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Domain decomposition methods to model heat
exchanges between a well and a rock mass

R. Masson∗, L. Jeannin†F. Louvet ‡A. Vuddamalay §

February 19, 2020

Abstract

This paper focuses on the modelling of heat transfer between fluid flowing in a
well and the surrounding rock mass and proposes an efficient domain decomposition
approach to solve this problem. The importance of such a method is illustrated by
the study of the modelling of underground gas storage in salt caverns.

1 Introduction

Gas underground storage in salt caverns is a mature technique, which ensures flexi-
bility on the gas network and supplies security during the winter season. These caverns
built by leaching behave as pressure vessels and may deliver high flow rates on demand.
Natural gas is injected during summer and withdrawn during winter. Evolution of the gas
market in the last few years, however, has changed the way the caverns were operated.
They are now used more often with shorter cycles lasting a month, a week or less. In
this context, it becomes very important to know and predict the thermodynamic state
of gas at the wellhead and in the cavern. Modelling is used, on one hand, to predict the
storage performance and improve its exploitation (to determine gas volume, hydrate risk,
etc...) and on the other hand, to design surface facilities [18, 3, 17] during preliminary
development studies. This last point also concerns storage of other gas such as H2, that
may be produced by electrolysis [21]. During operations, models are history-matched with
available thermodynamic data (at the wellhead and in the cavern when available).

In this paper, we focus on the thermal modelling aspects of salt caverns operations
and mainly on the numerical modelling of heat exchanges between the well and the rock
mass nearby. Heterogenoeus domain decomposition methods (see e.g. [22], [10]) are
investigated to couple at the well boundary the thermal evolution of a 1D well model with
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the surrouding 3D rock domain. These algorithms solve successively the well and rock
mass subproblems until convergence to the fully coupled solution, the term heterogeneous
refering to the fact that both subproblems are here of different types. Compared with a
monolithic fully coupled Newton type algorithm, domain decomposition approaches have
the advantage to be modular and to allow the use of efficient off-the-shelf solvers in each
subdomain.

The convergence rate of domain decomposition methods depends crucially on the
boundary conditions applied at the interface between both subdomains. In this work,
we investigate Robin-Robin optimized Schwarz domain decomposition methods based on
Robin boundary conditions for both subproblems [20, 13, 12, 11]. It will be compared
with the more usual Dirichlet Neumann domain decomposition algorithm based on a
Dirichlet boundary condition on the rock mass subproblem combined with a Neumann
boundary condition on the well subproblem. The choice of the Robin coefficients as well
as of the relaxation parameter for the Dirichlet Neumann algorithm are investigated both
theoritically and numerically in order to improve the convergence rate of the domain
decomposition algorithms.

Heterogeneous domain decomposition methods have previously been used to couple
different physical models at the interface between subdomains. For example, let us refer
to [7], [4], [8] for the coupling of a Darcy flow with a Stokes or Navier-Stokes free flow,
to [2] for the coupling of non-isothermal liquid gas Darcy and free gas flows, and to [14]
for the coupling of Helmholtz and Laplace Equations. Let us also refer to [1] and [23]
for Robin-Robin domain decomposition methods developped for the nonlinear Richards
equation modelling partially saturated flow in porous media.

The present work differs by the specific nature of the submodels and in particular by
the different spatial dimensions of each subdomain. A specific and simple choice of the
Robin coefficients will be shown to provide a very efficient convergence for this class of
coupled models and for a large range of physical and numerical parameters.

The remainder of this paper is organized as follows. Section 2 presents the physical
model describing fluid flow in the well and heat exchange with the surrounding rock
mass. The next section investigates theoretically and numerically the convergence of the
two domain decomposition methods for the well problem on a simplified linear case. For
both algorithms, specific choices of the parameters are discussed in order to optimize the
convergence of the algorithms. Numerical performance of both algorithms is evaluated.
Finally, we consider the full problem of a cavern with a well and analyze the importance
of heat exchange on synthetic cases and real data.

2 Modelling of thermodynamical gas behaviour of

salt caverns

Underground gas storages in salt are connected to the surface through a well. During
injection, gas is injected at the wellhead at a known flow rate and temperature and will
flow downward through the well tubing into the cavern, which is generally at a few hundred
meters to thousand meters depth. During withdrawal, gas is produced from the cavern
at a given flow rate through the well.
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Let ωwell denote the disk of R2 with radius rw and centre the origin representing
the section of the well. The well is assumed vertical; it is a cylindrical domain Ωwell =
ωwell × (0, L). We denote by z the vertical coordinate oriented downward.

The surrounding rock domain is also assumed cylindrical to fix ideas although this
assumption is not essential in what follows. It is denoted by Ωrock = ωrock × (0, L) with
the rock section ωrock = ω \ωwell where ω ⊃ ωwell is a simply connected domain of R2 (Fig.
1).

In the following, we denote by (r, θ, z) the cylindrical coordinates with respect to the
well axis. The simulation time interval is denoted by (0, tf ) with tf > 0.

2.1 Well flow

We consider a one dimensional flow along the well which satisfies the following equations:
-gas equation of state

P

ρ
= Z r Tff (1)

P denotes the gas pressure, Tff the gas temperature, Z(P, Tff) the compressibility factor,
ρ(P, Tff) the gas density in the well, and r = R

Mg
with R the ideal gas constant and Mg

the gas molar mass.
-mass conservation

Mass flow rate is assumed constant along the well. In other words, we consider charac-
teristic time greater than the propagation time of an acoustic wave along the well. With
πr2

w the well section, Q the mass flow rate and u the gas velocity, it becomes:

u =
Q

ρπr2
w

(2)

u and Q are assumed to be positive for injection and negative for withdrawal.
-momentum conservation

The velocity in the well is solution of the 1D momentum equation along the well, account-
ing for gravity and the pressure drop

ρ
Du

Dt
= −∂P

∂z
+ ρg − sgn(u)

λ

2rw
ρ
u2

2

where λ is a friction coefficient estimated by the Colebrook [5, 6] and D
Dt

= ∂
∂t

+ u ∂
∂z

.
-energy conservation in the well.

Combining energy conservation and momentum conservation for the gas flow, we deduce
the following equation:

ρ
De

Dt
= −P ∂u

∂z
+

2

rw
φ+ φv,

where e is the gas internal energy per mass unit, φ the heat flux at the wellbore accounting
for convection and turbulence and φv the dissipation rate related to viscous effect.
Note that the average gas speed u is in the range 1-15 m.s−1, thus gas flow is turbulent.
This equation takes the following form:

ρcgv
DTff

Dt
− Tff

∂P

∂Tff

|ρ
u

ρ

∂ρ

∂z
=

2

rw
φ+ φv,
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with

φv = −sgn(u)
λ

D
ρ
u3

2
,

and

φ =
1

2π

∫ 2π

0

h(Twall(θ, z, t)− Tff(z, t))dθ,

cgv is gas heat capacity of the gas at constant volume per unit of mass. Twall(θ, z, t) denotes
the temperature on the wellbore, at the interface between the well and the rock mass.

h is the heat convective transfer coefficient given by:

h = max(
λg
rw
,
λg
2rw

Nu) (3)

where λg is the gas conductivity and Nu the Nusselt Number, which is estimated by the
valid correlation for gas Nu = 0.023Re0.8Pr1/3 with Re the Reynolds number and Pr the
Prandtl Number [15].

Figure 1: Axisymmetric diagram of the well-rock mass coupled problem - cavern (dotted
line) will be considered in section 5

2.2 Rock mass surrounding well

Heat exchanges between the surrounding rock mass domain (denoted Ωrock) may not
be neglected. For example, gas may be heated up during withdrawal by the surrounding
rock mass.
In the rock mass, the temperature field Trock verifies the parabolic heat equation on
Ωrock × (0, tf ):

ρrc
r
p

∂Trock

∂t
+ div

(
−λrock∇Trock

)
= 0,

crp is the specific heat capacity of the rock per unit mass, ρr the rock density and λrock the
rock thermal conductivity,
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At the interface between the well and rock domains, the following continuity of the
temperatures and thermal fluxes is prescribed for all (θ, z, t) ∈ (0, 2π)× (0, L)× (0, tf ):

Trock(rw, θ, z, t) = Twall(θ, z, t),

λrock∂rTrock(rw, θ, z, t) = −h
(
Tff(z, t)− Twall(θ, z, t)

)
.

3 Domain decomposition methods applied to the well

- rock mass domains

We analyze in this section two domain decomposition algorithms to solve the coupled
well rock mass model. These methods solve iteratively the well and rock mass subproblems
with transmission conditions chosen in order to obtain well-posed subproblems and to
speed up the convergence to the coupled solution.

To study the convergence rate of the domain decomposition algorithms, we consider a
simplified linear model for which the velocity in the well (and thus the density) is assumed
to be constant (and not obtained from the solution of the 1D momentum equation as
described in section 2). Then, the well energy equation is decoupled from the momentum
conservation and reduces to a linear equation provided that the energy dissipation by
friction is neglected. Note that cgv, h, crp, ρr, and λrock are also assumed to be constant for
this simplified model.

In order to apply a Fourier analysis in the z direction, the well axis is assumed to
be the full line R. For convenience, the rock domain is also assumed unbounded in
the radial direction which is a valid approximation provided that the radius of the rock
domain is large compared with rw. It results that the cylindrical rock domain is defined
in this section by Ωrock = (rw,+∞) × (0, 2π) × R. Assuming an axisymmetric initial
rock temperature, the solution of the coupled problem is axisymmetric. Then, the rock
Trock, well Tff and wall Twall temperatures are solutions of the following linear system of
equations

ρrc
r
p

∂Trock

∂t
(r, z, t) = λrock∆Trock(r, z, t),

ρcgv
∂Tff

∂t
(z, t) + ρcgvu

∂Tff

∂z
(z, t) =

2

rw
φ,

Trock(rw, z, t) = Twall(z, t),

λrock∂rTrock(rw, z, t) = −h
(
Tff(z, t)− Twall(z, t)

)
,

(4)

set on (r, z, t) ∈ (rw,+∞)×R× (0, tf ) and (z, t) ∈ R× (0, tf ), using the fixed gas velocity
u in the well, the coupling term

2

rw
φ = H

(
Twall(z, t)− Tff(z, t)

)
with H =

2h

rw
,

and given initial conditions for Trock and Tff .
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The model is discretized in time using an Euler implicit integration scheme. Still
denoting by Trock, Twall, Tff the current time step temperatures and by T̃rock, T̃ff the
previous time step (or initial) rock and well temperatures, the semi-discrete system set
on (r, z) ∈ (rw,+∞)× R in the rock domain and on z ∈ R along the well reads:

(η − λrock∆)Trock(r, z) = ηT̃rock(r, z),

ηgTff + ρcgvu(Tff)′(z) + H
(
Tff(z)− Twall(z)

)
= ηgT̃ff ,

Trock(rw, z) = Twall(z),

λrock∂rTrock(rw, z) = −h
(
Tff(z)− Twall(z)

)
,

(5)

with the current time step ∆t, and

η =
ρrc

r
p

∆t
, ηg =

ρcgv
∆t

.

3.1 Dirichlet Neumann algorithm

Let us consider the Dirichlet (on the rock side) Neumann (on the well side) domain
decomposition algorithm, which updates (T n−1

wall , T
n−1
rock ) at iteration n−1 ≥ 0 by (T nwall, T

n
rock)

at iteration (n).
This algorithm solves the rock mass subproblem by imposing a Dirichlet temperature
boundary condition at the wellbore given by the wall temperature of the well subproblem
solution at the previous iteration (or by the wall temperature at the previous time step for
n = 0). The thermal flux at the wellbore deduced from the rock subproblem solution is
then imposed, as a Neumann boundary condition, to solve the well subproblem. In order
to provide a more robust convergence, the Dirichlet Neumann algorithm classically needs
to be relaxed (see e.g. [10]) using a relaxation parameter θ ∈]0, 1] as specified below.
More specifically, the algorithm computes, at each iteration n, the solution T nrock of the
the rock subproblem (η − λrock∆)T nrock = ηT̃rock on rw,+∞)× R,

T nrock(rw, z) = T n−1
wall (z), z ∈ R,

(6)

followed by the solution Tnff and Tnwall of the well subproblem
ηgTnff(z) + ρcgvu(Tnff)′(z) +H

(
Tnff(z)− Tnwall(z)

)
= ηgT̃ff , z ∈ R,

h
(
Tnff(z)− Tnwall(z)

)
= −λrock∂rT

n
rock(rw, z), z ∈ R,

(7)

and the relaxation step

T nwall(z) = θ Tnwall(z) + (1− θ)T n−1
wall (z), z ∈ R. (8)
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3.1.1 Convergence rate

In order to study the convergence rate of this Dirichlet Neumann algorithm, we can
assume, from the linearity of the equations, that T̃rock = 0 and T̃ff = 0. Then, starting
from an arbitrary temperature error T 0

wall, the temperatures T nwall, T
n
rock represent the

errors at iteration n. Following for example [10], the Fourier transform is applied in the
z direction to the system (6)-(7)-(8) leading to the following transformed system

∂2T̂ nrock

∂r2
(r, k) +

1

r

∂T̂ nrock

∂r
(r, k)− (k2 +

η

λrock

)T̂ nrock(r, k) = 0,

T̂ nrock(rw, k) = T̂ n−1
wall (k),

(9)



(ηg + ikρcgvu)T̂nff)(k) +H
(
T̂nff(k)− T̂nwall(k)

)
= 0,

h
(
T̂nff(k)− T̂nwall(k)

)
= −λrock∂rT̂

n
rock(rw, k),

T̂ nwall(k) = θT̂nwall(k) + (1− θ)T̂ n−1
wall (k),

(10)

The solution T̂ nrock of the first equation in (9) bounded for r → +∞ is expressed in
terms of the second kind modified Bessel function Km with m = 0 as follows:

T̂ nrock(r, k) = An(k)K0(µ(k)r), (11)

with

µ(k) =

√
η

λrock

+ k2.

From the relation K ′0(x) = −K1(x), we note that

λrock∂rT̂
n
rock(rw, k) = −An(k)λrockµ(k)K1(µ(k)rw).

The Dirichlet Neumann algorithm then reduces to:

K0(µ(k)rw)An(k) = T̂ n−1
wall (k),(

ηg + ikρcgvu
)
T̂nff(k) +H(T̂nff(k)− T̂nwall(k)) = 0,

− h(T̂nff(k)− T̂nwall(k)) = −λrockµ(k)K1(µ(k)rw)An(k),

T̂ nwall(k) = θT̂nwall(k) + (1− θ)T̂ n−1
wall (k),

from which we deduce the following Fourier symbol of the iteration operator:

GDN(k) = (1− θ)− θD̂tN rock(k)

D̂tNff(k)

such that
T̂ nwall(k) = GDN(k)T̂ n−1

wall (k),
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with

D̂tN rock(k) = λrockµ(k)
K1(µ(k)rw)

K0(µ(k)rw)
,

D̂tNff(k) =
ηg + ikcgvu

H + ηg + ikcgvu
h.

The function D̂tN rock(k) actually matches with the Fourier symbol of the rock subdomain
Dirichlet Neumann operator defined by

g → DtNrock(g) = −λrock∂rTrock(rw, .), (12)

where Trock is the solution of the equation

(η − λrock∆)Trock = 0 on (rw,+∞)× R,
Trock(rw, z) = g(z), z ∈ R. (13)

This can be checked applying the Fourier transform in the z direction to (12)-(13) and
using again the solution (11).

Likewise, D̂tNff(k) matches with the Fourier symbol of the Dirichlet Neumann oper-
ator in the well subdomain defined by

g → DtNff(g) = h
(
Twall − Tff

)
, (14)

with (Tff , Twall) solutions of the equation

ηgTff(z) + cgvu(Tff)′(z) +H
(
Tff(z)− Twall(z)

)
= 0,

Twall(z) = g(z), z ∈ R.
(15)

This is also easily checked by applying the Fourier transform in the z direction to (14)-(15).

3.1.2 Choice of the relaxation parameter

The convergence of the Dirichlet Neumann algorithm will be obtained for a given frequency
k if |GDN(k)| < 1. The relaxation parameter θ ∈]0, 1] should then be optimized to
minimize the function

fDN(θ) = max
k∈(0,kmax)

|GDN(k)|,

with kmax depending on the spatial discretization along the well and typically given by
kmax = π

∆z
where ∆z is the spatial discretization step along the well assumed to be uni-

form. The optimal choice of θ seems difficult to compute analytically. A suboptimal but
simple choice of the relaxation parameter θ can be obtained by imposing that GDN(0) = 0,
leading to

θ =
1

1 +
D̂tN rock(0)

D̂tNff(0)

=
1

1 + (
H + ηg

hηg
)
K1(rw

√
η

λrock
)

K0(rw
√

η
λrock

)

√
ηλrock

. (16)
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3.2 Robin Robin optimized Schwarz algorithm

Let us consider the Robin Robin Schwarz algorithm [13, 12, 11] with Robin coefficients
βrock ≥ 0 and βff ≥ 0, βrockβff 6= 0, which updates the temperatures (T n−1

ff , T n−1
wall , T

n−1
rock ) at

iteration n−1 ≥ 0 by the temperatures (T nff , T
n
wall, T

n
rock). They are defined by the solution

T nrock of the following rock subproblem with Robin condition at the well boundary:
(η − λrock∆)T nrock = ηT̃rock on (rw,+∞)× R,

βffT
n
rock(rw, z)− λrock∂rT

n
rock(rw, z) = βffT

n−1
wall (z) + h

(
T n−1

ff (z)− T n−1
wall (z)

)
, z ∈ R,

(17)
followed by the solution (T nff , T

n
wall) of the following well subproblem with Robin wall

boundary condition:
ηgT nff (z) + ρcgvu(T nff )′(z) +H

(
T nff (z)− T nwall(z)

)
= ηgT̃ff(z), z ∈ R,

βrockT
n
wall(z)− h

(
T nff (z)− T nwall(z)

)
= βrockT

n
rock(rw, z) + λrock∂rT

n
rock(rw, z), z ∈ R.

(18)

3.2.1 Convergence rate

The convergence analysis proceeds as previously, setting that T̃rock = 0 and T̃ff = 0 and
applying the Fourier transforms in the z direction to the system (17)-(18). Using the
Bessel function solution (11) in the rock subdomain, we obtain that(
βffK0(µ(k)rw) + λrockµ(k)K1(µ(k)rw)

)
An(k) = βff T̂

n−1
wall (k) + h

(
T̂ n−1

ff (k)− T̂ n−1
wall (k)

)
,

(
ηg + ikρcgvu

)
T̂ nff (k) +H

(
T̂ nff (k)− T̂ nwall(k)

)
= 0,

βrockT̂
n
wall(k)− h

(
T̂ nff (k)− T̂ nwall(k)

)
=
(
βrockK0(µ(k)rw)− λrockµ(k)K1(µ(k)rw)

)
An(k),

where T̂ nrock, T̂ nff , T̂ nwall represent respectively the rock, well and wall Fourier transforms of
the temperature errors at iteration n. It results that the Fourier symbol GRR(k) of the
Robin Robin algorithm iteration operator, defined by

An(k) = GRR(k)An−1(k),

is given by

GRR(k) =
βrock − D̂tN rock(k)

βff + D̂tN rock(k)
× βff − D̂tNff(k)

βrock + D̂tNff(k)
.

3.2.2 Choice of the Robin coefficients

The parameters βrock and βff should be optimized to minimize the function

fRR(βrock, βff) = max
k∈(0,kmax)

|GRR(k)|. (19)
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The analytical solution of this min max problem seems difficult to compute analytically,
and a numerical computation is not convenient to implement. In the spirit of [2], we
propose below a suboptimal, but simple choice. Let us choose for βrock the so called

Taylor 0th order approximation of D̂tN rock which is exact for the lower frequency k = 0
ie

βrock = D̂tN rock(0) =
K1(rw

√
η

λrock
)

K0(rw
√

η
λrock

)

√
ηλrock.

Assuming that
ηg + |k|cgvu >> H,

the choice of the Robin coefficient
βff = h,

provides a good approximation of the Dirichlet Neumann operator D̂tNff in the well do-
main. These choices of the Robin coefficients ensure a good compromise between the low
and high frequencies (Fig. 2 and 3) since it results:

- from βrock = D̂tN rock(0) that GRR(0) = 0
- from βff = h that lim|k|→+∞ |GRR(k)| = 0.

To fix ideas, let us remark that if rw >> 1√
η

λrock

, in the limit of a planar interface

rather than a cylindrical interface, the following simpler expression is obtained for the
Robin coefficients:

βrock =
√
ηλrock and βff = h.

As will be shown in the next section, for small radius rw, like in our application, this “pla-
nar interface” approximation leads to a clearly slower convergence than the one obtained
by taking into account the Bessel correction.

3.2.3 Alternative choice to βff = h

The choice βff = h presents the disavantage that it is not robust in the limit of very small
or vanishing velocity u combined with very large time steps. This issue is easy to solve

using the following alternative choice of βff as the minimizer of |βff − D̂tNff(kmax)| which
is defined by

βff = β
(1)
ff =

( rw
2
ρcgvu)2 k

2
max

h
+ ηg r

w

2
(1 + ηg rw

2
)

( rw
2
ρcgvu)2 k

2
max

h2 + (1 + ηg rw
2

)2.

Compared with the choice βff = h, it has the advantage to ensure that the convergence
rate vanishes for the trivial case u = 0.

3.2.4 Interpretation and generalization of βrock = D̂tN rock(0)

The choice βrock = D̂tN rock(0) has the key asset to extend readily to the case of non ax-
isymmetric and bounded rock domain geometry with general outer boundary conditions.
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This extension can also account for heterogeneous rock thermal conductivity, and for the
specific spatial discretization used in the rock domain. The idea is to come back to the

definition of D̂tN rock(0) in the physical space. From its definition (12)-(13), it amounts
to compute using the rock domain discretization, the temperature Trock solution of

(η − λrock∆)Trock = 0, on Ωrock,
Trock(rw, θ, z) = 1, (θ, z) ∈ (0, 2π)× (0, L),

(20)

using a Dirichlet condition of 1 at the well boundary and homogeneous boundary condi-
tions at the remaining boundaries (of the same type than the rock model but homoge-
neous). Then, we set

βrock(θ, z) = −λrock∂rTrock(rw, θ, z). (21)

This approximation hence requires the solution of the linear reaction diffusion problem
(20) using the rock domain discretization at the cost of say 1 iteration of the algorithm.
It has to be recomputed each time the time step is changing.

3.3 Numerical investigation of the convergence rates of the Dirich-
let Neumann and Robin Robin algorithms

In this subsection, we consider the fixed gas pressure P = 100 bar and temperature
T = 30 oC along the well. The gas density ρ = ρ(P, T ) is given by the perfect gas equation
of state setting Z = 1 and using the gas molar mass Mg = 0.016 kg.mol−1 in (1). We
consider a fixed normal flow rate along the well

Qn = Q
ρn

3600ρ
,

in normal m3 (nm3) per hour with ρn = ρ(Patm, Tatm), Patm = 105 Pa, Tatm = 27 oC,
from which one can deduce the gas velocity u from (2) with rw = 0.05 m. The gas
heat convective transfer coefficient h is defined by (3) with λg = 0.0402 W.m−1.K−1,

the Nusselt correlation Nu = 0.022 Re0.8 Pr0.6, Re = 2rwQ
µg

, Pr = cgvµg
λg

with cgv = 1770

J.K−1.kg−1, µg = 12.43 10−6 Pa.s. In the rock mass, we set λrock = 3 W.m−1.K−1, crp = 800
J.K−1.kg−1, ρr = 2000 kg.m−3.

The following test cases investigate the convergence rates of the Robin Robin and
Dirichlet Neumann algorithms depending on the normal flow rateQn in the range [0, 150000]
nm3.h−1 and the time step ∆t in the range [0.5 h, 1 year]. The maximum frequency
kmax = π

∆z
is computed given a well lengh L = 1500 m and N = 200 uniform space steps

of size ∆z = L
N

.

Figures 2 and 3 exhibit clearly that the Robin Robin algorithm is much more efficient
than the Dirichlet Neumann algorithm and provides a very good contraction property.
On the other hand, the Dirichlet Neumann algorithm provides a very poor contraction
property and is not robust with respect to the physical parameters. This is an expected
behavior of the Dirichlet Neumann algorithm for subproblems with highly contrasted
geometries and physical properties as this is the case here.
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Figure 2: Both |GRR(k)| and |GDN(k)| (top) and 1 − |GDN(k)| (bottom) as a function
of k ∈ [0, kmax] obtained with Qn = 30000 nm3.h−1, ∆t = 6 h and with βff = h, βrock =

D̂tN rock(0), θ given by (16). Note that |GRR(0)| = |GDN(0)| = 0.

Figure 3: Both |GRR(k)| and |GDN(k)| (top) and 1 − |GDN(k)| (bottom) as a function
of k ∈ [0, kmax] obtained with Qn = 150000 nm3.h−1, ∆t = 30 days and with βff = h,

βrock = D̂tN rock(0), θ given by (16). Note that |GRR(0)| = |GDN(0)| = 0.

Figures 4 and 5 compare our choices of the Robin coefficients with the ones obtained
by a numerical approximation of the min-max problem

(βrock, βff) = argmax(βrock≥0,βff≥0)fRR(βrock, βff).

This numerical approximate solution is obtained using a nonlinear optimisation algorithm

starting from the initial guess given by (βrock = D̂tN rock(0), βff = h) or by (βrock =

D̂tN rock(0), βff = β
(1)
ff ) and retaining the best of the two solutions.

For the normal flow rates Qn = 30000 nm3.h−1 and Qn = 150000 nm3.h−1 , Figure 4
exhibits a typical behavior of the min-max solution characterized by an equi-oscillation of
|GRR(k)| between |GRR(0)| and |GRR(kmax)|. This is clearly not the case for our choices

since βrock = D̂tN rock(0) ensures that |GRR(0)| = 0. We note however that the values of
maxk∈(0,kmax) |GRR(k)| are very close for the three choices of the Robin coefficients and
for both test cases with Qn = 30000 nm3.h−1 and Qn = 150000 nm3.h−1. As exhibited in
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Figure 4: |GRR(k)| as a function of k ∈ [0, kmax] obtained with the Robin coefficients given

by a numerical approximation of the min-max problem, by the choice βrock = D̂tN rock(0),

βff = h (denoted DtN0-h) and by the choice βrock = D̂tN rock(0), βff = β
(1)
ff (denoted

DtN0-β
(1)
ff ). The data set is defined by Qn = 150000 nm3.h−1 and ∆t = 30 days (top),

Qn = 30000 nm3.h−1 and ∆t = 6 h (middle), and by Qn = 1 nm3.h−1 and ∆t = 360 days
(bottom).

Figures 4 and 5, the choice βff = β
(1)
ff provides, as expected, for vanishing or very small

normal flow rates combined with very large time steps, a much better convergence rate
than the one obtained with the choice βff = h. In practice such large time steps are not
used which motivates that the simpler choice βff = h is prefered in the next sections.

Figure 5 shows that the simple choices βrock = D̂tN rock(0), βff = h and βrock =

D̂tN rock(0), βff = β
(1)
ff for very small flow rates and very large time steps provide very

competitive convergence rates compared with our numerical approximation of the min-
max problem. This holds for the full range of normal flow rates and time steps used in
practice.

4 Applications to the well problem

The well problem presented in section 2 has been discretized using a finite volume
discretization. The velocity in the well is not imposed but obtained from the solution of
the 1D momentum equation. Fluid flow problem may easily be reduced to two equations,
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Figure 5: Convergence rate (defined as the maximum of |GRR(k)| in k ∈ [0, kmax]) as a
function of the normal flow rate Qn for the Robin coefficients obtained by a numerical

approximation of the min-max problem (min-max), by the choice βrock = D̂tN rock(0),

βff = h (denoted DtN0-h), and by the choice βrock = D̂tN rock(0), βff = β
(1)
ff (denoted

DtN0-β
(1)
ff ). The curves are plotted from bottom to top for the following values of the

time step: ∆t = 0.5 h, 6 h, 1 day, 1 month, 1 year. Note that the convergence rate for
Qn = 0 for the first and last cases is not plotted due to the log scale since it is vanishing.

derived from momentum and energy balance equation, depending on pressure and tem-
perature in the well. The solution of the momentum equation and the energy balance
equation are splitted in time. The Robin Robin and the Dirichlet Neumann algorithms
for the time dependent problem have been implemented both for axisymmetric meshes
and 3D radial meshes of the rock domain.

For the sake of clarity, we recall in the next section the finite volume discretization
for axisymmetric meshes in the linear case studied in section 3 with a constant velocity
u ≥ 0 and constant density ρ, and we discuss a possible implementation of the domain
decomposition algorithm.

4.1 Finite Volume Two Point Flux discretization for the axisym-
metric model

We consider the following Cartesian mesh of the domain (rw, rmax) × (0, L) defined
by
ri+1/2, i = 0, · · · , Nr such that r1/2 = rw and rNr+1/2 = rmax, and by zj+1/2, j = 0, · · · , Nz

such that z1/2 = 0 and zNz+1/2 = L.
Let us set

ri =
ri−1/2 + ri+1/2

2
for i = 1, · · · , Nr,

and

zj =
zj−1/2 + zj+1/2

2
for j = 1, · · · , Nz.
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It is also convenient to set r0 = rw, rNr+1 = rmax and z0 = 0, zNz+1 = L.

The set of cells K ∈M of the mesh is defined by

M = {Ki,j = (ri−1/2, ri+1/2)× (zj−1/2, zj+1/2), i = 1, · · · , Nr, j = 1, · · · , Nz},

and we define their volume by |Ki,j| = (zj+1/2− zj−1/2)π(r2
i+1/2− r2

i−1/2). The set of faces
σ ∈ F of the mesh is defined by

F =
{
σi+1/2,j = {ri+1/2} × (zj−1/2, zj+1/2), i = 0, · · · , Nr, j = 1, · · · , Nz

}
∪
{
σi,j+1/2 = (ri−1/2, ri+1/2)× {zj+1/2}, i = 1, · · · , Nr, j = 0, · · · , Nz

}
.

For σ = σi+1/2,j we define the face surface and transmissibility

|σ| = 2πri+1/2(zj+1/2 − zj−1/2), τσ = λrock
|σ|

ri+1 − ri
,

and likewise for σ = σi,j+1/2 we define

|σ| = π(r2
i+1/2 − r2

i−1/2), τσ = λrock
|σ|

zi+1 − zi
.

We also denote by Fint the set of interior faces, and we set

Fext =
{
σNr+1/2,j = {rNr+1/2} × (zj−1/2, zj+1/2), j = 1, · · · , Nz

}
,

and
Fwell =

{
σ1/2,j = {r1/2} × (zj−1/2, zj+1/2), j = 1, · · · , Nz

}
.

Note that each face σ = σ1/2,j ∈ Fwell is associated to a unique well cell j for all j =
1, · · · , Nz. The volume of the well cell j is denoted by

Vj = πr2
w(zj+1/2 − zj−1/2).

For all interior faces σ ∈ Fint we set σ = KL meaning that the face is at the interface
between cells K and L. Also, we denote by FK ⊂ F the subset of faces of the cell K ∈M.
Note also that |σ1/2,j| = 2πrw(zj+1/2 − zj−1/2) such that

|σ1/2,j|
Vj

=
2

rw
.

Let be given the Dirichlet boundary conditions TDir,σ for σ ∈ Fext and assume for
simplicity zero flux boundary conditions at the lower and bottom surfaces z = 0 and
z = L. The Robin Robin algorithm solves iteratively the rock domain discrete system
followed by the well discrete model, both using Robin condition at the well boundary.
More specifically, the rock domain system discretizing (17) is defined by the conservation
equation

η|K|T nK +
∑

σ=KL∈FK∩Fint

τσ(T nK − T nL ) +
∑

σ∈FK∩Fext

τσ(T nK − TDir,σ)

+
∑

σ∈FK∩Fwell

τσ(T nK − T nσ ) = η|K|T̃K ,
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in each cell K ∈M, combined with the Robin boundary condition

βff |σ|T nσ + τσ(T nσ − T nK) = βff |σ|T n−1
wall,j + h|σ|(T n−1

ff,j − T
n−1
wall,j) := gn−1

ff,j ,

for all σ = σ1/2,j ∈ Fwell using the right hand sides gn−1
ff,j computed from the well solution

at the previous iteration. The well system discretizing (18) is defined by the conservation
equation

Vjη
g
jT

n
ff,j + (πr2

w)ρcgvu(T nff,j − T nff,j−1) + |σ1/2,j|h(T nff,j − T nwall,j) = Vjη
g
j T̃ff,j,

in each well cell j = 1, · · · , Nz, combined with the Robin condition

βrock|σ1/2,j|T nwall,j − h|σ1/2,j|(T nff,j − T nwall,j) = βrock|σ1/2,j|T nσ1/2,j
− τσ1/2,j

(T nσ1/2,j
− T nK)

:= gnrock,σ1/2,j
,

for all j = 1, · · · , Nz using the right hand sides gnrock,σ1/2,j
computed from the previous

rock domain solution.
The Robin coefficients are defined by

βrock =
K1(rw

√
η

λrock
)

K0(rw
√

η
λrock

)

√
ηλrock, (22)

and
βff = h.

Given a specified tolerance ε, the algorithm is iterated until the stopping criteria Rn ≤ ε
is met with

Rn =

∑Nz
j=1 |T nσ1/2,j

− T nwall,j|∑Nz
j=1 |T nσ1/2,j

|
+

∑Nz
j=1 |∆Φj|∑Nz

j=1 |τσ1/2,j
(T nσ1/2,j

− T nK)|
, (23)

using ∆Φj = τσ1/2,j
(T n+1

σ1/2,j
− T n+1

K )− h|σ1/2,j|(T n+1
ff,j − T

n+1
wall,j).

From the implementation point of view, note that each rock temperature T nσ at the
well faces σ = σ1/2,j ∈ Fwell can be locally eliminated using the Robin condition

βff |σ|T nσ + τσ(T nσ − T nK) = gn−1
ff,j ,

leading to the flux

τσ(T nK − T nσ ) = τσ
βff |σ|T nK − gn−1

ff,j

τσ + βff |σ|
.

It leads to solve a linear system with only the cell unknowns T nK for K ∈ M. Likewise
the wall temperatures T nwall,j are locally eliminated using the Robin condition and right
hand side gnrock,σ1/2,j

leading to

T nwall,j =
h|σ1/2,j|T nff,j + gnrock,σ1/2,j

βrock|σ1/2,j|+ h|σ1/2,j|
.

Note that, in a more general case, the Robin coefficients could depend on the face σ
due to the possible spatial dependence of η or λrock (see the next subsection for details).
The Robin coefficient βrock depends on time as soon as non uniform time steps are used
and it has to be recomputed each time the time step is modified.
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4.2 Numerical tests

We confirm by numerical experiments the results obtained in the Fourier space for
the linear case (section 2).

- As a first example, we have assumed a constant flow rate per day during an injec-
tion sequence of a real gas during twelve days and have evaluated the robustness of each
algorithm for different constant time-steps. The objective is to test the robustness of the
algorithms on a range of flow rates and time steps, that will be used in practice for the
modeling of cavern in operation.
The rock mass is assumed homogeneous with λrock= 5 W.K−1.m−1, cp= 850 J.kg−1.K−1,
ρrock= 2100 kg.m−3. The initial temperature field in the rock mass is T (z) = 20 + 0.029z
in oC (geothermal gradient 29 oC/km). A constant heat flow is imposed at the bottom
of the rock mass model, while surface temperature is assumed constant. A geothermal
temperature profile is additionally imposed on the outer cylindrical surface (model is ax-
isymmetric). The well is 1382 m long with a inner radius is 0.0871 m.
The temperature of the natural gas injected is assumed constant at the wellhead (20 oC)
and the pressure at well bottom is assumed constant (200 bar).

The average number of iterations of domain decomposition for each algorithm has been
reported (Tab. 1 to 5). The time to solution is proportional to the number of domain
decomposition iterations. The numerical results show that Dirichlet Neumann algorithm,
even when relaxed, is not robust (Tab. 4, 5). The most efficient algorithm is the Robin-
Robin algorithm with coefficients βrock and βff estimated on the radial geometry (Tab. 1).
The simplified planar estimation of βrock and βff converges but slowly (Tab. 3).

To quantify the quality of the solution as a function of the time step, we studied the
deviation from the reference solution, chosen as the solution with a time step of 0.5h. The
maximum well-bottom temperature and well-head pressure absolute difference are given
in table 2.

- The next test cases consider the data set already defined in subsection 3.3, but here
extended to a time dependent simulation taking into account variable density and velocity
governed by the momentum and mass conservations coupled to the energy conservation
along the well. The ideal gas is injected with a normal flow rate fixed to Qn = 150000
nm3.h−1 at a temperature T = 30 oC. The well bottom pressure is set to 100 bars. The
temperature at the rock mass outer boundary as well as the initial rock temperature
are both prescribed to T (z) = 27 + 0.03z oC. During the simulation time of 10 years, the
time step increases from an initial time step of 1800 s to a maximum time step of 6 months.

We consider first an axisymmetric simulation with an homogeneous rock thermal con-
ductivity λrock= 3 W.K−1.m−1 and a mesh of size 50×200 of the domain (rw, Rw)× (0, L)
exponentially refined at the well boundary with Rw = 10 m and L = 1500 m. Fig-
ure 6 compares the number of domain decomposition method (denoted DDM) itera-
tions to reach the stopping criteria Rn ≤ ε = 10−8 (see (23)) for the Robin coefficient

βrock =
K1(rw

√
η

λrock
)

K0(rw
√

η
λrock

)

√
ηλrock and for βrock obtained by the numerical solution (21)-(20).
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Flow rate Iter. Iter. Iter. Iter.
(nm3.h−1) dt=.5(h) dt=1(h) dt=6(h) dt=12(h)

0 1 1 1 1
500 4 4 4 4
1000 4 4 4 4
3000 5 5 4 4
6000 5 4 4 4
10000 5 4 4 4
12000 5 4 4 4
15000 5 4 4 3
20000 5 4 3 3
40000 5 4 3 3
80000 4 4 3 3
100000 4 4 3 3
120000 4 3 3 3

Table 1: Number of iterations for different flow rates for Robin Robin domain decompo-
sition with coefficients given by Bessel function - ε =10−8.

Iter. Iter. Iter.
dt=1(h) dt=6(h) dt=12(h)

max ‖T − T.5(h)‖ (oC) 0.086 0.20 0.25

max ‖P − P.5(h)‖ (bar) 0.11 0.47 0.55

Table 2: Maximum well-bottom temperature and well-head pressure absolute difference
with the 0.5(h) solution during the 12 days simulation.

This numerical computation of βrock must be done at each time step in the case of a
variable time stepping and has basically the cost of one DDM iteration. In both cases

Flow rate Iter. Iter. Iter. Iter.
(nm3.h−1) dt=.5(h) dt=1(h) dt=6(h) dt=12(h)

0 1 1 1 1
500 5 5 15 23
1000 4 4 12 15
3000 9 9 16 17
6000 8 8 10 10
10000 7 7 8 7
12000 7 7 8 8
15000 7 7 7 8
20000 6 6 7 7
40000 5 5 5 7
80000 4 4 4 5
100000 4 4 4 4
120000 4 4 4 4

Table 3: Number of iterations for different flow rates for Robin Robin domain decompo-
sition with coefficients given in the planar approximation - ε =10−8.
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Flow rate Iter. Iter. Iter. Iter.
(nm3.h−1) dt =.5(h) dt =1(h) dt =6(h) dt =12(h)

0 n.c. n.c. n.c. n.c.
500 n.c. n.c. n.c. n.c.
1000 n.c. n.c. n.c. n.c.
3000 n.c. n.c. n.c. n.c.
6000 n.c. n.c. n.c. n.c.
10000 n.c. n.c. 18 18
12000 n.c. n.c. 18 15
15000 n.c. 21 14 12
20000 20 18 12 12
40000 13 11 9 9
80000 10 8 7 6
100000 9 8 6 6
120000 8 7 6 6

Table 4: Number of iterations for different flow rates for Dirichlet Neumann domain
decomposition - ε =10−8.

Flow rate Iter. Iter. Iter.
(m3.h−1) dt =.5(h) dt =1(h) dt =6(h)

0 1 1 1
500 51 83 281
1000 52 85 279
3000 198 283 685
6000 200 281 685
10000 203 286 706
12000 204 287 708
15000 205 261 710
20000 205 287 714
40000 210 300 728
80000 219 308 737
100000 193 308 729
120000 191 308 718

Table 5: Number of iterations for different flow rates for relaxed Dirichlet Neumann
domain decomposition - ε =10−8.

we set βff = h. From Figure 6, we see that the numerical computation of βrock presents a
total gain of 154 DDM iterations over the full 98 time steps which amount to a net gain
of say 56 DDM iterations compared with the analytical formula.

Figure 7 considers a 3D radial mesh of size 50 × 50 × 200 of the rock mass domain
(rw, Rw) × (0, 2π) × (0, L), Rw = 10 m, L = 1500 m, exponentially refined at the well
boundary. The thermal conductivity is taken randomly in the interval [2, 5] W.K−1.m−1

at each cell of the mesh. For such heterogeneous test case, the usual strategy is simply to
use, at each face σ of the well boundary, the following value of the thermal conductivity
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at the face σ:

βrock,σ =
K1(rw

√
η

λrock,K
)

K0(rw
√

η
λrock,K

)

√
ηλrock,K , (24)

with λrock,K the value of λrock in the cell K with σ ∈ FK .
Alternatively, the numerical solution (21)-(20) takes into account the full heteroge-

neous thermal conductivity field and ensures that the convergence rate on the discrete
linear coupled model vanishes for constant modes at the well boundary. From Figure 7,
we observe a total gain of 149 DDM iterations for the numerical computation of βrock,σ

compared with the analytical formula (24), providing a net gain of 51 DDM iterations for
this variable time step simulation.

Figure 6: Convergence of the DDM residual (23) with one curve for each time step as
a function of the cumulative number of DDM iterations for the axisymmetric test case
with homogeneous thermal conductivity λrock = 3 W.K−1.m−1 on the mesh 50× 200 with
Qn = 150000 nm3.h−1. (top): Fourier based definition of βrock, (bottom): numerical
computation of βrock.

5 Salt cavern gas storage modelling

We apply our domain decomposition approach to the modelling of salt caverns gas
storage.

5.1 Cavern model

Leaching operation makes it possible to build a cavern with a more or less cylindrical
or spherical shape. Characteristic radius of the cavern is approximately 50m.
During storage operation, gas injection and withdrawal through the well induces com-
pression or expansion of the gas into the cavern, and thus temperature changes of the gas.
Inside the cavern, gas exchanges heat with the surrounding rock.

We choose in this study a simplified description of the cavern, where the gas pressure
Pc and temperature Tc are assumed uniform in the cavern. The cavern will be considered
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Figure 7: Convergence of the DDM residual (23) with one curve for each time step as
a function of the cumulative number of DDM iterations for the 3D radial test case with
random thermal conductivity λrock ∈ [2, 5] W.K−1.m−1 on the mesh 50 × 50 × 200 with
Qn = 150000. (top): Fourier based definition of the face σ dependent Robin coefficient
βrock,σ, (bottom): numerical computation of βrock,σ.

as a one dimensional spherical object of radius Rcav; moreover, the temperature field in
the rock mass is assumed to have a spherical symmetry. Vcav denotes the cavern vol-
ume and Scav its surface. Equations describing the thermodynamical evolution of the gas
[9, 16] will be integrated on the cavern volume:
-mass conservation

∂(ρ(Pc, Tc)Vcav)

∂t
= Q

-energy balance equation in the cavern.
Using the second law of thermodynamics, it becomes:

(ρcv
∂Tc

∂t
− Tc

ρ

∂P

∂T
|ρ
∂ρ

∂t
)Vcav = γScavh

′(Twall,c − Tc)+ < Q >+ cp(Tshoe − Tc)

with

< Q >+= Q if Q ≥ 0

< Q >+= 0 if Q ≤ 0

γ is a shape surface factor, which reflects that the true surface of the cavern is not spherical.
Tshoe is the gas temperature at the well bottom, cp is gas specific heat capacity at constant
pressure. h′ is a heat transfer surface coefficient, which will depend on convection in the
cavern and wall roughness and Twall,c represents the temperature at the cavern wall.
The first term of the r.h.s represents heat exchange with the rock mass surrounding the
cavern, while the second term represents the heat input during injection.

One dimensional heat equation is solved in the rock mass. At the interface between
cavern and rock mass, temperature fields and thermal fluxes are continuous.
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5.2 Resolution

- cavern problem
We use a simplified discretization of the cavern problem, considering a spherical cavern
embedded in a finite medium. The rock mass is indeed a spherical shell of large radius
(larger than the length of diffusion during the cavern lifetime), typically of the order of
100m. It is discretized in spherical shells and a constant temperature is imposed on the
outer surface. The cavern/rock mass problem is solved as a one dimensional coupled
nonlinear problem. The rock mass initial temperature is assumed to be given by the
geothermal temperature at the depth of the cavern centre.

-coupling well and cavern
Assuming pressure equilibrium between well bottom pressure and cavern pressure, the
following relationship is obtained:

Pshoe = Pc + ρ(Pc, Tc)gRcav

During injection, well and cavern problems are solved iteratively, as a fixed point problem,
until convergence of Pshoe and Tshoe the pressure and temperature at the casing shoe.
During withdrawal, cavern problem is solved first and Pshoe = Pc + ρ(Pc, Tc)gRcav and
Tshoe = Tc are imposed as boundary conditions at the well bottom.

5.3 Application to gas storage exploitation

• We first investigate the relevance of thermal exchange between well and rock mass.
We consider a cavern with a volume of 275000 m3 and an initial temperature of 62oC
and an inital pressure of 240 bars in the cavern. We assume a long withdrawal of
40000 nm3.h−1. We compare an adiabatic solution with no exchange between well
and the rock mass, a solution with an infinite rock mass heat capacity (constant
temperature in the rock mass) and the coupled solution obtained with the Robin
Robin algorithm. The initial temperature field is the same as in the preceding para-
graph. The rock thermal properties in the cavern model are the λ= 5.5 W.K−1.m−1,
cp= 920 J.kg−1.K−1, ρrock= 2100 kg.m−3, while along the well λ= 5. W.K−1.m−1,
cp= 850 J.kg−1.K−1, ρrock= 2100 kg.m−3.
The convergence criterion of the decomposition domain algorithm is taken as ε=10−5

and time step is fixed to 6 hours. Number of iterations of domain decomposition
algorithm for the coupled cases remains between 2 and 4.
Figure 8 represents the temperature at the wellhead. The rock mass in the well vicin-
ity heats up over time, as the gas is hotter than the surrounding rock mass near the
wellhead. At the same time, the temperature inside the cavern is decreasing due to
gas expansion in the cavern. Wellhead temperature evolution during the withdrawal
may be compared with the adiabatic solution and the infinite rock heat capacity
solution (Fig. 8). Wellhead temperature at the end of the withdrawal is close to the
adiabatic one: due the relatively low value of thermal diffusion d = λ

ρrockcp
in the

rock mass , the rock mass temperature becomes close to the gas well temperature
all along the well.
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Figure 8: Wellhead temperatures for a long withdrawal at high flow rate - wellhead
temperature for coupled case with finite rock mass heat capacity: dotted - wellhead
temperature for adiabatic case: dashed line - wellhead temperature for infinite rock mass
heat capacity: long dashed line - cavern temperature: grey line

• In the next example, a sequence made up of a withdrawal (during three days), a
cavern rest (two days) and an injection (three days) is considered. Initial data and
physical parameters are the same as in the preceding test. The temperature in the
wellhead, accounting for heat exchanges with the rock mass, deviates significantly
from the adiabatic solution and the solution with infinite heat capacity during the
phases of withdrawal and rest. During injection, the injected gas temperature is
imposed (at 20 oC). (Fig. 9). It can also be observed that the temperatures of the
three solutions (coupled with finite rock mass heat capacity, adiabatic and infinite
rock mass heat capacity) at the casing shoe (well bottom) differ significantly during
the injection phase due to heat exchange in the well.
Time step is fixed to 6 hours during injection and withdrawal and increased by a
constant ratio of 1.2 at each time step during rest phase. ε is fixed at 10−5. Num-
ber of iterations of domain decomposition algorithm for the coupled case remains
between 2 and 4 as for the preceding test.

• Next figure illustrates the history-match of a true gas storage cavern (Fig. 10). Cav-
ern modelling is used to predict cavern behavior during injection and withdrawal
campaigns. A cavern model is built to reproduce the available data (wellhead pres-
sure and temperature): the main calibration parameters of this history-matching
approach are the shape factor of the cavern γ and the volume of the cavern [19]. ε
is taken as 10−5 and the number of iterations of domain decomposition algorithm
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Figure 9: Wellhead temperatures during a sequence of injection and withdrawal - temper-
ature for coupled case: dotted - temperature for adiabatic case: dashed line - temperature
for infinite rock mass conductivity: long dashed line - flow rate: black line

for the coupled case remains limited to 2 to 4.
Wellhead pressure and temperature monitored have been plotted on Figure 10. Note
that the estimated temperature is compared to measurements only when gas is with-
drawn. Indeed during rest time, wellhead temperature is strongly dependent upon
the weather; during injection, it is an input value.

6 Conclusion

This paper focuses on the modelling of heat transfer between fluid flowing in a well
and the surrounding rock mass and proposes an efficient domain decomposition approach
to solve this problem. The interest of such a method has been illustrated by the study of
the modelling of underground gas storage in salt caverns.
The theoretical and numerical results show that the Dirichlet Neumann algorithm is not
robust for this coupled model even with the introduction of a relaxation parameter. On
the other hand, the Robin Robin algorithm provides a robust and efficient convergence
for the range of physical parameters of interest including low flow rates and very small
time steps. The Robin coefficient βrock can be computed from the analytical formula
obtained for an unbounded rock domain and for constant thermal conductivity and rock
heat capacity. For heterogeneous thermal conductivity or rock heat capacity a better
choice can be obtained by a numerical computation of βrock at the cost of one iteration
of the algorithm. The extension of this domain decomposition strategy to more complex
well models, e.g. in geothermal systems, will be investigated in the near future.

Compared with a monolithic approach based on the solution of the fully coupled
Jacobian system at each Newton iteration, the advantage of the nonlinear DDM is to
allow the use of efficient off-the-shelf solvers on each subdomain. In our case we have
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Figure 10: History-match of a cavern: Well-head pressure and temperature estimated by
model (black marks) compared to availble data (grey marks) - flow rate (black line) is
imposed in the model.

used a Conjugate Gradient algorithm preconditionned by an Algebraic MultiGrid (AMG)
method for the rock linear subproblem and a local to each well cell Newton solver for
the well nonlinear submodel, ordering the well cells in the flow direction. The monolithic
approach would converge in a few Newton iterations making the total number of linear
solves quite similar for both methods. On the other hand, the monolithic approach
requires to design an efficient preconditioner for the fully coupled Jacobian system. This is
not a trivial task considering the highly contrasted rock and well submodels both in terms
of geometry and physics. A possible solution would be to apply the DDM algorithm to the
fully coupled Jacobian system as a preconditioner combined with an approximate solve of
the rock model based on a single AMG V-cycle. In other words, the domain decomposition
method can also be exploited to make the monolithic approach more efficient.
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