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Proof of Riemann's hypothesis

Riemann's hypothesis (1 4) , formulated in 1859, concerns the location of the zeros of Riemann's Zeta function. The history of the Riemann Hypothesis is well known. In 1859, the German mathematician B. Riemann presented a paper to the Berlin Academy of Mathematic. In that paper, he proposed that this function, called Riemann-zeta function takes values 0 on the complex plane when s=0.5+it . This hypothesis has great significance for the world of mathematics and physics. This solutions would lead to innumerable completions of theorems that rely upon its truth. Over a billion zeros of the function have been calculated by computers and shown that all are on this line s = 0.5+it. In this paper, we initially show that Riemann's 𝜁 (Zêta) function and the analytical extension of this function called ℵ (Aleph)) are distinct. After extending this function in the complex plane except the point s=1, we will show the existence and then the uniqueness of real part zeros equal to 1/2 .

Riemann's Hypothesis is expressed as following:

All non-trivial zeros of the function 𝜁(𝑠) are located on the complex line ℜ(𝑠) = 1 2

A-Introduction -on the analytical extension of the function 𝜻

The analytical extension of the function 𝜁(𝑠) on ℂ will be called ℵ(𝑠) in order to distinguish it from the function of Riemann.

Riemann's Zeta function is written:

𝜁(𝑠) = ∑ 1 𝑛 𝑠 ∞ 𝑛=1
For all complex numbers ℜ(𝑠) > 1

The function 1 𝑥 𝑠 for 𝑥 ∈ ℝ and 𝑠 ∈ ℂ is differentiable p times. The p-th derivative of this function is written:

( 1 𝑥 𝑠 ) ′𝑝 = (-1) 𝑝 𝑠(𝑠 + 1)(𝑠 + 2) … (𝑠 + 𝑝 -1) 1 𝑥 𝑠+𝑝 Applying Euler Mac-Laurin's (10 11) formula to the function : For 𝑁 → +∞ the left member of the equation (1.) leans towards 𝜁(𝑠) and the development of Euler MacLaurin, a right sided part of the equation is defined by:

1 𝑠 -1 + 1 2 + ∑ 𝑏 2𝑗 (2𝑗)! 𝑀 𝑗=1 𝑠(𝑠 + 1) … (𝑠 + 2𝑗 -2) + 𝜎 𝑀 (𝑠) With 𝜎 𝑀 (𝑠) = - 𝑠(𝑠 + 1) … (𝑠 + 2𝑀) (2𝑀 + 1)! ∫ 𝐵 2𝑀+1 * +∞ 1 (𝑥)𝑥 -𝑠-2𝑀-1 𝑑𝑥
𝜎 𝑀 being a convergent integral for ℜ(𝑠) > 1 -2𝑀 ∀𝑀 ∈ ℕ * , converges for all s of the complex plan except in 𝑠 =1.

The other members of MacLaurin's development being polynomes, the analytical extension of the Zeta function is defined by the entire complex plan except in 1.

The analytical extension (4 8) of Riemann's function is expressed by the following formula:

ℵ(𝑠) = { 𝜁(𝑠) = ∑ 1 𝑛 𝑠 ∞ 𝑛=1 𝑓𝑜𝑟 ℜ(𝑠) > 1 1 𝑠 -1 + 1 2 + ∑ 𝑏 2𝑗 (2𝑗)! 𝑀 𝑗=1 𝑠(𝑠 + 1) … (𝑠 + 2𝑗 -2) + 𝜎 𝑀 (𝑠) ∀ 𝑠 ∈ ℂ/{1} } (2.)
It is clear that calculating the value of 𝜁(𝑠) for values such as 0 or -1 with the following formula,

𝜁(𝑠) = ∑ 1 𝑛 𝑠 ∞ 𝑛=1 is impossible. So, 𝜁(-1) = ∑ 𝑛 = - 1 12 ∞ 𝑛=1
is nonsense.

On the other ℵ(-1) does exist through the converging integral 𝜎 𝑀 (-1)

The function 𝜁(𝑠) does not admit zeros on its domain. ℜ(𝑠) > 1.

On the other hand ℵ(𝑠) being holomorphic on ℂ/{1} there are zeroes for ℜ(𝑠) ≤ 1

B-On the zeros of the function ℵ(𝒔)

According to Fourier's (5) analysis, the function 𝑥 → 𝑒 -𝜋𝑥 2 that belongs to Schwartz's (3) space of fast decay functions to infinity, coincides with his transformed Fourier, that is:

∫ 𝑒 -𝜋𝑥 2 𝑒 -2𝑖𝜋𝑢𝑥 +∞ -∞ 𝑑𝑥 = 𝑒 -𝜋𝑢 2
By making the variable change of 𝑥 → 𝑥 √𝑡 in this integral, the Fourier transformation of the function

𝑓(𝑥) = 𝑒 -𝜋𝑡𝑥 2 is 𝑓 ̂(𝑢) = 1 √𝑡 𝑒 -𝜋𝑢 2 𝑡
And all functions of Schwartz's space we have the following relationship:

∀ 𝑛 ∈ ℤ ∑ 𝑓(𝑛) ∞ 𝑛=-∞ = ∑ 𝑓 ̂(𝑛) ∞ 𝑛=-∞ which implies that ∀ 𝑡 > 0 ℧(𝑡) = ∑ 𝑒 -𝜋𝑡𝑛 2 ∞ 𝑛=-∞ = 1 √𝑡 ∑ 𝑒 -𝜋𝑛 2 𝑡 ∞ 𝑛=-∞ (3.)
℧ and 𝜓 functions meet the following functional equations

∀ 𝑢 > 0 ℧(𝑢) = 1 √𝑢 ℧ ( 1 𝑢 ) 𝑒𝑡 𝜓(𝑢) = ℧(𝑢) -1 2 = ∑ 𝑒 -𝜋𝑢𝑛 2 ∞ 𝑛=1
𝜓 checks:

𝜓 ( 1 𝑢 ) = ℧ ( 1 𝑢 ) -1 2 = ℧(𝑢)√𝑢 -1 2 = √𝑢 (2𝜓(𝑢) + 1) -1 2 = √𝑢𝜓 (𝑢) + √𝑢 2 - 1 2 i.e. ∀ 𝑢 > 0 𝜓(𝑢) = 1 √𝑢 𝜓 ( 1 𝑢 ) + 1 2√𝑢 - 1 2 (4.) ∀ 𝑠 /ℜ(𝑠) > 1, 𝑒𝑡 𝑛 ≠ 0
To calculate the full one below by posing the variable change

𝑢 = 1 𝜋𝑛 2 𝑡 𝐼 𝑛 = ∫ 𝑢 𝑠 2 -1 ∞ 0 𝑒 -𝜋𝑛 2 𝑢 𝑑𝑢 = ∫ 𝜋𝑛 2 (𝜋𝑛 2 ) 𝑠 2 +1 𝑡 𝑠 2 -1 ∞ 0 𝑒 -𝑡 𝑑𝑡 = 1 𝜋 𝑠/2 1 𝑛 𝑠 ∫ 𝑡 𝑠 2 -1 ∞ 0 𝑒 -𝑡 𝑑𝑡 𝐼 𝑛 = 1 𝜋 𝑠/2 1 𝑛 𝑠 Γ ( 𝑠 2 )
By summing n, we obtain:

∑ 𝐼 𝑛 𝑛=∞ 𝑛=1 = ∑ ∫ 𝑢 𝑠 2 -1 ∞ 0 𝑒 -𝜋𝑛 2 𝑢 𝑑𝑢 = ∑ 1 𝜋 𝑠/2 1 𝑛 𝑠 Γ ( 𝑠 2 ) ∞ 𝑛=1 ∞ 𝑛=1
The inversion between infinite summation and integration is justified by the convergence properties of the function 𝑒 -𝜋𝑛 2 𝑢 . So we obtain :

∫ 𝑢 𝑠 2 -1 ∞ 0 ∑ 𝑒 -𝜋𝑛 2 𝑢 𝑑𝑢 = 𝜋 -𝑠 2 Γ ( 𝑠 2 ) ∑ 1 𝑛 𝑠 = 𝜋 -𝑠 2 Γ ( 𝑠 2 ) 𝜁(𝑠) ∞ 𝑛=1 ∞ 𝑛=1 i.e. ∫ 𝑢 𝑠 2 -1 𝜓(𝑢)𝑑𝑢 = 𝜋 -𝑠 2 Γ ( 𝑠 2 ) 𝜁(𝑠) ∞ 0 (5.) With ζ(s) is the function of Riemann for ℜ(𝑠) > 1
The integral (5.) is developed on the intervals, [0; 1] ∪ [1; +∞]. We have:

𝜋 -𝑠 2 Γ ( 𝑠 2 ) 𝜁(𝑠) = ∫ 𝑢 𝑠 2 -1 𝜓(𝑢) ∞ 0 𝑑𝑢 = ∫ 𝑢 𝑠 2 -1 1 0 𝜓(𝑢)𝑑𝑢 + ∫ 𝑢 𝑠 2 -1 ∞ 1 𝜓(𝑢)𝑑𝑢 as 𝜓(𝑢) = 1 √ 𝑢 𝜓 ( 1 𝑢 ) + 1 2 √ 𝑢 - 1 2
So on the interval [0; 1] we can write:

∫ 𝑢 𝑠 2 -1 1 0 𝜓(𝑢)𝑑𝑢 = ∫ 𝑢 𝑠 2 -1 1 0 ( 1 √𝑢 𝜓 ( 1 𝑢 ) + 1 2√𝑢 - 1 2 ) 𝑑𝑢 By placing 𝑢 = 1 𝑣
in the first part of the integral we have:

∫ 𝑢 𝑠 2 -1 1 0 𝜓(𝑢)𝑑𝑢 = -∫ 𝑣 -𝑠 2 +1 1 ∞ (𝑣 1 2 𝜓(𝑣)) 1 𝑣 2 𝑑𝑣 + ∫ 𝑢 𝑠 2 -1 1 0 (- 1 2 + 1 2√𝑢 ) 𝑑𝑢 ∫ 𝑢 𝑠 2 -1 1 0 𝜓(𝑢)𝑑𝑢 = ∫ 𝜓(𝑣)𝑣 -𝑠 2 +1-2+ 1 2 ∞ 1 𝑑𝑣 - 𝑢 𝑠 2 2 ( 𝑠 2 ) ] 0 1 + 𝑢 𝑠 2 - 1 2 2 ( 𝑠 -1 2 ) ] 0 1 ∫ 𝑢 𝑠 2 -1 1 0 𝜓(𝑢)𝑑𝑢 = ∫ 𝜓(𝑢)𝑢 -𝑠 2 - 1 2 ∞ 1 𝑑𝑢 - 1 𝑠 + 1 𝑠 -1 Therefore 𝜋 -𝑠 2 Γ ( 𝑠 2 ) 𝜁(𝑠) = ∫ (𝑢 𝑠 2 -1 + 𝑢 -𝑠-1 2 ) 𝜓(𝑢)𝑑𝑢 - 1 𝑠 - 1 1 -𝑠 ∞ 1 (6.)
This integral is converging for any complex except 0 and 1. 𝜁(𝑠) function is defined by continuity on ℂ/{0; 1}

As 1 𝑠 + 1 1 -𝑠 = 1 𝑠(1 -𝑠)
by multiplying (6.) by 𝑠(𝑠 -1) we have:

𝜋 -𝑠 2 Γ ( 𝑠 2 ) 𝜁(𝑠)𝑠(𝑠 -1) = 𝑠(𝑠 -1) ∫ (𝑢 𝑠 2 -1 + 𝑢 -𝑠-1 2 ) 𝜓(𝑢)𝑑𝑢 + 1 ∞ 1
therefore we use the term ℵ(s) instead of 𝜁(𝑠) and define:

ℶ(s) = 𝜋 -𝑠 2 Γ ( 𝑠 2 ) ℵ(s)s(𝑠 -1) = 𝑠(𝑠 -1) ∫ (𝑢 𝑠 2 -1 + 𝑢 -𝑠-1 2 ) 𝜓(𝑢)𝑑𝑢 + 1 ∞ 1 as 𝑠 2 Γ ( 𝑠 2 ) = Γ ( 𝑠 2 + 1)
Then,

ℶ(s) = 2𝜋 -𝑠 2 Γ ( 𝑠 2 + 1) ℵ(s)(𝑠 -1) = 𝑠(𝑠 -1) ∫ (𝑢 𝑠 2 -1 + 𝑢 -𝑠-1 2 ) 𝜓(𝑢)𝑑𝑢 + 1 ∞ 1 (7.)
This integral is defined ∀ 𝑠 ∈ ℂ thanks to the rapid decay property of the 𝜓 function to infinity. It can be said that ℶ(s) is holomorphic in ℂ.

So, ℶ(s) = Φ(𝑠)ℵ(𝒔), with meromorphic Φ(s) = 2𝜋 -𝑠 2 Γ ( 𝑠 2 + 1) (𝑠 -1) and ℶ(s) is holomorphic, then ℵ(s) is meromorphic.
On the other hand, ℶ(s) = ℶ(1 -s) is a functional relationship between ℵ(s) and ℵ(1 -s):

𝜋 -𝑠 2 Γ ( 𝑠 2 ) ℵ(s)𝑠(𝑠 -1) = 𝜋 -1-𝑠 2 Γ ( 1 -𝑠 2 ) ℵ(1 -s)𝑠(𝑠 -1)
i.e:

Γ ( 𝑠 2 ) ℵ(s) = 𝜋 𝑠-1 2 Γ ( 1 -𝑠 2 ) ℵ(1 -s) (8.)
The function ℶ is written on

ℂ ℶ(s) = 𝑠(𝑠 -1) ∫ (𝑢 𝑠- 1 2 2 + 𝑢 - 𝑠- 1 2 2 ) 𝑢 -3 4 𝜓(𝑢)𝑑𝑢 + 1 ∞ 1 i.e. ℶ(s) = 2 ∫ 𝑠(𝑠 -1)𝑢 -3 4 𝜓(𝑢)𝑐𝑜𝑠ℎ [(𝑠 - 1 2 ) ln (𝑢) 2 ] 𝑑𝑢 + 1 ∞ 1 (9.)
verify that,

ℶ(s) = ℶ(1 -s) and ℶ(0) = ℶ(1 -0) = 1
The trivial zeroes.

ℶ(s) = 2𝜋 -𝑠 2 Γ ( 𝑠 2 + 1) ℵ(s)(s -1) ⟹ ℵ(s) = 1 Γ ( 𝑠 2 + 1) 𝜋 𝑠 2 2(𝑠 -1) ℶ(s)
The function

1 Γ( 𝑠 2 +1)
included as zeroes 

Non-trivial zeroes

If there are non-trivial zeroes in the complex plan for this function ℶ , we expressed them as 𝑧 𝑘 = 𝑎 𝑘 + 𝑖𝑏 𝑘 𝑘 ∈ ℕ and these are the same zeroes as the function ℵ(s).

Note ℜ(. ) the real part and ℑ(. ) the imaginary part.

These zeroes check the next relationship for the ℶ function.

ℶ(𝑧 𝑘 ) = 0 ⇔ { ℜ(ℶ(𝑧 𝑘 )) = 0 ℑ(ℶ(𝑧 𝑘 )) = 0 ∀ 𝑘 ∈ ℕ (10.)
By writing the real and imaginary part of the integral (9.) for 𝑠 = 𝑧 𝑘 we obtain: For the imaginary part of the integral of the equation system (11.) we have:

{ 2 ∫ 𝑢 -3 4 𝜓(𝑢)ℜ [𝑧 𝑘 (𝑧 𝑘 -1)𝑐𝑜𝑠ℎ [(𝑧 𝑘 - 1 2 ) ln (𝑢) 2 ]] 𝑑𝑢 + 1 = 0 ∞ 1 2 ∫ 𝑢 -3 4 𝜓(𝑢)ℑ [𝑧 𝑘 (𝑧 𝑘 -1)𝑐𝑜𝑠ℎ [(𝑧 𝑘 - 1 2 ) ln (𝑢) 2 ]] ∞ 1 𝑑𝑢 = 0 } ( 11 
2 ∫ 𝑢 -3 4 𝜓(𝑢)ℑ [𝑧 𝑘 (𝑧 𝑘 -1)𝑐𝑜𝑠ℎ [(𝑧 𝑘 - 1 2 ) ln (𝑢) 2 ]] ∞ 1 𝑑𝑢 = 0 i.e.
2 ∫ 𝑢 -3 4 𝜓(𝑢)𝐼(𝑎 𝑘, 𝑏 𝑘 , 𝑢) ∞ 1 𝑑𝑢 = 0 (14.)

Are there couples (𝑎 𝑘 , 𝑏 𝑘 ) such as equation (14.) equals zero ?

Because of the convergence characteristics of the integral, we have the following property:

-∫ 𝑢 -3 4 𝜓(𝑢)|𝐼(𝑎 𝑘, 𝑏 𝑘 , 𝑢)| ∞ 1 𝑑𝑢 ≤ ∫ 𝑢 -3 4 𝜓(𝑢)𝐼(𝑎 𝑘, 𝑏 𝑘 , 𝑢) ∞ 1 𝑑𝑢 ≤ ∫ 𝑢 -3 4 𝜓(𝑢)|𝐼(𝑎 𝑘, 𝑏 𝑘 , 𝑢)| ∞ 1 𝑑𝑢 i.e. : -∫ 𝑢 -3 4 𝜓(𝑢)√𝑈 2 + 𝑉 2 ∞ 1 𝑑𝑢 ≤ ∫ 𝑢 -3 4 𝜓(𝑢)𝐼(𝑎 𝑘, 𝑏 𝑘 , 𝑢) ∞ 1 𝑑𝑢 ≤ ∫ 𝑢 -3 4 𝜓(𝑢)√𝑈 2 + 𝑉 2 ∞ 1 𝑑𝑢
Applying the properties of the full continuous and positive function, and the squeeze theorem, we have:

∫ 𝑢 -3 4 𝜓(𝑢)√𝑈 2 + 𝑉 2 ∞ 1 𝑑𝑢 = 0 ⟹ √𝑈 2 + 𝑉 2 = 0 ⟺ { 𝑈 = 0 𝑉 = 0 ∀ 𝑢 ≥ 1
The existence of the couples (𝑎 𝑘 , 𝑏 𝑘 ) such as:

{ 𝑈 = 0 ⟺ 𝑎 𝑘 = 1 2 𝑜𝑢 𝑏 𝑘 = 0 𝑉 = 0 ⟺ 𝑎 𝑘 = 1 2 𝑜𝑢 𝑎 𝑘 (𝑎 𝑘 -1) -𝑏 𝑘 2 = 0
The system is reduced to three pairs of solutions:

{ 𝑎 𝑘 = 1 2 𝑏 𝑘 ∈ ℝ or { 𝑎 𝑘 = 1 𝑏 𝑘 = 0 or { 𝑎 𝑘 = 0 𝑏 𝑘 = 0
We're checking that: The imaginary part 𝑏 𝑘 of these zeroes is identified using the first integral of the equation system (11.) expressed :

𝑧 0 = (0,0) 𝑜𝑢 𝑧 1 = (1,
2 ∫ 𝑢 -3 4 𝜓(𝑢)𝑅(𝑎 𝑘, 𝑏 𝑘 , 𝑢) ∞ 1 𝑑𝑢 + 1 = 0 (15.)
i.e:

2 ∫ 𝑢 -3 4 𝜓(𝑢)√𝐴 2 + 𝐵 2 sin [𝑏 𝑘 ln(𝑢) 2 + 𝜋 2 𝑆𝑖𝑔𝑛(𝐴) -𝑎𝑟𝑐𝑡𝑎𝑛 ( 𝐵 𝐴 )] 𝑑𝑢 + 1 = 0 ∞ 1
Taking into consideration the result found for the imaginary part of the integral, the following couples:

{ 𝑎 𝑘 = 1 2 𝑏 𝑘 ∈ ℝ
We've got: Suppose that 𝑦 𝑘 = 𝑧 𝑘 + 𝜀 𝑘 𝑒 𝑖𝛿 𝑘 and 𝑦 𝑘 = 𝑧 𝑘 + 𝜀 𝑘 𝑒 -𝑖𝛿 𝑘 are also zeros of ℶ(𝑧), so we have:

ℶ(𝑧) = ℶ 𝑧 𝑘 (𝑧) ∏ (1 - 𝑧 |𝑦 𝑘 | 2 (𝑦 𝑘 + 𝑦 𝑘 -𝑧)) ∞ 𝑘=1 𝑔 * (𝑧(1 -𝑧)) (18.) with ℶ 𝑧 𝑘 (𝑧) = ∏ (1 - 𝑧 |𝑧 𝑘 | 2 (1 -𝑧)) ∞ 𝑘=1
And 𝑔 * is holomorphic and does not cancel out for 𝑦 𝑘 , 𝑧 𝑘 , and their conjugates.

ℶ(1 -𝑧) = ℶ 𝑧 𝑘 (1 -𝑧) ∏ (1 - (1 -𝑧) |𝑦 𝑘 | 2 (𝑦 𝑘 + 𝑦 𝑘 -(1 -𝑧))) 𝑔 * (𝑧(1 -𝑧)) ∞ 𝑘=1 As ℶ 𝑧 𝑘 (1 -𝑧) = ℶ 𝑧 𝑘 (𝑧) then: ℶ(1 -𝑧) = ℶ 𝑧 𝑘 (𝑧) ∏ (1 - 𝑦 𝑘 + 𝑦 𝑘 -1 |𝑦 𝑘 | 2 - 𝑧 |𝑦 𝑘 | 2 (1 -𝑦 𝑘 -𝑦 𝑘 + 1 -𝑧)) 𝑔 * (𝑧(1 -𝑧)) ∞ 𝑘=1
And.

ℶ(1 -𝑧) = ℶ(𝑧) ⇔ 𝑦 𝑘 + 𝑦 𝑘 -1 = 0

So 𝑧 𝑘 + 𝜀 𝑘 𝑒 𝑖𝛿 𝑘 + 𝑧 𝑘 + 𝜀 𝑘 𝑒 -𝑖𝛿 𝑘 -1 = 0 that is,

𝜀 𝑘 𝑒 𝑖𝛿 𝑘 + 𝜀 𝑘 𝑒 -𝑖𝛿 𝑘 = 0 Which is impossible since 𝜀 𝑘 ≠ 0
Therefore the hypothesis of zeros outside the critical axis leads to a contradiction in relation to the symmetries of function ℶ(𝑋) in the critical band.

There are no zeroes outside the axis ℜ(𝑧 𝑘 ) = 1/2.

C-Conclusion

We have demonstrated:

-that the holomorphic function ℶ(𝑠) had the same zeros as the function ℵ(s) which is an analytical extension of Riemann's 𝜁(𝑠) function because

ℵ(s) = 1 Γ( 𝑠 2 +1) 𝜋 𝑠 2 2(𝑠-1) ℶ(s).
This result well known by the mathematical world, served us to find a holomorphic function simpler to exploit at the roots.

-using the squeeze theorem on the integral form of the Riemann function, we show that there are a pairs (𝑎 𝑘, 𝑏 𝑘 ) that are zeros of the Riemann function and these zeros are on the line 𝑠 = 1 2 + 𝑖𝑡 -as Hadamard and La Vallée-Poussin (2) have each proved that no zero of the analytical extension of the Zeta function could be found on the line Re(s)= 1, and therefore that all nontrivial zeroes must be in the interior of the critical band. -we have been hypothesis that if there were zeros, 𝑦 𝑘 = 𝑧 𝑘 + 𝜀 𝑘 𝑒 𝑖𝛿 𝑘 , in the critical band, with 0 < 𝜀 𝑘 < 1 2

, then this hypothesis leads to a contradiction. We used the Weierstrass's factorization theorem of holomorphic functions for ℶ(𝑠), and applying functional relationship of symmetry, ℶ(1 -𝑧) = ℶ(𝑧) , to demonstrate contradiction. Therefore, all non-trivial zeroes of ℶ are non-trivial zeroes of the analytical extension of the function 𝜁 and have a real part A numerical integration by Rombert's method with order precision 5 and 20 iterations, we find the results of the complete system (16.) with an error of. 

  = 𝐵 2𝑀+1 (𝑥 -𝐸(𝑥)) is a 1-periodic function 𝐵 𝑛 (𝑥), called the p-th Bernoulli polynome and 𝑏 𝑛 = 𝐵 𝑛 (0), called the p-th number of Bernoulli.

  function is holomorphic.Therefore, the function ℵ(s) included the same trivial zeroes as the zeroes of function 𝑘), 𝑘 ∈ ℕ which are whole negative pairs.

  0) are des trivial solutions ℑ(ℶ(0)) = ℑ(ℶ(1are non-trivial zeroes. As a result, we have shown that there are non-trivial zeroes on the critical axis ℜ(

  noted 𝑧 𝑘 = 𝑎 𝑘 + 𝑖𝑏 𝑘 check the equation systems below

  We note 𝑅(𝑎 𝑘, 𝑏 𝑘 , 𝑢) the real part of the product 𝑧 𝑘 (𝑧 𝑘 -1)𝑐𝑜𝑠ℎ [(𝑧 𝑘 -

	We also have:												
	𝐼(𝑎 𝑘, 𝑏 𝑘 , 𝑢) = (𝑎 𝑘 (𝑎 𝑘 -1) -𝑏 𝑘 2 )𝑠𝑖𝑛ℎ [(𝑎 𝑘 -	1 2	)	ln (𝑢) 2	] sin (𝑏 𝑘	ln(𝑢) 2	)
						+ 𝑏 𝑘 (2𝑎 𝑘 -1)𝑐𝑜𝑠ℎ [(𝑎 𝑘 -	1 2	)	ln (𝑢) 2	] cos (𝑏 𝑘	ln(𝑢) 2	)	.)
	We seek to identify complex 𝑧 𝑘 values that verify the equations (11.) 𝐼(𝑎 𝑘, 𝑏 𝑘 , 𝑢) = √𝑈 2 + 𝑉 2 sin [𝑏 𝑘 ln(𝑢) 2 + 𝜋 2 𝑆𝑖𝑔𝑛(𝑈) -𝑎𝑟𝑐𝑡𝑎𝑛 (	𝑉 𝑈	)]	(13.)
	As, With 𝑈 = 𝑏 𝑘 (2𝑎 𝑘 -1)𝑐𝑜𝑠ℎ [(𝑎 𝑘 -𝑧 𝑘 (𝑧 𝑘 -1) = (𝑎 𝑘 + 𝑖𝑏 𝑘 )(𝑎 𝑘 -1 + 𝑖𝑏 𝑘 ) = 𝑎 𝑘 (𝑎 𝑘 -1) -𝑏 𝑘 2 + 𝑖𝑏 𝑘 (2𝑎 𝑘 -1) 1 2 ) ln (𝑢) 2 ] and 𝑉 = (𝑎 𝑘 (𝑎 𝑘 -1) -𝑏 𝑘 2 )𝑠𝑖𝑛ℎ [(𝑎 𝑘 -1 2 )	ln (𝑢) 2 ]
	and,												
	𝑐𝑜𝑠ℎ [(𝑧 𝑘 -	1 2	)	ln(𝑢) 2 ] = 𝑐𝑜𝑠ℎ [(𝑎 𝑘 -	1 2	+ 𝑖𝑏 𝑘 )	ln(𝑢) 2 ]
	= 𝑐𝑜𝑠ℎ [(𝑎 𝑘 -	1 2	)	ln (𝑢) 2	] cos (𝑏 𝑘	ln(𝑢) 2	) + 𝑖𝑠𝑖𝑛ℎ [(𝑎 𝑘 -	1 2	)	ln (𝑢) 2	] sin (𝑏 𝑘	ln(𝑢) 2	)
														1 2	)	ln (𝑢) 2	]
	And 𝐼(𝑎 𝑘, 𝑏 𝑘 , 𝑢)the imaginary part of the product 𝑧 𝑘 (𝑧 𝑘 -1)𝑐𝑜𝑠ℎ [(𝑧 𝑘 -	1 2	)	ln (𝑢) 2	]
	We've got:												
	𝑅(𝑎 𝑘, 𝑏 𝑘 , 𝑢) = (𝑎 𝑘 (𝑎 𝑘 -1) -𝑏 𝑘 2 )𝑐𝑜𝑠ℎ [(𝑎 𝑘 -	1 2	)	ln (𝑢) 2	] cos (𝑏 𝑘	ln(𝑢) 2	)
						-𝑏 𝑘 (2𝑎 𝑘 -1)𝑠𝑖𝑛ℎ [(𝑎 𝑘 -	1 2	)	ln (𝑢) 2	] sin (𝑏 𝑘	ln(𝑢) 2	)
	From this expression, we obtain, because of property of 𝐴𝑐𝑜𝑠 [𝑏 𝑘	ln (𝑢) 2	] + 𝐵𝑠𝑖𝑛ℎ [𝑏 𝑘	ln (𝑢) 2 ],
	𝑅(𝑎 𝑘, 𝑏 𝑘 , 𝑢) = √𝐴 2 + 𝐵 2 sin [𝑏 𝑘		ln(𝑢) 2	+	𝜋 2	𝑆𝑖𝑔𝑛(𝐴) -𝑎𝑟𝑐𝑡𝑎𝑛 (	𝐵 𝐴	)]	(12.)
	With 𝐴 = (𝑎 𝑘 (𝑎 𝑘 -1) -𝑏 𝑘 2 )𝑐𝑜𝑠ℎ [(𝑎 𝑘 -	1 2	)	ln (𝑢) 2	] and 𝐵 = -𝑏 𝑘 (2𝑎 𝑘 -1)𝑠𝑖𝑛ℎ [(𝑎 𝑘 -	1 2	)	ln (𝑢) 2 ]
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	𝑏 1	14.13472
	𝑏 2	21.02203
	𝑏 3	25.01085
	𝑏 4	30.42487
	𝑏 5	32.93506

Therefore the equation (15.) is written:

and 𝑏 𝑘 is a solution of the equation (16.).

So there is an infinity of zeroes on the critical axis of the

We show that these zeroes are all on the critical axis Assumptions: Suppose there are zeroes outside the critical axis and in the critical band.

These zeros are written from the existing zeros on the critical line: with

We know that all

is holomorph in ℂ, thus being an entire function.

Weierstrass's factorization theorem (6 9) states that any entire function can be represented by an infinite polynomial product with its zeroes. There is g holomorph in ℂ that does not cancel in 𝑧 𝑘 and 𝑧 𝑘 such as:

We check that the 𝑧 𝑘 and 𝑧 𝑘 are zeros of, ℶ(𝑧), the function verifies ℶ(1 -𝑧) = ℶ(𝑧) ℶ(𝑧) = ℶ(𝑧)