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Abstract

The accurate springback prediction of dual phase (DP) steels has been re-

ported as a major challenge. It was demonstrated that this was due to the

lack of understanding of their nonlinear unloading behavior and especially10

the dependency of their unloading moduli on the plastic prestrain. A so-called

compartmentalized finite element model was developed. An improved compart-

mentalized finite element model was developed. In this model, each element

was assigned a unique linear elastic J2 plastic behavior without hardening.

The model’s specificitynovelty lied in the fact that:15

i) a statistical distribution was discretized in a deterministic way and used

to assign yield stresses to structures called compartments,

ii) those compartments were randomly associated with the elements through

a random compartment element mapping (CEM).

Multiple CEM were simulated in parallel to investigate the intrinsic random-20

ness of the model. The model was confronted with experimental data ex-

tracted from the literature and it was demonstrated that the model was able

to reproduce the dependence of the apparent moduli on the tensile prestrain.

It was also observed that the evolution of the apparent moduli was predicted
1
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even if it was not an explicit input of the experimental dataset used to iden-

tify the input parameters of the model. It was then deduced that the shape

of the hardening and the dependancydependency of moduli on the prestrain

were two manifestations of a single cause: the heterogeneous yield stress in

DP steels.5

Keywords: Dual phase steels, Apparent modulus, Young’s modulus

evaluation, Heterogeneity, Springback.

1. Introduction

Dual phase (DP) steels exhibit an outstanding combination of strength and

ductility. They are widely used in the automotive industry where they con-10

tribute to the vehicle mass reduction and thus to greater fuel efficiency (Tasan

et al., 2015). This being said, the complexity of their mechanical behavior is

especially high and many scientific challenges have to be addressed before

they can be used with full background knowledge. Among those, the accu-

rate prediction of springback is one of the greatest (Wagoner et al., 2013). It15

is known that the apparent Young’s modulus of most metallic alloys is influ-

enced by an applied prestrain (Yoshida et al., 2002; Pham et al., 2015) and

that this is especially true in the case of DP steels. It has also been demon-

strated that this phenomenon affects the ability to predict springback (Eg-

gertsen and Mattiasson, 2010; Yu, 2009; ul Hassan et al., 2016). While the20

dependencedependency of the apparent modulus to the prestrain is observed

by many researchers, the mechanisms at stake are not yet fully determined.

Therefore, several ways have been followed to take this evolution of the ap-

parent modulus into account. The most widely used and arguably the most
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successful is the phenomenological modeling developed in numerous papers

(Yoshida and Uemori, 2003; Kim et al., 2013; Sun and Wagoner, 2011; Lee

et al., 2013; Ghaei and Taherizadeh, 2015; Xue et al., 2016; Zajkani and Ha-

jbarati, 2017; Torkabadi et al., 2018). These studies do not focus on the

underlying causes of the phenomenon but only aims to reproduce it, in most5

cases by using the model proposed by Yoshida et al. (2002). The drawback

of phenomenological methods is that they rely on a fine-tuning stage of an

ever-increasing number of parameters.

In parallel, other methods have been aiming at establishing a relation be-

tween the material’s physical properties and its macroscopic behavior. As10

pointed out by Paul (2013), the intrinsic dual phase heterogeneity of DP steels

triggers strain incompatibility between the soft ferrite phase and the harder

martensite phase. Several two-phase models have been developed using local

phenomenological models as well as crystal plasticity to take into account the

bimodal mechanical behaviors (Kadkhodapour et al., 2011; Ramazani et al.,15

2012; Moeini et al., 2017). Random microstructures have also been used

with relative success (Furushima et al., 2009, 2013a,b; Ayatollahi et al., 2016;

Khan and Gautham, 2018). Still, this global simulation process has been un-

able to reproduce correctly the non-linear unloading behavior of DP steels and

so it has been failing to determine the quantitative changes in the apparent20

modulus unless finally using the phenomenological Yoshida-Uemori model.

As stated by Tasan et al. (2015), the causes of heterogeneity in DP steels

are multiple: on the one hand, heterogeneous dislocation microstructure,

grain size distribution, presence of impurities and on the other hand, strong

differentiation between the mechanical behaviors of its constituent phases25

which are themselves randomly distributed in the material. Then, a third
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way has been explored to deal with these observations. It relies on introduc-

ing heterogeneity in the model in a more generalized way using a statistical

spatial distribution of yield stresses (Tabourot et al., 2012, 2013). This com-

partmentalized model has shown that it can reproduce experimental observa-

tions with fewer adjustable parameters than phenomenological models and5

that their predictions are more realistic (Bizet et al., 2017).

In this paper, an improved version of the compartmentalized model was

used to simulate and analyze the apparent modulus of DP steels. Section 2

is dedicated to the description of the compartmentalized model. Then, the

model is applied to retrieve experimental data extracted from the literature.10

In section 3, the predictions of the model are discussed and confronted with

the other existing modeling paradigms.

2. The compartmentalized model

A compartmentalized model is a random heterogeneous finite element

model in which the material properties of every element arise from those of a15

substructure called a compartment. Each compartment has unique material

properties. In the presented model each element is a compartment. Compart-

ments are not designed to represent a specific physical structure or scale such

as grains. Their only purpose is to introduce a controlled amount of hetero-

geneity in the model to produce specific effects on the macroscopic mechani-20

cal behavior. The implementation of the compartmentalized model described

in this section is made available by the authors (python libraries : Compmod2

(Charleux and Roux, 2019b) and Argiope (Charleux et al., 2019), full code

example : Compdmod2 Documentation (Charleux and Roux, 2019a))
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2.1. Mesh and boundary conditions

In this paper, the finite element simulations were carried out using the

commercial implicit solver Abaqus/Standard (2018 version). Fig. 1 repre-

sents the cubic Representative Volume Element (RVE) test sample. The initial

dimensions of the RVE were l × l × l along (ê1, ê2, ê3) where l = 1. Only in-5

tensive properties such as stress and strains were extracted from the model.

Consequently, the problem was dimensionless and the value of l ashad no

impact on the results. A structured 10× 10××10 hexahedric mesh was used.

A structured 10×10×10 hexahedric mesh was used. Periodic boundary con-

ditions were applied in a similar way to (Wu et al., 2014). The sample was10

loaded in tension and the true tensile stress σ as well and true tensile strain

ε were calculated.

2.2. Compartmentalized material definition

In a compartmentalized model, the material properties are distributed

randomly among the elements of the mesh. This procedure has been greatly15

improved compared to the intuitive one used by the authors in previous ar-

ticles (Tabourot et al., 2012, 2013, 2014; Bizet et al., 2017). This legacy

procedure is described in Fig. 2 while the new one is represented in Fig. 3.

Each compartment is associated with a unique but very basic, isotropic,

linear elastic and J2 perfectly plastic material. Consequently, no hardening is20

implemented in any of those materials.

Moreover, the elastic behavior of all compartments is homogeneous. Their

Young modulus has a fixed value E = 213 GPa and their Poisson’s ratio is

ν= 0.3. These values are in agreement with Chen et al. (2016a).
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2.3. Yield stress distribution

The yield stresses σy are distributed among the compartments following

a statistical distribution noted DIST. It is defined by its probability density

function (PDF) noted f (σy) and its cumulative density function (CDF) noted

F(σy). In this case, the distribution is the weighted sum of two Weibull sub-5

distributions with PDFs f1(σy) and f2(σy) that verify:

f (σy) = w1 f1(σy) + (1−w1) f2(σy) (1)

And:

fi(σy) =
ki

λi

�

σy

λi

�ki−1

exp

�

−
�

σy

λi

�ki
�

(2)

Where:

• ki and λi are respectively the shape parameters and the scale parame-

ters of the Weibull sub-distributions,10

• w1 is the weighting factor between each sub-distribution and it verifies

w1 ∈ ]0, 1[.

The five input parameters P = {k1, k2,λ1,λ2, w1} fully define the plastic

behavior of the RVE. The values of the yield stresses associated with each com-

partment could then be calculated using a Random Number Generator (RNG)15

associated with the PDF defined above. However, this solution would mean

that for a given value of P, multiple different sets of yield stress values could

be possible because of the random nature of the RNG. As a consequence, the

model would not be deterministic and most optimization scheme to identify

the parameters would be compromised. To overcome this issue, a procedure20
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has been developed to discretize the distribution in a deterministic way as

described in Fig. 4.

1. The model contains N compartments, each occupying an equal part of

the whole model volume. As a consequence, each compartment Ci is as-

sumed to represent a cumulative probability of 1/N . The CDF is equally5

split along the vertical axis in N parts separated by N+1 thresholds val-

ues noted Ft , where Ft0 = 0 and FtN = 1.

2. The CDF is inverted using the Brent zero finding algorithm (Brent, 1973)

implemented in the Python library Scipy (Jones et al., 2001), N + 1

threshold yield stress values σt are determined. This process is de-10

scribed in Fig. 4-a.

3. Each individual compartment then represents a unique portion of the

distribution. Since only a single value of σy,i has to be associated with

each compartment Ci, the mean value of distribution on the interval

[σt,i,σt,i+1] is chosen:15

σy,i =

∫ σt,i+1

σt,i
σ f (σ)dσ

∫ σt,i+1

σt,i
f (σ)dσ

(3)

2.4. The Compartment Element Mapping

Each element E j is associated with a compartment Ci by a discrete bijective

mapping function referred to as the Compartment Element Mapping (CEM) as

presented in Fig. 5. The CEM is initialized by shuffling the {1, . . . , N} list, cre-

ating the required association between the compartments and the elements.20

The CEM is the only source of the randomness of the model and thus it is the

way to control it. As a consequence, as long as the CEM is not reinitialized,
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the model response to a given set of input parameters P is deterministic. In

this paper, a set of 10 random CEMs was generated by random shuffling and

was used all along.

2.5. Input parameter identification on a single loading-unloading-reloading cy-

cle5

The true tensile stress vs. true tensile strain curve of a DP980 steel was

extracted from Fig. 2 in Ghaei et al. (2015) and is referred to as the exper-

imental curve. This curve was separated into multiple loading, unloading

and reloading cycles (MUR). The resulting data-set was split into two subsets

represented in Fig. 6. The first subset noted EXP-A contains a monotonic10

loading up to 8% of strain and the last unloading-reloading cycle (LUR). It

is essential to note that the evolution of the elastic moduli with the accumu-

lated plastic strain cannot be observed on this subset because it contains only

one unloading-reloading cycle. The second subset noted EXP-B contains the

remaining experimental data.15

For any given set of input parameters P and for each CEM c, a true tensile

stress response can be simulated following the strain path of the test EXP-A.

Because the strain values of experimental and simulated curves are not coincident

an interpolation is needed. As experimental and simulated data are not inter-

polated on the same grid, it is necessary to interpolate them. The simulated20

stresses are therefore linearly interpolated on the strain value of the experi-

mental curve EXP-A. The interpolated simulated stress is notedσci (P), where

i denote each point of the EXP-A curve. The stress residuals vector δσci (P)

between the calculated set of stresses and the experimental stress σei is de-
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fined as follows:

δσci (P) = σci (P)−σei (4)

The residual vector δσci (P) gathers the point to point stress residual for

all CEMs at each measurement points.

The optimal input parameters Popt were then calculated using the Levenberg-

Marquardt least-square optimization algorithm (Levenberg, 1944) by mini-5

mizing the residual vector δσci (P).

With an educated guess of the starting point of the Levenberg-Marquardt

algorithm, the convergence was achieved after 70 evaluations of the cost func-

tion and thus after 700 individual simulations. The optimal numerical values

of Popt are given in the Table 1.10

This way to proceed allowed us to determine not only the mean stress

value but also the dispersion of the solutions associated with the different

CEMs at each strain value. The mean stress value as well as min/max values

are represented on Fig. 7. The associated yield stress distribution is repre-

sented in Fig. 8. The compartments yield stresses statistics are detailed in the15

Table 2.

2.6. Moduli calculation on multiple loading-unloading-reloading cycles

A new set of 10 simulations were run using the optimized input parameter

set Popt . These new simulations included multiple unloading reloading cycles.

It is important to note that these multiple unloading reloading cycles were not20

used in the parameters identification stage. These multiple cycle simulations

aimed to calculate the moduli as a function of the prestrain εu to evaluate the

capacity of the compartmentalized model. The obtained mean stress value as
9



well as min/max values are represented on Fig. 9, and are noted SIM-MUR .

The moduli E1, E2, E3, E4 and Ec were then calculated following the defi-

nitions proposed by Chen et al. (2016b) as represented on Fig. 10 using the

stress vs. strain curve SIM-MUR.

3. Results and discussion5

3.1. Overall performances of the compartmentalized model

The Fig. 7 demonstrates that the compartmentalized model can repro-

duce efficiently the experimental loading/unloading behavior of a DP steel

(DP980 here). This is also true for other existing models such as the QPE

model (Sun and Wagoner, 2011). However, the compartmentalized model is10

more efficient as it only relies on a homogeneous linear elastic coupled to a

J2 plastic criterion without hardening behavior and 5 additional parameters

(Tab. 1) to describe the material. This specificity makes the compartmental-

ized model’s parameters easier to identify than those of its phenomenological

counterparts. In this paper, only 70 optimization iterations (700 simulations)15

were needed to identify the parameters required to fit the EXP-A experimental

sub-data-set.

3.2. Compartment statistics

The identified parameters Popt solely describe the level of heterogeneity

of the local yield stresses. Fig. 8 gives an accurate description of the optimal20

yield stress distribution.

Compared to other alloys previously modeled using the compartmental-

ized model (Bizet et al., 2017), it appears that distinguishing feature of the

DP980 steel behavior is due to its exceptional heterogeneity that leads to a
10



wide range of distributed yield stresses. In that respect, 3 compartment sets

are defined in the Tab. 2, each of them producing a given effect or property.

The Soft to Hard compartments (SHC) constitute the main lobe of the dis-

tribution and represent a fraction of 80.5%. If this population has to

be modeled alone, a single Rayleigh distribution could be used. The5

upper bound of the yield stress of SHC fixed at 3000 MPa because all

the elements having higher yield stress always never exhibited plastic

strain in any simulation. This also means that the local von Mises stress

field can sometimes reach very high values close to 3 GPa.

The Elastic compartments (ELC) represent 12.3% of the compartments. They10

are key compartments to model the specificity of materials exhibiting

hardening at large strains such as DP980. If all compartments would

become plastic during loading, the hardening would saturate. Hence,

to exhibit hardening even at ε ≈ 10%, a significant proportion of the

compartments must always remain elastic.15

The Ultra-Soft compartments (USC) represent 7.2% of the compartments.

They exhibit very low yield stresses. They don’t play a key role during

loading but their existence is strongly connected with the Bauschinger

effect observed during unloading and the hysteretic behavior associ-

ated with unloading-reloading cycles. Indeed, at the end of the loading20

step (Fig. 7, ε ≈ 8% and σ ≈ 1200 MPa), when the unloading starts,

most of these compartments rapidly getbecome plastic in the compres-

sive direction during the first 200 MPa of the unloading. Thus, these

compartments dissipate energy and increase the curvature of the un-

loading stress vs. strain curve at the end of the unloading step. The25
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same phenomenon appears symmetrically during reloading.

3.3. Moduli evolution predicted by the compartmentalized model

Fig. 11 represents the experimental measurements extracted from Fig. 5

of Chen et al. (2016b) and the values extracted from SIM-MUR using the same

protocol as described in Fig. 10. First it appears in Fig. 11 that the evolution5

of E1 and E3 are overestimated by the compartmentalized model. However,

in their paper, Chen et al. (2016b) state that the observed decrease in E1 and

E3 in their data is small and could be an artifact due to a lack of resolution.

Secondly, it appears that of E2 and E4 are in very good agreement like the chord

modulus Ec. The optimization of the input parameters leading to the values of10

Popt was performed on the dataset EXP-A (see Fig. 6) in which the evolution of

the moduli is not included since there is only one unloading-reloading cycle. Yet

the evolution of the apparent moduli predicted by the SIM-MUR simulations

using Popt is in good agreement with the experiments. This means that the

compartmentalized model is not only able to reproduce the evolution of the15

apparent moduli, while its intrinsic modulus E is unchanged. It also implies

that the decreasing apparent moduli are a necessity given the data contained

in the EXP-A dataset. Consequently, in the context of the compartmentalized

model, the strain hardening but also of the evolution of the apparent moduli are

just two consequences of a single cause: the heterogeneity of the material which20

is the most significant result of this study.

Fig. 11 represents the experimental measurements taken from Fig. 5 in

Chen et al. (2016b) as well as the values obtained by SIM-MUR using the

protocol described in Fig. 10. Fig. 11 shows that the evolution of E1 and E3

is overestimated by the compartmentalized model. However, in their paper,25

12



Chen et al. (2016b) indicate that the decrease observed in their E1 and E3

measurements is small in the face of measurement uncertainties and could

thus be an artifact related to a lack of resolution. In contrast, the variations

of E2, E4 and Ec calculated by the simulation SIM-MUR using Popt are in very

good agreement with the experimental data. This implies, on the one hand,5

that the compartmentalized model is capable of reproducing the moduli de-

crease with a constant intrinsic Young’s modulus E. On the other hand, since

the optimization of the input parameters Popt is carried out with the EXP-A

dataset, which contains only one loading/unloading/reloading cycle, it fol-

lows that, in the context of the compartmentalized model, the decay of the10

apparent moduli is related to the shape of this cycle. These results indicate

that strain-hardening, as well as the evolution of apparent moduli, are only

two manifestations of a single cause: the heterogeneity of the material. It

also shows that the compartmentalized model allows a physically realistic

representation of the mechanisms involved in the plastic deformation of DP15

steels.

4. Conclusion

In this work, the compartmentalized model has been proved to be a rel-

evant way to model the behavior of DP steels. The model was improved by

separating its intrinsic spatial heterogeneity and its randomness into two in-20

dependent contributions driven respectively by the DDP and the CEM. It has

been shown that this improvement allows the model to be deterministic and

thus that its input parameters P could be easily optimized as long as the CEM

is kept unchanged. Results obtained from model simulations have been con-

fronted with experimental pieces of evidence found in the literature and it25
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has been demonstrated that:

1. it can reproduce the overall shape of the stress vs. strain curve of the

DP980 steel without needing the use of the variable intrinsic Young’s

modulus.

2. the evolution of the apparent moduli with the level of prestrain is pre-5

dicted spontaneously when the model is optimized to reproduce the

experimental LUR cycle.

Consequently, it has been postulated that the evolution of the moduli with

the level of prestrain is just a consequence of the level of heterogeneity of

mechanical properties such as yield stresses. The double Weibull yield stress10

distribution with perfect elastic-plastic behavior is sufficient to give a very

good global strain hardening representation.
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Parameter Value
k1 1.64
k2 3.17
l1 4.16× 10−3

l2 3.42× 10−2

w1 8.67× 10−1

Table 1: The parameters Popt resulting from the optimization for the compartmentalized
model.

Label σy,min σy,max σ̄y Nc Behavior
USC 0 MPa 200 MPa 123 MPa 72 Ultra Soft
SHC 200 MPa 3000 MPa 865 MPa 805 Soft to Hard
ELC 3000 MPa +∞ 6790 MPa 123 Elastic

Table 2: Statistics on the compartment yield stresses associated with the optimized solution Popt .
Statistical yield stress distribution in the optimized solution Popt .
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Figure 1: The RVE is represented in a deformed state under macroscopic tensile strain. The
edges of the cubic RVE in its initial configuration are represented using dotted lines. The
color map represents LE11 local logarithmic total strain along the tested direction. The het-
erogeneity of the strain field is visible and a shear band can be observed on the top face.
The periodic boundary conditions are also visible as all opposite faces are identical modulo
a translation.
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Figure 2: Schematic representation of the intuitive implementation of the compartmental-
ized model. The input parameters P are used to define the yield stress distribution DIST. A
Random Number Generator (RNG) is used to calculate element yield stress σy,i associated to
each element Ei . The Finite Element Method is then used to solve the problem and generate
outputs such as the tensile stress vs. tensile strain curve. The relation link between the input
parameters and the output stress vs. strain curve is non-deterministic since two evaluations
of the RNG with identical inputs lead to different outputs. Consequently, the optimization of
the input parameters P cannot be done with classical optimization algorithms.
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Figure 3: Schematic representation of the new approach developed in this paper. Like in the
intuitive approach, the input parameters P are used to define the yield stress distribution DIST. As
in previous approaches, the input parameters P are used to define the yield stress distribution
DIST. Then, the distribution is discretized using the Distribution Discretization Procedure
(DDP) described in Fig. 4 and N yield stress values σy,i are calculated in the ascending
order. Each of them is associated with a compartment Ci . Subsequently, the Compartment
Element Mapping (CEM) is applied to associate each compartment Ci with a given element
E j . The CEM is initialized using a random draw algorithm. It can then be kept as is The
CEM is initialized using a shuffling algorithm but it can be kept constant, for example during
the input parameters optimization process. As a consequence, the model is deterministic,
and therefore the optimization of the input parameters P becomes possible with standard
gradient-based algorithms such as Levenberg-Marquardt.
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Figure 4: The Distribution Discretization Procedure (DDP): (a) The CDF is split vertically
into N equal parts separated by N +1 threshold values Ft,i . The CDF is inversed reversed and
stress threshold values σt,i are determined. (b) The yield stress values σy,i are calculated as
the average value of the distribution’s PDF f over the [σt,i ,σt i+1] interval.
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Figure 5: Graphical illustration of the Compartment Element Mapping (CEM). (a) The ele-
ments are labeled in a standard way. (b) Each compartment is associated with one element
by a bijective mapping. Each CEM instance is created by shuffling the element labels. 10
different CEM are used in the paper, each of them being referred to as CEM-0, . . . , CEM-9.
Only CEM-0 is represented here.
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Figure 6: The experimental dataset noted EXP is extracted from Ghaei et al. (2015) and is
composed of multiple loading, unloading and reloading steps. The dataset is split into two
sub-datasets: EXP-A contains all the loading steps and the last unloading-reloading steps
whereas EXP-B contains the remaining data.
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Figure 7: The compartmentalized model is optimized by fitting the output true tensile stress
vs. true tensile strain to the experimental sub dataset EXP-A. (a) The whole curve is repre-
sented. (b) Zoom on the unloading-reloading step.
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Figure 8: Representation of the statistical distribution of yield strength after optimization
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after optimization on the EXP-A sub dataset. (a) linear scale representation. (b) log-log scale
representation. The first Weibull distribution part DIST-1 is en represented in red, the second
DIST-2 is represented in blue, the total distribution DIST is represented in yellow.
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Figure 9: The simulation called SIM-MUR using the optimal input parameters (identified on
data subset EXP-A). It includes several loading-unloading-reloading cycles that allow to eval-
uate the evolution of the moduli according to the prestrain. The simulation labeled SIM-MUR
uses the optimal input parameters (identified on sub dataset EXP-A). The simulation SIM-MUR
has multiple loading-unloading-reloading cycles to calculate moduli on each cycle and to evaluate
the moduli evolution as a function of the prestrain.

26



εr εu

True Tensile Strain, ε

0

1
4

1
3

2
3

3
4

1

T
ru

e
T

en
si

le
S

tr
es

s
v
s.

U
n

lo
a
d

in
g

S
tr

es
s,
σ
/
σ
u

E1 data

E2 data

E3 data

E4 data

SIM-MUR-0

E1 fit

E2 fit

E3 fit

E4 fit

Ec fit

Figure 10: Schematical representation of the procedure introduced by Chen et al Chen et al.
(2016b) in order to calculate the 5 moduli E1, E2, E3, E4 and Ec for each unloading reloading
cycle. The vertical axis represents the normalized true stress σ/σu, where σu is the true
stress at the beginning of the unloading step. Each modulus is defined as the slope of a linear
fit obtained over a given subset of the data points depending on which modulus is calculated.
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Figure 11: The evolution of the 5 apparent moduli calculated on SIM-MUR is compared to
the experimental . Experimental data are data extracted from Fig. 5 of Chen et al. (2016b).
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