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Domain decomposition methods to model heat exchanges between a well and a rock mass

This paper focuses on the modelling of heat transfer between fluid flowing in a well and the surrounding rock mass and proposes an efficient domain decomposition approach to solve this problem. The importance of such a method is illustrated by the study of the modelling of underground gas storage in salt caverns.

Introduction

Gas underground storage in salt caverns is a mature technique, which ensures flexibility on the gas network and supplies security during the winter season. These caverns built by leaching behave as pressure vessels and may deliver high flow rates on demand. Natural gas is injected during summer and withdrawn during winter. Evolution of the gas market in the last few years, however, has changed the way the caverns were operated. They are now used more often with shorter cycles lasting a month, a week or less. In this context, it becomes very important to know and predict the thermodynamic state of gas at the wellhead and in the cavern. Modelling is used, on one hand, to predict the storage performance and improve its exploitation (to determine gas volume, hydrate risk, etc...) and on the other hand, to design surface facilities [START_REF] Klafki | Thermodynamic Simulator KAVTEC for optimization of Gas Storage operation in salt saverns[END_REF][START_REF] Breheret | Optimizing Cavern Performance in Salt Gas Storage Thermodynamics, Modelling and Prediction, Pressure Maintenance[END_REF][START_REF] Karimi-Jafari | Thermodynamic simulation of gas caverns with GUSTS V.2[END_REF] during preliminary development studies. This last point also concerns storage of other gas such as H 2 , that may be produced by electrolysis [START_REF] Nieland | Salt cavern thermodynamics -comparison between hydrogen, natural gas and air storage[END_REF]. During operations, models are history-matched with available thermodynamic data (at the wellhead and in the cavern when available).

In this paper, we focus on the thermal modelling aspects of salt caverns operations and mainly on the numerical modelling of heat exchanges between the well and the rock mass nearby. Heterogenoeus domain decomposition methods (see e.g. [START_REF] Quateroni | Domain Decomposition Methods for Partial Differential Equations[END_REF], [START_REF] Doleanv | An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation[END_REF]) are investigated to couple at the well boundary the thermal evolution of a 1D well model with the surrouding 3D rock domain. These algorithms solve successively the well and rock mass subproblems until convergence to the fully coupled solution, the term heterogeneous refering to the fact that both subproblems are here of different types. Compared with a monolithic fully coupled Newton type algorithm, domain decomposition approaches have the advantage to be modular and to allow the use of efficient off-the-shelf solvers in each subdomain.

The convergence rate of domain decomposition methods depends crucially on the boundary conditions applied at the interface between both subdomains. In this work, we investigate Robin-Robin optimized Schwarz domain decomposition methods based on Robin boundary conditions for both subproblems [START_REF] Lions | On the Schwarz alternating method. III: a variant for nonoverlapping subdomains[END_REF][START_REF] Gander | Optimized Schwarz Methods[END_REF][START_REF] Dubois | Optimized Schwarz methods with robin conditions for the advectiondiffusion equation[END_REF][START_REF] Dubois | Optimized Schwarz methods for a diffusion problem with discontinuous coefficient[END_REF]. It will be compared with the more usual Dirichlet Neumann domain decomposition algorithm based on a Dirichlet boundary condition on the rock mass subproblem combined with a Neumann boundary condition on the well subproblem. The choice of the Robin coefficients as well as of the relaxation parameter for the Dirichlet Neumann algorithm are investigated both theoritically and numerically in order to improve the convergence rate of the domain decomposition algorithms.

Heterogeneous domain decomposition methods have previously been used to couple different physical models at the interface between subdomains. For example, let us refer to [START_REF] Discacciati | Robin-Robin Domain Decomposition Methods for the Stokes-Darcy Coupling[END_REF], [START_REF] Cao | Robin-Robin domain decomposition methods for the steady-state Stokes-Darcy system with the Beavers-Joseph interface condition[END_REF], [START_REF] Discacciati | Optimized Schwarz methods for the Stokes-Darcy coupling[END_REF] for the coupling of a Darcy flow with a Stokes or Navier-Stokes free flow, to [START_REF] Birgle | A domain decomposition method to couple nonisothermal compositional gas liquid Darcy and free gas flows[END_REF] for the coupling of non-isothermal liquid gas Darcy and free gas flows, and to [START_REF] Gander | Heterogeneous Optimized Schwarz Methods for Coupling Helmholtz and Laplace Equations[END_REF] for the coupling of Helmholtz and Laplace Equations. Let us also refer to [START_REF] Berninger | Substructuring of a Signorini-type problem and Robin's method for the Richards equation in heterogeneous soil[END_REF] and [START_REF] Seus | A linear domain decomposition method for partially saturated flow in porous media[END_REF] for Robin-Robin domain decomposition methods developped for the nonlinear Richards equation modelling partially saturated flow in porous media.

The present work differs by the specific nature of the submodels and in particular by the different spatial dimensions of each subdomain. A specific and simple choice of the Robin coefficients will be shown to provide a very efficient convergence for this class of coupled models and for a large range of physical and numerical parameters.

The remainder of this paper is organized as follows. Section 2 presents the physical model describing fluid flow in the well and heat exchange with the surrounding rock mass. The next section investigates theoretically and numerically the convergence of the two domain decomposition methods for the well problem on a simplified linear case. For both algorithms, specific choices of the parameters are discussed in order to optimize the convergence of the algorithms. Numerical performance of both algorithms is evaluated. Finally, we consider the full problem of a cavern with a well and analyze the importance of heat exchange on synthetic cases and real data.

Modelling of thermodynamical gas behaviour of salt caverns

Underground gas storages in salt are connected to the surface through a well. During injection, gas is injected at the wellhead at a known flow rate and temperature and will flow downward through the well tubing into the cavern, which is generally at a few hundred meters to thousand meters depth. During withdrawal, gas is produced from the cavern at a given flow rate through the well.

Let ω well denote the disk of R 2 with radius r w and centre the origin representing the section of the well. The well is assumed vertical; it is a cylindrical domain Ω well = ω well × (0, L). We denote by z the vertical coordinate oriented downward.

The surrounding rock domain is also assumed cylindrical to fix ideas although this assumption is not essential in what follows. It is denoted by Ω rock = ω rock × (0, L) with the rock section ω rock = ω \ ω well where ω ⊃ ω well is a simply connected domain of R 2 (Fig. 1).

In the following, we denote by (r, θ, z) the cylindrical coordinates with respect to the well axis. The simulation time interval is denoted by (0, t f ) with t f > 0.

Well flow

We consider a one dimensional flow along the well which satisfies the following equations: -gas equation of state

P ρ = Z r T ff (1) 
P denotes the gas pressure, T ff the gas temperature, Z(P, T ff ) the compressibility factor, ρ(P, T ff ) the gas density in the well, and r = R Mg with R the ideal gas constant and M g the gas molar mass.

-mass conservation Mass flow rate is assumed constant along the well. In other words, we consider characteristic time greater than the propagation time of an acoustic wave along the well. With πr 2 w the well section, Q the mass flow rate and u the gas velocity, it becomes:

u = Q ρπr 2 w (2)
u and Q are assumed to be positive for injection and negative for withdrawal.

-momentum conservation The velocity in the well is solution of the 1D momentum equation along the well, accounting for gravity and the pressure drop

ρ Du Dt = - ∂P ∂z + ρg -sgn(u) λ 2r w ρ u 2 2
where λ is a friction coefficient estimated by the Colebrook [START_REF] Colebrook | Experiments with Fluid Friction Factor in Roughened Pipes[END_REF][START_REF] Colebrook | Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe laws[END_REF] and

D Dt = ∂ ∂t + u ∂ ∂z .
-energy conservation in the well. Combining energy conservation and momentum conservation for the gas flow, we deduce the following equation:

ρ De Dt = -P ∂u ∂z + 2 r w φ + φ v ,
where e is the gas internal energy per mass unit, φ the heat flux at the wellbore accounting for convection and turbulence and φ v the dissipation rate related to viscous effect. Note that the average gas speed u is in the range 1-15 m.s -1 , thus gas flow is turbulent. This equation takes the following form:

ρc g v DT ff Dt -T ff ∂P ∂T ff | ρ u ρ ∂ρ ∂z = 2 r w φ + φ v , with φ v = -sgn(u) λ D ρ u 3 2 ,
and

φ = 1 2π 2π 0 h(T wall (θ, z, t) -T ff (z, t))dθ,
c g v is gas heat capacity of the gas at constant volume per unit of mass. T wall (θ, z, t) denotes the temperature on the wellbore, at the interface between the well and the rock mass. h is the heat convective transfer coefficient given by:

h = max( λ g r w , λ g 2r w N u ) (3)
where λ g is the gas conductivity and N u the Nusselt Number, which is estimated by the valid correlation for gas N u = 0.023Re 0.8 P r 1/3 with Re the Reynolds number and P r the Prandtl Number [START_REF] Huetz | Notions de transfert énergétique par convection[END_REF].

Figure 1: Axisymmetric diagram of the well-rock mass coupled problem -cavern (dotted line) will be considered in section 5

Rock mass surrounding well

Heat exchanges between the surrounding rock mass domain (denoted Ω rock ) may not be neglected. For example, gas may be heated up during withdrawal by the surrounding rock mass. In the rock mass, the temperature field T rock verifies the parabolic heat equation on Ω rock × (0, t f ):

ρ r c r p ∂T rock ∂t + div -λ rock ∇T rock = 0,
c r p is the specific heat capacity of the rock per unit mass, ρ r the rock density and λ rock the rock thermal conductivity, At the interface between the well and rock domains, the following continuity of the temperatures and thermal fluxes is prescribed for all (θ, z, t) ∈ (0, 2π) × (0, L) × (0, t f ):

T rock (r w , θ, z, t) = T wall (θ, z, t), λ rock ∂ r T rock (r w , θ, z, t) = -h T ff (z, t) -T wall (θ, z, t) .

Domain decomposition methods applied to the well -rock mass domains

We analyze in this section two domain decomposition algorithms to solve the coupled well rock mass model. These methods solve iteratively the well and rock mass subproblems with transmission conditions chosen in order to obtain well-posed subproblems and to speed up the convergence to the coupled solution.

To study the convergence rate of the domain decomposition algorithms, we consider a simplified linear model for which the velocity in the well (and thus the density) is assumed to be constant (and not obtained from the solution of the 1D momentum equation as described in section 2). Then, the well energy equation is decoupled from the momentum conservation and reduces to a linear equation provided that the energy dissipation by friction is neglected. Note that c g v , h, c r p , ρ r , and λ rock are also assumed to be constant for this simplified model.

In order to apply a Fourier analysis in the z direction, the well axis is assumed to be the full line R. For convenience, the rock domain is also assumed unbounded in the radial direction which is a valid approximation provided that the radius of the rock domain is large compared with r w . It results that the cylindrical rock domain is defined in this section by Ω rock = (r w , +∞) × (0, 2π) × R. Assuming an axisymmetric initial rock temperature, the solution of the coupled problem is axisymmetric. Then, the rock T rock , well T ff and wall T wall temperatures are solutions of the following linear system of equations

ρ r c r p ∂T rock ∂t (r, z, t) = λ rock ∆T rock (r, z, t), ρc g v ∂T ff ∂t (z, t) + ρc g v u ∂T ff ∂z (z, t) = 2 r w φ, T rock (r w , z, t) = T wall (z, t), λ rock ∂ r T rock (r w , z, t) = -h T ff (z, t) -T wall (z, t) , (4) 
set on (r, z, t) ∈ (r w , +∞) × R × (0, t f ) and (z, t) ∈ R × (0, t f ), using the fixed gas velocity u in the well, the coupling term

2 r w φ = H T wall (z, t) -T ff (z, t) with H = 2h r w ,
and given initial conditions for T rock and T ff .

The model is discretized in time using an Euler implicit integration scheme. Still denoting by T rock , T wall , T ff the current time step temperatures and by T rock , T ff the previous time step (or initial) rock and well temperatures, the semi-discrete system set on (r, z) ∈ (r w , +∞) × R in the rock domain and on z ∈ R along the well reads:

(η -λ rock ∆)T rock (r, z) = η T rock (r, z), η g T ff + ρc g v u(T ff ) (z) + H T ff (z) -T wall (z) = η g T ff ,
T rock (r w , z) = T wall (z),

λ rock ∂ r T rock (r w , z) = -h T ff (z) -T wall (z) , (5) 
with the current time step ∆t, and

η = ρ r c r p ∆t , η g = ρc g v ∆t .

Dirichlet Neumann algorithm

Let us consider the Dirichlet (on the rock side) Neumann (on the well side) domain decomposition algorithm, which updates (T n-1 wall , T n-1 rock ) at iteration n-1 ≥ 0 by (T n wall , T n rock ) at iteration (n). This algorithm solves the rock mass subproblem by imposing a Dirichlet temperature boundary condition at the wellbore given by the wall temperature of the well subproblem solution at the previous iteration (or by the wall temperature at the previous time step for n = 0). The thermal flux at the wellbore deduced from the rock subproblem solution is then imposed, as a Neumann boundary condition, to solve the well subproblem. In order to provide a more robust convergence, the Dirichlet Neumann algorithm classically needs to be relaxed (see e.g. [START_REF] Doleanv | An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation[END_REF]) using a relaxation parameter θ ∈]0, 1] as specified below. More specifically, the algorithm computes, at each iteration n, the solution T n rock of the the rock subproblem

   (η -λ rock ∆)T n rock = η T rock on r w , +∞) × R, T n rock (r w , z) = T n-1 wall (z), z ∈ R, (6) 
followed by the solution T n ff and T n wall of the well subproblem

       η g T n ff (z) + ρc g v u(T n ff ) (z) + H T n ff (z) -T n wall (z) = η g T ff , z ∈ R, h T n ff (z) -T n wall (z) = -λ rock ∂ r T n rock (r w , z), z ∈ R, (7) 
and the relaxation step

T n wall (z) = θ T n wall (z) + (1 -θ)T n-1 wall (z), z ∈ R. (8) 

Convergence rate

In order to study the convergence rate of this Dirichlet Neumann algorithm, we can assume, from the linearity of the equations, that T rock = 0 and T ff = 0. Then, starting from an arbitrary temperature error T 0 wall , the temperatures T n wall , T n rock represent the errors at iteration n. Following for example [START_REF] Doleanv | An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation[END_REF], the Fourier transform is applied in the z direction to the system ( 6)-( 7)-( 8) leading to the following transformed system

       ∂ 2 T n rock ∂r 2 (r, k) + 1 r ∂ T n rock ∂r (r, k) -(k 2 + η λ rock ) T n rock (r, k) = 0, T n rock (r w , k) = T n-1 wall (k), (9) 
               (η g + ikρc g v u) Tn ff )(k) + H Tn ff (k) -Tn wall (k) = 0, h Tn ff (k) -Tn wall (k) = -λ rock ∂ r T n rock (r w , k), T n wall (k) = θ Tn wall (k) + (1 -θ) T n-1 wall (k), (10) 
The solution T n rock of the first equation in ( 9) bounded for r → +∞ is expressed in terms of the second kind modified Bessel function K m with m = 0 as follows:

T n rock (r, k) = A n (k)K 0 (µ(k)r), (11) 
with

µ(k) = η λ rock + k 2 .
From the relation K 0 (x) = -K 1 (x), we note that

λ rock ∂ r T n rock (r w , k) = -A n (k)λ rock µ(k)K 1 (µ(k)r w ).
The Dirichlet Neumann algorithm then reduces to:

K 0 (µ(k)r w )A n (k) = T n-1 wall (k), η g + ikρc g v u Tn ff (k) + H( Tn ff (k) -Tn wall (k)) = 0, -h( Tn ff (k) -Tn wall (k)) = -λ rock µ(k)K 1 (µ(k)r w )A n (k), T n wall (k) = θ Tn wall (k) + (1 -θ) T n-1 wall (k),
from which we deduce the following Fourier symbol of the iteration operator:

G DN (k) = (1 -θ) -θ DtN rock (k) DtN ff (k) such that T n wall (k) = G DN (k) T n-1 wall (k), with DtN rock (k) = λ rock µ(k) K 1 (µ(k)r w ) K 0 (µ(k)r w ) , DtN ff (k) = η g + ikc g v u H + η g + ikc g v u h.
The function DtN rock (k) actually matches with the Fourier symbol of the rock subdomain Dirichlet Neumann operator defined by

g → DtN rock (g) = -λ rock ∂ r T rock (r w , .), (12) 
where T rock is the solution of the equation

(η -λ rock ∆)T rock = 0 on (r w , +∞) × R, T rock (r w , z) = g(z), z ∈ R. (13) 
This can be checked applying the Fourier transform in the z direction to ( 12)-( 13) and using again the solution [START_REF] Dubois | Optimized Schwarz methods for a diffusion problem with discontinuous coefficient[END_REF]. Likewise, DtN ff (k) matches with the Fourier symbol of the Dirichlet Neumann operator in the well subdomain defined by

g → DtN ff (g) = h T wall -T ff , (14) 
with (T ff , T wall ) solutions of the equation

η g T ff (z) + c g v u(T ff ) (z) + H T ff (z) -T wall (z) = 0, T wall (z) = g(z), z ∈ R. ( 15 
)
This is also easily checked by applying the Fourier transform in the z direction to ( 14)-(15).

Choice of the relaxation parameter

The convergence of the Dirichlet Neumann algorithm will be obtained for a given frequency

k if |G DN (k)| < 1. The relaxation parameter θ ∈]0, 1] should then be optimized to minimize the function f DN (θ) = max k∈(0,kmax) |G DN (k)|,
with k max depending on the spatial discretization along the well and typically given by k max = π ∆z where ∆z is the spatial discretization step along the well assumed to be uniform. The optimal choice of θ seems difficult to compute analytically. A suboptimal but simple choice of the relaxation parameter θ can be obtained by imposing that G DN (0) = 0, leading to

θ = 1 1 + DtN rock (0) DtN ff (0) = 1 1 + ( H + η g hη g ) K 1 (r w η λ rock ) K 0 (r w η λ rock ) ηλ rock . ( 16 
)

Robin Robin optimized Schwarz algorithm

Let us consider the Robin Robin Schwarz algorithm [START_REF] Gander | Optimized Schwarz Methods[END_REF][START_REF] Dubois | Optimized Schwarz methods with robin conditions for the advectiondiffusion equation[END_REF][START_REF] Dubois | Optimized Schwarz methods for a diffusion problem with discontinuous coefficient[END_REF] with Robin coefficients β rock ≥ 0 and β ff ≥ 0, β rock β ff = 0, which updates the temperatures (T n-1 ff , T n-1 wall , T n-1 rock ) at iteration n -1 ≥ 0 by the temperatures (T n ff , T n wall , T n rock ). They are defined by the solution T n rock of the following rock subproblem with Robin condition at the well boundary:

     (η -λ rock ∆)T n rock = η T rock on (r w , +∞) × R,
β ff T n rock (r w , z) -λ rock ∂ r T n rock (r w , z) = β ff T n-1 wall (z) + h T n-1 ff (z) -T n-1 wall (z) , z ∈ R, (17) 
followed by the solution (T n ff , T n wall ) of the following well subproblem with Robin wall boundary condition:

       η g T n ff (z) + ρc g v u(T n ff ) (z) + H T n ff (z) -T n wall (z) = η g T ff (z), z ∈ R,
β rock T n wall (z) -h T n ff (z) -T n wall (z) = β rock T n rock (r w , z) + λ rock ∂ r T n rock (r w , z), z ∈ R. (18) 

Convergence rate

The convergence analysis proceeds as previously, setting that T rock = 0 and T ff = 0 and applying the Fourier transforms in the z direction to the system ( 17)- [START_REF] Klafki | Thermodynamic Simulator KAVTEC for optimization of Gas Storage operation in salt saverns[END_REF]. Using the Bessel function solution [START_REF] Dubois | Optimized Schwarz methods for a diffusion problem with discontinuous coefficient[END_REF] in the rock subdomain, we obtain that

β ff K 0 (µ(k)r w ) + λ rock µ(k)K 1 (µ(k)r w ) A n (k) = β ff T n-1 wall (k) + h T n-1 ff (k) -T n-1 wall (k) , η g + ikρc g v u T n ff (k) + H T n ff (k) -T n wall (k) = 0,
β rock T n wall (k) -h T n ff (k) -T n wall (k) = β rock K 0 (µ(k)r w ) -λ rock µ(k)K 1 (µ(k)r w ) A n (k),
where T n rock , T n ff , T n wall represent respectively the rock, well and wall Fourier transforms of the temperature errors at iteration n. It results that the Fourier symbol G RR (k) of the Robin Robin algorithm iteration operator, defined by

A n (k) = G RR (k)A n-1 (k), is given by G RR (k) = β rock -DtN rock (k) β ff + DtN rock (k) × β ff -DtN ff (k) β rock + DtN ff (k)
.

Choice of the Robin coefficients

The parameters β rock and β ff should be optimized to minimize the function

f RR (β rock , β ff ) = max k∈(0,kmax) |G RR (k)|. ( 19 
)
The analytical solution of this min max problem seems difficult to compute analytically, and a numerical computation is not convenient to implement. In the spirit of [START_REF] Birgle | A domain decomposition method to couple nonisothermal compositional gas liquid Darcy and free gas flows[END_REF], we propose below a suboptimal, but simple choice. Let us choose for β rock the so called Taylor 0th order approximation of DtN rock which is exact for the lower frequency k = 0 ie

β rock = DtN rock (0) = K 1 (r w η λ rock ) K 0 (r w η λ rock ) ηλ rock .
Assuming that η g + |k|c g v u >> H, the choice of the Robin coefficient

β ff = h,
provides a good approximation of the Dirichlet Neumann operator DtN ff in the well domain. These choices of the Robin coefficients ensure a good compromise between the low and high frequencies (Fig. 2 and3) since it results:

-from

β rock = DtN rock (0) that G RR (0) = 0 -from β ff = h that lim |k|→+∞ |G RR (k)| = 0.
To fix ideas, let us remark that if r w >>

1 η λ rock
, in the limit of a planar interface rather than a cylindrical interface, the following simpler expression is obtained for the Robin coefficients:

β rock = ηλ rock and β ff = h.

As will be shown in the next section, for small radius r w , like in our application, this "planar interface" approximation leads to a clearly slower convergence than the one obtained by taking into account the Bessel correction.

Alternative choice to β ff = h

The choice β ff = h presents the disavantage that it is not robust in the limit of very small or vanishing velocity u combined with very large time steps. This issue is easy to solve using the following alternative choice of β ff as the minimizer of |β ff -DtN ff (k max )| which is defined by

β ff = β (1) ff = ( rw 2 ρc g v u) 2 k 2 max h + η g r w 2 (1 + η g rw 2 ) ( rw 2 ρc g v u) 2 k 2 max h 2 + (1 + η g rw 2 )
2 . Compared with the choice β ff = h, it has the advantage to ensure that the convergence rate vanishes for the trivial case u = 0.

Interpretation and generalization of

β rock = DtN rock (0)
The choice β rock = DtN rock (0) has the key asset to extend readily to the case of non axisymmetric and bounded rock domain geometry with general outer boundary conditions. This extension can also account for heterogeneous rock thermal conductivity, and for the specific spatial discretization used in the rock domain. The idea is to come back to the definition of DtN rock (0) in the physical space. From its definition ( 12)-( 13), it amounts to compute using the rock domain discretization, the temperature T rock solution of

(η -λ rock ∆)T rock = 0, on Ω rock , T rock (r w , θ, z) = 1, (θ, z) ∈ (0, 2π) × (0, L), (20) 
using a Dirichlet condition of 1 at the well boundary and homogeneous boundary conditions at the remaining boundaries (of the same type than the rock model but homogeneous). Then, we set

β rock (θ, z) = -λ rock ∂ r T rock (r w , θ, z). (21) 
This approximation hence requires the solution of the linear reaction diffusion problem (20) using the rock domain discretization at the cost of say 1 iteration of the algorithm. It has to be recomputed each time the time step is changing.

Numerical investigation of the convergence rates of the Dirichlet Neumann and Robin Robin algorithms

In this subsection, we consider the fixed gas pressure P = 100 bar and temperature T = 30 o C along the well. The gas density ρ = ρ(P, T ) is given by the perfect gas equation of state setting Z = 1 and using the gas molar mass M g = 0.016 kg.mol -1 in (1). We consider a fixed normal flow rate along the well

Q n = Q ρ n 3600ρ ,
in normal m 3 (nm 3 ) per hour with ρ n = ρ(P atm , T atm ), P atm = 10 5 Pa, T atm = 27 o C, from which one can deduce the gas velocity u from (2) with r w = 0.05 m. The gas heat convective transfer coefficient h is defined by (3) with λ g = 0.0402 W.m -1 .K -1 , the Nusselt correlation N u = 0.022 Re 0.8 P r 0.6 , Re = 2rwQ µg , P r = c g v µg λg with c g v = 1770 J.K -1 .kg -1 , µ g = 12.43 10 -6 Pa.s. In the rock mass, we set

λ rock = 3 W.m -1 .K -1 , c r p = 800 J.K -1 .kg -1 , ρ r = 2000 kg.m -3 .
The following test cases investigate the convergence rates of the Robin Robin and Dirichlet Neumann algorithms depending on the normal flow rate Q n in the range [0, 150000] nm 3 .h -1 and the time step ∆t in the range [0.5 h, 1 year]. The maximum frequency k max = π ∆z is computed given a well lengh L = 1500 m and N = 200 uniform space steps of size ∆z = L N .

Figures 2 and3 exhibit clearly that the Robin Robin algorithm is much more efficient than the Dirichlet Neumann algorithm and provides a very good contraction property. On the other hand, the Dirichlet Neumann algorithm provides a very poor contraction property and is not robust with respect to the physical parameters. This is an expected behavior of the Dirichlet Neumann algorithm for subproblems with highly contrasted geometries and physical properties as this is the case here. 

(β rock , β ff ) = argmax (β rock ≥0,β ff ≥0) f RR (β rock , β ff ).
This numerical approximate solution is obtained using a nonlinear optimisation algorithm starting from the initial guess given by (β rock = DtN rock (0),

β ff = h) or by (β rock = DtN rock (0), β ff = β (1)
ff ) and retaining the best of the two solutions. For the normal flow rates Q n = 30000 nm 3 .h -1 and Q n = 150000 nm 3 .h -1 , Figure 4 exhibits a typical behavior of the min-max solution characterized by an equi-oscillation of |G RR (k)| between |G RR (0)| and |G RR (k max )|. This is clearly not the case for our choices since β rock = DtN rock (0) ensures that |G RR (0)| = 0. We note however that the values of max k∈(0,kmax) |G RR (k)| are very close for the three choices of the Robin coefficients and for both test cases with Q n = 30000 nm 3 .h -1 and Q n = 150000 nm 3 .h -1 . As exhibited in ff provides, as expected, for vanishing or very small normal flow rates combined with very large time steps, a much better convergence rate than the one obtained with the choice β ff = h. In practice such large time steps are not used which motivates that the simpler choice β ff = h is prefered in the next sections.

Figure 5 shows that the simple choices

β rock = DtN rock (0), β ff = h and β rock = DtN rock (0), β ff = β (1)
ff for very small flow rates and very large time steps provide very competitive convergence rates compared with our numerical approximation of the minmax problem. This holds for the full range of normal flow rates and time steps used in practice.

Applications to the well problem

The well problem presented in section 2 has been discretized using a finite volume discretization. The velocity in the well is not imposed but obtained from the solution of the 1D momentum equation. Fluid flow problem may easily be reduced to two equations, For the sake of clarity, we recall in the next section the finite volume discretization for axisymmetric meshes in the linear case studied in section 3 with a constant velocity u ≥ 0 and constant density ρ, and we discuss a possible implementation of the domain decomposition algorithm.

Finite Volume Two Point Flux discretization for the axisymmetric model

We consider the following Cartesian mesh of the domain (r w , r max ) × (0, L) defined by r i+1/2 , i = 0, • • • , N r such that r 1/2 = r w and r Nr+1/2 = r max , and by z j+1/2 , j = 0, • • • , N z such that z 1/2 = 0 and z Nz+1/2 = L.

Let us set

r i = r i-1/2 + r i+1/2 2 for i = 1, • • • , N r , and 
z j = z j-1/2 + z j+1/2 2 for j = 1, • • • , N z .
It is also convenient to set r 0 = r w , r Nr+1 = r max and z 0 = 0, z Nz+1 = L.

The set of cells K ∈ M of the mesh is defined by

M = {K i,j = (r i-1/2 , r i+1/2 ) × (z j-1/2 , z j+1/2 ), i = 1, • • • , N r , j = 1, • • • , N z },
and we define their volume by

|K i,j | = (z j+1/2 -z j-1/2 )π(r 2 i+1/2 -r 2 i-1/2
). The set of faces σ ∈ F of the mesh is defined by

F = σ i+1/2,j = {r i+1/2 } × (z j-1/2 , z j+1/2 ), i = 0, • • • , N r , j = 1, • • • , N z ∪ σ i,j+1/2 = (r i-1/2 , r i+1/2 ) × {z j+1/2 }, i = 1, • • • , N r , j = 0, • • • , N z .
For σ = σ i+1/2,j we define the face surface and transmissibility

|σ| = 2πr i+1/2 (z j+1/2 -z j-1/2 ), τ σ = λ rock |σ| r i+1 -r i ,
and likewise for σ = σ i,j+1/2 we define

|σ| = π(r 2 i+1/2 -r 2 i-1/2 ), τ σ = λ rock |σ| z i+1 -z i .
We also denote by F int the set of interior faces, and we set

F ext = σ Nr+1/2,j = {r Nr+1/2 } × (z j-1/2 , z j+1/2 ), j = 1, • • • , N z ,
and

F well = σ 1/2,j = {r 1/2 } × (z j-1/2 , z j+1/2 ), j = 1, • • • , N z .
Note that each face σ = σ 1/2,j ∈ F well is associated to a unique well cell j for all j = 1, • • • , N z . The volume of the well cell j is denoted by

V j = πr 2 w (z j+1/2 -z j-1/2
). For all interior faces σ ∈ F int we set σ = KL meaning that the face is at the interface between cells K and L. Also, we denote by F K ⊂ F the subset of faces of the cell K ∈ M. Note also that |σ 1/2,j | = 2πr w (z j+1/2 -z j-1/2 ) such that

|σ 1/2,j | V j = 2 r w .
Let be given the Dirichlet boundary conditions T Dir,σ for σ ∈ F ext and assume for simplicity zero flux boundary conditions at the lower and bottom surfaces z = 0 and z = L. The Robin Robin algorithm solves iteratively the rock domain discrete system followed by the well discrete model, both using Robin condition at the well boundary. More specifically, the rock domain system discretizing ( 17) is defined by the conservation equation

η|K|T n K + σ=KL∈F K ∩F int τ σ (T n K -T n L ) + σ∈F K ∩Fext τ σ (T n K -T Dir,σ ) + σ∈F K ∩F well τ σ (T n K -T n σ ) = η|K| T K ,
in each cell K ∈ M, combined with the Robin boundary condition

β ff |σ|T n σ + τ σ (T n σ -T n K ) = β ff |σ|T n-1 wall,j + h|σ|(T n-1 ff,j -T n-1 wall,j ) := g n-1
ff,j , for all σ = σ 1/2,j ∈ F well using the right hand sides g n-1 ff,j computed from the well solution at the previous iteration. The well system discretizing ( 18) is defined by the conservation equation

V j η g j T n ff,j + (πr 2 w )ρc g v u(T n ff,j -T n ff,j-1 ) + |σ 1/2,j |h(T n ff,j -T n wall,j ) = V j η g j T ff,j , in each well cell j = 1, • • • , N z , combined with the Robin condition β rock |σ 1/2,j |T n wall,j -h|σ 1/2,j |(T n ff,j -T n wall,j ) = β rock |σ 1/2,j |T n σ 1/2,j -τ σ 1/2,j (T n σ 1/2,j -T n K ) := g n rock,σ 1/2,j
, for all j = 1, • • • , N z using the right hand sides g n rock,σ 1/2,j computed from the previous rock domain solution.

The Robin coefficients are defined by

β rock = K 1 (r w η λ rock ) K 0 (r w η λ rock ) ηλ rock , (22) 
and

β ff = h.
Given a specified tolerance , the algorithm is iterated until the stopping criteria R n ≤ is met with

R n = Nz j=1 |T n σ 1/2,j -T n wall,j | Nz j=1 |T n σ 1/2,j | + Nz j=1 |∆Φ j | Nz j=1 |τ σ 1/2,j (T n σ 1/2,j -T n K )| , ( 23 
)
using ∆Φ j = τ σ 1/2,j (T n+1 σ 1/2,j -T n+1 K ) -h|σ 1/2,j |(T n+1 ff,j -T n+1 wall,j ). From the implementation point of view, note that each rock temperature T n σ at the well faces σ = σ 1/2,j ∈ F well can be locally eliminated using the Robin condition

β ff |σ|T n σ + τ σ (T n σ -T n K ) = g n-1 ff,j , leading to the flux τ σ (T n K -T n σ ) = τ σ β ff |σ|T n K -g n-1 ff,j τ σ + β ff |σ| .
It leads to solve a linear system with only the cell unknowns T n K for K ∈ M. Likewise the wall temperatures T n wall,j are locally eliminated using the Robin condition and right hand side g n rock,σ 1/2,j leading to

T n wall,j = h|σ 1/2,j |T n ff,j + g n rock,σ 1/2,j β rock |σ 1/2,j | + h|σ 1/2,j | .
Note that, in a more general case, the Robin coefficients could depend on the face σ due to the possible spatial dependence of η or λ rock (see the next subsection for details). The Robin coefficient β rock depends on time as soon as non uniform time steps are used and it has to be recomputed each time the time step is modified.

Numerical tests

We confirm by numerical experiments the results obtained in the Fourier space for the linear case (section 2).

-As a first example, we have assumed a constant flow rate per day during an injection sequence of a real gas during twelve days and have evaluated the robustness of each algorithm for different constant time-steps. The objective is to test the robustness of the algorithms on a range of flow rates and time steps, that will be used in practice for the modeling of cavern in operation. The rock mass is assumed homogeneous with λ rock = 5 W.K -1 .m -1 , c p = 850 J.kg -1 .K -1 , ρ rock = 2100 kg.m -3 . The initial temperature field in the rock mass is T (z) = 20 + 0.029z in o C (geothermal gradient 29 o C/km). A constant heat flow is imposed at the bottom of the rock mass model, while surface temperature is assumed constant. A geothermal temperature profile is additionally imposed on the outer cylindrical surface (model is axisymmetric). The well is 1382 m long with a inner radius is 0.0871 m. The temperature of the natural gas injected is assumed constant at the wellhead (20 o C) and the pressure at well bottom is assumed constant (200 bar).

The average number of iterations of domain decomposition for each algorithm has been reported (Tab. 1 to 5). The time to solution is proportional to the number of domain decomposition iterations. The numerical results show that Dirichlet Neumann algorithm, even when relaxed, is not robust (Tab. 4, 5). The most efficient algorithm is the Robin-Robin algorithm with coefficients β rock and β ff estimated on the radial geometry (Tab. 1). The simplified planar estimation of β rock and β ff converges but slowly (Tab. 3).

To quantify the quality of the solution as a function of the time step, we studied the deviation from the reference solution, chosen as the solution with a time step of 0.5h. The maximum well-bottom temperature and well-head pressure absolute difference are given in table 2.

-The next test cases consider the data set already defined in subsection 3.3, but here extended to a time dependent simulation taking into account variable density and velocity governed by the momentum and mass conservations coupled to the energy conservation along the well. The ideal gas is injected with a normal flow rate fixed to Q n = 150000 nm 3 .h -1 at a temperature T = 30 o C. The well bottom pressure is set to 100 bars. The temperature at the rock mass outer boundary as well as the initial rock temperature are both prescribed to T (z) = 27 + 0.03z o C. During the simulation time of 10 years, the time step increases from an initial time step of 1800 s to a maximum time step of 6 months.

We consider first an axisymmetric simulation with an homogeneous rock thermal conductivity λ rock = 3 W.K -1 .m -1 and a mesh of size 50 × 200 of the domain (r w , R w ) × (0, L) exponentially refined at the well boundary with R w = 10 m and L = 1500 m. Figure 6 compares the number of domain decomposition method (denoted DDM) iterations to reach the stopping criteria R n ≤ = 10 -8 (see [START_REF] Seus | A linear domain decomposition method for partially saturated flow in porous media[END_REF]) for the Robin coefficient

β rock = K 1 (rw η λ rock ) K 0 (rw η λ rock ) √
ηλ rock and for β rock obtained by the numerical solution ( 21)- [START_REF] Lions | On the Schwarz alternating method. III: a variant for nonoverlapping subdomains[END_REF]. we set β ff = h. From Figure 6, we see that the numerical computation of β rock presents a total gain of 154 DDM iterations over the full 98 time steps which amount to a net gain of say 56 DDM iterations compared with the analytical formula.

Figure 7 considers a 3D radial mesh of size 50 × 50 × 200 of the rock mass domain (r w , R w ) × (0, 2π) × (0, L), R w = 10 m, L = 1500 m, exponentially refined at the well boundary. The thermal conductivity is taken randomly in the interval [START_REF] Birgle | A domain decomposition method to couple nonisothermal compositional gas liquid Darcy and free gas flows[END_REF][START_REF] Colebrook | Experiments with Fluid Friction Factor in Roughened Pipes[END_REF] W.K -1 .m -1 at each cell of the mesh. For such heterogeneous test case, the usual strategy is simply to use, at each face σ of the well boundary, the following value of the thermal conductivity at the face σ:

β rock,σ = K 1 (r w η λ rock,K ) K 0 (r w η λ rock,K ) ηλ rock,K , (24) 
with λ rock,K the value of λ rock in the cell K with σ ∈ F K . Alternatively, the numerical solution ( 21)-( 20) takes into account the full heterogeneous thermal conductivity field and ensures that the convergence rate on the discrete linear coupled model vanishes for constant modes at the well boundary. From Figure 7, we observe a total gain of 149 DDM iterations for the numerical computation of β rock,σ compared with the analytical formula (24), providing a net gain of 51 DDM iterations for this variable time step simulation. 

Salt cavern gas storage modelling

We apply our domain decomposition approach to the modelling of salt caverns gas storage.

Cavern model

Leaching operation makes it possible to build a cavern with a more or less cylindrical or spherical shape. Characteristic radius of the cavern is approximately 50m. During storage operation, gas injection and withdrawal through the well induces compression or expansion of the gas into the cavern, and thus temperature changes of the gas. Inside the cavern, gas exchanges heat with the surrounding rock.

We choose in this study a simplified description of the cavern, where the gas pressure P c and temperature T c are assumed uniform in the cavern. The cavern will be considered as a one dimensional spherical object of radius R cav ; moreover, the temperature field in the rock mass is assumed to have a spherical symmetry. V cav denotes the cavern volume and S cav its surface. Equations describing the thermodynamical evolution of the gas [START_REF] Djizanne-Djakeun | Stabilité mécanique d'une cavité saline soumise à des variations rapides de pression[END_REF][START_REF] Karimi-Jafari | Sur le comportement transitoire des cavités salines profondes[END_REF] will be integrated on the cavern volume: -mass conservation

∂(ρ(P c , T c )V cav ) ∂t = Q
-energy balance equation in the cavern.

Using the second law of thermodynamics, it becomes:

(ρc v ∂T c ∂t - T c ρ ∂P ∂T | ρ ∂ρ ∂t )V cav = γS cav h (T wall,c -T c )+ < Q > + c p (T shoe -T c ) with < Q > + = Q if Q ≥ 0 < Q > + = 0 if Q ≤ 0
γ is a shape surface factor, which reflects that the true surface of the cavern is not spherical.

T shoe is the gas temperature at the well bottom, c p is gas specific heat capacity at constant pressure. h is a heat transfer surface coefficient, which will depend on convection in the cavern and wall roughness and T wall,c represents the temperature at the cavern wall. The first term of the r.h.s represents heat exchange with the rock mass surrounding the cavern, while the second term represents the heat input during injection. One dimensional heat equation is solved in the rock mass. At the interface between cavern and rock mass, temperature fields and thermal fluxes are continuous.

Resolution

-cavern problem We use a simplified discretization of the cavern problem, considering a spherical cavern embedded in a finite medium. The rock mass is indeed a spherical shell of large radius (larger than the length of diffusion during the cavern lifetime), typically of the order of 100m. It is discretized in spherical shells and a constant temperature is imposed on the outer surface. The cavern/rock mass problem is solved as a one dimensional coupled nonlinear problem. The rock mass initial temperature is assumed to be given by the geothermal temperature at the depth of the cavern centre.

-coupling well and cavern Assuming pressure equilibrium between well bottom pressure and cavern pressure, the following relationship is obtained:

P shoe = P c + ρ(P c , T c )gR cav
During injection, well and cavern problems are solved iteratively, as a fixed point problem, until convergence of P shoe and T shoe the pressure and temperature at the casing shoe. During withdrawal, cavern problem is solved first and P shoe = P c + ρ(P c , T c )gR cav and T shoe = T c are imposed as boundary conditions at the well bottom.

Application to gas storage exploitation

• We first investigate the relevance of thermal exchange between well and rock mass.

We consider a cavern with a volume of 275000 m 3 and an initial temperature of 62 o C and an inital pressure of 240 bars in the cavern. We assume a long withdrawal of 40000 nm 3 .h -1 . We compare an adiabatic solution with no exchange between well and the rock mass, a solution with an infinite rock mass heat capacity (constant temperature in the rock mass) and the coupled solution obtained with the Robin Robin algorithm. The initial temperature field is the same as in the preceding paragraph. The rock thermal properties in the cavern model are the λ= 5.5 W.K -1 .m -1 , c p = 920 J.kg -1 .K -1 , ρ rock = 2100 kg.m -3 , while along the well λ= 5. W.K -1 .m -1 , c p = 850 J.kg -1 .K -1 , ρ rock = 2100 kg.m -3 . The convergence criterion of the decomposition domain algorithm is taken as =10 -5 and time step is fixed to 6 hours. Number of iterations of domain decomposition algorithm for the coupled cases remains between 2 and 4. Figure 8 represents the temperature at the wellhead. The rock mass in the well vicinity heats up over time, as the gas is hotter than the surrounding rock mass near the wellhead. At the same time, the temperature inside the cavern is decreasing due to gas expansion in the cavern. Wellhead temperature evolution during the withdrawal may be compared with the adiabatic solution and the infinite rock heat capacity solution (Fig. 8). Wellhead temperature at the end of the withdrawal is close to the adiabatic one: due the relatively low value of thermal diffusion d = λ ρ rock cp in the rock mass , the rock mass temperature becomes close to the gas well temperature all along the well. (Fig. 9). It can also be observed that the temperatures of the three solutions (coupled with finite rock mass heat capacity, adiabatic and infinite rock mass heat capacity) at the casing shoe (well bottom) differ significantly during the injection phase due to heat exchange in the well. Time step is fixed to 6 hours during injection and withdrawal and increased by a constant ratio of 1.2 at each time step during rest phase. is fixed at 10 -5 . Number of iterations of domain decomposition algorithm for the coupled case remains between 2 and 4 as for the preceding test.

• Next figure illustrates the history-match of a true gas storage cavern (Fig. 10). Cavern modelling is used to predict cavern behavior during injection and withdrawal campaigns. A cavern model is built to reproduce the available data (wellhead pressure and temperature): the main calibration parameters of this history-matching approach are the shape factor of the cavern γ and the volume of the cavern [START_REF] Krieter | Influence of gas cavern's surface area on thermodynamic behaviour and operation[END_REF]. is taken as 10 -5 and the number of iterations of domain decomposition algorithm Wellhead pressure and temperature monitored have been plotted on Figure 10. Note that the estimated temperature is compared to measurements only when gas is withdrawn. Indeed during rest time, wellhead temperature is strongly dependent upon the weather; during injection, it is an input value.

Conclusion

This paper focuses on the modelling of heat transfer between fluid flowing in a well and the surrounding rock mass and proposes an efficient domain decomposition approach to solve this problem. The interest of such a method has been illustrated by the study of the modelling of underground gas storage in salt caverns. The theoretical and numerical results show that the Dirichlet Neumann algorithm is not robust for this coupled model even with the introduction of a relaxation parameter. On the other hand, the Robin Robin algorithm provides a robust and efficient convergence for the range of physical parameters of interest including low flow rates and very small time steps. The Robin coefficient β rock can be computed from the analytical formula obtained for an unbounded rock domain and for constant thermal conductivity and rock heat capacity. For heterogeneous thermal conductivity or rock heat capacity a better choice can be obtained by a numerical computation of β rock at the cost of one iteration of the algorithm. The extension of this domain decomposition strategy to more complex well models, e.g. in geothermal systems, will be investigated in the near future.

Compared with a monolithic approach based on the solution of the fully coupled Jacobian system at each Newton iteration, the advantage of the nonlinear DDM is to allow the use of efficient off-the-shelf solvers on each subdomain. In our case we have used a Conjugate Gradient algorithm preconditionned by an Algebraic MultiGrid (AMG) method for the rock linear subproblem and a local to each well cell Newton solver for the well nonlinear submodel, ordering the well cells in the flow direction. The monolithic approach would converge in a few Newton iterations making the total number of linear solves quite similar for both methods. On the other hand, the monolithic approach requires to design an efficient preconditioner for the fully coupled Jacobian system. This is not a trivial task considering the highly contrasted rock and well submodels both in terms of geometry and physics. A possible solution would be to apply the DDM algorithm to the fully coupled Jacobian system as a preconditioner combined with an approximate solve of the rock model based on a single AMG V-cycle. In other words, the domain decomposition method can also be exploited to make the monolithic approach more efficient.
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 2 Figure 2: Both |G RR (k)| and |G DN (k)| (top) and 1 -|G DN (k)| (bottom) as a function of k ∈ [0, k max ] obtained with Q n = 30000 nm 3 .h -1 , ∆t = 6 h and with β ff = h, β rock = DtN rock (0), θ given by (16). Note that |G RR (0)| = |G DN (0)| = 0.
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 3 Figure 3: Both |G RR (k)| and |G DN (k)| (top) and 1 -|G DN (k)| (bottom) as a function of k ∈ [0, k max ] obtained with Q n = 150000 nm 3 .h -1 , ∆t = 30 days and with β ff = h, β rock = DtN rock (0), θ given by (16). Note that |G RR (0)| = |G DN (0)| = 0.
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 4 Figure 4: |G RR (k)| as a function of k ∈ [0, k max ] obtained with the Robin coefficients given by a numerical approximation of the min-max problem, by the choice β rock = DtN rock (0), β ff = h (denoted DtN0-h) and by the choice β rock = DtN rock (0), β ff = β(1) ff (denoted DtN0-β (1) ff ). The data set is defined by Q n = 150000 nm 3 .h -1 and ∆t = 30 days (top), Q n = 30000 nm 3 .h -1 and ∆t = 6 h (middle), and by Q n = 1 nm 3 .h -1 and ∆t = 360 days (bottom).

Figures 4 and 5 ,

 5 Figures 4 and 5, the choice β ff = β (1)
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 5 Figure 5: Convergence rate (defined as the maximum of |G RR (k)| in k ∈ [0, k max ]) as a function of the normal flow rate Q n for the Robin coefficients obtained by a numerical approximation of the min-max problem (min-max), by the choice β rock = DtN rock (0), β ff = h (denoted DtN0-h), and by the choice β rock = DtN rock (0), β ff = β

  The curves are plotted from bottom to top for the following values of the time step: ∆t = 0.5 h, 6 h, 1 day, 1 month, 1 year. Note that the convergence rate for Q n = 0 for the first and last cases is not plotted due to the log scale since it is vanishing. derived from momentum and energy balance equation, depending on pressure and temperature in the well. The solution of the momentum equation and the energy balance equation are splitted in time. The Robin Robin and the Dirichlet Neumann algorithms for the time dependent problem have been implemented both for axisymmetric meshes and 3D radial meshes of the rock domain.
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 6 Figure 6: Convergence of the DDM residual (23) with one curve for each time step as a function of the cumulative number of DDM iterations for the axisymmetric test case with homogeneous thermal conductivity λ rock = 3 W.K -1 .m -1 on the mesh 50 × 200 with Q n = 150000 nm 3 .h -1 . (top): Fourier based definition of β rock , (bottom): numerical computation of β rock .
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 7 Figure 7: Convergence of the DDM residual (23) with one curve for each time step as a function of the cumulative number of DDM iterations for the 3D radial test case with random thermal conductivity λ rock ∈ [2, 5] W.K -1 .m -1 on the mesh 50 × 50 × 200 with Q n = 150000. (top): Fourier based definition of the face σ dependent Robin coefficient β rock,σ , (bottom): numerical computation of β rock,σ .
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 8 Figure 8: Wellhead temperatures for a long withdrawal at high flow rate -wellhead temperature for coupled case with finite rock mass heat capacity: dotted -wellhead temperature for adiabatic case: dashed line -wellhead temperature for infinite rock mass heat capacity: long dashed line -cavern temperature: grey line

Figure 9 :

 9 Figure 9: Wellhead temperatures during a sequence of injection and withdrawal -temperature for coupled case: dotted -temperature for adiabatic case: dashed line -temperature for infinite rock mass conductivity: long dashed line -flow rate: black line

Figure 10 :

 10 Figure 10: History-match of a cavern: Well-head pressure and temperature estimated by model (black marks) compared to availble data (grey marks) -flow rate (black line) is imposed in the model.

Table 1 :

 1 Number of iterations for different flow rates for Robin Robin domain decomposition with coefficients given by Bessel function -=10 -8 .

	Flow rate	Iter.	Iter.	Iter.	Iter.
	(nm 3 .h -1 ) dt=.5(h) dt=1(h) dt=6(h) dt=12(h)
	0	1	1	1	1
	500	4	4	4	4
	1000	4	4	4	4
	3000	5	5	4	4
	6000	5	4	4	4
	10000	5	4	4	4
	12000	5	4	4	4
	15000	5	4	4	3
	20000	5	4	3	3
	40000	5	4	3	3
	80000	4	4	3	3
	100000	4	4	3	3
	120000	4	3	3	3
			Iter.	Iter.	Iter.
			dt=1(h) dt=6(h) dt=12(h)
	max T -T .5(h) ( o C)	0.086	0.20	0.25
	max P -P .5(h) (bar)	0.11	0.47	0.55

Table 2 :

 2 Maximum well-bottom temperature and well-head pressure absolute difference with the 0.5(h) solution during the 12 days simulation. This numerical computation of β rock must be done at each time step in the case of a variable time stepping and has basically the cost of one DDM iteration. In both cases

	Flow rate	Iter.	Iter.	Iter.	Iter.
	(nm 3 .h -1 ) dt=.5(h) dt=1(h) dt=6(h) dt=12(h)
	0	1	1	1	1
	500	5	5	15	23
	1000	4	4	12	15
	3000	9	9	16	17
	6000	8	8	10	10
	10000	7	7	8	7
	12000	7	7	8	8
	15000	7	7	7	8
	20000	6	6	7	7
	40000	5	5	5	7
	80000	4	4	4	5
	100000	4	4	4	4
	120000	4	4	4	4

Table 3 :

 3 Number of iterations for different flow rates for Robin Robin domain decomposition with coefficients given in the planar approximation -=10 -8 .

	Flow rate	Iter.	Iter.	Iter.	Iter.
	(nm 3 .h -1 ) dt =.5(h) dt =1(h) dt =6(h) dt =12(h)
	0	n.c.	n.c.	n.c.	n.c.
	500	n.c.	n.c.	n.c.	n.c.
	1000	n.c.	n.c.	n.c.	n.c.
	3000	n.c.	n.c.	n.c.	n.c.
	6000	n.c.	n.c.	n.c.	n.c.
	10000	n.c.	n.c.	18	18
	12000	n.c.	n.c.	18	15
	15000	n.c.	21	14	12
	20000	20	18	12	12
	40000	13	11	9	9
	80000	10	8	7	6
	100000	9	8	6	6
	120000	8	7	6	6

Table 4 :

 4 Number of iterations for different flow rates for Dirichlet Neumann domain decomposition -=10 -8 .

	Flow rate	Iter.	Iter.	Iter.
	(m 3 .h -1 ) dt =.5(h) dt =1(h) dt =6(h)
	0	1	1	1
	500	51	83	281
	1000	52	85	279
	3000	198	283	685
	6000	200	281	685
	10000	203	286	706
	12000	204	287	708
	15000	205	261	710
	20000	205	287	714
	40000	210	300	728
	80000	219	308	737
	100000	193	308	729
	120000	191	308	718

Table 5 :

 5 Number of iterations for different flow rates for relaxed Dirichlet Neumann domain decomposition -=10 -8 .