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Semantic Congruence in Arithmetic:  

A New Conceptual Model for Word Problem Solving 

 

Abstract 

Arithmetic problem solving is a crucial part of mathematics education. However, existing 

problem solving theories do not fully account for the semantic constraints partaking in 

the encoding and recoding of arithmetic word problems. In this respect, the limitations 

of the main existing models in the literature are discussed. We then introduce the 

Semantic Congruence (SECO) model, a theoretical model depicting how world and 

mathematical semantics interact in the encoding, recoding and solving of arithmetic word 

problems. The SECO model’s ability to account for emblematic results in educational 

psychology is scrutinized through six case studies encompassing a wide range of effects 

observed in previous works. The influence of world semantics on learners’ problem 

representations and solving strategies is put forward, as well as the difficulties arising 

from semantic incongruence between representations and algorithms. Special attention 

is given to the recoding of semantically incongruent representations, a crucial step that 

learners struggle with.  

Keywords: Cognitive strategies, Knowledge representation, Learning strategies, 

Mathematics learning and teaching, Problem solving. 

  



SEMANTIC CONGRUENCE IN ARITHMETIC 2 

 
 

Introduction 

What does it take to solve an arithmetic word problem? It goes without saying that finding 

the solution requires to be able to read and understand the problem statement, as well as to 

handle its numerical values and compute the solving algorithm. But is it enough to simply 

know how to read and count?  

Several studies have highlighted robust effects suggesting that solving arithmetic 

word problems involves processes other than mere procedural ones, that have yet to be 

accounted for within a unified theory. For instance, Hudson (1983) showed that finding a 

solution to the problem “There are 5 birds and 3 worms. How many more birds than worms 

are there?” was considerably more difficult for kindergarteners than answering the question 

“How many birds won’t get a worm?”, despite striking similarities between these two 

situations. Bassok, Wu and Olseth (1995) showed that after being taught the algorithmic 

solution of a problem describing objects assigned to people (e.g. computers given to 

secretaries), participants could more easily transfer it to problems involving objects assigned 

to people (e.g. prizes given to students), rather than to problems involving different semantic 

relations, such as problems involving symmetrical sets of people (e.g. doctors “assigned” to 

other doctors). In a study with primary school pupils, Coquin-Viennot and Moreau (2003) 

found that to calculate the number of flowers a florist needs in order to give 5 roses and 7 

tulips to each person among 14 people, factorization (i.e. adding 5 and 7 before multiplying 

the total by 14) was more commonly used if the wording mentioned that the flowers were 

grouped in a bouquet than if it did not. Finally, Thevenot and Oakhill (2005, 2006) showed 

that the choice between two alternative solving algorithms is influenced by the cognitive 

costs of each strategy. Facing a problem statement where the solution was usually obtained 

by calculating the value of “x − (y + z)”, they found that participants’ preferences shifted in 

favor of the more economical sequential strategy “(x − y) − z” when presented with higher 
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values. 

Separately, these studies have all been accounted for within a given framework of 

arithmetic word problem solving; either the schema theory (Kintsch & Greeno, 1985), the 

situation problem model (Reusser, 1990; Staub & Reusser, 1995) or the semantic alignment 

framework (Bassok, 2001). However, taken together, these studies on wording effects, 

content effects, and re-representation processes display a range of findings that, to our 

knowledge, remain to be explained within a common model. To address this issue, we hereby 

propose a semantic congruence – SECO – model accounting for how the interactions 

between the solver’s knowledge about the world (the world semantics) and the solver’s 

knowledge about mathematics (the mathematical semantics) mediate the conceptual and 

procedural sides of arithmetic word problem solving. We believe that such a model should 

help pave the way towards the development of new instruction methods by providing a 

unified account of a range of effects whose considerable influence on students at all levels 

tends to be underestimated. Before further specifying the SECO model’s inner workings, a 

description of the range of effects that current theories of arithmetic word problem solving do 

account for seems in order. 

Arithmetic word problem solving theories 

Numerous works have highlighted the fact that arithmetic word problems which can be 

solved using identical arithmetic operations may vary greatly in terms of solving difficulty, 

be they additive (Carpenter & Moser, 1982; Nesher, Greeno, & Riley, 1982; Riley, Greeno, 

& Heller, 1983) or multiplicative (Greer, 1992; Squire & Bryant, 2002; Vergnaud, 1983) 

problems. The two most prominent approaches of arithmetic word problem solving which 

have attempted to account for such effects are the schema and the situation model theories 

(see Thevenot & Barrouillet, 2015, for a review).  
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The schema model 

The schema model (Kintsch & Greeno, 1985; Rumelhart, 1980; Schank, 1975; Schank & 

Abelson, 1977) posits that the resolution of arithmetic word problems relies on the creation, 

activation, and implementation of schemas. Schemas are defined as propositional data 

structures stored in long-term memory, as a result of repeated encounters with problems 

sharing the same structure. These operatory structures, once created, can be activated and 

implemented with numerical values from any given context (any cover story), thus providing 

the solver with a valid solving algorithm. According to this view, the solvers read the 

problem statement and “the verbal input is transformed into a conceptual representation of its 

meaning, a list of propositions” (Kintsch & Greeno, 1985, p. 111). The solvers then activate, 

in their long-term memory, the schema sharing the same propositional structure as the one in 

the problem statement. They then instantiate this schema with the specific numerical values 

of the cover story to interpret and solve the problem. For instance, in a compare problem, a 

sentence such as “Tom has three more marbles than Joe” cues a “have more than” 

propositional structure which uses three arguments: two corresponding to Tom and Joe’s sets, 

and one corresponding to the quantitative proposition associated with the comparison 

(Kintsch & Greeno, 1985). According to Kintsch and Greeno (1985), this propositional 

structure can be implemented with the values of any problem using a “have more than” 

proposition and can be used to choose the solving algorithm. 

However, the schema theory has been challenged by works showing that minor 

modifications within the wording of otherwise structurally identical problems led to 

significant differences in terms of solvers’ performances. Notably, De Corte, Verschaffel and 

De Win (1985) showed that modifying the wording of problems sharing the same schema 

impacted both their difficulty and the type of errors solvers make. For example, problems 

such as “Bob got 2 cookies. Now he has 5 cookies. How many cookies did Bob have in the 
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beginning?” were only solved by 36% of the children in the study, whereas slightly reworded 

problems such as “Bob had some cookies. He got 2 more cookies. Now he has 5 cookies. 

How many cookies did Bob have in the beginning?” were solved by 55% of the children.  

Another convincing piece of evidence showing the limitations of the schema model 

was brought by Thevenot and Oakhill (2005), who asked adults to solve problems such as 

“How many marbles do John and Tom altogether have more than Paul? John has 29 marbles, 

Tom has 13 marbles and Paul has 26 marbles”. This problem is usually solved with the 

algorithm (29 + 13) – 26 = 16, which could be explained by the schema model by the fact 

that the word “altogether” activates a Combine schema (29 + 13) and the words “have more 

than” activates a Comparison schema (42 – 26) (Riley et al., 1983). However, the authors 

showed that when the numerical values were replaced by 3-digit numbers (e.g. replacing 29, 

13, and 26 by 749, 323, and 746, respectively), participants tended to use another algorithm 

to solve the problem: (749 – 746) + 323 = 326. Indeed, since in both cases John has 3 more 

marbles than Tom, it would be easier to calculate the difference between John’s and Tom’s 

marbles and add it to the number of marbles Paul has. Yet, participants only used this strategy 

when the use of 3-digit numbers made it too difficult to calculate the solution using the other 

algorithm. This experiment suggests that participants were able to decide not to blindly apply 

the schemata activated by the problem and to construct an alternative problem representation 

instead. 

Another argument showing the limitations of the schema theory came from Thevenot 

(2010), who asked participants to solve arithmetic problems and later presented them with an 

unexpected recognition task involving problems that were either identical to the source 

problems, inconsistent with the source problems, or that described the same situations using 

paraphrases. The results showed that paraphrastic problems had a higher recognition rate than 

inconsistent problems. Since, in paraphrastic problems, the propositional structure of the 
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initial problems was lost by the paraphrasing, it follows that recognition was not solely based 

on a propositional representation, contrarily to what the schema view predicts.  

Thus, additional interpretative processes are believed to come into play and modulate 

the solvers’ performance. In this regard, effects of content – interpretative effects linked to 

the semantic content of the cover stories – have been shown to influence participants’ 

performance in a way that is not accounted for by the schema theory (Coquin-Viennot & 

Moreau, 2003; De Corte et al., 1985; Gvozdic & Sander, 2017; Reusser, 1988; Vicente, 

Orrantia, & Verschaffel, 2007). This significant blindspot in the schema theory explains the 

need for a more comprehensive model accounting for the content effects reported in the 

literature. 

The situation model approach 

Due to these limitations, the schema theory has since lost ground against an alternative 

approach, which builds on the theoretical frameworks of mental models (Johnson-Laird, 

1980, 1983) and situation models (Van Dijk & Kintsch, 1983). This approach originates from 

Reusser’s model, the Situation Problem Solver (SPS), which applies the situation model 

approach to arithmetic word problem solving (1989, 1990, 1993; Staub & Reusser, 1995). 

The SPS model accounts for the integration by the solver of the set of information present in 

the problem statement. Namely, it proposes that reading a word problem results in the 

creation of an episodic situation model featuring every functional relation depicted within the 

text and presenting an analogous structure to that of the described situation (Reusser, 1990). 

For example, in Hudson’s study (1983) mentioned in the introductory paragraph of this 

paper, the “How many more birds than worms are there” problem refers to a static episodic 

situation model where birds and worms are conceived of as two disjoint sets of entities, 

whereas the “How many birds won’t get a worm” problem leads to the creation of a dynamic 
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episodic situation model in which the relation between the two sets is highlighted (Staub & 

Reusser, 1995). The episodic situation model is then translated into a problem model 

containing the relevant structural elements and relations from the point of view of the 

question to be answered. This qualitative representation of the problem statement differs from 

the purely propositional structure proposed by the schema theory. According to Staub and 

Reusser (1995), this problem model is then reduced to its abstract mathematical gist, which 

can be translated into a solving algorithm.  

Although it builds on the idea that solvers reason based on mental representations 

analogous to the situations described in the problem statements, the SPS model does not 

explicitly describe the processes that form those representations. Indeed, according to the 

situation model view, “the structure of a representation corresponds to the structure of what it 

represents” (p.18244, Johnson-Laird, 2010). If a perfect structural correspondence is assumed 

between the representation itself and what is represented from the external world, this means 

that the former is presumed to be a faithful internalization of an external state. The processes 

through which this internalization is achieved are not explicitly in the scope of the SPS 

approach. In particular, the idea that background knowledge of an individual might influence 

the internalization process and eventually interfere with the faithfulness of the internalization 

relatively to the external situation is not a significant topic in the SPS model.  

The notion that the structure of a representation is identical to the structure of what it 

represents is hardly compatible with the thought that one depicted situation could be 

interpreted differently by different individuals. In other words, saying that a problem 

statement is encoded as a representation whose structure is analogous to the problem 

statement’s is tantamount to saying that only one representation can be encoded from a given 

problem, regardless of variations in interpretation that can occur over time or individuals. 
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The semantic alignment contribution 

Other works have been more attentive to this issue, showing that solvers’ prior knowledge 

strongly constrains the representations they construct, in an often detrimental way (Thevenot, 

2017). Bassok et al.’s (1995) showed that the world knowledge regarding the entities 

involved in arithmetic problems influenced the transfer to isomorphic permutation problems; 

for instance, problems involving objects and people, such as caddies and golfers, 

spontaneously evoke an asymmetric structure (“get”), in which golfers are getting caddies 

and not the opposite since in our world, in most pragmatic contexts, people receive objects 

and not the other way around. In contrast, they showed that problems involving two sets of 

people (e.g. kids from two nurseries) evoke a symmetric structure (“pair”), in which children 

from both nurseries are paired together. These semantic relations between the problem 

elements thus constrain participants’ representations of the problems.  

Bassok, Chase, and Martin (1998) provided additional evidence for this claim, by 

giving participants the names of different types of objects and asking them to use these 

objects to create arithmetic word problems involving either an addition or a division. For 

objects linked by an asymmetric functional relation (e.g., a container/content relation between 

vases and tulips), participants created more division problems (e.g. the number of tulips 

divided by the number of vases) than additions. On the other hand, with objects belonging to 

the same superordinate category, such as tulips and daffodils, participants created mostly 

additive problems.  

This issue is all the more important given how Bassok et al. (1998) showed that the 

association between subclasses of objects and specific solving strategies is reinforced 

throughout education by the exercises proposed in mathematical textbooks. They showed that 

a vast majority of division problems in math textbooks include elements linked by 

asymmetrical relations whereas additive problems feature elements belonging to categories of 
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the same taxonomic level such as red and blue marbles. This reinforcement throughout the 

years of arithmetic school teaching may contribute to the development and strengthening of 

robust solving biases among learners, making it especially important to model these 

interpretative effects of content to better capitalize on them.  

The semantic alignment framework (Bassok, 2001) aims at accounting for these 

interpretative effects of content. It goes beyond the SPS view by specifying how world 

knowledge regarding the entities involved in the problem influences its representation by the 

solvers. It proposes that the solvers’ knowledge about the objects described in the problem 

cover stories leads them to abstract an interpreted structure. This structure varies from one 

problem statement to another, depending on the roles defined by the world knowledge 

regarding the entities, even when those roles are not relevant – or even deleterious – with 

regard to the mathematical structure of the problems and the task at hand. Thus, the structure 

that is abstracted from arithmetic problems can facilitate the resolution when the relations it 

entails are semantically aligned with the objective mathematical relations of the problem, that 

is when the problem’s semantic structure can be used “to infer, by analogy, its objective 

mathematical structure” (Bassok, 2001, p. 402; Bassok et al., 1998).  

For example, performing divisions on problems involving oranges and baskets will 

prove easier than performing divisions on problems involving oranges and apples, because 

division is semantically aligned with asymmetrical structures such as the one between 

containers (the baskets) and their content (the oranges). Supporting this view, Bassok, Pedigo 

and Oskarsson (2008) showed that addition facts are activated when they are primed by 

categorically related words usually associated with addition (e.g. the pair tulips-daisies is 

semantically aligned with addition), but not in cases of misalignment, when they are primed 

by unrelated words and are misaligned with addition (e.g. hens and radios are not usually 

connected in an addition model). This was confirmed in an ERP study by Guthormsen et al. 
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(2015) who showed N400 and P600 effects indicating a disruption of conceptual integration 

when participants were presented with misaligned problems (e.g. a problem in which flowers 

and vases were added together). These results indicate that, in case of semantic alignment, the 

semantic content of a problem statement can provide crucial clues to the solvers.  

Alternative encodings and re-representation 

The strengths of the previous approaches are their versatility and their ability to each account 

for a range of effects documented in the literature. However, it seems that one crucial 

question remains open: how is it possible to solve a problem whose semantic content is 

misaligned with its solution? How can one ignore those misleading clues and go beyond their 

initial encoding of a problem statement to reach a solution? Overcoming semantic 

misalignment would mean abstracting a new, different structure of the depicted situation. For 

instance, encoding a problem with caddies and golfers as a distributive structure where 

golfers are assigned to caddies instead of the opposite.  

However, the issue of whether several alternative interpreted structures can be 

encoded from the same problem statement, by different individuals or by one individual over 

time, has yet to be considered. Ross and Bradshaw (1994) showed that the initial 

interpretation of an ambiguous story could be influenced by the beforehand presentation of 

another story sharing some degree of similarity with the latter. This suggests that two 

different semantic structures can be abstracted from a same situation, depending on 

participants’ past experiences and prior knowledge. 

Furthermore, studies on re-representation showed that it is possible for the solvers to 

turn their initial representation into a new one, allowing them to overcome their initial 

inappropriate interpretation and find the solution (Davidson & Sternberg, 2003; Gamo, 

Sander, & Richard, 2010; Sander & Richard, 2005; Vicente et al., 2007). For example, to 
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facilitate the solving of a change problem in which a quantity is added or subtracted from an 

unknown start set, solvers can represent the problem in terms of a part-whole structure and 

turn it into a search for the unknown part (Riley et al., 1983). Thus, it is important to tackle 

what precisely happens when a solver’s initial encoding of a problem statement fails to 

trigger the use of an appropriate solving algorithm, and to get a better understanding of how 

solvers might overcome an earlier inadequate representation and recode the same problem. 

Bearing this issue in mind, we wish to build on the SPS model and on the notion of 

interpreted structure in order to provide a unified model addressing the processes involved in 

arithmetic problem solving.  

The semantic congruence (SECO) model 

The SECO model is based on the notion of semantic congruence in arithmetic word problem 

solving, which it defines and operationalizes by accounting for the interactions between 

world semantics, mathematical semantics, and algorithms. Within the SECO model (Figure 

1), the product of the interaction between world semantics and mathematical semantics needs 

to be put in correspondence with an algorithm, by means of an interpreted structure.  

Components 

The components depicted in the SECO model are characterized below; they will be further 

exemplified in a second phase through six case studies. 

• Problem statement: The problem statement is a text describing the elements of the 

problem and the situation(s) in which they interact as well as their relations and 

associated values.  

• World semantics: World semantics is characterized by the solver’s non-

mathematical, daily-life knowledge about the elements of the problem statement as 
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well as the relations between them. For example, world semantics may include 

knowledge that flowers can be put into vases, that there is a co-hyponym relation 

between oranges and apples, or that to go from the 1st to the 3rd floor of a building one 

must pass by the 2nd floor first. There is indeed a broad literature showing that 

understanding, reasoning, decision-making and problem solving are influenced by the 

individual’s knowledge regarding the entities involved and their relations (e.g., 

Bassok, 2001; Carey, 2009; Gelman, 2003; Gentner, 1988; Goswami & Brown, 1990; 

Johnson-Laird, 1983; Van Dijk & Kintsch, 1983; Kotovsky, Hayes, & Simon, 1985; 

Stanovich, 1999).  

• Mathematical semantics: Mathematical semantics is characterized by the solver’s 

mathematical knowledge that is applicable to the problem statement. For example, 

mathematical semantics may include knowledge that to calculate the size of a set, one 

needs to add the size of all its subsets, or that to evenly share a collection of objects 

among several sub-collections, one needs to divide the number of elements in the 

collection by the number of sub-collections.  

• Interpreted structure: The interpreted structure is abstracted from the problem 

statement, integrating pieces of information present in the text with the properties, 

relations, and constraints inferred from the world semantics. This notion stems from 

Bassok and colleagues’ research (Bassok & Olseth, 1995; Bassok et al., 1995, see 

above). Since the mathematical semantics evoked by the problem statement is 

activated during the encoding, the interpreted structure can feature algebraic values or 

be instantiated by the numerical values. For example, world semantics about fruits 

will lead co-hyponyms such as oranges and apples to be encoded as subsets of a 

superset of fruits.  
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• Solving algorithm(s): A solving algorithm is a finite, unambiguous set of actions that 

leads to the correct answer when properly executed. Multiple solving algorithms may 

stem from a given problem statement (e.g. De Corte et al., 1985; Gamo et al., 2010; 

Große & Renkl, 2006; Kouba, 1989; Leikin & Lev, 2007; Thevenot & Oakhill, 2005).  

• Deep structure: This notion stems from Chi and colleagues’ work (Chi, Feltovich, & 

Glaser, 1981). We define it as the semantic structure integrating the elements of the 

problem that are relevant for its resolution and describing their relations. This 

structure does not rely on world semantics but on mathematical semantics. It has been 

designated as “the objective mathematical structure” (Bassok, 2001), or as “the 

principle of the problem” (Ross, 1987); for non-mathematical problems, the 

corresponding notion is “the problem space” of an expert solver (Newell & Simon, 

1972). 

Processes 

The processes depicted in the SECO model are characterized as follows: 

• Initial encoding: This process describes how the problem statement is abstracted into 

an interpreted structure depending on the world and mathematical semantics evoked 

by its wording. The world semantics activated by the problem statement constrains 

the representation of the depicted situation, either by highlighting or by 

overshadowing specific relations between the problem’s entities. Similarly, the 

mathematical semantics evoked by the problem statement also shapes the 

mathematical relations represented in the interpreted structure. 

• Specification: This process describes how an interpreted structure may be specified 

into an algorithm, as a result of the relations it describes and the numerical values it 

features. When the relations depicted in the interpreted structure hold a mathematical 
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meaning, they can be translated into relevant operations through this specification 

process. Not every interpreted structure can be specified into a relevant solving 

algorithm, since the relations highlighted during the encoding process may not be 

relevant, and the encoded values may not be the ones needed to solve the problem. A 

deep structure, on the other hand, may be specified into any relevant algorithm, since 

it depicts every relevant relation, independently from the influence of world 

semantics, contrarily to an interpreted structure.  

• Expert encoding: The expert encoding describes the hypothetical process that may 

happen when experts initially encode problems within their domain of expertise. As 

stressed by Chi et al., (1981) experts are believed to be able to disregard the cover 

story of a problem and directly encode its deep structure. According to this view, an 

expert may use mathematical semantics and disregard world semantics to directly 

abstract the deep structure from the problem statement.  

• Recoding: Since not every deep structure can be specified into a relevant solving 

algorithm, the recoding describes how, when the initially encoded interpreted 

structure cannot be translated into an appropriate, tractable algorithm, a new 

representation can be abstracted by recoding the interpreted structure. This process is 

akin to the re-representation said to be necessary to overcome difficulties in arithmetic 

problem solving (Vicente et al., 2007). It relies on mathematical semantics to recode 

the situation and build a new structure, closer to the deep structure of the problem. It 

is a costly process that does not systematically happen. 

Inner workings 

The SECO model integrates these notions in the following way: it posits that when reading a 

problem statement (a), the lay solvers will initially encode the problem according to the 
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world semantics (b) as well as to the mathematical semantics (e) evoked by the problem 

statement, from which they will abstract an interpreted structure (c). This interpreted structure 

is therefore semantically aligned with the solvers’ knowledge about the elements present in 

the problem statement and can differ from one solver to another for the same problem 

statement, depending on the state of their world and mathematical semantics. Because it 

holds a mathematical meaning, this interpreted structure may be specified into an algorithm 

(d). This algorithm stems from the procedural knowledge that is attached to the mathematical 

semantics activated by the problem statement. In cases in which no tractable algorithm can be 

derived from the interpreted structure encoded, the solver faces a dead-end and the need for a 

recoding process arises. Such a process would appeal to mathematical semantics (e) and not 

to world semantics, in order to encode a new representation consistent with the deep structure 

(f) of the problem and thus allow the use of a new algorithm as a result. Contrarily to the 

interpreted structure from which no tractable algorithm might be derived, this deep structure 

can be specified into any relevant solving algorithm (d). Finally, the model also introduces 

the possibility that an individual with sufficient expertise regarding a specific type of problem 

might directly abstract a deep structure (f) from a problem statement (a), without first 

extracting an interpreted structure (c) influenced by world semantics (b).  

SECO underlines a key aspect of arithmetic word problem solving consisting in the 

congruence between the semantic knowledge evoked by the problem statement and the 

mathematical semantics required to find its solving algorithm. If the world semantics attached 

to the elements in a problem statement is not congruent with the mathematical semantics 

required to solve the problem, the initial interpreted structure will not be translated into a 

valid solving algorithm. Indeed, only the mathematical semantics congruent with the world 

semantics evoked by the problem statement will be used during the initial encoding of the 

problem. In cases where the relevant mathematical semantics is not congruent with the world 
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semantics evoked, an extra recoding step is necessary to recode the interpreted structure into 

a new representation closer to the deep structure of the problem, making the process longer 

and more difficult. 

As in the SPS model, SECO considers that a mental representation of the situation is 

abstracted when reading an arithmetic word problem. However, contrarily to this model, 

SECO does not consider that this representation maps onto the structure of the world: by 

integrating the role of world and mathematical semantics in the encoding of the problem 

statement, SECO accounts for the fact that there is no unique way to mentally model a 

problem statement. A situation can be encoded differently by different individuals, and the 

abstracted structure may be recoded into a new representation if need be.  

Accounting for existing results: case studies 

 In order to better understand SECO’s contribution in contrast to the current models of 

arithmetic problem solving, we propose to tackle representative results in the field through 

SECO’s lens and compare it to the accounts of these results by the two most prominent 

models of arithmetic word problem solving, the Schema model and the Situation Problem 

Solver model. As our presentation of SECO shows, its main contribution resides in its 

depiction of the influence of world semantics on solving strategy choice as well as of the 

necessity to semantically recode the problems in case of failure. While SECO does not intend 

to resort solely to world semantics to account for every possible variation in arithmetic 

problem solving, as other sources of differences exist (e.g. algorithm computation abilities or 

reading comprehension), its central added value consists in its depiction of the influence of 

world semantics on the encoding, recoding and solving of the problems.  

We now assess SECO’s unique ability to explain the effects reported by a set of six 

studies mentioned in the introductory section of this paper and presenting representative 
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results in the field. We believe that altogether, these studies prove challenging to the existing 

models of arithmetic problem solving. We first present two cases illustrating the key issue of 

the influence of world semantics on the selection of a solving strategy. The following two 

case studies then showcase the other central feature of the SECO model: its depiction of the 

existence of a recoding process for semantically incongruent representations. The last two 

case studies show how SECO proposes a new take on classical rewording effects, from which 

important educational implications arise.  

World semantics issues 

The first two studies we detail illustrate the key influence one’s knowledge about the world 

can have on one’s problem solving performance. They describe examples of the effect the 

content of a problem statement can have on the interpretative processes at play. In other 

words, they showcase the role of world semantics in arithmetic word problem solving. 

Case 1: Bassok et al.’s account of interpreted structures 

Empirical findings and authors’ perspective. Compelling evidence of the influence of world 

semantics on the interpreted structure have been provided by Bassok et al. (1995). 

Participants who were unable to solve an initial permutation problem were presented with a 

short lesson accompanied by a training problem and its solving equation: 1
𝑛𝑛(𝑛𝑛−1)(𝑛𝑛−2)

 (n being 

the size of the set of elements being assigned). The participants then had to solve a transfer 

problem using the same algorithm. The main result was that participants who were first 

trained on a problem involving an assignment of objects to people (O→P) had a dramatically 

higher success rate when they transferred the solution to other O→P problems (89% of 

success) than those who had to transfer the solution to “people assigned to objects” (P→O) 

problems (0% of success). 
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According to the authors, the participants interpreted the structure of the problems by 

using their world knowledge about the roles of the entities involved in the problems, i.e. they 

spontaneously interpreted the problem as a situation in which “objects are given to people” 

and constructed different interpreted structures depending on which entities were described. 

The semantic (mis)alignment between the training and transfer problems’ interpreted 

structures accounted for the participants’ high (or low) success rate in the transfer problems.  

SECO’s account of the results. Because it details how an interpreted structure is encoded 

according to the world and mathematical semantics, the SECO model can account for this 

result, see Figure S1 in Supplemental Materials (transfer to objects-to-people problems) and 

Figure S2 (transfer to people-to-objects problems). As situations where objects are assigned 

to people are much more common in daily-life than situations where people are assigned to 

objects, in SECO, the world semantics (b) regarding the assignment of elements fosters the 

idea that objects are usually assigned to people. Therefore, when reading the problem 

statement (a), the world semantics (b) should, in both “objects to people” and “people to 

objects” problems, result in an interpreted structure (c) in which objects are assigned to 

people.  

This interpreted structure leads the participants to implement the algorithm 

1
𝑛𝑛(𝑛𝑛−1)(𝑛𝑛−2)

 (d) with the value corresponding to the size of the set of inanimate objects 

whereas they should be thinking in terms of which set is being assigned to the other. Indeed, 

given that participants received limited training, it might be that they did not really 

understand the solving procedure in the training problem, and thus their mathematical 

semantics (e) regarding the assignment did not comprise the mathematical notion of “draw 

without replacement within a set”. Instead, they simply implemented the training algorithm 

by mapping the semantic roles of the training and transfer problems, and only considered the 
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fact that n was the size of the set of assigned objects in the first problem. Thus, they transfer 

the algorithm they learned by replacing the n value by the number of inanimate objects, even 

if the set of people is the one being assigned to the set of objects. This leads to correct use of 

the algorithm in “object to people” transfer problems (Figure S1) but not in “people to 

objects” transfer problems (Figure S2) and accounts for the dramatic contrast between the 

transfer rates in both conditions (0% vs. 89%). 

Case 2: Coquin-Viennot and Moreau’s account of semantic constraints 

Empirical findings and authors’ perspective. In their study bearing on the use of factorization 

and expansion algorithms among 3rd and 5th graders, Coquin-Viennot and Moreau (2003) 

showed that problems such as “For a prize-giving, the florist prepares for each of the 14 

candidates 5 roses and 7 tulips. How many flowers does the florist use in total?” were less 

often solved using factorization (44% among 5th graders) than problems identical in every 

aspect except for the presence of a superordinate structuring term such as “a bouquet”: “For a 

prize-giving, the florist prepares for each of the 14 candidates a bouquet made up of 5 roses 

and 7 tulips.” (68% among 5th graders).  

This study illustrates how slight modifications in the wording of isomorphic problems 

can influence the initial encoding. The interpretation proposed by the authors was that the 

presence of the term “bouquet” favored participants’ perception of the two subsets as parts of 

the same superset and led them to combine the sets into a single entity. We propose a 

complementary and more systematic explanation using the SECO architecture. 

SECO’s account of the results. In SECO’s view, the use of the word “bouquet” in the 

problem statement evokes the world semantics stating that a bouquet is a group of flowers, 

which is compatible with Coquin-Viennot and Moreau’s (2003) interpretation. The SECO 
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model would account for these results as depicted in Figure S3 (problem statement without 

the “bouquet” term) and Figure S4 (problem statement with a structuring term).  

Since the “no bouquet” problem statement (Figure S3, a) mentions roses and tulips, 

the world semantics (b) regarding those elements (i.e., “roses and tulips are two different 

kinds of flowers”) is activated and favors the encoding of roses and tulips as two disjoint sets 

in the interpreted structure (c), making the grouping of roses and tulips together less salient. 

The abstracted interpreted structure (c) thus leads most of the participants to use the 

expansion algorithm (d) congruent with the representation of tulips and roses as two distinct 

sets “(14 × 5) + (14 × 7)”.  

By contrast, in order to use the factorization algorithm “14 × (5 + 7)”, a solver is 

either required to infer that tulips and roses can be grouped together (e.g. in a bouquet 

constituted of different flowers), despite the absence of any structuring cue, or to recode the 

situation (c) according to mathematical semantics (e**) stating that a superset consisting of m 

sets of x elements and m subsets of y elements has the same size as a superset consisting of m 

subsets of “x + y” elements, so as to abstract a deep structure (f) of the problem. This deep 

structure highlights the two different grouping strategies (grouping by individuals or 

grouping by types of flowers) and is thus congruent with both the factorization algorithm and 

the expansion algorithm. 

On the other hand, the resolution of the problem mentioning a structuring element (the 

bouquet) leads to different steps as detailed in Figure S4. When the problem statement (a) 

mentions that the tulips and the roses are grouped together and form a bouquet, then the 

world semantics (b) related to the bouquet can also be used, in addition to the world 

semantics related to roses and tulips as flower species. Referring to a bouquet activates the 

notion of grouping within a single set and helps the solver encode an interpreted structure (c) 

increasing the saliency of the two subsets of flowers as parts of the same “bouquet” set, 



SEMANTIC CONGRUENCE IN ARITHMETIC 21 

 
 

compared to when the structuring element was not mentioned in the wording. The interpreted 

structure (c) leads the solver to calculate the total number of flowers by adding the number of 

flowers in each bouquet. Therefore, the factorization strategy 14 × (5 + 7) is the one being 

mostly used by solvers in this situation. The use of the expansion algorithm “(14 × 5) + (14 × 

7)” is less frequent on such problems and can be the consequence of participants focusing on 

the distinction between the two types of flowers, roses and tulips, that leads them to count 

those separately instead of counting the number of flowers within one bouquet first. 

Alternatively, it can also be the consequence of their explicit use of mathematical semantics 

(e**) regarding expansion and development.  

Thus, within the SECO model, the difference between the two problem statements 

results in a difference between the world semantics evoked by the statements during the 

encoding process. Different world semantics result in different constraints influencing the 

encoding of the problems, which lead to different interpreted structures being abstracted, each 

of them congruent with a specific solving algorithm (expansion when no structuring element 

is present in the problem statement and factorization otherwise).  

Other models’ account and their limitations regarding cases 1 and 2 

The influence of world semantics displayed by these two case studies is an effect that clearly 

falls outside the scope of the schema model. In Coquin et al.’s case, there is no theoretically 

based reason justifying that the addition of the term “bouquet” could influence the selection 

of a completely different problem schema. Similarly, in Bassok et al.’s (1995) case, the 

problem schema in the “objects to people” situation should be the same as the one in the 

“people to object” version, since the only change introduced between the two problems was 

the semantic nature of the entities constituting the two sets (either people or inanimate 

objects).  
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In the original schema model, the reader extracts the numerical values and their 

relations by focusing on the propositional structure of the text (Kintsch & Greeno, 1985). In 

Bassok et al.’s work (1995), the sentences “The president randomly assigns students to 

prizes” and “The president randomly assigns prizes to students” have the same propositional 

structure and should have activated the same schema. However, because one sentence 

implied that objects were assigned to people, and the other that people were assigned to 

objects, participants’ strategies differed between the two problems. The schema theory alone 

cannot account for this performance difference without being updated to take into account 

solvers’ knowledge about the problems’ entities. 

Similarly, the SPS model does not directly integrate the idea that one’s knowledge 

about the entities in a problem could influence the episodic situation model constructed to 

solve it. Instead, it postulates that the episodic situation model that is built depends on the 

presentational structure of the problem (text order, narrative point of view, presence of an 

explicit question, explicitness of relevant relations and so forth) but not on the general 

knowledge imbued in the problem (Staub & Reusser, 1995). The SPS model relies on the 

Situational Model assumption that the structure of a representation maps onto the structure of 

what it represents (Johnson-Laird, 2010), therefore suggesting that there is only one episodic 

situation model for each problem, regardless of participants’ previous knowledge about the 

entities featured in a problem. The SECO model, on the other hand, provides a satisfactory 

account of those results by proposing that the world semantics evoked by a problem also 

depends on the semantic nature of the elements featured in the problem statement. 

Recoding issues 

While the first two case studies focused on the mechanisms at play during the initial encoding 

of a problem statement and their consequences on the solving performances, the next two 



SEMANTIC CONGRUENCE IN ARITHMETIC 23 

 
 

case studies highlight how an interpreted structure resulting in a dead-end can be recoded in 

certain conditions. In other words, they focus on participants’ relative ability to change their 

initial representation in situations in which multiple mathematical encodings of the same 

problem statement are possible: different, equally valid representations emphasizing distinct 

relations. 

Case 3: Thevenot and Oakhill’s account of alternative representations 

Empirical findings and authors’ perspective. Studying the influence of number size on the 

use of solving algorithms, Thevenot and Oakhill (2005) shed light on the factors triggering 

the recoding of an interpreted structure into a new representation. They investigated the 

strategies used to solve compare problems by using an operand-recognition paradigm 

consisting in interrupting the presentation of the problem statements to ask participants 

whether they recognized specific numbers. Recognition performance was used to determine if 

these numbers were currently maintained in working memory or if they had already been 

used in calculation and had thus started to fade from memory.  

They used problems such as “How many marbles does John have more than Tom and 

Paul together? John has x marbles, Tom has y marbles and Paul has z marbles”. The authors’ 

findings show that participants used the grouping algorithm “x − (y + z)” when the task was 

not especially demanding due to the problem’s values being small, whereas they used the 

more economical sequential strategy “(x − y) − z” when the use of larger values implied that 

the task had higher cognitive costs. Indeed, the second strategy is less cognitively demanding 

because performing two successive subtractions allows the solvers to complete a subgoal “x − 

y” while reading the problem, and the result of this operation can be maintained in working 

memory during the rest of the problem instead of the two initial values (x and y).  
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On the other hand, calculating the value of “y + z” and then subtracting it from the 

value of x requires to maintain the value of x in working memory until the end of the text and 

the final operation. In other words, if the values 636, 345 and 123 appear in that order in the 

problem statement, then it is easier to first calculate the value of “(636 – 345)” while reading 

the text and then subtracting 123 from the result later on than to memorize the three values to 

calculate “636 – (345 + 123)” at the end of the problem statement. 

SECO’s account of the results. Within the SECO model (see Figure S5), this effect follows 

from the fact that the problem statement (a) mentions marbles that are grouped together and 

then compared. The interpreted structure (c) thus features two disjoint sets: one 

corresponding to John’s marbles, and the other one to Tom and Paul’s put together. This 

interpreted structure (c) is semantically congruent with the grouping algorithm “x − (y + z)” 

(d) that is preferentially used for problems with small values.  

When computing the algorithm becomes impossible because of the larger x, y and z 

values, some participants need to recode the situation to avoid maintaining the three values in 

memory. By focusing on the mathematical knowledge regarding parentheses removal (e**), 

according to which “x − (y + z) is equivalent to x −  y − z”, participants can recode their initial 

representation into an alternative representation closer to the deep structure (f) of the 

problem, in which Tom and Paul’s sets are perceived as two independent sets that can 

successively be removed from John’s set. They can then switch to the more economical 

sequential algorithm “(x − y) − z” (d). In other words, difficulty to compute the algorithm 

triggered a re-elaboration process that focused on the mathematical semantics to recode the 

problem’s representation. 
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Case 4: Gamo et al.’s account of world semantics constraints and semantic recoding 

Empirical findings and authors’ perspective. In addition to being another illustration of the 

central role of world semantics on arithmetic word problem solving, the study that Gamo et 

al. (2010) conducted in 4th and 5th grade classrooms provides valuable insight into the 

semantic recoding of the initial, inadequate representation of a problem into a new, more 

polyvalent one. In their study, Gamo et al. used problems that all shared the same formal 

deep structure, but that involved different types of elements. When the elements were known 

by the solvers to be unordered entities, such as marbles, scissors or pens, the authors 

predicted that the participants would abstract an interpreted structure emphasizing the 

cardinality of the situation, such as an embedded sets structure. This structure was shown to 

lead the participants to use a 3-step algorithm to solve the problems. For example, the 

problem “John bought an 8-Euro exercise book and scissors. He paid 14 Euros. A pen costs 3 

Euros less than the exercise book. Paul bought scissors and a pen. How much did he pay?” 

was preferentially solved using the 3-step algorithm consisting in calculating the price of the 

pen and the price of the scissors before adding them up: 14 – 8 = 6; 8 – 3 = 5; 6 + 5 = 11.  

On the other hand, when problems involved ordered units, as is the case in problems 

involving age, where events are ontologically ordered on the line of time, the authors 

predicted that the participants would abstract an interpreted structure emphasizing the 

ordinality of the situation, such as a timeline where different events are represented as 

positions on an axis. This axis-based interpreted structure would make it possible for the 

participants to use a different solving algorithm. For example, the problem “Antoine took 

painting courses at the art school for 8 years and stopped when he was 14 years old. Jean 

began at the same age as Antoine and took the course for 3 fewer years. At what age did Jean 

stop?” was predominantly solved using a shorter, more efficient 1-step algorithm: 14 – 3 = 

11.  
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Indeed, the fact that the problem involves durations makes it easy to see that since 

Jean and Antoine started taking the course at the same age, then the difference between the 

number of years they each followed the course is equal to the difference between the age at 

which they stopped taking the course. Thus, the problem can be solved without calculating 

their age when they started taking the class. Both problems could be solved using both 

algorithms, but depending on the elements featured in the problems, participants 

preferentially used one or the other of the two strategies. 

In the first experiment of the study, the authors studied the conditions allowing for 

strategy change. They divided the participants into two groups, both of which had to 

complete a pre-test and a post-test in which they had to solve similar problems using only one 

arithmetic operation. Between the two tests, one of the groups followed two 60-minutes 

training sessions during which the children were instructed to compare the two strategies and 

incited to see how the 1-step algorithm could be used even on problems with unordered 

entities. They were explicitly trained to identify their initial semantic representation and they 

were shown a visual representation of the deep structure of the problems to help them recode 

their initial encoding of the situation. The other group did not receive such training. The two 

main findings were that children did solve problems differently depending on the world 

semantics they evoked, and that teaching the children to use both strategies by focusing on 

the mathematical relations between the entities described and by studying the deep structure 

of the problems yielded significant result in increasing their ability to use the shorter 1-step 

algorithm on problems with unordered elements.  

SECO’s account of the results. These findings are a perfect fit within SECO’s framework, 

since they show both how mathematical and world semantics interact in the encoding of the 

problem statements into an interpreted structure, and how this interpreted structure then either 

leads to the use of a semantically congruent solving algorithm or is recoded to allow the use 
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of a semantically incongruent solving strategy. Indeed, in the case of an age problem (see 

Figure S6), the world knowledge (b) relating to how time events are usually conceptualized 

(as transitions between positions on a timeline) is evoked by the problem statement 

mentioning ages (a). This leads the children to encode an interpreted structure (c) in which 

the events described are represented along a timeline, which lets them directly compare the 

ages at which they each stopped attending the classes. This structure can then be specified 

into the 1-step algorithm (d) congruent with it.  

On the other hand, when reading a problem with unordered elements (see Figure S7), 

Gamo et al. (2010) indicate that the encoding is influenced by the students’ knowledge (b) 

that the elements can be grouped together in any order, and that, for example, the scissors can 

be indifferently grouped with the pen or with the notebook. The resulting interpreted structure 

(c) has an embedded set structure that leads the students to calculate the value of each subset 

(the price of each item). This structure can then only be specified into the 3-step solving 

strategy (d). In order to use the shorter 1-step strategy, the students needed to use 

mathematical semantics (e) and recode their representation into a new, more polyvalent one 

(f). This explains why the only group who increased their performance in using the 1-step 

algorithm on problems with unordered entities was the one that followed a training based on 

the mathematical principle behind the use of the 1-step algorithm and the study of the deep 

structure.  

Other models’ account and their limitations regarding cases 3 and 4 

These two last case studies showed that when the initial encoding of a problem statement 

does not lead to a satisfactory solving algorithm, a recoding may happen to encode a new 

representation congruent with a valid algorithm. As mentioned previously, in Thevenot and 

Oakhill’s case, the idea that a problem could be solved differently depending on whether it 
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features low or high values falls beyond the scope of the schema theory. Indeed, if a schema 

is constructed from the text-base, then two text-bases differing only by the range of their 

numerical values should result in two identical schemas being used. Even though it could be 

argued that students are switching from a schema to another depending on the values 

provided in the problem statement, such a claim would require a theoretical extension of the 

schema model accounting for the conditions under which such a switch can occur.  

Similarly, if the SPS model predicts that one constructs a representation whose 

structure is that of the described situation, then why would two different representations be 

constructed based on the same situation? None of the aforementioned models of arithmetic 

word problem solving directly predicts that an encoding can be recoded depending on how 

efficient the algorithm it leads to is. 

Finally, regarding Gamo et al.’s results, the schema theory may state that some 

problems correspond to a schema (the so-called ordinal problems) and some do not (the so-

called cardinal problems). However, because this theory does not take the structure of the 

solver’s representation into account, it provides no basis to explain why such a schema would 

only be used on some problem statements and not on others. Specifically, without these 

semantic features, there is no a priori reason to predict that words such as “age”, “during” or 

“years” would activate a schema corresponding to the 1-step algorithm whereas words such 

as “scissors”, “pen” or “book” would fail to do so.  

On the other hand, the situation model approach states that a representation analogous 

to that of the situation described is constructed and used as a basis for reasoning. Because of 

that, this theory can explain why different problems can be represented differently and thus 

lead to the use of different algorithms, but the SPS model does not refer to the fact that 

solvers interpret the situations through the lens of their own previous knowledge. In other 
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words, the situation problem view does not model the constraints imposed by world 

semantics on the encoding of arithmetic word problems.  

Interestingly, it can be noted that the influence of general semantic dimensions such 

as the cardinal versus ordinal distinction is compatible with the semantic alignment 

framework. However, in the semantic alignment framework, the question of the recoding of 

semantically incongruent representations has not been addressed, and SECO’s predictions 

regarding the students’ ability to perform a semantic recoding when given appropriate 

guidance fall beyond this framework. Thus, the fact that the participants were able to solve 

the problems with unordered entities using the 1-step algorithm after the training sessions is 

not predicted by the semantic alignment framework, whereas SECO’s take on semantic 

recoding aided by mathematical semantics offers a reasonable explanation of the effect. 

Rewording issues 

Several works have highlighted how small modifications in the wording of structurally 

isomorphic problems could result in significant performance disparities (Cummins, 1991; 

Cummins, Kintsch, Reusser, & Weimer, 1988; Davis-Dorsey, Ross, & Morrison, 1991; Staub 

& Reusser, 1992; Stern & Lehrndorfer, 1992; Vicente et al., 2007). Such effects have 

considerable educational implications since they illustrate how minor phrasing variations can 

drastically help (or hinder) the students’ understanding of a given problem. As such, they 

constitute a promising route to assist students in overcoming some of the obstacles they meet 

in arithmetic word problem solving. Here, we focus on two studies showcasing such 

rewording effects, to illustrate how SECO can also account for such emblematic results by 

depicting the changes they entail in the interpreted structures abstracted. 
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Case 5: Hudson’s account of children’s understanding of differences between sets 

Empirical findings and author’s perspective. In his seminal work on numerical differences, 

Hudson (1983) compared two formulations of comparison problems that led to considerably 

different levels of performance. Kindergarten children were told there was, for example, “5 

birds and 3 worms”, and they were asked either “How many more birds than worms are 

there?” (25% of correct answers among kindergarteners) or “How many birds won’t get a 

worm?” (96% of correct answers among kindergarteners). The author explains that the use of 

“won’t get” reduced the misinterpretation of the “how many more than” construction by 

highlighting the one-to-one correspondence between the given sets.  

SECO’s account of the results. The SECO model accounts for those results in the following 

way. As depicted in Figure S8, an interpretation of Hudson’s findings within the model 

would be that the sentence “how many more birds than worms are there” in the problem 

statement (a) evokes aspects of world semantics (b) emphasizing the difference between the 

two sets of elements (knowledge that birds and worms are two different animal species) thus 

inducing a comparison between the two groups of elements, without specifying how these 

two groups should be compared. In contrast, as depicted in Figure S9, the wording of the 

problem statement (a) in the “won’t get” condition emphasizes the pairing relation between 

birds and worms and evokes a different aspect of world semantics (b) (i.e. “birds eat worms”) 

which promotes the mapping between the two sets within the interpreted structure (c). Thus, 

in the “more” condition, the interpreted structure (c) consists in two disjoint sets of elements 

and provides no hint that would trigger a subtraction algorithm.  

By contrast, the interpreted structure (c) in the “won’t get” condition affords a one-to-

one mapping between 3 birds and 3 worms. The “won’t get” condition, therefore, evokes an 

interpreted structure that is semantically congruent with an efficient strategy (d), namely 
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counting from 3 to 5. In the “more” condition, recoding the interpreted structure into a deep 

structure (f) of the problem remains possible, but requires using mathematical semantics 

(e**) about subtraction, which is not systematically acquired at this early age, thus explaining 

the low performance on this task (25% among kindergarteners). While Hudson accounted for 

this finding by stating that comparable constructions of the general form “how many more 

[…] than?” tended to be misinterpreted, SECO provides an account of this effect in terms of 

representational differences. 

Case 6: De Corte et al.’s (1985) account of rewording effects 

Empirical findings and authors’ perspective.De Corte et al. (1985) used combine, compare 

and change problems to study the effects of conceptual rewording on first and second 

graders’ performance, and brought further evidence of the positive effects of specific forms 

of rewording. For each problem, they compared a “standard” version with a “reworded” 

version that stated more explicitly the relations between the sets to make them clearer for 

young students. For example, one of the compare problems they created was “Pete has 8 

apples. Ann has 3 apples. How many apples does Pete have more than Ann?”. They 

compared students’ performance on this problem and on its reworded version: “There are 8 

riders but there are only 3 horses. How many riders won’t get a horse?”.  

Results showed that 47% of first-graders managed to solve the compare problems in 

their standard version, whereas 70% of them managed to solve the reworded version. With a 

rate of success of, respectively, 76% on standard compare problems and 90% on reworded 

compare problems, second-graders also benefitted from the conceptual rewording, although 

to a lesser extent. The authors explained this difference between the two conditions by stating 

that only the “won’t get” condition provided enough linguistic cues to compute the difference 
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between the sets, whereas the “more” condition remained ambiguous to inexperienced 

solvers.  

SECO’s account of the results. SECO provides a complementary account of these results. In 

the standard version (Figure S10), the problem statement (a) does not evoke any aspect of 

world semantics that could help with the matching of the two sets in the interpreted structure 

(c). Thus, students who have not sufficiently acquired the mathematical semantics (e**) 

regarding the calculation of the difference between two sets will fail to solve the problem. 

This explains why standard compare problems had a low rate of success for first-graders and 

a higher one for second-graders.  

On the other hand, the reworded problem statement (Figure S11) evokes knowledge 

about riders and horses (b) namely the information that a rider is supposed to ride a horse. 

The interpreted structure (c) thus features the pairing of the three horses with their respective 

riders and makes it easier to understand how to count the horseless riders remaining. The 

mathematical semantics (e**) is not necessary in this case to solve the problem, which 

explains why the performance rate was higher in both age groups. 

Other models’ account and their limitations regarding cases 5 and 6 

As stated by Vicente et al. (2007), the computational models using problem schema as a basis 

to explain word problem solving behaviors have struggled to systematically explain the 

rewording effects of studies such as the two presented above, due to the relatively weak 

elaboration of the first text-processing stage in their models. Both in Hudson (1983) and in 

De Corte et al.’s (1985) study, the initial problems and their reworded counterparts shared the 

same structure according to Riley et al.’s (1983) classification of additive one-step problems. 

However, small modifications in the wording of the problem statements resulted in 

significant performance disparities, an effect that the schema model would struggle to 
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account for.  

On the other hand, the SPS model focuses on the idea that a representation, the 

episodic situation model, is built featuring the relations depicted in the problem statement. 

According to Staub and Reusser (1995), this representation is different in the two conditions, 

since the “won’t get” situation imbues the difference with real-world meaning, whereas the 

“more” condition only refers to a static, abstract situation. This suggests that the SPS could 

have predicted such rewording effects relying on an elaboration of the semantic relations 

described in the text, since it made the relations between the sets more salient, which explains 

why the representation was more accurate and led to a higher success rate in the “won’t get” 

condition. However, it can be noted that any rewording effect capitalizing on prior 

knowledge, such as replacing computers and secretaries by two sets of doctors in Bassok et 

al.’s (1995) work, would fall beyond the scope of the SPS model.  

Conclusion 

When taken together, these six case studies show how SECO can account for varied results 

within a unified model. While explanations for these results have been provided by one of the 

already existing theories of arithmetic word problem solving, it appears that none of the 

aforementioned models can account for all of them simultaneously. In our view, one of 

SECO’s strengths is that it provides an original integrative framework for the existing results 

in the literature.  

SECO’s added value 

The current paper proposes a model detailing the processes at play in arithmetic word 

problem solving and accounting for how algorithms are found by solvers and how their 

performances may differ depending on the task. SECO describes how a problem statement is 
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encoded into an interpreted structure according to the world semantics and the mathematical 

semantics, and how this structure can either be specified into an algorithm when congruent 

with one, or recoded into a deep structure thanks to mathematical semantics in order to solve 

a semantically incongruent problem. We illustrated its ability to explain a wide range of 

effects by confronting SECO, post hoc, to previous studies presenting challenging results that 

had yet to be accounted for within a unified framework.  

The idea that there exist different possible encodings of a situation described in a 

specific problem is central in the SECO model, yet this view appeared only recently in the 

literature. Ever since Riley et al.’s (1983) work and their taxonomy of additive word 

problems, the view that a word problem can be reduced to its objective mathematical 

structure and that two isomorphs of the same problem can thus be considered as equivalent in 

terms of difficulty for the solvers was abandoned in favor of an approach putting more 

emphasis on the way different arithmetic word problems are interpreted. It has for example 

been highlighted by Riley et al. that combine and compare problems can be approached very 

differently by the solvers, even when both are subtraction problems involving the same 

numerical values. 

However, in the Riley et al.’s (1983) view, each situation is attached to only one 

category in a taxonomy encompassing all problems, therefore suggesting that there is only 

one way to interpret a given situation. Similarly to Socrates’ depiction of the human ability to 

“separate things according to their natural divisions, without breaking any of the parts the 

way a clumsy butcher does” (Plato, trans. 2009, p.64), this view presumes that there exists a 

natural breakdown of the situations depicted by the problems, and that each situation falls 

within an objective category.  

Within SECO, the interpretation of the problem statement varies depending on the 

solver’s knowledge: a given situation may thus lead to different encodings. In order to solve 
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an incongruent problem, a solver usually needs to recode the initial representation they have 

of it. The idea that an initial representation will be recoded to allow the use of a solving 

algorithm is one that was not covered by Bassok’s semantic alignment framework. Bassok 

and colleagues’ theory focuses on the abstraction of an interpreted structure during the initial 

encoding of a problem (Bassok, 2001), yet what happens when this initial encoding leads to 

failure hasn’t been addressed, especially in cases in which a different representation of the 

situation could allow the solvers to find the solution. When the first interpreted structure 

cannot be specified into a valid solving algorithm, SECO covers the possibility that one 

recodes the situation and manages to solve the problem, in accordance with empirical 

findings such as the ones reported in Gamo et al. (2010) or Thevenot and Oakhill (2005). 

We propose to take a brief look at the empirical prospects opened by SECO. First, 

because it accounts for the part played by world semantics, SECO predicts that different 

individuals with different knowledge or experiences about the world may tackle a problem 

differently. For instance, imagine if Hudson’s (1983) problem about birds and worms had 

been framed in terms of smurfs and mushrooms (“There are 5 smurfs and 3 mushrooms, how 

many more mushrooms than smurfs are there?”). Children who are familiar with the Smurfs 

comic series will know that each smurf has his or her own mushroom to live in (there are no 

housemates in the Smurf village!). Thus, SECO predicts that these children may be more 

likely to find the solution to the problem, because their world semantics about smurfs and 

their individual mushrooms will help them to construct a paired encoding in which each 

house is assigned to one smurf (see Case study 5 for more details on why this should 

facilitate the solving process).  

More generally, SECO makes the prediction that cultural differences in the world 

semantics evoked by a given problem statement may influence participants’ interpreted 

structure and the subsequent strategies they will use to solve a problem. For instance, it is 
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believed that Indonesian and English speakers tend to represent durations as linear distances 

(e.g. a long time), whereas Spanish and Greek speakers tend to represent durations as definite 

quantities (e.g. mucho tiempo) (Casasanto et al., 2004). Thus, SECO predicts that English and 

Greek speakers may perform differently on the duration problems used by Gamo et al. (2010) 

and described in the 3rd case study. 

Second, SECO predicts that modifying the world semantics evoked by a problem may 

influence the interpreted structure encoded.  Such representational differences could be 

measured by asking participants to produce drawings of the problems they solved (e.g. Edens 

& Potter, 2008). Similarly, recognition tasks may provide a way to probe participants’ 

representation of the problems (e.g. Hegarty, Mayer, & Monk, 1995; Mani & Johnson-Laird, 

1982; Verschaffel, 1994), to assess whether their interpreted structures differed depending on 

the problem statements. Third, a central point in SECO is the recoding pathway, according to 

which one can recode an interpreted structure into a new representation at a certain cost. This 

cost can be measured by higher error rates on problems needing a recoding and higher 

response times on problems successfully recoded (Gros, Sander, & Thibaut, 2019). Future 

works might even assess the increase in cognitive load associated to this process by 

measuring physiological responses such as pupil dilation during the recoding of semantically 

incongruent problems.  

Fourth, the existence of the expert encoding pathway may be tested by presenting 

experts with different problem statements: SECO predicts that experts’ performance on 

problems requiring a recoding may decrease less than that of lay solvers, due to the 

possibility for experts to directly encode the problems’ deep structure, even on incongruent 

problems. Fifth, SECO accounts for the fact that students may experience difficulty trying to 

solve a problem if they either lack the relevant world semantics, the relevant mathematical 

semantics, the ability to recode a semantically incongruent representation or the ability to 
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compute the solving algorithm. Moreover, SECO predicts that different errors will be 

associated with these different shortcomings. By testing separately students’ mathematical 

knowledge, their world knowledge about the entities described in the problem statement and 

their ability to compute specific algorithms, SECO can be used to pinpoint and address 

distinct sources of difficulties. 

By providing a finer-grained depiction of solvers’ reasoning, SECO can inform future 

works on the encoding, recoding and solving of arithmetic word problems. The conception of 

experiments testing the aforementioned predictions should help determine the explanatory 

power of SECO, either bolstering its claims or leading to the development of new alternative 

models. 

Semantic congruence as an educational lever to tackle arduous notions 

The current paper defines semantic congruence and suggests that difficulties might arise 

when the world semantics evoked by a problem statement is semantically incongruent with 

the problem’s solving algorithm. In this view, semantic incongruence is a source of 

interference and should be overcome by the learners to efficiently solve the encountered 

problems. Therefore, developing new methods to help students modulate the influence of 

world semantics in order to directly access the deep structure of the problems could be 

especially promising. Still, moderating the influence of world semantics is not trivial, since 

our knowledge about the world has been shown to be deeply involved in our reasoning, be it 

relevant or not (Bassok, 2001; Bassok et al., 1998; Gros, Sander, & Thibaut, 2016; Gros, 

Thibaut, & Sander, 2017).  

However, world semantics can also have a facilitative influence. Depending on the 

semantics attached to a problem, solvers will access a congruent solving algorithm more 

easily than they would with another problem statement. It has been shown that understanding 
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the situation described in a problem statement can be enough to successfully solve a problem, 

even for children who did not receive any prior explicit instruction regarding the arithmetic 

notions required (Carpenter & Moser, 1982; De Corte & Verschaffel, 1987; Ibarra & 

Lindvall, 1982; Thevenot & Barrouillet, 2015). If the depicted situation is the one “doing the 

thinking” (Hofstadter & Sander, 2013, p. 432) then the effort is minimal. Depending on the 

semantics imbued in a situation, its representation might be more or less congruent with the 

deep structure of the problem and thus render it more or less easy to solve. In this regard, one 

can imagine that an abstruse mathematical theorem might seem almost self-evident if 

presented in the appropriate semantic setting. 

Designing such situations aiming at fostering the understanding of a complex notion 

may be achieved through conceptual rewording, as suggested by Vicente et al. (2007). In 

their study, they highlighted that rewording problem statements in a way that makes more 

explicit the semantic relations between the problems’ entities is beneficial to the solvers. 

Indeed, difficult problems (i.e., problems that had “to be solved in a different than the actual 

sequence of the events denoted in the problem”, Vicente et al., 2007, p. 837) benefited from 

conceptual rewording, which referred to situations in which the underlying semantic relations 

between the given and unknown sets were made more explicit than in the standard version. 

On the other hand, situational rewording (i.e., when a problem statement is presented in a 

more enriched and elaborated way, e.g., causal relations between events made more explicit) 

led to no improvement compared to the standard version.  

In SECO’s view, conceptual rewording was beneficial because it highlighted the 

mathematical dependencies between quantities, and thus favored the mapping of the world 

semantics onto the relevant mathematical semantics. Moreover, simply enriching the 

semantics of the situation had no effect on the mapping between the statement and 
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mathematical representation. Thus, rewording will work when it aids in building a 

representation of the mathematical semantics that is congruent with the world semantics. 

As a consequence, a crucial application of the SECO model resides in the 

development of educational interventions treating mathematical learning difficulties by 

resorting to world semantics in order to help understand and overcome some of the learners’ 

impairments regarding arithmetic understanding. Because SECO differentiates between 

world semantics, mathematical semantics, and algorithms, it can provide a detailed account 

of the potential difficulties encountered by students when learning to solve arithmetic word 

problems. The different components described in the model and the processes that link them 

are all potential candidates from which specific difficulties may stem. Using SECO, it is 

possible to differentiate between, for example, a lack of mathematical semantics (e.g. not 

knowing about the commutative property of multiplication) and difficulties in computing 

algorithms (e.g. not being able to calculate 3 × 50), in order to design targeted interventions 

which would help learners overcome their specific difficulties.  

Gaining expertise 

One of the distinctive features of the SECO model is that it provides an account of the part 

played by expertise in the solving of arithmetic word problems. The expert encoding pathway 

as introduced in SECO accounts for the idea, already developed by Chi et al. (1981), that 

solvers with sufficient expertise may be able to directly encode the deep structure of a 

problem, regardless of the world semantics it evokes. Data gathered regarding sorting and 

solving strategies depending on the learner’s level of expertise, in line with Chi et al.’s (1981) 

seminal work, provide converging evidence regarding this view (e.g. Schoenfeld & 

Herrmann, 1982; Silver, 1981). Thus, a crucial educational issue is to promote learners’ 

ability to reach a level of expertise allowing them to directly perceive a problem’s deep 
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structure, without first encoding an interpreted structure influenced by their everyday 

knowledge about the problem’s entities. 

However, since even expert solvers have been shown to sometimes rely on superficial 

features to determine their solving strategies (Blessing & Ross, 1996; Novick, 1988), experts’ 

ability to ignore the influence of world semantics in all situations should not be taken for 

granted. In fact, recent evidence we collected on problems similar to those described in the 

fourth case study suggests that general expertise in mathematics may not be sufficient to 

overcome the effects of semantic incongruence (Gros et al., 2019). In this paper, we showed 

that university-educated adults and expert mathematicians alike were more likely to deem an 

arithmetic word problem unsolvable when its solution was semantically incongruent with the 

world semantics evoked by the problem that when the two were semantically congruent.  

Does this mean that direct encoding of the deep structure is unattainable? Not 

necessarily. It could be argued that the influence of world semantics is so pervasive that only 

specific expertise on the type of problem that is being solved (as compared with general 

expertise in mathematics) may provide the ability to directly encode the deep structure of the 

problem. From an educational perspective, the overall goal is to teach students either how to 

directly perceive the deep structure of the problems they encounter, or at least to efficiently 

recode an ineffective interpreted structure. 

This raises the question of how one may develop such a level of expertise. Although 

conceptual rewording can be used to make a problem easier to solve, it does not necessarily 

mean that the solvers will learn to solve other problems which haven’t been reworded. 

Correct answers are worth little if not associated with an increase in expertise. However, 

deliberately engaging in semantic recoding on multiple occasions on problems sharing the 

same deep structure may be a path to reach this goal.  
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In Gamo et al.’s (2010) study, students’ performance improved after they were 

explicitly told to compare “duration problems” and “number of elements problems”, and 

taught how to semantically recode the number of elements problems to use the 1-step 

algorithm to solve them. As suggested by the rich literature on deliberate practice (Charness, 

Tuffiash, Krampe, Reingold, & Vasyukova, 2005; Ericsson, 2004, 2008; Ericsson, Krampe, 

& Tesch-Römer, 1993; Lehtinen, Hannula-Sormunen, McMullen, & Gruber, 2017; Ward, 

Hodges, Starkes, & Williams, 2007) repeated training focused on specific tasks such as 

semantic recoding may be a promising path to develop top-level expertise.  

In this perspective, we know ever since Gick and Holyoak’s work (1983) on 

analogical transfer that using different examples describing analogous situations can help 

represent their common structure (see also Braithwaite & Goldstone, 2015; Kotovsky & 

Gentner, 1996; Richland, Stigler, & Holyoak, 2012). It thus seems realistic to identify, for 

any type of problem, which problem statement as well as which sequence of training 

problems might be the most beneficial to help learners abstract a representation as close to 

the deep structure as possible. A congruence fading process akin to concreteness fading 

(Fyfe, McNeil, Son, & Goldstone, 2014) could thus help learners abstract the deep structure 

of the problems by resorting to increasingly incongruent examples. An interesting venue to 

capitalize on such effects would be to alternatively present problems attached to different 

world semantics congruent with different representations, in order to help learners switch 

from an initial representation to another one, more efficient with regard to the resolution of 

the problem. Such scaled sequences of problems could be especially efficient if adapted to 

each learner through the use of Technology Enhanced Learning (Paquette, Léonard, 

Lundgren-Cayrol, Mihaila, & Gareau, 2006; Shute & Zapata-Rivera, 2012; Tchounikine, 

2011). Although these propositions are only hypothetical at this stage, we consider these 
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prospects to be promising leads for conducting further research and for helping foster transfer 

in mathematics education. 

Broader application of the SECO model 

An idea at the heart of the SECO model is that the congruence or the incongruence between 

the world knowledge elicited by a problem statement on one hand and the formal structure of 

the problem on the other hand can account for solvers’ successes and failures, as well as for 

their need to recode their representations in incongruent situations. We believe this approach 

can also bear fruits if applied to other educational fields, such as mental arithmetic and non-

mathematical problem solving.  

Regarding arithmetic non-word problems, studies have shown that embedding an 

algorithm in a problem statement carrying world semantics may facilitate its computation 

(Baranes, Perry, & Stigler, 1989; Koedinger, Alibali, & Nathan, 2008; Koedinger & Nathan, 

2004; Stern & Lehrndorfer, 1992). SECO details how, depending on the congruence between 

world semantics and mathematical semantics, the solving process can be either favored or 

hindered by such an embedment. If an algorithm is embedded in a problem statement 

carrying congruent world semantics, then finding the solution should be easier.  

However, SECO also predicts that a problem statement carrying world semantics 

incongruent with the algorithm itself should have the opposite effect. Additionally, basic 

arithmetic operations carry a semantic meaning even when they are not framed within a 

problem statement (Bell, Swan, & Taylor, 1981; Fischbein, 1989; Fischbein, Deri, Nello, & 

Marino, 1985; Graeber, Tirosh, & Glover, 1989; Lakoff & Núñez, 2000; Tirosh & Graeber, 

1991). According to Fischbein et al.’s (1985) view, arithmetic operations such as 

multiplication and division are attached to tacit models imposing constraints on their 

computation that have no mathematical relevance. For example, they argue that seeing 
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division as the sharing of a collection of objects into a number of equal sub-collections 

implies that the divisor must be a whole number and that the quotient must be smaller than 

the dividend.  

SECO addresses what happens when the world semantics evoked by the problem 

statement is incongruent with the objective mathematical structure of the problem. For 

example, believing that “to divide is to equally share” might lead solvers to rely on semantic 

knowledge regarding equitable sharing, making it harder to find the solution to arithmetic 

problems that go against this belief, such as “8 ÷ 0.5”. In this view, SECO can guide the 

analysis of the solvers’ activity when faced with such semantic incongruence by showing 

how the world semantics imbued in the operations themselves evoke an interpreted structure 

that is incompatible with the solving procedure.  

By describing the influence of world semantics on arithmetic problem solving, SECO 

also underlines the facilitative role that a semantically congruent context may have on 

arithmetic reasoning in general. Interestingly, the influence of context on the understanding 

of arithmetic principles has been the focus of several works studying principles such as 

commutativity or inversion (see Prather & Alibali, 2009, for a review). According to 

Resnick’s (1992, 1994) theory of how mathematical competence is built, arithmetic 

understanding should emerge following a concrete-to-abstract transition, shifting from an 

initial object context to a verbal context, then a symbolic context, and then finally to an 

abstract context. For instance, learning about the commutative property of the addition of two 

sets of objects may not necessarily mean that learners will immediately be able to transfer 

this knowledge to the addition of numbers in general (Prather & Alibali, 2009).  

In a study about 7- to 9-year-olds’ understanding of arithmetic principles, Canobi 

(2005) showed that some children were helped by a concrete aid to display an understanding 

of a particular conceptual relation. She showed that some of the participants had an easier 
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time explaining mathematical notions (subtraction complement and inversion principles) 

when presented with concrete objects instead of abstract numbers. Regarding the principle of 

commutativity, Cowan and Renton (1996) found that 6- to 9-year-olds showed a better 

understanding of commutativity in an object context or in a symbolic context, rather than in 

an abstract context. In other words, performance on mathematically identical tasks depended 

on the context in which the tasks were presented. As with SECO’s description of how the 

semantic embedding of a word problem can influence learners’ ability to find its solution, 

children’s performance in Cowan and Renton’s study depended on the context of the task. 

Finally, in a study on arithmetic problem solving, Jordan, Huttenlocher, and Levine (1992) 

also found that disparities between middle-income children and low-income children 

disappeared when the questions were asked using objects rather than when the problems were 

only posed verbally.  

Although few studies have been designed to specifically target the effects of context 

on principle understanding, and some have reported null effects (e.g. Canobi, Reeve, & 

Pattison, 2003), most works in the literature are compatible with the theory that children first 

learn the meaning of arithmetic principles in a grounded context before moving up to higher 

degrees of abstraction (Prather & Alibali, 2009). A parallel can be drawn with SECO, which 

accounts for the embedding of an arithmetic problem within a problem statement evoking 

specific world semantics. In both cases, solvers need to learn how to move away from a 

grounded encoding and towards a more abstract representation of the situation. We 

mentioned earlier how the use of increasingly semantically incongruent examples may 

complement a learning strategy based on concreteness fading (Fyfe et al., 2014), to guide 

learners from a concrete grasp of a problem to a more abstract understanding of its solution 

principle. It may be possible to develop a similar strategy in arithmetic learning, by 
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progressively varying the semantic congruence between the concrete situations presented to 

the learners and the arithmetic notions to be taught. 

Regarding problem solving in general, it is well established that the knowledge one 

has about the entities depicted in a problem can constrain their ability to find a solution 

(Clement & Richard, 1997; Duncker, 1945; Griggs & Cox, 1982; Kotovsky et al., 1985). 

Consider, for example, the physics problem consisting in asking whether when a car performs 

a circular motion at constant speed, its left-side door moves at the same speed as its right-side 

door or not. Most people trying to solve this problem will use their experience with cars and 

their world knowledge about rigid objects and represent the two doors of the car as parts of 

the same object. A common erroneous answer is that when a car moves, every part of the car 

moves at the same speed since every passenger departs and arrives at the same time.  

We believe that the principles underlying SECO can help understand the solvers’ 

reasoning on such a physics problem. In this case, the world semantics used to encode the 

problem into an interpreted structure will hide some physically relevant aspects of the 

problem. Unless participants use physics semantics to perform a semantic recoding of the 

problem that dissociates the two doors as moving along two different circular paths which 

entails that they do not necessarily travel the same distance, their world semantics will lead 

them to the erroneous conclusion that the doors travel at the same speed. The notion that 

congruence between world knowledge and conceptual knowledge associated with a domain 

of instruction (e.g. mathematical semantics in the case of arithmetic problems, physics 

semantics for mechanics problems, and so on) can constrain the representation of situations 

and alter one’s reasoning, unless a reinterpretation of the situation happens, seems to be a 

promising idea. In this regard, the scope of the SECO model could be extended in order to 

describe the encoding and recoding of situations from different domains of instruction, 
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according to the world semantics and to the domain-related semantics influencing the solvers’ 

interpretation.  

Conclusion 

 The question of how one reasons when solving an arithmetic word problem is a major issue 

of mathematical education. Understanding the determinants of problem solving is a crucial 

step in order to identify the difficulties that should be addressed when teaching mathematics. 

The SECO model provides ground for a distinction between the mathematical semantics, the 

world semantics, and the algorithms, as well as the way they interact and apply to familiar 

situations. Those interactions specify the steps involved in the encoding and the recoding of 

arithmetic word problems.  

Being able to foster a semantic recoding in order to improve analogical transfer would 

be a major step forward in the field of arithmetic teaching, and might help pupils overcome 

some of their numerous difficulties regarding word problem solving (Gamo et al., 2010; 

Hegarty, Mayer, & Green, 1992; Richland et al., 2012; Thevenot & Barrouillet, 2015; 

Verschaffel & De Corte, 1997). Strengthening our grasp of the effects of semantic 

congruence and incongruence could thus pave the way towards the development of new 

teaching strategies, building on world and mathematical semantics to guide the students 

towards a more abstract and more efficient understanding of the encountered problems, 

contributing to their conception of mathematical notions (Richland et al., 2012).  
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Figure 1. The SECO model. 
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Figure S1. Modeling of the resolution of a permutation transfer problem with an "objects to 

people" assignment structure, from Bassok, Wu and Olseth (1995). 
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Figure S2. Modeling of the resolution of a permutation transfer problem with a “people to 

objects" assignment structure, from Bassok, Wu and Olseth (1995). 
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Figure S3. Modeling of the resolution of a distributive problem without a structuring element 

from Coquin-Viennot and Moreau (2003). 
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Figure S4. Modeling of the resolution of a distributive problem with a structuring element 

from Coquin-Viennot and Moreau (2003). 
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Figure S5. Modeling of the resolution of a "High Cost" problem from Thevenot & Oakhill 

(2005). This problem could become either a two-digit problem or a three-digit problem 

depending on the values given to x, y and z. 
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Figure S6. Modeling of the resolution of an ordinal problem from Gamo et al., 2010. 



SEMANTIC CONGRUENCE IN ARITHMETIC 64 

 
 

 

Figure S7. Modeling of the resolution of a cardinal problem from Gamo et al., 2010. 
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Figure S8. Modeling of the resolution of a "More" problem from Hudson (1983). 
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Figure S9. Modeling of the resolution of a “Won't get” problem from Hudson (1983). 
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Figure S10. Modeling of the resolution of a standard compare problem from De Corte et al. 

(1985). 
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Figure S11. Modeling of the resolution of a reworded compare problem from De Corte et al. 

(1985). 
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