
HAL Id: hal-02484451
https://hal.science/hal-02484451

Preprint submitted on 19 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-linear composite voxels for FFT-based explicit
modeling of slip bands: application to basal channeling

in irradiated Zr alloys
Aldo Marano, Lionel Gélébart

To cite this version:
Aldo Marano, Lionel Gélébart. Non-linear composite voxels for FFT-based explicit modeling of slip
bands: application to basal channeling in irradiated Zr alloys. 2020. �hal-02484451�

https://hal.science/hal-02484451
https://hal.archives-ouvertes.fr


Non-linear composite voxels for FFT-based explicit

modeling of slip bands: application to basal channeling

in irradiated Zr alloys

Aldo Maranoa,b, Lionel Gélébarta,∗
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F-91191, Gif-sur-Yvette, France
bMINES ParisTech, PSL Research University, MAT - Centre des matériaux, CNRS

UMR 7633, BP 87 9103 Evry, France

Abstract

Explicitly modeling slip bands is a promising method to simulate the conse-
quences of intragranular plastic slip localization on the behavior of strongly
localizing crystals such as irradiated metals. In this study, we propose a very
efficient framework to implement this modeling strategy based on a mas-
sively parallel FFT-based solver enhanced with composite voxels to simulate
polycrystals with a regular lamellar structure alternating plastic slip bands
embedded within larger elastic bands. To this end, generic composite voxel
models have been formulated and implemented, allowing to extend the ap-
proach to any type of constitutive behavior in the future. In particular, we
show that laminate composite voxels are particularly well suited to improve
standard FFT-based solvers in this context, and enable to run polycrystalline
simulations accurately accounting for slip bands whose width is two orders
of magnitude below the grain size. To demonstrate the potential of this ap-
proach, we apply it to an idealized material designed to approximate basal
channeling in irradiated textured Zr alloys. Varying the width and the spac-
ing of the modeled slip bands, we show that it allows to capture the increase
of grain boundary normal stress concentrations or the enhanced Bauschinger
effect induced by an increased localization of plastic slip.
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1. Introduction

An accurate description of the intrinsically heterogeneous nature of plastic
slip is fundamental to the understanding of the mechanical behavior of crys-
talline materials. From gliding dislocations to millimetric slip band bundles,
the wide range of deformation structures yielded by plastic slip over several
length scale have been extensively described by Neuhäuser (1983) and Jaoul
(1964). At the relevant scale for continuum mechanics, the elementary slip
structure is the well known slip band, a thin layer of localized plastic slip par-
allel to one of the most favorable slip plane of the crystal lattice, and plays
a fundamental role in the mechanical behavior of crystals. Microscopic slip
bands have been shown to precede and cause macroscopic strain localization
in ductile metallic crystals (Korbel and Martin (1986); Korbel et al. (1986);
Korbel and Martin (1988)) and to play a role in the initiation of fatigue
crack along slip planes (Bridier et al. (2008); Ahmed et al. (2001)). Besides,
strain localization within intense slip bands has been correlated to a low
or negative work-hardening in metals exhibiting local softening mechanisms
such as Titanium alloys (Neeraj et al. (2000); Lai et al. (2015)), hydrogen
enriched austenitic steels (Ulmer and Altstetter (1991)) or quench-hardened
aluminum Mori and Meshii (1969) and gold Bapna and Meshii (1974), or
highly irradiated metals ( Sharp (1972); Onimus et al. (2004); Byun et al.
(2006)).

In the latter, a particularly severe localization is observed: irradiation
induced crystal defects can be annihilated by gliding dislocations, resulting
into a strong local softening promoting further slip on already active slip
planes. This dislocation channeling mechanism results in defect-free channels
associated to a very intense plastic slip, called clear channels. Among the
consequences, besides the pronounced loss of ductility observed in irradiated
metals (Pokor et al. (2004)), this localization is thought to be one of the
causes of the irradiation assisted corrosion (intergranular) cracking (IASCC)
phenomenon in irradiated steels (Jiao and Was (2011)), and the increased
Bauschinger effect observed in irradiated Zr alloys by Wisner et al. (1994)
is attributed by Luft (1991) and Onimus and Bechade (2009) to the strain
incompatibilities generated by clear channels formation.
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A proper modeling of slip bands appears then as an essential require-
ment to address the numerical simulation of these phenomena. Extensive
studies have been devoted to simulate slip localization in crystals (Dao and
Asaro (1996a,b); Sluys and Estrin (2000)). In the case of irradiated metals,
models based on softening classical crystal plasticity (CCP) have been de-
veloped (Patra and McDowell (2012, 2016); Barton et al. (2013); Xiao et al.
(2015); Erinosho and Dunne (2015); Hure et al. (2016)) to conduct full-field
simulations of strain localization. If intense localization bands are success-
fully captured, these models fail to reproduce realistic slip bands networks.
Indeed, Asaro and Rice (1977) showed that CCP equations coupled with a
perfect plastic or softening behaviour leads to unstable plastic flow with lo-
calization bands. However, their analysis predicts two possible bifurcation
modes: slip bands and kink bands. It has been recently demonstrated that
they are equivalent in all CCP models and thus form in equal quantities in
polycrystalline simulations assuming initially homogeneous grains leading in
particular to non-physical amounts of kink bands (Marano et al. (2019)).
Even though Forest (1998) has evidenced that this fundamental shortcoming
can be overcome with higher order continuum based crystal plasticity, the
development of an efficient framework to accurately simulate the physical
characteristics (width, spacing, local strain...) of slip bands networks is still
an open problem that will require long-term efforts.

On the contrary, these features can be easily accounted for when explic-
itly (geometrically) modeling slip bands. This represents a more pragmatic
approach aimed at gaining insight into the effect of increased localization on
the mechanical behavior of irradiated metals. Sauzay et al. (2010) have mod-
eled one or two clear channels between a free surface and a grain boundary
within a finite element mesh, embedded in a hard matrix, and have shown
that slip band width is the most influential parameter for the stress induced
on the grain boundary. Pushing the approach further, Zhang et al. (2010)
have modeled slip band formation in the α phase of duplex Ti-6Al-4V by
prescribing a potential slip band pattern of fixed width and spacing: ma-
terial softening is allowed only inside the bands, triggering slip localization
in the prescribed areas. They could qualitatively reproduce the slip band
behavior observed on SEM micrographs from experiments at various strain
levels. However, their study is restricted to two-dimensional simulations with
a small number of grains. 3D polycrystalline simulations of realistic slip band
patterns are more challenging from a computational point of view. For in-
stance, as the typical width of clear bands is one hundred times lower than
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the usual grain size in nuclear industry alloys (∼40 nm to 80 nm vs. ∼8 µm
to 10 µm in irradiated Zr alloys Onimus et al. (2004)), the size of elements
should be at least equal or smaller, requiring millions of elements per grain.
Hence simulating a representative number of grains with explicit slip bands
comes with a colossal computational cost.

To get around this issue, FFT-based solvers, that have known extensive
developments since the pioneer work of Moulinec and Suquet (1998) , have
proven to be more efficient than FEM solvers Robert and Mareau (2015)
and can be efficiently parallelized, seem an ideal candidate. However, as
they operate on regular grids, standard FFT-based solvers would require
high resolutions to accurately simulate slip bands. The recent development
of the composite voxel technique initially introduced for linear elasticity by
Gélébart and Ouaki (2015) and Kabel et al. (2015), and extended to inelas-
tic materials by Kabel et al. (2017) and Mareau and Robert (2017) allow to
circumvent this difficulty. They allow to replace the constitutive behavior of
a voxel crossed by an interface with an homogenized behavior accounting for
the phases within it and possibly some geometrical informations regarding
their arrangement in the voxel. They strongly increase both the accuracy of
the simulated effective properties and the local quality of the strain and stress
fields. As a result, they allow to achieve the same degree of precision as clas-
sical FFT based methods with a reduced resolution, hence reducing compu-
tational time and memory requirements. In addition, they have been recently
applied by Charière et al. (2020) to hollow glass microspheres/polypropylene
composites, showing to be particularly well-suited for microstructures with
very thin heterogeneities, compared to the unit cell size. Thus, they should
be of prime interest for explicit slip band modeling, which involves a high
number of generally thin bands within the unit cell.

Thus, in this paper, we propose an efficient and generic numerical frame-
work based on a massively parallel FFT-based solver enhanced with com-
posite voxels designed for realistic polycrystalline simulations of explicit slip
band networks. We then show its ability to study the influence of dislocation
channeling in irradiated alloys with a specific focus on slip localization in-
duced kinematic hardening and grain boundary stress concentrations. This
paper is organized as follow: section 2 briefly presents our FFT implemen-
tation and details the non-linear generic composite voxel models that have
been implemented in the context of small strains. Section 3 describes the
generation of polycrystalline unit cells containing explicit slip band patterns
discretized with composite voxels, as well as the characteristics and material
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behavior of the model material selected for our application: an approxima-
tion of irradiated textured Zr alloys used in the nuclear industry. 3D poly-
crystalline simulations are shown in section 4 and discussed in section 5 to
illustrate the efficiency of our numerical framework and analyze its predic-
tion in terms of grain boundary normal stresses and macroscopic kinematic
hardening, as a function of the slip band network geometrical characteristics
(width and spacing).

2. Methods

2.1. FFT-based solver

Simulations are performed using the in-house FFT solver AMITEX FFTP1.
It relies on the classical basic scheme of Moulinec and Suquet (1998), consist-
ing in solving iteratively the following equations until mechanical equilibrium
is reached:

τ (xi) = σ(xi) − Λ
0 : ε(xi) ∀xi ∈ Ω (1)

ε̂k+1(ξi) = Γ̂
0

: τ̂ k, ∀ξi 6= 0 ε̂k+1(0) = E (2)

over a periodic unit cell Ω discretized by a regular grid of N voxels (N =
N1 × N2 × N3), where τ , σ and ε are respectively the polarisation, Cauchy
stress and strain tensors in real space, ε̂ and τ̂ are the strain and polarisation
tensor in Fourier space, xi and ξi are the grid points coordinates respectively
in real space and in Fourier space, and Λ is the elastic stiffness tensor of a
reference isotropic linear elastic material. Thanks to the local formulation
of both eqs. (1) and (2) in real (resp. Fourier) space, their resolution is
implemented in a massively parallel fashion in the solver AMITEX FFTP.

Γ̂
0

is the modified discrete operator proposed by Willot (2015), and has
been shown to be equivalent to a discretization of the unit cell with cubic
linear finite elements with reduced integration (Schneider et al. (2017)).

Besides, Anderson’s convergence acceleration technique is applied to this
fix-point scheme: every three iterations, this technique is applied to pro-
pose an accelerated solution using four pairs of residual-solution obtained
from previous iterations. Its principle is detailed in Anderson (1965), and
its implementation in AMITEX FFTP in Chen et al. (2019). This algo-
rithm drastically enhance the convergence of the basic scheme. Besides, for

1http://www.maisondelasimulation.fr/projects/amitex/html/
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non-linear materials simulation, compared to a Newton-Raphson implemen-
tation (Gélébart and Mondon-Cancel (2013)), it does not require the tedious
evaluation of the tangent behavior.

2.2. Non-linear composite voxel models

FFT-based solver operate on voxelwise constant fields defined on regular
grids. At each iteration, the evaluation of the stress field over each voxel
eq. (1)) requires the integration of the constitutive relations of the material
lying in the voxel. However, when the voxel is crossed by interfaces the choice
is no longer unique. Most FFT-based codes use the constitutive relation of
the phase lying at the center of the voxel, resulting in a poor description of
the microstructure close to interfaces. Alternatively, a more sophisticated
choice consists in using an homogenization rule for the behavior of the voxel,
accounting for the different phases and their distribution in the voxel, which
is called a composite voxel (CV).

The first composite voxel models have been introduced by Gélébart and
Ouaki (2015) and Kabel et al. (2014) that used classical homogenization
rules for two-phases elastic materials : Voigt and Reuss bounds, and an
elastic laminate approximation. In those cases, the effective properties of
the composite voxel can be computed directly using their analytical expres-
sion. Mareau and Robert (2017) used these linear formulations to extend
this technique to inelastic materials, by considering the effective CV inelas-
tic strain as an eigenstrain. Non-linear CV models formulated as non-linear
systems solved with an iterative Newton-Rapshon procedure have also been
developped for two-phases hyper-elastic materials (Kabel et al. (2016)) and
inelastic materials (Kabel et al. (2017)), requiering the evaluation of local
tangent behaviors. In this paper, we propose a unified and generic formu-
lation allowing to use non-linear CV with any non-linear behavior for any
arbitrary number of phases (Nφ) and any homogenization rule, and apply it
too the three classical CV models used by the mentionned authors.

CV models can be seen as a constitutive relation linking the average
stress over the composite voxel (eq. (3)) to: the local stress and strain state:
{σi, εi}1≤i≤Nφ

, the coefficients CCV that are specific to the chosen homoge-
nization rule H, containing at least the phases volume fractions fi and the
average strain imposed over the CV εCV (eq. (4)). Indeed, at each iteration,
the FFT-based scheme prescribes the strain over each voxel through eq. (2),
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which becomes εCV for the CV.

σCV =
Nφ
∑

i=1

fiσi (3)

εCV =
Nφ
∑

i=1

fiεi (4)

More precisely, for a CV with an arbitrary number of phases Nφ, the prob-
lem has 2 × 6Nφ unknowns {σi, εi}1≤i≤Nφ

. The local stress and strain state

of each phase must verify the local constitutive relations (eq. (5)) providing
6Nφ equations. Hence, the homogenization rule H must represent a set of
6Nφ equations so that the system eqs. (5) and (6) is a non-linear system of
2 × 6Nφ equations.

σi = Fi (εi,αi,Ci) ∀i/1 ≤ i ≤ Nφ (5)

H
(

{σi, εi}1≤i≤Nφ
; εCV ,CCV

)

= 0 (6)

In practice eq. (5) is used to compute the {σi}1≤i≤Nφ
from the {ǫi}1≤i≤Nφ

and eq. (3) is used to compute the CV stress as a post-processing when the
local stress state are known. Thus, the problem reduces to a 6Nφ unkowns
problem with the 6Nφ equations represented by eq. (7).

H0
(

{ǫi}1≤i≤Nφ
; εCV ,CCV

)

= 0 (7)

Defining a composite voxel model consists then in proposing a specific
homogenization rule H0, and its associated coefficients CCV . We have con-
sidered three different rules in our work, following Gélébart and Ouaki (2015);
Kabel et al. (2015). They are described below.

Voigt CV: H represents the Voigt approximation: the strain state is
supposed to be homogeneous in the voxel. Hence, by denoting H0

i the ith

equation of H0, eq. (7) takes here the form:

εi − εCV = 0 ∀i/1 ≤ i ≤ Nφ (8)

Equation (8) is solved directly by prescribing all local strain states to εCV .
The constraint defined by eq. (4) is then automatically verified. All the local
strain states εi are known and thus also all stress states σi through the con-
stitutive relations (eq. (5)). Finally the macroscopic stress state can be eval-
uated using eq. (3). CCV reduces to the phases volume fractions {fi}1≤i≤Nφ

.
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Voigt approximation provides the stiffest bound for the composite voxel con-
stitutive relation.

Reuss CV: H represents the Reuss approximation: the stress state is
supposed to be homogeneous in the voxel. Hence, eq. (7) takes the form:

σi − σCV = 0 ∀i/1 ≤ i ≤ Nφ (9)

If eq. (9) is verified, the constraint defined by eq. (3) is then automatically
verified, but the constraint on the average strain eq. (4) is not. As σCV is not
prescribed by the FFT-based scheme (evaluated as a post-treatment with
eq. (3)), we solve in practice the following set of 6Nφ equations for H0:

σi − σ1 = 0 ∀i/2 ≤ i ≤ Nφ (10)
Nφ
∑

i=1

fiεi − εCV = 0 (11)

CCV reduces to the phases volume fractions {fi}1≤i≤Nφ
. Reuss approxima-

tion provides the softer bound for the composite voxel constitutive relation.
Laminate CV: they consist in a linear approximation of the interface

between phases, which is assumed to be a plane P with normal direction
N . The voxel is supposed to behave as an infinite laminate material. The
solution of this classical mechanical problem are phasewise constant fields,
that must verify the following relation:

σN
CV

− σN
i = 0 ∀i/1 ≤ i ≤ Nφ (12)

εP
CV

− εP
i = 0 ∀i/1 ≤ i ≤ Nφ (13)

Superscripts N and P denote respectively the normal and in-plane part (3
components each) of a tensor with respect to the plane P . Equation (12)
states that the local stress fields must verify the continuity of the traction
vector at the interface between the phases, and eq. (13) states that local
strain fields must be compatible.

Equation (13) is solved directly by prescribing all in-plane components of
the local strain states to εP

CV
. The in-plane components of the local stress

tensors are computed from eq. (5). Similarly to the derivation of the equation
system for Reuss CV, as σN

CV
is not prescribed by the FFT-based scheme

(evaluated as a post-treatment with eq. (3)), we solve the following set of
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3Nφ equations for H0:

σN
i − σN

1 = 0 ∀i/2 ≤ i ≤ Nφ (14)
Nφ
∑

i=1

fiε
N
i − εN

CV
= 0 (15)

In this case, the coefficients associated to the homogenization rule are
the three components of the interface normal vector and the phases volume
fractions CCV =

〈

N , {fi}1≤i≤Nφ

〉

.

2.3. Numerical resolution

Classically in non-linear mechanics codes, the constitutive relations (eq. (5))
are integrated with an incremental formulation at each time step, for a pre-
scribed strain increment, to compute the stress increment. We denote by
(σCV , εCV ) and ∆σCV , ∆εCV the initial (known) mechanical state and its in-
cremental evolution over one time step for the CV, and (σi, εi) and ∆σi, ∆εi

the corresponding local quantities for the phases contained within the CV.
In this context, the local constituive relations can be written:

σi + ∆σi = Fi (σi, εi, ∆εi,αi,Ci) ∀i/1 ≤ i ≤ Nφ (16)

The generic definition of a CV voxel model is given by eq. (7), which
becomes, in this incremental context:

H0
(

{ǫi + ∆εi,σi}1≤i≤Nφ
; εCV + ∆εCV ,CCV

)

= 0 (17)

where εCV , ∆εCV (prescribed by the FFT-based scheme) and the {ǫi,σ}1≤i≤Nφ

are known, and the {∆εi}1≤i≤Nφ
are unknown. In the following, to simplify

the notation, we write eq. (17) omitting the dependance to the known quan-
tities, which writes:

H0
(

{∆εi}1≤i≤Nφ

)

= 0 (18)

Solving the problem requires then the resolution of the non-linear system
of eq. (18). We chose to use iterative Newton-like methods to solve it. They
consist in computing, at each iteration k:

∆εk
i = ∆εk−1

i + δ∆εk
i (19)

Lk : δ∆εk
i = −H0

(

{

∆εk−1
i

}

1≤i≤Nφ

)

(20)
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until eq. (18) is verified to the precision η: H0

(

{

∆εk
i

}

1≤i≤Nφ

)

< η. The

choice of Lk defines the iterative Newton-like method. In addition, An-
derson’s acceleration ((Anderson, 1965)) technique used for the FFT-based
scheme fix-point algorithm is also applied using the pairs of solution/residual:

(

{

∆εk
i

}

1≤i≤Nφ

, H0

(

{

∆εk
i

}

1≤i≤Nφ

))

We provide hereafter the specific description of the algorithm for laminate
composite voxels only (eqs. (14) and (15)), as its formulation for Reuss and
Voigt CV is almost identical. In incremental form, eq. (15) allows to write:

∆εN
1 =

1

f1



∆εN
CV

−
Nφ
∑

i=2

fi∆εN
i



 (21)

which can be introduced in eq. (14) to yield:

H0
i = σN

i+1(∆εN
i+1) − σN

1





1

f1



∆εN
CV

−
Nφ
∑

i=2

fi∆εN
i







 (22)

∀i/1 ≤ i ≤ Nφ − 1

It is a non-linear system of 3(Nφ − 1) equations, with a jacobian defined by:

dH0
ij =

∂H0
i

∂∆εN
j

= δij

∂∆σN
j+1

∂∆εN
j+1

+
fj+1

f1

∂∆σN
1

∂∆εN
1

(23)

∀(i, j)/1 ≤ i ≤ Nφ − 1 ; 1 ≤ j ≤ Nφ − 1

Numerically, the tensors ∆σN
j and ∆εN

j ∀j (that have only 3 independent
components each) are handled as 3 components vectors, using Voigt notation.

Hence, in this case, dHij is a 3x3 matrix. The local tangent operator
∂∆σN

j

∂∆εN
j

is obtained by computing the 6x6 matrix
∂∆σj

∂∆εj
in the basis defined by N

and a unit vector tangent to the interface.
Three choices of tangent operator have been implemented for the laminate

CV:
1. LNR = dH0, this choice is the Newton-Raphson method. In this case

eq. (23) is explicitly computed from its analytical formula, for each
component of the tangent operator.
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2. Lnum = dHnum, where dHnum is a numerical approximation of dH0,
computed as follow:

dHnum
ij =

H0
i (. . . , ∆εN

j + ǫ, . . .) − H0
i (. . . , ∆εN

j , . . .)

ǫ
(24)

where ǫ is a perturbation that is small compared to ∆εj (ǫ ≈ 10−8 is
used in the following). This choice is a numerical approximation of the
Newton-Raphson method.

3. L0, the constant isotropic linear elastic tangent operator corresponding
to a Quasi-Newton method. Its components are computed as follows:

Lij = δijΛ
j+1
N +

fj+1

f1

Λ
1
N (25)

∀(i, j)/1 ≤ i, j ≤ Nφ − 1

where Λ
j
N are the equivalent elastic moduli tensors of the constitutive

phases of the CV restricted to the normal components of the tensors,
as detailed above for the true tangent operator.

Note that for Reuss CV, only the Quasi-Newton method has been imple-
mented, and that for Voigt CV, no iterative resolution is needed. In the
following, laminate CV equations will always be integrated with the Newton-
Raphson method. No distinction between this algorithm (with LNR) and its
numerical approximation (with Lnum) will be done as they have no incidence
on the results. Simply note that using Lnum comes with an additional com-
putational cost as it requires Nφ − 1 evaluations of H0(. . . , ∆εN

j + ǫ, . . .)
(∀j 2 ≤ j ≤ Nφ). In addition, note that the convergence acceleration
technique is systematically applied, every three iterations, for all three al-
gorithms.

This formulation is generic and thus can be used with any type of consti-
tutive equations for the phases of the composite voxels. In addition, the use
of a numerically evaluated jacobian or a constant tangent operator allows to
use non-linear behaviors without knowing the exact tangent operator of the
constitutive equations ∂∆σ

∂∆ε .

3. Material

3.1. Explicit slip band modeling

Similarly to Zhang et al. (2010), we consider in a polycrystalline unit cell,
a distribution of equally spaced bands of constant width that are parallel to
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When no intersection is found: each voxel lying entirely between the two
planes, is given a plastic behavior, and each voxel lying entirely outside is
given an isotropic linear elastic behavior. Each voxel crossed by one of these
planes is defined as a composite voxel composed of the plastic and the elastic
phase. For each plane, the volume of the region bounded by the intersection
points of the voxel edges and the voxel vertices located on the same side
of the plane in the direction n is computed with the Convex Hull function
(convhull) of the Octave software. This way, the volume fraction of each
phase can be computed. Complemented with the three components of n, all
the microstructural informations needed to use the three different CV models
proposed in section 2 are obtained.

In this study, only unit cells with a single slip plane per grain have been
generated. In fact, generating sets of parallel slip bands with different ori-
entations requires to handle the definition of CV, which remains an open
question for future work. Furthermore, this framework is already sufficient
to study materials with a slip behavior dominated by a single slip plane, as for
instance irradiated textured Zr alloys under specific loading (see section 3.3).

3.2. Crystallographic texture

This paper aims also at showing the potential of explicit slip band model-
ing for the prediction of the consequences of slip localization on grain bound-
ary normal stresses or kinematic hardening due to plastic strain incompatibil-
ities. Polycrystalline texture can have a significant impact on this quantities
as a strong texture will favor slip transmission at grain boundaries, which
should result in lower stress concentrations than intense slip bands intersect-
ing ending up on underformed grains. Hence, it has been accounted for in
our idealized material of irradiated Zr alloys with a realistic crystallographic
texture for Zr alloy cladding tubes.

The texture of cold-rolled recrystallized Zr alloys used for cladding tubes
has been studied experimentally by Pawlik (1986) and consists in a majority
of grains having their < c > axis at an angle ±30◦ of the radial direction of the
tubes, in the plane defined by the radial direction and the transverse direction
(TD). This plane is orthogonal to the rolling direction (RD), corresponding
to the tube axis.

A representative orientation distribution density function has been built
and used to generate a file of 1 × 105 grain orientations that is representative
of the texture. In order to generate representative polycrystalline unit cells
of this material, random sets of orientations are drawn from this file. To
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3.4. Mechanical behavior

The constitutive modeling chosen for the plastic phase is aan almost per-
fectly plastic crystal plasticity model with a Norton flow rule, summarized
by eqs. (27) to (31):

ε = εe + εp (27)

σ = Λ : εe (28)

εp =
N

∑

s=1

γsµs (29)

γ̇s = sign(τ s)

〈

|τ s| − τc

K

〉n

(30)

τ s = σ : µs (31)

where εe and εp are respectively the elastic and plastic strain tensors, where
Λ is the elastic moduli tensor, γs, γ̇s and τ s are respectively the plastic
slip, plastic slip rate and resolved shear stress for the slip system s, and
µs = 1

2
(ms ⊗ ns + ns ⊗ ms) is the symmetric Schmid tensor of slip system

s, with ms and ns its slip direction and normal to slip plane direction.
The critical resolved shear stress τc =80 MPa (after Onimus and Bechade

(2009)) is constant and the Norton flow rule coefficients n = 20 and K =10 MPa s1/n

are chosen so that the behavior is almost rate-independent. This choice has
been made to avoid any variation of the macroscopic stress linked to local
hardening or softening terms, and thus isolate the effect of the distributon of
slip bands on the macroscopical kinematic hardening. This strong simplifica-
tion amounts to considering potential slip bands as clear channels completely
depleted from irradiation induced defects at incipient plasticity. The trans-
versely isotropic elasticity of Zr alloys is accounted for in the elasticity tensor.
It is defined by the following elastic moduli:

• Ea =70 028 MPa is the Young modulus along directions < a > and
Ec =110 354 MPa along direction < c >

• Ga =22 900 MPa is the shear modulus in basal plane and Gac =27 000 MPa
in (< a >, < c >) planes

• νa = 0.203 is the Poisson coefficient in basal plane and νac = 0.529 in
(< a >, < c >) planes
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Outside of the slip bands, the material, as mentioned earlier, is purely
elastic, with the same elastic moduli. In practice, these relations are im-
plemented in a UMAT subroutine using the Mfront code generator (Helfer
et al. (2015)) and solved with an implicit Newton-Raphson method. This
implementation allows to compute easily the local tangent operator of the
constitutive relation ∂∆σ

∂∆ε of each material phase of the composite voxels. It
is used to apply the Newton-Raphson method for the resolution of laminate
CV models.

4. Results

4.1. Enhanced computational efficiency induced by composite voxels

We first investigate the impact of composite voxels on the computational
cost of polycrystalline simulations with explicit slip bands. Out of simplicity,
for this set of simulations, unit cells are generated with an isotropic tex-
ture, the material elasticity is chosen isotropic linear with Young’s modulus
E =1 × 105 MPa and Poisson’s ratio ν = 0.3, and the critical resolved shear
stress is set to τc =100 MPa.

The grid resolution is defined as the ratio between the band width and
the voxel size r = ωb

δx
. The simulations are carried out for increasing res-

olution verifying rP = 2P · r0, where P is the grid refinement coefficient,
and r0 is the initial resolution. 27 grains unit cells are generated with two
sets of band patterns: one with ωb

dg
= 1

10
and r0 = 1 (P = 1, 2, 4, 8, 16 i.e.

303, 603, 1203, 2403, 4803 voxels), and another with ωb

dg
= 1

50
and r0 = 0.5

(P = 1, 2, 4, 8 i.e. 753, 1503, 3003, 6003 voxels), where dg is the mean grain
size in the polycrystal. The first pattern allows to study the convergence
with resolution up to high number of voxels per band and the second is used
to study the convergence when modeling thin bands.

The unit cell is submitted to a mean tensile strain loading in the direc-
tion e3 up to ε33 = 0.01, where e1, e2, e3 is the cartesian basis. All other
components of the mean stress tensor are prescribed to zero. The simulation
is carried out with strain increments of 10−5, at a strain rate of 1 × 10−5 s−1.
Figure 4 shows a comparison of the stress-strain curves obtained without CV
and with laminate CV (Reuss and Voigt CV have been omitted for readabil-
ity) for all resolutions of the first pattern ( ωb

dg
= 1

10
). It shows that the model

relying on laminate CV converge to the same solution than classical FFT
scheme, and that it converges faster.
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To quantify the convergence improvement, three CV models presented in
section 2.2 are compared to the classical FFT scheme. The convergence of
σf = σ33(ε33 = 0.01) is studied. Two error indicators are used to quantify
its evolution with grid refinement:

Ecv(P ) =
σf (P ) − σf (P − 1)

σf (P − 1)
(32)

Erel

(

ωb

δx
,σref

)

=
σf

(

ωb

δx

)

− σref

σref
(33)

A low value of Ecv(K), the convergence error, indicates that the solution is
converged with respect to grid resolution and Erel, the relative error, eval-
uates the precision of a given simulation with respect to a reference value
obtained with laminate CV at the highest resolution.

Figure 5-(a-b) presents the evolution of Ecv with grid refinement for the
two patterns. It shows that laminate CV yield the best convergence rate in
both cases, and convergence is even faster when modeling thin bands (b).
With the other CV models Ecv convergence is slower, as well as without CV,
but Voigt CV yield an even worse convergence rate. Reuss CV convergence
rate is better, but simulations could not converge unless ωb

δx
≥ 4, and only for

strain increments of 10−6 resulting in much longer simulations than all other
models. This could be attributed to the use of the quasi-Newton method
instead of Newton-Raphson method. However, laminate CV simulation were
successfully conducted with the Quasi-Newton method, indicating that Reuss
CV model is more difficult to solve in this case.

The convergence error is below 10−3 for the highest grid resolution value
with laminate CV, justifying the choice of this case as the reference value to
compute the relative error Erel.

The evolution of the relative error with computational time is shown
on fig. 5-(c). It shows that the use of laminate CV allows to reduce the
computational time from one to two orders of magnitude to obtain a precision
lower that 2% when compared to the simulations without CV voxels. In other
words, to get the same precision than without CV with a resolution 4 to 8
times lower ( 64 to 512 times less voxels). With ωb

δx
= 1, the relative error

is ∼1% with laminate CV for thin bands (ωb

dg
= 1

50
) as illustrated on fig. 5-

(d). The provided computational times have been obtained on 1000 cores (
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bands compared to the grain size, which is of prime interest for the modeling
of clear channels in irradiated metals. On the other hand, Reuss and Voigt
CV deteriorate the efficiency compared to a modeling without CV.

4.2. Increased kinematic hardening induced by slip localization

Here, we investigate the ability of explicit slip band modeling to predict
the influence of strain localization on the mechanical behavior of irradiated
metals. In particular, we study the ability of this modeling approach to
reproduce the increased Bauschinger effect observed in irradiated Zr arising
from plastic strain incompatibilities generated by clear channels formation.

64 grains unit cells of the idealized material described in section 3 are
generated with a set of band patterns with an increasing number of bands
per grain of fixed width, ωb

dg
= 1

100
, which is consistent with the ratio between

grain size (∼5 µm to 10 µm) and clear channel width (∼40 nm to 100 nm)
observed in irradiated Zr alloys. Hence, the band volume fraction in % is
directly equal to the mean number of bands per grain. The degree of strain
localization increases with band spacing (with decreasing bands number).

Grid resolution is set to 4003 voxels, in order to have ωb

δx
= 1, for which

laminate CV yield a precision of the order of 1% (see section 4.1). Thus
all simulations presented below involve 64 millions voxels, and laminate CV
are systematically used. Unit cells are submitted to a tension-compression
loading in TD up to 1% strain, with strain increments of 10−5, at a strain
rate of 1 × 10−5 s−1.

As the behavior is almost perfectly plastic, only kinematic hardening due
to plastic strain incompatibilities that must be elastically accommodated
is predicted by this model. Figure 6 shows the stress-strain curves (a-b)
obtained with the different band patterns and the evolution of the isotropic
(R) and kinematic (X) hardening (c-d), computed at 1% strain, as a function
of the bands volume fraction. It confirms that no isotropic hardening is
predicted. It reveals a strong increase in kinematic hardening when the
number of bands is decreasing, i.e. when slip localization increases. With
3 potential slip bands per grain in average, which is close to the average
number of clear channels observed in irradiated Zr alloys (Onimus et al.
(2004)), the hardening is ∼60% higher than for the 100% plastic polycrystal.
Figure 6-(d) shows the evolution of hardening components for the second
set of patterns, with fixed bands volume fraction. Again, strain localization
increases kinematic hardening showing that this effect is not purely associated
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with the variation of bands volume fraction in the first case (a) but also to
the spatial distribution of slip bands.

In conclusion, this modeling approach predicts a strong increase of kine-
matic hardening for increased slip localization, understood as the increase
of slip band spacing, which is qualitatively consistent with the stronger
Bauschinger effect observed on irradiated textured Zr alloys compared to
for non irradiated ones.
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Figure 6: (a): Stress-strain curves (a-b) for a loading-unloading tensile test (± 1% strain
in TD) and evolution of Kinematic and Isotropic hardening values (c-d) for various band
volume fractions with fixed band width: ωb

dg
= 1

100
. (a & c) and for various band number

per grain with fixed 20% volume fraction (b & d)
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4.3. Grain boundary stress concentrations induced by slip localization

We study here the predicted evolution of the grain boundary normal stress
distribution with increasing slip localization. If this question is not really
relevant for Zr alloys, these quantities are thought to be a good indicator to
build an intergranular crack initiation criterion for the prediction of IASCC
observed in irradiated stainless steels.

The stress fields computed at 1% tensile strain with the previously de-
scribed simulations have been post-processed in order to compute the grain
boundary normal stress distribution. The Voronoi tessellation used to gen-
erate the polycrystalline unit cell provides the exact definition of the planes
forming the grain facets: their position and their normal vector Ni. From
this information, grain boundary voxels lying on each facet can be detected,
and the grain boundary normal stress is evaluated by computing Ni ·σ ·Ni.
In addition, σ95%, the 95th grain boundary normal stress percentile is com-
puted from the distribution, as the upper tail is the relevant part of the curve
used to build intergranular cracking criterions (Hure et al. (2016)).

Figure 7 shows the evolution of the grain boundary normal stress distri-
bution and σ95% for the set of patterns representative of basal clear chan-
nel width (ωb

dg
= 1

100
). It reveals (a) that when increasing slip localization,

the grain boundary normal stress distribution becomes less symmetric and
spreads towards the high tensile stress values. This is confirmed by the evo-
lution of σ95% (b), that increases when reducing the number of bands.
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Figure 7: Grain boundary stress distribution at 1% tensile strain in TD (a) and evolution of
its 95th percentile (b) for various band volume fractions with fixed band width: ωb

dg
= 1

100
.
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Figure 8 presents the associated normal stress fields on the surface of a
grain of the polycrystalline microstructure, for various slip band patterns.
Clear stress concentration corresponding at slip band tips can be observed in
all cases, except for the homogeneous grains case. Normal stress concentra-
tions are stronger when the degree of localization is higher (i.e. with a lower
number of bands), which is consistent with the results presented on fig. 7.

These results highlight the ability of this modeling approach to predict
increased stress concentrations on grain boundaries induced by slip local-
ization, and thus help to develop numerical strategies devoted to predict
intergranular fracture in irradiated metals.

5. Discussion

5.1. Stress concentrations and kinematic hardening

As evidenced by these results, accounting explicitly for localized slip pre-
dicts a strong Bauschinger effect when prescribing a low number of potential
slip bands per grain. Our simulations show ( fig. 9-b) that intersections
between active slip bands and grain boundaries are associated to important
local stress concentrations due to the strong plastic strain incompatibility be-
tween the non deforming grain and the intense shear in the slip band on both
sides of the grain boundary. These stress concentrations are most certainly
the cause of the increased kinematic hardening.

The role of plastic strain incompatibilities is highlighted by contrast with
the absence of stress concentrations observed in the areas circled in purple
on the equivalent strain and stress fields shown on fig. 9-(a-b). They reveal
important slip transmission on two boundaries of the same grain that induce
almost no stress concentrations. It is remarkable that the orientation of the
slip bands involved at these boundaries differs only from a small angle and
that the strain in the bands seems continuous at the boundary. This features
will generate indeed little incompatibilities and thus will not induce stress
concentrations. Note that this configuration, considering the small number
of grains modeled in the unit cell, is most likely due to the consideration of
the texture in the modeling, demonstrating that this type of models could
help gain insight into texture effects on the local mechanical behavior of
polycrystals.

These simulations qualitatively reproduce the mechanism proposed by
Luft (1991) and Onimus and Bechade (2009), that explain the increased
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which remains reasonable. Overall, this demonstrates that a parallel imple-
mentation is mandatory to achieve such simulations. Besides, the results
of section 4.1 show that with a standard FFT-based solver (without CV),
the computational cost to conduct this study would have been 1 or 2 order
or magnitude higher, which represents weeks for a single computation on
standard ressources. Hence, the use of laminate CV together with a paral-
lel implementation appears mandatory to use explicit slip band modeling in
three dimensional realistic polycrystalline simulations.

5.4. Representativity of the results

Finally, it must be mentioned that the results presented here have been
obtained for only one randomly generated polycrystalline aggregate and tex-
ture. They provide an interesting qualitative insight into the possibilities
opened by this modeling approach, they are certainly not statistically rep-
resentative of the behavior of our model material and the magnitude of the
simulated increase in kinematic hardening could change significantly when
increasing the unit cell size. Assessing this representativity should be manda-
tory for future studies aiming at obtaining quantitatively representative re-
sults.

Yet, the ambition of this study was only to demonstrate that explicit
modeling of clear channels was a valid tool to simulate the strain localization
induced stress concentrations. We believe that the magnitude of the variation
of the kinematic hardening with the number of bands per grain, and the
observed strong stress concentration and grain boundary normal stress fields
evidenced by our study are a strong enough evidence of the interest of this
modeling approach.

6. Conclusions and future prospects

We proposed a generic and unified formulation of composite voxel models
in the context of small strains, allowing to define composite voxels with any
arbitrary number of phases with any linear of non-linear constitutive rela-
tions. It has been used to implement three types of generic composite voxel
models within the massively FFT-based solver AMITEX FFTP: Voigt, Reuss
and Laminate composite voxels. We applied these to reduce the computa-
tional cost of explicit slip band modeling. It has been shown that laminate
composite voxels allows to reduce the computational cost of such simulations,
reducing the needed resolution to obtain a precise solution by a factor 43 to
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83, resulting in a reduction of computational time of one to two orders of
magnitude and a reduced memory needed for the simulations. Moreover, we
have shown that this numerical framework is mandatory to conduct, within
a reasonable time, 3D realistic polycrystalline simulations with explicit slip
bands, using conventional parallel computers.

We demonstrated that this approach can be used to simulate the impact
of basal channeling in irradiated textured Zr alloys. The increased localized
slip induced by irradiation is explicitly accounted for by increasing slip band
spacing, resulting in localization induced higher global kinematic hardening
and increase of grain boundary stress concentrations. Our efficient explicit
numerical framework allowed to simulate slip bands 100 time thiner than the
average grain size, which is the relevant size for clear channels in irradiated
Zr alloys, within three dimensional polycrystals.

This work is intended as a first step providing qualitative insights on
the potential of this modeling approach. To obtain quantitative predictions
of the local and overall behavior of such materials within this framework,
many improvements should be introduced. First, regarding composite voxel
models, the present formulation should be extended to finite strain in order to
handle the large deformations involved when simulating strain localization.
Second, more than one family of slip planes should be accounted for, raising
some difficulties in handling slip band intersections regarding the definition
of composite voxels. Third, a realistic physics-based model of the plasticity
of irradiated metals should be introduced for the material behavior inside
slip bands. And finally, similar studies should be conducted on statistically
representative polycrystalline aggregates.
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Chen, Y., Gélébart, L., Chateau, C., Bornert, M., Sauder, C., King, A., 2019.
Analysis of the damage initiation in a sic/sic composite tube from a di-
rect comparison between large-scale numerical simulation and synchrotron
x-ray micro-computed tomography. International Journal of Solids and
Structures 161, 111 – 126. doi:https://doi.org/10.1016/j.ijsolstr.

2018.11.009.

Dao, M., Asaro, R.J., 1996a. Localized deformation modes and non-schmid
effects in crystalline solids. part i. critical conditions of localization. Me-
chanics of Materials 23, 71 – 102. URL: http://www.sciencedirect.

30



com/science/article/pii/0167663696000129, doi:https://doi.org/

10.1016/0167-6636(96)00012-9.

Dao, M., Asaro, R.J., 1996b. Localized deformation modes and non-schmid
effects in crystalline solids. part ii. deformation patterns. Mechanics of
Materials 23, 103 – 132.

Erinosho, T., Dunne, F., 2015. Strain localization and failure in irradiated
zircaloy with crystal plasticity. International Journal of Plasticity 71, 170–
194. doi:10.1016/j.ijplas.2015.05.008.

Fong, R., 2013. Anisotropy factors from texture and mechanical strain
in zircaloy-4 fuel sheaths. Journal of Nuclear Materials 440, 288
– 297. URL: http://www.sciencedirect.com/science/article/pii/

S0022311513007083, doi:https://doi.org/10.1016/j.jnucmat.2013.

04.089.

Forest, S., 1998. Modeling slip, kink and shear banding in classical and
generalized single crystal plasticity. Acta Materialia 46, 3265–3281. doi:10.

1016/S1359-6454(98)00012-3.
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