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Abstract

The Discrete Element Method (DEM) is an efficient tool for modelling granular materials,
usually approaching them by spherical particles. Aiming for a better description of grain
shapes, the present work first illustrates the Level Set (LS) description of arbitrary surfaces
in a DEM extension coined as LS-DEM. LS-DEM logically results in a massive increase in the
simulation storage requirements and evaluation time, which is here illustrated with reference to
DEM for the ideal case of spherical particles. Then, Level Set Quadtree/Octree data structures
are proposed as algorithm improvements to alleviate the computational costs of LS-DEM.

Keywords: Granular material, Level Set, Octree.

1 Introduction

Flow of granular matter constitutes a peculiar fluid mechanics problem, that is of interest for many
industrial processes such as hopper discharge. The macroscopic flow of granular materials actually
stems from individual displacements of distinct particles existing at the micro-scale. Therefore,
the mechanical behavior of granular materials is best simulated by the Discrete Element Method
(DEM) [1] which describes the time evolution of a finite set of so-called Discrete Elements (DEs),
under the constraint of interaction forces and dynamics laws. In DEM, the interaction forces and
torques are expressed via appropriate constitutive relations based on relative displacements between
individual particles, before being used to integrate dynamics laws. With contact interaction in
mind, DEs are often taken as spherical in shape, e.g. [2], which leads to a straightforward contact
detection based on comparing the interparticle distance with particles’ radii. Since such shapes
rarely correspond to the physical situation at hand, DEM extensions to non-spherical shapes are
required, e.g. [3, 4, 5], which generally come with higher computational costs. In the case of Level
Set-Discrete Element Method (LS-DEM) [4, 5], the grains and their potential contacts are described
with respect to a uniform grid, which is the cause for increased computational costs. The main
contribution of the present work is to alleviate these additional computational costs by replacing
the uniform grid with more appropriate data structures, namely Quadtree/Octree which have
shown computational advantages with respect to uniform grids for similar problems in computer
vision [11]. This data structure is also used as a mesh refinement tool for solving partial differential
equations (PDEs). Furthermore, Quadtree/Octree is also applicable in interface problems [12] and
for prescribing boundary value conditions [13].

Therefore, the present manuscript is a first step towards alleviating the computational costs
of LS-DEM by applying Quadtree/Octree tools. Section 2 presents the principles of LS-DEM
following [4, 5] with an uniform grid. Next Section 3 illustrates the corresponding increase in
computational requirements, comparing LS-DEM with DEM on ideal cases of spherical packings.
Both LS-DEM and DEM methods are deployed using the YADE code [6]. Section 4 finally proposes
a Quadtree/Octree data structure as an alternative to the uniform grid in order to reduce storage
requirements. Yet another tree-like data structure is additionally proposed to also reduce the
evaluation time of the contact detection algorithm in LS-DEM.

2 LS-DEM for a general shape description

The Level Set - Discrete Element Method (LS-DEM) [4, 5] intends to simulate particles of any
shape, using the signed distance function ϕ(~x) as a shape descriptor for each DE. For a given DE’s
surface S, the signed distance function ϕ(~x) returns positive (resp. negative) values for ~x points
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Figure 1: Ingredients of LS-DEM: a cartesian (regular, here) grid with ϕ stored at each grid vertex
M , and the boundary nodes Ni along a DE’s surface, satisfying ϕ(~x) = 0. Grid spacing is denoted
ggrid, that is to compare with a characteristic grain size denoted lgrain

being exterior (resp. inner) to the surface. Particle’s surface then corresponds to the zero level set
of ϕ. This indirect surface description appears promising in terms of generality. For instance, and
contrary to the other DEM extensions based on polyhedra [3], there is no convexity requirement
on the grain shape.

No analytical expression for ϕ is even required. Instead, discrete ϕ-values are stored on a
DE-centered cartesian grid (Fig. 1), giving ϕ(~x) for all points ~x within the grid using a trilinear
interpolation from surrounding grid vertices. From this distance field carried onto the regular
grid, a particle’s volume can be obtained in a voxellised fashion, summing grid voxels that are
considered inside the particle according to ϕ-values at the eight voxel vertices. Inertial quantities
of DE directly come, summing the inertial contributions of these voxels.

Contact detection between such DEs additionally require boundary nodes Ni that are located
along particle’s surface, satisfying ϕ(~x) = 0 (Fig. 1). These are obtained through ray tracing [7]:
the intersection of a ray, i.e. a half-line originating from a particle’s center (of mass), with the
surface S can be obtained solving for the roots of a cubic polynom corresponding to the distance
expression in any grid voxel, after trilinear interpolation. For contact investigation between two
DEs labelled 1 and 2, all boundary nodes Ni of DE 1 are considered, focusing on the distance value
to DE 2 for each of them.

In more details, a contact between 1 and 2 is detected for a positive node-to-surface distance
un:

un = −min(ϕ2(Ni), Ni ∈ S1) = −ϕ2(Nc) ≥ 0 (1)

We recall that artificial overlapping regions are permitted in DEM, through a small particle’s
interpretation un > 0. In reality, an overlap would correspond to the two particle’s centers getting
closer to each other, while negligible changes in shape would accomodate this normal relative
displacement. Once the greatest penetration, at the node Nc, is known, contact laws relate the
normal (resp. tangential) contact force Fn (resp. Ft) to the normal (resp. tangential) relative
displacement un (resp. ut). At this contact scale, LS-DEM considers DEM classical constitutive
relations, being linear elastic in nature with a zero tensile strength threshold along the normal
direction, and a additional plastic Coulombian friction threshold along the tangential direction:

Fn = kn un ; un ≥ 0 (2)

Ft = min(kt ut;µFn) (3)

with kn (resp. kt) the normal (resp. tangential) stiffness, and µ the friction coefficient. For the
purpose of defining the required normal and tangential directions entering these interaction laws,
the contact normal direction is defined as the outwards normal to 1:

~n = ~∇ϕ1(Nc) (4)

To conclude, it is to mention that the regular grid with its distance field, together with the
boundary nodes that enter contact treatment, are defined only once at the beginning of a sim-
ulation, for reference configurations of the DEs. Those being considered as rigid, the LS-DEM
ingredients remain valid for the whole simulation, accounting for rigid bodies transformations.
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Figure 2: The spherical packing under triaxial loading, for DEM vs LS-DEM comparison
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Figure 3: DEM vs LS-DEM comparison in terms of q(εax), for a grid precision equal to 20 (left)
or 50 (right)

3 Computational costs of LS-DEM with regular grids

After being implemented into the YADE code, LS-DEM is herein compared with DEM for a
reference case of spherical particles, with the objective of validating the implementation and inves-
tigating the associated increase in computational cost. We consider the quasi-static axisymmet-
ric compression of a dense packing of 8000 spheres (Fig. 2), under constant lateral confinement:
ε̇zz = cst, σxx = σyy = σlat = 20 kPa and starting from an isotropic state σxx = σyy = σzz = σlat.
Boundary conditions are applied through rigid frictionless walls, such that (~x, ~y, ~z) are the principal
axes. The mechanical response is described using the axial strain εax = εzz, the volumetric strain
εV = εxx + εyy + εzz = εax + 2 εlat and the deviatoric stress q = σax − σlat. This so-called triaxial
loading is classical in geotechnical engineering, to study the bearing capacity of granular soils. The
simulation is carried using both DEM and LS-DEM, with the same contact properties kn, kt and
µ. From the initial isotropic state of the DEM model, positions and radii of the spherical particles
are used to define the initial state of an equivalent LS-DEM sample. Distance fields are defined
for each spherical particle of diameter D, using a regular grid with a given spacing ggrid i.e. a
given precision lgrain/ggrid = D/ggrid. A given number of boundary nodes, Nnod, is also defined,
using an optimal repartition of those nodes over the spherical surface, following a spiral path as
described in [8].

DEM and LS-DEM results are compared in the Figs. 3 and 4. The comparison first vali-
dates the approach since LS-DEM results indeed tend to the reference DEM results for sufficient
grid fineness and nodes number. As a matter of fact, one can say that obtained precisions for
the LS-DEM here vary between 61.0% and 96.1%, quantifying such a LS-DEM precision through
max(q)/max(q)DEM , where max(q)DEM is a reference bearing capacity as obtained in DEM and
where a 100% precision would correspond to an exact match between DEM and LS-DEM. As-
sociated computational costs are considerable, be it in terms of time (Fig. 5) or memory (RAM,
Fig. 6). Time costs are quantified in wall clock time per numerical timestep. Reference DEM time
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Figure 4: DEM vs LS-DEM comparison in terms of εV (εax), for a grid precision equal to 20 (left)
or 50 (right)
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Figure 5: Increase in time cost for LS-DEM
with respect to DEM.
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Figure 6: Increase in RAM cost for packing
definition in LS-DEM with respect to DEM.

cost is 22 ms per iteration, for a total time cost of the simulation in the order of 45 min, using
one thread on a i7-7700 3.6 GHz processor. Reference DEM RAM cost is 10.7 MB. Both increase
by 2 or 3 orders of magnitude for a reasonable precision to be achieved in LS-DEM, turning a
simple simulation with evaluation costs in order of hours and megabytes RAM requirements, into
a massive one needing several days and gigabytes.

4 Quadtree/Octree data structure

The strong increase in RAM and time computational costs connected to passing from DEM to
LS-DEM is arguably related with the uniform Cartesian grid serving as a data structure needed
for the φ field definition. Discarding the Cartesian grid is the main point to investigate in order
to reduce these costs.

A way to mitigate the need of a Cartesian grid is to use a Quadtree structure for 2D and Octree
for 3D representations of DEs. The Quadtree representation for 2D Cartesian object is widely used
for images [9] as well as Octree for 3D objects [10]. It allows to define a Cartesian representation
for a given level in the tree. At each point of the tree is associated a Cartesian cell and the LS
function evaluated in the center of the cell is stored for this point of the tree. The root of the
tree represents a cell containing the grain. The size of this cell is stored outside the tree. Each
cell is divided in two parts for each space direction leading to 4 children in 2D and 8 children in
3D. Each child has the same tree structure and defines the divided cell. The size of such a cell is
known according to the level in the tree (number of parents to attain the root) and the size of the
root cell. When a cell does not contain the interface of the grain, no subtree is constructed and
this cell is a leave of the tree. Such a cell can have a big size compare to the finest cell. It allows
a wide storage reduction compare to the uniform Cartesian grid whose size is the same as the one
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of the finest cell of the Quadtree/octree.
Furthermore, Quadtree/Octree data structures allow for efficient leaves searching algorithms.

In the following, effects of replacing the Cartesian grid by Quadtree/Octree data structures on the
memory and walltime requirements of LS-DEM simulations will be evaluated.

4.1 Memory cost reduction with Quadtree/Octree

The Level Set information defined on the uniform grid is a rich information which can be conserved
on a reduced tree structure. Each cell which does not contain the grain interface has no reason
to contain subcell (child) and the information of the signed distance function ϕ at the center of
the cell is sufficient. This value is even sufficient to determine if this cell can or can not contain
the interface. Without loss of information for the LS-DEM, the Quadtree/Octree of the Level Set
function can replace the tabular of the Level Set function on the uniform grid. Note that the
Quadtree/Octree structure allows to know the coordinates of a point of the tree according to the
position in the tree, the root position and the root cell size. Then, only the Level Set function ϕ
is stored and the storage of the Level Set function looks like the following tree:

ϕ b

ϕ b ϕ b

ϕ b ϕ b

ϕ b ϕ b ϕ∗ b ϕ b

ϕ b ϕ b

ϕ b

ϕ b ϕ b ϕ b

ϕ b ϕ∗∗ b ϕ b ϕ b

ϕ b

ϕ b

At the finest level of grid, at least one of
the leaves of a same father contains the
interface and can be considered as a point
of the interface up to the projection along
∇ϕ. This consideration can replace the
ray tracing method to define the Ni nodes
of the interface (Fig. 1).
Imagine that ϕ∗, ϕ∗∗ are the only leaves
to satisfy −d < ϕ∗, ϕ∗∗ < 0 where d
is the finest grid size (or half finest grid
size). Then, these leaves can be consid-
ered as the leaves of interest (LI) defining
the nodes of the interface.

On the left side of Figure 7, the centers of all the cells of a Quadtree (depth 9) are plotted. On
the right side, we show only the leaves of interest corresponding to the interface nodes.
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Figure 7: Cell centers of the Quadtree of the Level Set for a 2D particule on the left. Nodes of the
interface as LI of the Quadtree on the right

The reduction in simulation storage requirements can be qualitatively evaluated by comparing
the data shown in Figure 7 to the corresponding uniform Cartesian grid. A quantitative evaluation
of memory cost reduction for the particle shown in Figure 7 is given in Table 1. The notation
Nc(tree) means the number of cells in the Quadtree/Octree and Nc(grid) is the number of cells on
the associated uniform grid.
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2D grain depth=5 depth=6 depth=7 depth=8 depth=9 depth=10
LI 112 249 515 1051 2031 4143

Nc(tree) 413 1041 2265 4857 9953 20265
Nc(grid) 1024 4096 16384 65536 262144 1048576
Nc(tree)
Nc(grid) 40.33 % 25.42 % 13.82 % 7.41 % 3.8% 1.93 %

Table 1: Comparison of data storage for a 2D grain.

The tree depth 7 is sufficient according to section 3 and leads to important RAM cost reduction.
With a 3D grain, the gains are even more important and crucial for the problem as shown in Table
2.

3D grain depth=5 depth=6 depth=7 depth=8
LI 3460 14831 61234 248169

Nc(tree) 9737 43137 182065 742969
Nc(grid) 32768 262144 2097152 16777216
Nc(tree)
Nc(grid) 29.71 % 16.45 % 8.68 % 4.42 %

Table 2: Comparison of data storage for a 3D grain.

4.2 Level Set intersection

The data of the Level Set function stored in the Quadtree/Octree suffice to evaluate the distance to
the boundary for a given point. This result is precise close to the interface and sufficiently accurate
far from the interface. This tree structure is then used instead of a regular grid. The decrease
in RAM consumption achieved by replacing the uniform grid by Quadtree/Octree was shown in
the previous section. The simulation time may be reduced leveraging the same principles of tree
structures. We are interested in computing the overlaps of two Quadtrees/Octrees to identify which
leaves of interest meet a cell of the other tree with negative ϕ. The recursive algorithm works first
on coarse cells and then on finer cells only if an intersection is possible. We construct such an
algorithm with the proposed Quadtree/Octree including LI. We also optimize this algorithm to
extract a tree structure to attain only LI. Such a tree is detailed below.

Quadtree structure
b

b b

b b b b

b b

LI

b b

b b

b b

b

LI

b

LI

b b

b b

b b

LI

b

LI

b

Reduced unstructured tree (RUT)
This tree allows to focus
on leaves of interest (LI).
The position of each child
has to be stored as well
as the child number of the
Quadtree. The coordinate
of LI can then be recon-
structed. b

1 b

3 b

b

1

3 b

1 b

b

0

b

1

3 b

b

1

b

2

The nodes of the interface LI of a grain A which penetrates a grain B can then be computed
with Quadtree/Octree A and Quadtree/Octree B or with RUT A and Quadtree/Octree B. The
computational cost to identify overlapping nodes with these two structures are then compared
with the direct approach consisting of testing each interface node. The graphical result of the
overlapping algorithm is presented in Figure 8 for the tree depth of 9. On the right, the LI are the
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centers of cells containing the interface and not their projection.
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Figure 8: All LI for two particules are plotted on the left. Only overlapping LI, resulting from the
overlap algorithms, are plotted on the right

The computational cost is introduced as a percentage of the computational cost of the direct
method. The direct method used in LS-DEM tests all the interface nodes of A, which are not too
far apart, to evaluate the Level Set function of the grain B.

Tests were done for 2D and 3D non-spherical grains with slight overlaps similar to the ones
occurring in LS-DEM. The number of LI overlapping the other grain is denoted ”LI overlapping”
in Table 3. The ”relative time 1” means the relative time with Quadtree/Octree structure to
represent LI, The ”relative time 2” means the relative time with the algorithm based on RUT
structureLI.

The tests are done with Python3 and show some variations with respect to time computation.
These results are reproductible with relative variations of order of 10%. Nevertheless, it clearly
shows that with 2D grains, the Quadtree approach is not sufficient to represent LI to achieve a
speed-up of the computation. Benefits of the algorithm would be obtained for too fine grids. But
the improved algorithm, where the data structure to store LI is an unstructured tree, shows an
interesting time cost reduction. A much more important gain is obtained with 3D grains even for
coarse grids. Benefits are obtained with the two data structures and unstructured trees also have
to be preferred.

2D grain depth=5 depth=6 depth=7 depth=8 depth=9 depth=10
LI overlapping 0 0 6 21 55 128
Relative time 1 260 % 276 % 165 % 177% 130 % 106%
Relative time 2 104 % 65% 44 % 39 % 30 % 22%

3D grain depth=5 depth=6 depth=7 depth=8
LI overlapping 0 8 38 670
Relative time 1 66 % 38 % 22 % 13%
Relative time 2 18 % 8 % 5.8 % 3.8%

Table 3: Relative times of he overlap algorithms with Quadtree/Octree structure and RUT struc-
ture compared to the direct method.

5 Conclusion

Leveraging the Level Set representation of a grain surface, the Level Set-Discrete Element Method
(LS-DEM) is an already proven technique for simulations of granular media without limitations
on the grain shape [4, 5]. However, LS-DEM is computationally significantly more expensive than
standard DEM codes. In the present paper, we first validated our implementation of LS-DEM
in the YADE code and confirmed the steep increase of simulation costs connected to replacing
DEM by LS-DEM. Next, an attempt was made to reduce the computational costs of LS-DEM by
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replacing the uniform Cartesian grid needed for the LS grain representation by Quadtree/Octree
data structures. The results suggest up to 91% of RAM and 94% of simulation time could be saved
in 3D using tree-like data structures, for a Cartesian grid of 1283 points. In the following work, the
new algorithms will be implemented into the YADE code, enabling lighter LS-DEM simulations.
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