
by predicate P3(r). This predicate ensures two things:
(i) if, during a round r, pi decides a value v, another
process pj either decides v or adopts v as new estimate.
In this case, the value (1 − v) disappears. As Algo2
cannot use the default value ⊥ used by Algo1, its
predicate, denoted P3′(r), must explicitly ensure that
(1 − v) cannot be adopted by process pj when v is
decided or adopted by a process pi. To this end, P3′(r)
is defined as follows:

∀i, j, v, r :
(
nb(v, rec3i(r)) ≥ n− t

)
⇒(

nb(v, rec3j(r)) ≥ n− 2t)
∧
(
nb(v, rec3i(r)) ≥ n− 2t

)
⇒(

nb(1− v, rec3j(r)) < n− 2t).

For commodity, the first line and the second line
of this predicate are abbreviated A1(i, j, r, v) ⇒
(B1(i, j, r, v) ∧ B2(i, j, r, v)), and A2(i, j, r, v) ⇒
B2(i, j, r, v), respectively. As we are about to see, the
first part of P3′(r) is related to safety (if pi decides v,
no process can decide or adopt (1− v), and no process
draws a random number), while its second part is related
to liveness (to this end if pi adopts v, no process can
adopt (1− v)).

• Line 15.M. If rec3i contains “a lot of” occurrences of v,
where –according to A1(i, j, r, v)– “a lot of” means (n−
t), pi decides it. Thanks to the predicate B1(i, j, r, v),
we know that no other process will exploit random
numbers at line 17. The dices no longer need to be cast.

• Line 16.M. If rec3i contains “enough” occurrences of
v, where –according to B1(j, r, v)– “enough” means

at least (n− 2t), pi adopts v as new estimate, before
proceeding to the next round. This is consistent with
the fact if a process decides at round r, pi adopts its
value.
But, the predicate B1(j, r, v) can be satisfied, while
no process decides during the current round r. In
this case it is crucial that, if pi adopts a value v, no
other process pj adopts the value (1− v) (if different
processes could adopt distinct values at line 16.M of
a round r, they could never attain a round r such that
est(r) ∈ C, thereby compromising termination). Such a
bad scenario is prevented from occurring thanks to the
second predicate. If pi adopts v (predicate A2(i, j, r, v)),
(1 − v) cannot be adopted by another process pj
(predicate B2(i, j, r, v)).

The proof of Algo2 is similar to one of Algo1. We just prove
here P3′(r).

Proof of Property P3′(r): Let us assume a round r at
which nb(v, rec3i(r)) > n − t. This means that there is a
set Q1 including least (n− t) processes that broadcast the
message AUX1(r, v). It follows that any process pj receives
the message AUX1(r, v) from a set Q2 including at least
(n− 2t) processes. Hence, B1(i, j, r, v) is satisfied, i.e., no
process pj can decide or adopt the value (1 − v), and no
process draws a random number.

Assuming n = 4t+ x, where x ≥ 1, let us now consider
that the predicate nb(v, rec3i(r)) ≥ n − 2t is satisfied. It
follows that pi received the message AUX1(r, v) from a set
including at least n− 2t = 2t+ x processes. As n = 4t+ x,
any process pj can receive the message AUX1(r, 1− v) from
at most n − (2t + x) = n − 2t processes, from which the
predicate B2(i, j, r, v) follows.

VI. CONCLUSION

The contributions of the paper: This paper has presented
a binary consensus algorithm based on local coins with
a constant expected number of rounds when t < O(

√
n),

despite a asynchrony adversary that can re-order message
delivery according to their content. To our knowledge, this is
the first algorithm with a so small number of rounds and such
a strong asynchrony adversary. To this end, the algorithm
benefits from the condition-based approach (it is actually the
first algorithm relying on both conditions and randomization
to solve consensus).

Independently of its theoretical value, this algorithm has
a practical interest. Let us remark that, while failures do
occur, they are rare. Hence, systems where n is small (e.g.,
n = 17), and subject to few failures (e.g., t ≤ 4) can benefit
from this algorithm.

Extending and generalizing the previous results: Several
research directions are worth investigating. From a theoretical
point of view, a main (and difficult) issue consists in knowing
if there is or not an algorithm with a constant expected
number of rounds when t > O(

√
n) (we conjecture the

answer is “no”). Another issue, consists in extending the
proposed approach to Byzantine process failures.

ACKNOWLEDGMENTS

This work has been partially supported by the French ANR
project 16-CE40-0023-03 DESCARTES (devoted to layered
and modular structures in distributed computing).

REFERENCES

[1] Aguilera M.K. and Toueg S., Failure detection and random-
ization: a hybrid approach to solve consensus. SIAM Journal
of Computing, 28(3):890-903 (1998)

[2] Alistarh D., Aspnes J., King V. and Saia J. Communication-
efficient randomized consensus. Proc. 28th International
Symposium on Distributed Computing (DISC’14), Springer
LNCS 8784, pp. 61-75 (2014)

[3] Aspnes J. and Herlihy M., Fast randomized consensus using
shared memory. Journal of algorithms vol. 11(3) pp. 441-461.
(1990)

[4] Attiya H. and Censor K., Tight bounds for asynchronous
randomized consensus. Journal of the ACM vol. 55(5), p. 20
(2008)

[5] Attiya H. and Welch J., Distributed computing: fundamen-
tals, simulations and advanced topics, (2d Edition), Wiley-
Interscience, 414 pages (2004)

[6] Ben-Or M., Another advantage of free choice: completely
asynchronous agreement protocols. Proc. 2nd ACM Symposium
on Principles of Distributed Computing(PODC’83), ACM
Press, pp. 27-30 (1983)

[7] Cannetti R. and Rabin T., Fast asynchronous Byzantine
agreement with optimal resilience. Proc. 25th ACM Symposium
on Theory of Computing(STOC’93), ACM Press, pp. 42-51
(1993)

[8] Chandra T. and Toueg S., Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225-
267 (1996)

[9] Chandra T., Hadzilacos V., and Toueg S., The weakest failure
detector for solving consensus. Journal of the ACM, 43(4):685-
722 (1996)

[10] Dolev D., Dwork C., and Stockmeyer L., On the minimal
synchronism needed for distributed consensus. Journal of the
ACM, 34(1):77-97 (1987)

[11] Dwork C., Lynch N. and Stockmeyer L., Consensus in the
presence of partial synchrony. Journal of the ACM, 35(2),
288-323 (1988)

[12] Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility
of distributed Consensus with one faulty process. Journal of
the ACM, 32(2):374-382 (1985)

[13] Friedman R., Mostéfaoui A., Rajsbaum S., and Raynal M.,
Distributed agreement problems and their connection with
error-correcting codes. IEEE Transactions on Computers,
56(7):865-875 (2007)

[14] Moniz H., Neves N.F., Correia M., and Veríssimo P., RITAS:
Services for randomized intrusion tolerance. IEEE Trans.
Dependable and Secure Computing, 8(1): 122-136 (2011)

[15] Mostéfaoui A., Moumen H., and Raynal M., Signature-free
asynchronous binary Byzantine consensus with t < n/3,
O(n2) messages, and O(1) expected time. Journal of ACM,
62(4), Article 31, 21 pages (2015)

[16] Mostéfaoui A., Rajsbaum S., and Raynal M., Conditions
on input vectors for consensus solvability in asynchronous
distributed systems. Journal of the ACM, 50(6):922-954 (2003)

[17] Mostéfaoui A., Rajsbaum S., Raynal M. and Travers C.,
The Combined power of conditions and information on
failures to solve asynchronous set agreement. SIAM Journal
of Computing, 38(4):1574-1601 (2008)

[18] Mostéfaoui A. and Raynal M., Solving consensus us-
ing Chandra-Toueg’s unreliable failure detectors: a general
quorum-based approach. Proc. 13th Int’l Symposium on
Distributed Computing (DISC’99), Springer-Verlag 1693, pp.
49-63 (1999)

[19] Mostéfaoui A. and Raynal M., Signature-free asynchronous
Byzantine systems: from multivalued to binary consensus
with t < n/3, O(n2) messages, and constant time. Acta
Informatica, 54(5):501-520 (2017)

[20] Mostéfaoui A., Raynal M., and Tronel F., From binary
consensus to multivalued consensus in asynchronous message-
passing systems. Information Processing Letters, 73:207-213
(2000)

[21] Mostéfaoui A., Raynal M., and Tronel F., The best of both
worlds: A hybrid approach to solve consensus. Proc. Int’l
Conference on Dependable Systems and Networks (DSN’00),
IEEE Computer Society Press, pp. 513-522 (2000)

[22] Powell D., Failure mode assumptions and assumption coverage.
Proc. of the 22nd Int’l Symposium on Fault-Tolerant Com-
puting (FTCS-22), IEEE Computer Society Press, pp.386-395
(1992)

[23] Rabin M., Randomized Byzantine generals. Proc. 24th IEEE
Symposium on Foundations of Computer Science (FOCS’83),
IEEE Computer Society Press, pp. 116-124 (1983)

[24] Raynal M., Fault-tolerant message-passing distributed sys-
tems : an algorithmic approach. Springer, 560 pages (2018)

[25] Zhang J. and Chen W., Bounded cost algorithms for multival-
ued consensus using binary consensus instances. Information
Processing Letters, vol 109(17), pp. 1005-1009 (2009)

