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Acknowledgements

We are grateful to 3M Advanced Materials Division for giving us a microspheres sample. We also wish

to thank Bruno Laguitton (CEA Grenoble), Olivier Poncelet (CEA Grenoble) and Gérard Liraut (Groupe

Renault) for their experimental contributions to this work and Jérémy Duvergé (internship at cea) and
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Use of composite voxels in FFT based elastic simulations of hollow glass
microspheres/polypropylene composites

Abstract

Thermoplastic polymer composites filled with hollow glass microspheres (HGM) are of growing inter-

est as lightweight materials. In order to better understand the relationship between the microstructure

and the mechanical properties, Finite Element simulations based on the microstructure are now commonly

performed. However, their computational cost becomes prohibitive when increasing the size and mesh refine-

ment of the simulated unit cell. Massively parallel FFT-based solvers allow to overcome those limitations.

The main purpose of the paper is to demonstrate that FFT-based solvers can be used to simulate HGM-

thermoplastic composites, focusing on both the average behavior and the distribution of normal stresses at

HGM-matrix interface. Actually, in addition to infinite elastic contrasts, the thin thickness of the HGM

glass shell raises a problem, as well as the evaluation of interfacial stresses from a grid-based discretization.

These problems are alleviated by using composite voxels (i.e. an homogenization rule is used for voxels

crossed by an interface). The numerical study is supported by experiments (microstructure and mechanical

characterization) performed on polypropylene composites with various HGM contents. Finally, an original

statistical description of the interfacial normal stresses is proposed, gathering the results obtained on a large

number of spheres.

Keywords: FFT simulation, Computational modelling, Mechanical properties, Polymer syntactic foam

1. Introduction

Initially, hollow fillers for polymers were used only for thermosetting matrices, but thanks to the emer-

gence of new types of microspheres and especially the development of hollow glass microspheres (HGM) able

to resist in the conditions of plastics processing industry, the manufacturing of thermoplastic matrix filled

with hollow microspheres is now possible. The resulting composites are also called syntactic foams. The5

HGM consists of a glass shell containing an inert gas. These fillers allow to design lightweight polymers and

to provide new properties of heat and phonic insulation. In the case of thermoplastic matrices, it improves

the dimensional stability of part during their production and stiffens the polymers. However, for high volume

fractions of microspheres, certain mechanical properties such as fracture elongation and yield strength are

strongly deteriorated. This greatly limits the use of this type of material [Porfiri and Gupta (2009); Gupta10
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et al. (2014); Liang (2014); Çelebi (2017)].

Besides the improvement of the process, the development of a multi-scale modelling is important to

understand the relationship between the microstructure and the behavior of the composite. For that purpose,

the modelling should provide an estimate of the effective behavior together with a description of the local

stresses and strains. On the one hand, analytical homogenization models [Nielsen (1984); Huang and Gibson15

(1993); Tagliavia et al. (2011); Marur (2005, 2009)] based on a reduced description of the microstructure, are

efficient but they are limited to quite simple microstructures, their extension to non-linear behavior is not

straightforward and they only provide a reduced description of the local quantities (per phase average in most

of the cases). On the other hand, numerical simulations based on a direct description of the microstructure

are much more expensive but provide the full fields of local quantities computed with non-linear material20

behavior. Many studies use the Finite Element Method (FEM) to simulate the thermal behavior [Liang

and Li (2007)], elastic behavior and tensile strength of periodic [Sanders and Gibson (2003)] and random

microstructures [Marur (2010)], effects of particles clustering and volume content on tensile properties [Yu

et al. (2013); Zhang et al. (2016)] of syntactic foams. Other studies focus on the damage of syntactic foams

[Bardella et al. (2014); Shams et al. (2017)], in particular by considering microspheres breaking [Panteghini25

and Bardella (2015)] or interfacial debonding between polymer matrix and microspheres [Cho et al. (2017)].

In the present paper, because debonding is suspected to occur at the interface between microspheres

and matrix, a specific attention is paid to the distribution of interfacial normal stresses. Several authors have

already investigated these stresses in various composite materials. For unidirectional composites, studies

[Hojo et al. (2009); McCarthy and Vaughan (2015); Okabe et al. (2011)] have shown that distance between30

fibers and their aligment with loading direction significantly influence the level of interfacial stresses. Lin

Weng [Weng et al. (2019)] was interested in particule size and morphology (spherical or cubic particles)

influence on the interface damage and load transfers between the filllers and the matrix using a three-

dimensional multi-particle finite element model. Further numerical studies on interfacial stresses in metallic

syntactic foams have highlighted micromechanical phenomena, responsible for the interfacial strength and35

failure mechanisms of the composite [Meng and Wang (2015)], and allowed to study the stress and strain

field distribution around the reinforced particules [Qi et al. (2017)].

Using standard FEM solvers, the main drawback is the computation time that explodes with the number

of nodes, limiting the simulations in terms of volume size and/or mesh refinement. Conversely, FFT-based

solvers [Moulinec and Suquet (1998)],developped simulating the behavior of heterogeneous materials, have40

proved to be more efficient than FEM in various cases [Prakash and Lebensohn (2009); Robert and Mareau

(2015)]. In addition, they are efficiently parallelized [Chen et al. (2018, 2019)] so that large-scale simulations

can be performed, allowing to push back the limits observed with FEM solvers. However, their application

to HGM-thermoplastic composites for estimating both the average behavior and the interfacial normal stress
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distributions is not straightforward. First, the composite reveals very high contrasts (infinite between the gas45

and the glass shell and 63 between the glass shell and the polypropylene matrix) which could induce spurious

oscillations [Gélébart and Ouaki (2015)] on the fields and convergence issues of the iterative algorithm

[Moulinec and Suquet (1998)]. Second, because the method uses a 3D grid with a uniform mesh refinement,

the fine thickness of the HGM could require a prohibitive spatial resolution to reach converged results.

Third, using grid-based methods for the evaluation of interfacial normal stresses appears questionable at a50

first glance. Hence, the main purpose of the paper is to alleviate these issues in order to take advantage of

the great potential of FFT-based solvers for simulating HGM-thermoplastic composites.

The main ingredient allowing to tackle these questions is the use of composite voxels, proposed in linear

elasticity [Kabel et al. (2015); Gélébart and Ouaki (2015)] and extended to non-linear behaviors [Mareau

and Robert (2017); Kabel et al. (2017)]. It consists in using a homogenization rule for the voxels crossed by55

at least one interface. The method and its application to HGM composites is introduced in section 3. An

optimization is proposed in section 4 in order to efficiently simulate the elastic response of the composite.

It is demonstrated that if composite voxels are interesting to reduce the problem size when considering the

average behavior, they are essential when considering the evaluation of interfacial normal stresses. Note

that the study is restricted to linear elasticity with elastic properties of glass and thermoplastic polymers.60

To support the study, the microstructure and mechanical behavior of polypropylene composites, filled with

various volume fractions of iM30K (3M R©) microspheres, are first characterized in section 2. Simulations

of random microstructures are then performed and successfully compared with experiment in section 5.

Finally, an original statistical description of the interfacial normal stresses is proposed, gathering the results

obtained on a large number of spheres.65

2. Material

The microstructure of the studied composite is presented together with the mechanical properties of its

various components. This description will be used as an input of the numerical simulations. An experimental

investigation of tensile properties of composites is carried out for the comparison with the simulated Young’s

moduli.70

2.1. Microstructure

HGM iM30K supplied by 3M are used as the fillers in this work. The shell of microspheres is made

of soda-lime borosilicate glass. HGM density, measured by helium pycnometer, is 0.6 g.cm−3. The particle

size distribution of the fillers, measured by means of a laser particule size analyzer (Mastersizer - Malvern

instruments), is shown on Fig. 1. To measure the relation between the thicknesses and diameters, a sample
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of microspheres iM30K was sieved at first. HGM are separated in three batches of diameter [5-15], [15-20]

and [20-50] µm. The spheres of every batch were then broken with a pestle and the thicknesses of glass

fragments were measured by SEM. The increasing linear relation Eq. 1 between the thickness t (µm) and

the diameter d (µm) was highlitghted :

t(d) = 0.005× d+ 0.54 (1)
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Figure 1: Size distribution graph of HGM

The thermoplastic matrix is an injection grade of polypropylene (PP) Daplen EG066AI supplied by

Borealis. Dog bone tensile test specimens (width=10 mm, thickness=4 mm, length of reduced section=90

mm) are manufactured by two stages : a compounding, on a two-screw extruder (ThermoScientific) to

distribute microspheres homogeneously within the polypropylene matrix and form pellets which can then be75

shaped by injection molding into an injection press (Billion). An example of a manufactured microstructure is

observed by XRay Computed Tomography Fig. 2 : the homogeneous spatial distribution of the microspheres

is confirmed.

Figure 2: Tomography image of composite with 30%vol HGM

2.2. Local properties

The elastic constants used in the simulations for each phase of the composite are detailed in the Tab. 1.80

The PP properties are determined by the measurements presented in the next section (2.3). The glass
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properties used are those of a classical glass [Pedone et al. (2008)].

Matrix (PP) Shell (Glass) Gas

E (MPa) 1100 69000 0

ν 0.40 0.28 0.00

Table 1: Material properties used for numerical analysis

2.3. Tensile tests on composites

The effect of HGM content on the tensile properties of the composites is determined using an Instron

55R4507 testing machine equipped with a 10 kN load cell. The strain was measured by a Provisys video85

system with a reference length of 90 mm. Strain rate is set to 2.10−4 s−1. The tensile curves for various

contents of HGM are drawn on Fig. 3 and the corresponding elastic moduli and ultimate stresses are gathered

in Tab. 2.
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Figure 3: Macroscopic stress strain curves under tensile loading of the composites with various ratio of HGM (0, 10, 20, 30,

40, 50 %vol) (a) global curve and (b) focus on the elastic part

As expected, the density of PP/HGM composites, decreases with the increasing content of HGM.

Addition of microspheres also allows to increase the Young’s modulus of the composite by increasing from90

1100 MPa for neat PP to 1900 MPa when it is loaded with 50%vol of HGM. However, increasing the content
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PP PP+10%HGM PP+20%HGM PP+30%HGM PP+40%HGM PP+50%HGM

ρ (g.cm−3) 0.90 0.87 0.84 0.81 0.76 0.73

E (MPa) 1100 1230 1430 1610 1730 1900

σultim (MPa) 16.0 13.2 10.2 8.7 7.2 6.7

Table 2: Physical properties of samples

of fillers significantly reduces the ultimate stress. This question is out of the scope of the present paper

which will focus on elastic simulations only.

3. Methods

The numerical simulations are performed with a massively parallel FFT-based solver, AMITEX [Ami].95

In addition, multi-phase materials behaviors have been implemented in order to account for composite voxels

(i.e. voxels crossed by at least one interface). Various homogenization rules are proposed : Voigt, Reuss and

Laminate.

3.1. FFT algorithm

The FFT-base solver AMITEX [Ami] uses the basic FFT scheme [Moulinec and Suquet (1998)] derived100

from the introduction of a polarization term τ(x) = (c(x) − C0) : ε(x), where c and C0 are the local

(heterogeneous) and reference (uniform) stiffness tensors respectively, and ε is the local strain tensor. For a

given polarization field τ , the strain field is evaluated by computing the convolution of the Green operator:

ε(x) = −Γ0 ∗τ(x)+E, with E being the average strain applied to the considered domain. This strain field is

used to evaluate a new polarization and thus, can be recalculated using the Green operator and so on until105

the field reaches the desired convergence criteria. This defines the fix-point algorithm. In Fourier space, the

convolution operation becomes a simple local tensorial product. The operator used in Amitex is a modified

discrete Green operator as described in [Willot (2015)]. A convergence acceleration technique is applied

to the FFT-based fixed-point algorithm. It corresponds to Andersons acceleration outlined by Chen [Chen

et al. (2018)] and can be applied to linear elasticity as well as complex non-linear constitutive behaviors.110

Finally, the coupled use of the modified Green operator and the convergence acceleration technique

makes possible and quite efficient simulations with infinite mechanical contrasts.

3.2. Composite voxels geometrical definition

In classical FFT simulations (without composite voxels), the properties of each voxel are equal to the

properties of the phase which is present at the voxel center. This allocation of properties is obvious when115
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the voxel consists of a single phase, but in the case of voxels crossed by an interface (i.e. voxels made

of several phases), it consists of a rough approximation. That’s why for complex microstructures, a very

thin discretisation can be needed and thus involve long computation times. To mitigate this problem, the

method of the composite voxels consists in evaluating the properties of a composite voxel from one of the

homogenization rules presented in next section (3.3). Hence, as a first step, the composite voxels must be120

identified and characterized: their volume fractions of phases and the interface normal must be evaluated.

HGM are modelled by two concentric spheres. Evaluating the exact geometrical intersection between a

sphere and a voxel is not straight forward and a simplified method is proposed to identify and characterize

composite voxels Fig. 4. A voxel is considered composite if the circumscribed sphere of the voxel intersects

one (or several) spheres. The volume fractions of each phase within the voxel are evaluated from the volume125

of intersections of the spheres. The interface normal is approximated by the direction relating both centers.
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Figure 4: Composite voxels identification, volume fraction and normal vector approximation

We can then distinguish three types of composites voxels: two-phase voxels made of matrix and shell

(MS) or made of shell and gas (SG) and three-phase voxels made of matrix, shell and gas (MSG). It can be

noticed that for a small enough grid resolution, the three-phase voxels disappear.

In the case of random microstructures, two close microspheres can cross the same voxels and the130

definition of the composite voxel properties are done as follows. The volume fractions of the different phases

are evaluated according to the procedure introduced above (Fig. 4). However, this procedure provides two

normal vectors oriented from the voxel center towards each microspheres center. Considering that the voxel

size is quite small compared to the sphere diameters, these vectors are almost collinear, so that the unique

normal vector required for the laminate homogenization rule is approximated by the average normal vector,135

weighted by the glass contents : n = f1n1 − f2n2 with ni the normal vectors of microsphere calculated as

previously and fi the glass volume fractions, from each microsphere, within the composite voxel.

Later on, resolution is defined as the ratio HGM thickness/voxel size, that represents the number of
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voxels in the shell thickness of the microsphere.

3.3. Homogenization rules for composite voxels140

Once characterized the composite voxels, an homogenization rule must be chosen to derive their effective

properties. In AMITEX, three homogenization rules have been implemented: Voigt, Reuss and Laminate.

These rules are used to derive the effective elastic tensor C from the N phases volume fractions fi and elastic

properties ci.

The Voigt rule assumes an homogeneous strain over all the phases. It is an upper bound (stiff) for the145

homogenised elastic properties. The Reuss rule assumes an homogeneous stress over all the phases. It is a

lower bound [Bornert et al. (2001)]. The corresponding effective stiffness tensors are given by :

CV oigt =

Nphase∑
i=1

fici (2)

CReuss =

(
Nphase∑
i=1

fic
−1
i

)−1
(3)

In addition to these upper and lower bound, the laminate homogenization rule is proposed. It provides

the exact solution for an infinite laminate material. In that case, stresses and strains are constant per phase.

Equilibrium and compatibility conditions are satisfied by the continuity of the out-of-plane stress (σOP ) and150

of the in-plane strain (εP ). The corresponding set of equations is given below, where x =
∑
fixi :


σOPi = σOP i = 1..Nphases

εPi = εP i = 1..Nphases

σi = ciεi i = 1..Nphases

(4)

Solving this set of equations leads to the defnition of the Laminate homogenized stiffness tensor. In

practice εi are the unknowns, equation 4.2 directly determines εPi , and injecting 4.3 in 4.1 provides a

3xNphases linear system where εOPi are unknowns.

4. Optimizing composite voxels155

Once the composite voxels identified and characterized, the next questions are: first, to optimize the

combination of homogenization rules (i.e. one homogenization rule, Voigt, Reuss or Laminate, per type

of composite voxel, MS, SG and MSG), and second, to demonstrate the potential of FFT-based methods,

equipped with composite voxels, to evaluate normal stresses at the HGM/matrix interface.
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4.1. Optimization on the macroscopic response160

The optimization of the homogenization rules combination is performed on a simple microstructure

consisting of a single HGM with a volume fraction of 0.3 and a thickness/radius ratio of 0.1, representative

of 3M-iM30K microspheres (see subsec. 2.1). Due to periodic boundary conditions, the virtual material

has a simple cubic symmetry. PP is used as the reference matrix and in order to explore various possible

thermoplastic matrices, 10 times stiffer and softer elastic properties are also considered. The corresponding165

Young moduli are 110, 1100 and 11000 MPa and the elastic contrast with respect to the glass Young modulus

are respectively 630, 63 and 6.3. The loading is a uniaxial average stress tensor and the macroscopic response

is the simulated average strain tensor. The quality of a simulation is estimated by the relative error on the

average strain :

ErrE =

∥∥E − E∞∥∥
2∥∥E∞∥∥

2

(5)

With :170

‖X‖2 =
√
X : X =

√∑
i,j

Xij
2 (6)

For a given simulation, E is the average strain tensor and E∞ is obtained from a simulation without

composite voxels but with a high enough spatial resolution (shell thickness / voxel size of 6) to reach

convergence (see black curves on Fig. 5).

It appears clearly that the convergence of the simulations without composite voxels (Fig. 5 black curves)

is more difficult when the matrix/shell contrast increases (i.e. when the matrix stiffness decreases). However,175

for the highest contrast (Fig. 5-A, red and blue solid lines), the use of composite voxels and especially triple

composite voxels, allows to obtain a precise estimate of the solution with less than one voxel in the glass

shell (1% error is obtained for a shell thickness / voxel size of 0.7). In addition, for the three contrasts, there

is always one combination of homogenization rules improving convergence.

From Fig. 5 it appears clearly that: first, the Reuss homogenization rule (green curves) is not suitable180

for Shell/Gas composite voxels as the results are even worth than without composite voxels, and second

the Laminate homogenization rule is the most appropriate for the Matrix/Shell composite voxels (compare

A-D-G graphs with B-E-H and C-F-I, without considering green curves). In that case, graphs on Fig. 5

A-D-G, looking at spatial resolutions lower than 1.73 (i.e. if a is the voxel size,
√

3a ≈ 1.73a is the largest

distance between opposite corners, and if this value is smaller than the shell thickness, triple composites185

cannot exist) for which triple composites (MSG) exist, the Reuss homogenization rule is not suitable for
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triple composites (see dash-dot lines). Among the remaining combinations, the full laminate combination

(solid red lines) is in overall well appropriate for the three elastic contrasts. Besides, in our specific case of

interest (Fig. 5-D for Emat = 1100 MPa), the solution (MS : Laminate, SG : Voigt, MSG : Laminate) is the

best choice. These combinations will be our two choices in the following. For an alternate display, readers190

are invited to consult appendix A where results for this specific case are gathered in histogram plots.

It is worth noting that, while the full laminate combination appears quite natural, it gives very satisfying

results but not the best results. The best results are obtained when using the Voigt approximation for the

SG composite voxels. If the explanation of this counterintuitive result is yet unclear, it may be related to

the infinite elastic contrast observed in SG composites voxels. Actually, such an infinite contrast combined195

with the laminate homogenization rule induces an infinitely anisotropic behavior, which is suspected to

be ill suited to our FFT-based simulations. This point should be clarified in the future. However, as a

practical conclusion of this discussion, in the presence of infinite contrasts, readers are invited to consider

isotropic homogenization rules such as Voigt or Reuss, in addition to the Laminate model, leading to infinite

anisotropy.200

10



Resolution=0.5 Resolution=1 Resolution=3 Resolution=6

0 2 4 6
0

0.5

1

E
r
r E

MS:l
EMat=110 MPa

Resolution

A

0 2 4 6
0

0.5

1 MS:v
EMat=110 MPa

Resolution

B

0 2 4 6
0

0.5

1 MS:r
EMat=110 MPa

Resolution

C

0 2 4 6
0

0.5

1

E
r
r E

MS:l
EMat=1100 MPa

Resolution

D

0 2 4 6
0

0.5

1 MS:v
EMat=1100 MPa

Resolution

E

0 2 4 6
0

0.5

1 MS:r
EMat=1100 MPa

Resolution

F

0 2 4 6
0

0.5

1

E
r
r E

MS:l
EMat=11000 MPa

Resolution

G

0 2 4 6
0

0.5

1 MS:v
EMat=11000 MPa

Resolution

H

0 2 4 6
0

0.5

1 MS:r
EMat=11000 MPa

Resolution

I

SG:l MSG:r
SG:l MSG:v
SG:l MSG:l

SG:v MSG:r
SG:v MSG:v
SG:v MSG:l

Without voxel composite

SG:r MSG:r
SG:r MSG:v
SG:r MSG:l

Figure 5: Relative error as a function of the resolution for all combinations of composite voxels homogenization rules and for

several contrasts (Emat=110, 1100, 11000 MPa - fv=0.3, Eshell=69000 MPa). Notations : MS : Matrix/Shell, SG : Shell/Gas,

MSG : Matrix/Shell/Gas for the composite voxels, and, l : Laminate, v : Voigt, r : Reuss for the homogenization rules.
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4.2. Optimization on the evaluation of normal stresses at interfaces

Evaluating normal stresses at HGM/matrix interfaces is of interest to discuss potential debonding

mechanism [Gilabert et al. (2015)]. However, even using Finite Elements with a conforming mesh, their

evaluation is not straightforward because stresses are defined at Gauss points in the volume of elements and

not at the interface between elements. Various methodologies are proposed to this end. For example, Diard205

introduces additional Gauss points at the surface in order to extrapolate the stress [Diard et al. (2005)]

while Shawish introduces additional cohesive elements, with an ad-hoc stiffness (high enough to reduce the

spurious additional softening, and not too high to avoid numerical issues) [El Shawish et al. (2013)]. At

first glance, FFT-based methods, using a regular mesh, seem to be ill-suited for this application. After

introducing the methodology, we will demonstrate that using composite voxels in the simulation allows to210

obtain good quality results. The test case is the same as in section 4.1 with the elastic properties of PP for

the matrix.

The post-treatment used to evaluate stresses at HGM/matrix interface is rather simple: the stress field

is projected on a surface mesh of the interface. A Marching cube algorithm, used for detecting iso-surfaces

of a 3D scalar function defined on a regular grid, provides the triangle mesh of the interface. In practice, the215

isosurface function of matlab R© is applied to a scalar field representing the distance to the HGM center and

the regular grid is defined on the unit-cell, with a voxel size equal to the smaller one used for simulations.

In the following, the surface triangle mesh used for evaluating normal stresses is deduced from a grid of 4753

voxels.

For each triangle element i, the surface dSi, the normal vector ni and the voxel j containing the triangle220

barycenter can be determined to evaluate the normal stress as σin = niσ
jni so that a constant per triangle

field can be drawn (see Fig. 6). The error indicator defined below assesses the quality of the result as a

function of the resolution :

Errσn
=

√∫
S

(σn − σi∞n )
2

dS√∫
S
σi∞n

2
dS

'

√∑Ntriangles
i=1 (σin − σi∞n )

2
δSi√∑Ntriangles

i=1 σi∞n
2
δSi

(7)

Where σi∞n stands for the converged normal stress field, evaluated with a spatial resolution of 20 (i.e.

shell thickness/voxel size) corresponding to a grid of 4753 voxels, using the homogenization rules combination225

for the composite voxels optimized in the previous section for that specific case (MS: Laminate, SG : Voigt,

MSG : Laminate).

It is clear on Fig. 6, whether on the noisy fields or on the high value of the error indicator that, if

not equipped with composite voxels, the FFT-based method is not able to evaluate normal stresses at

HGM/matrix interfaces. On the other hand, with composite voxels and a spatial resolution higher than230
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Figure 6: Normal stress fields evaluated from simulations without composite voxels (black frame), with the full Laminate

combination (red frame) and with the combination (MS : Laminate, SG : Voigt, MSG : Laminate) (blue frame), for spatial

resolutions 2, 4 and 6. The corresponding error indicators (Eq. 7) are plotted as a function of the spatial resolution.

2, the normal stress fields appear very smooth. For resolution 2, the combination (MS : Laminate, SG :

Voigt, MSG : Laminate) provides a smoother field compared to the full laminate combination. It confirms

at a local scale that, for this set of material properties, the Voigt homogenization rule for the Shell/Gas

composite voxels produces better results than the Laminate rule, and justifying a posteriori, this choice as

the reference in the error indicator (Eq. 7).235

To conclude, the resolution chosen for the evaluation of interface normal stresses in the next section is

3 and the corresponding homogenization rules combination is (MS: Laminate, SG : Voigt, no triple voxel

for resolution 3).

4.3. Discussion on the convergence of the FFT-based solver

The previous sections analyze the effect of composite voxels on the numerical solutions provided by the240

FFT-based solver, whether the macroscopic behavior or the local stresses at matrix-shell interface. Here,

the effect of composite voxels is analyzed on the convergence of the iterative FFT-based algorithm (i.e. a

fixed-point algorithm combined with a convergence acceleration technique). The analysis is limited to the
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reference PP matrix (Tab. 2) and the Lamé coefficients of the reference medium, used for the FFT-based

solver, are given by the rule (min(.)+max(.))/2 applied to Lamé coefficients over the whole unit-cell. Fig. 7245

gathers in histogram plots, for three resolutions (0.75, 1.5 and 2), the number of iterations at convergence

as a function of the homogenization rules combinations. These increasing resolutions are associated to a

decreasing number of 3-phase composite voxels involved to describe the shell thickness; up to a complete

loss for resolution 2. As a result, the effect of the homogenization rule for 3-phase voxels (MSG) is null for

resolution 2 and increases when decreasing the resolution.250

For the three resolutions, and more evidently for resolution 2, the homogenization rule used for shell-gas

composite voxels has an important effect: the best convergence is obtained with Voigt homogenization rule

and the worst with Laminate. Our interpretation is that, with null properties for the gas, the Voigt rule

provides a smooth transition zone, of one voxel thickness, from gas voxels to shell voxels. On the other

hand, the Reuss rule replaces composite voxels by gas voxels, reducing de facto the thickness of the shell.255

Finally, the infinitely anisotropic behavior provided by the Laminate rule for SG composite voxels proves to

be ill suited from the convergence point of view. This point is in agreement with the conclusion proposed

in subsec. 4.1 deduced from the analysis of the numerical response.

To conclude, for resolutions without triple composite voxels (>1.73), the choice deduced from an analysis

of the numerical response is also the best choice for the convergence of the FFT-based solver. For the lowest260

resolution (i.e. 0.75), the optimal results for the convergence are obtained with the Voigt rule for triple

composite voxels, which is also consistent with the macroscopic results observed on Fig. 5-D.

5. Applications

Once optimized the homogenization rules combination and the resolution (sec. 4), the behavior of simple

periodic microstructures is first analyzed. Then, random microstructures are considered in order to simulate265

both the macroscopic behavior and the stresses at HGM/matrix interfaces of the composite material under

investigation. In this section, the material properties of the three phases (void, matrix and shell) are listed

in Tab. 1.

5.1. Periodic microstructures

Simulations were performed on three periodic microstructures, with cubic (C), body centered cubic270

(BCC) and face centered cubic (FCC) symmetries, and with a common microsphere volume fraction of 0.3.

The microspheres are the same as used in subsec. 4.1 with a thickness/radius ratio of 0.1, representative of

3M-iM30K microspheres, in agreement with Eq. 1. From sec. 4, the resolution used for the simulations is

3 and the homogenization rule combination is (MS : Laminate, SG : Voigt, no triple voxels for such this
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Figure 7: Histogram plot of number of iterations as a fonction of all combinations of composite voxels homogenization rules

for the resolution of 0.75, 1.5 and 2 and for the reference matrix properties (i.e. shell/matrix elastic contrast = 63).

resolution). Six independent loadings (three uniaxial tensile tests and three shear tests) were applied in order275

to evaluate all the components of the effective (i.e. homogenized) stiffness tensor. Fig. 8 draws the effective

Youngs modulus anisotropic surface for each microstructure. For the sake of comparison, the so-called (n+1)

phases homogenization model [Herve and Zaoui (1993)] was also used. This model is not able to account for
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an anisotropic distribution of spheres and the homogenized behavior is isotropic. Consequently, the effective

Youngs modulus surface is a sphere (radius 1778 MPa) and, for the clarity of Fig. 8, it is rather represented280

by a simple circle.

Qualitatively, Fig. 8 reveals that the anisotropy of the effective behavior is quite different between the

C microstructure and the BCC and FCC ones, while these two microstructures (BCC and FCC) exhibit

a similar anisotropy. Besides, the ”(N+1) phases” model provides a satisfying isotropic estimate as, for

the three symmetries; the sphere (represented by the blue circle) is neither inscribed nor circumscribed by285

the anisotropic surfaces. The anisotropy of cubic-symmetry elasticity is quantitatively characterized by the

Zener ratio (A = 2C44/(C11−C12), where the three Cij denote the three independent Voigt elastic stiffness

coefficients). For isotropic materials, A = 1 [Ledbetter and Migliori (2006)]. The Zener ratios of the studied

structures are: AC = 0.885, ABCC = 1.044 and AFCC = 1.035. The Zener ratio can be related to the

coordination number (i.e. number of first neighbors) for each structures (6, 8 and 12 for C, BCC and FCC):290

the higher the coordination number, the lower the anisotropy.

Fig. 8 also draws the distributions of normal stresses at HGM/matrix interfaces for a uniaxial tensile

stress loading (1 MPa). For that specific loading, the normal stresses at interface are the highest for the

cubic symmetry and the lowest for the FCC symmetry.

In the context of designing architectured periodic materials [Wang et al. (2011); Yu et al. (2018)] for295

a given application (i.e. for a given load), it can be observed that the symmetry of the periodic cell can

be optimized with respect to the effective behavior, but also to the stresses at HGM/matrix interfaces,

especially if damage initiates at these interfaces.

5.2. Random microstructures

In order to perform simulations on materials with a microstructure close to the experimental one, a300

random microstructure generator was set up. At first, a desired number of diameter is randomly drawn

from the distribution characterized experimentally (Fig. 1). Then, Eq. 1, deduced from diameters and

thickness measurements, gives the shell thickness of each microsphere. Finally, the size of the simulation

box is adjusted to the desired volume fraction and the microspheres are scattered in this simulation box

according to a random sequential adsorption model [Meakin and Jullien (1992)]. This model generates non-305

overlapping microspheres homogeneously distributed in space (no clustering) consistently with tomographic

observations (Fig. 2). With the studied diameter distribution, this model can easily reach volume fractions

greater than 50%. Note that the RSA model is used with periodic boundary conditions in order to generate

periodic microstructures, better suited with the periodic boundary conditions applied in FFT-based sim-

ulations. Finally, it must be emphasized that the RSA is applied without imposing any minimal distance310
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Analytic

FFT

Figure 8: Young’s modulus (MPa) in x-y plane for three periodic microstructures (left : cubic, middle : centered cubic , and

right : face-centered cubic) and, below, the equivalent normal stress at the interfaces for a uniaxial tensile stress (1 MPa)

(fv=0.3, Eshell=69000 MPa, Emat=1100 MPa, composite voxels type MS=l SG=v MSG=l, resolution=3)

between spheres (repulsion distance). In FE simulations, such a minimal distance is often set artificially to

avoid numerical issues. In our simulations, quasi contact between spheres are approximated by three-phase

composite voxels (see subsec. 3.2) so that there is no strong numerical issue requiring to impose a minimal

distance. In addition, without any experimental evidence and/or measurement of such a minimal distance

on the real microstructure, we have assumed that the manufacturing process does not impose it.315

Before evaluating the effect of the microsphere volume fraction on the effective isotropic elastic prop-

erties, the size of the representative unit-cell must be determined. For that purpose, uniaxial tensile tests

are applied to unit-cells of different sizes (i.e. different number of spheres) and for each size, 10 samples are

randomly generated and simulated. For this study, the most penalizing case, corresponding to the highest

volume fraction (i.e. 50%), is considered. The spatial resolution sensitivity is also studied in that context of320

random microstructures. For each tensile test simulation, an average Young modulus (E) and two Poisson

coefficients (ν12 and ν13) can be evaluated as follows :

E =
σ11

ε11
; ν12 =

ε22
ε11

; ν13 =
ε33
ε11

(8)

With σ11 and ε11 the average stress and strain in the direction of traction and ε22 and ε33 the average
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strain in the transverse directions. Fig. 9 gathers all the results. The mean Young modulus decreases

with the size of the unit-cell until reaching convergence. For 256 spheres, this quantity is converged (no325

difference with 64 spheres) and the relative standard deviation is less than 1.5% : as similar conclusions can

be drawn from the Poisson coefficients evolutions, this size is then considered as representative and kept for

further simulations. Regarding resolution, convergence is reached for 1.5. This result confirms that, thanks

to composite voxels, a resolution of 1.5 (i.e. ratio shell thickness/voxel size) is sufficient for an accurate

estimate of the macroscopic elastic behavior.330

Fig. 10 draws the evolution of the Young modulus as a function of the microspheres content in the

range of [0%-50%], obtained from uniaxial stress (1 MPa) simulations performed on 256 spheres unit-cell

with a spatial resolution of 1.5. Two strain fields reported on Fig. 10, for 0.1 and 0.5 contents, provide a

visualization of the microstructures and an indication of the quality (smoothness) of the simulated fields.

Comparison with experimental results reveals a very nice agreement up to 30%. For higher values, a335

small discrepancy appears but remains reasonable (less than 10%). Note that, in the light of the slight

irregularity of the experimental curve, artefacts coming from the Young modulus measurement and/or the

manufacturing process, are also suspected to explain this discrepancy. From the modelling point of view,

it must be emphasized that, compared to FFT simulations and experimental results, the (N+1) phases

analytical model is too stiff especially when the HGM volume fraction increases. From a practical point of340

view, it is worth noting that adding a content of 50% HGM increases the stiffness by a factor of almost two

(from 1100MPa to 2077MPa).
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Figure 9: Convergence study of the mean (over 10 samples) Young modulus and Poisson’s coefficients according to the number

of spheres and the resolution. Error bar show standard deviation on the different samples. (fv=0.5, Eshell=69000 MPa,

Emat=1100 MPa, Composite voxels type MS=l SG=v MSG=l)

Finally, in order to evaluate and discuss the normal stresses at HGM/matrix interfaces, the same
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Figure 10: Evolution of the effective Young modulus with respect to microspheres volume fraction and strain fields in a longi-

tudinal slice for volume fractions 0.1 and 0.5 obtained from FFT computations (resolution=1.5, Nb sphere=256, Eshell=69000

MPa, Emat=1100 MPa, Composite voxels type MS=l SG=v MSG=l)

simulations (256 spheres, uniaxial stress 1 MPa, volume fractions 0.1, 0.2, 0.3, 0.4, 0.5) are performed but

now with a spatial resolution of 3 (i.e. 7513 and 4133 voxels for 0.1 and 0.5 contents, respectively). For345

every microspheres, the normal stress fields at HGM/matrix interfaces are evaluated according to the method

detailed in subsec. 4.2. Prior to further statistical analysis, the question of a possible artefact, relating the

interface normal stress to the glass volume content within Matrix-Shell composite voxels, is alleviated in

appendix B. Then, the fields evaluated over the 256 spheres are gathered onto a reference sphere through two

statistical quantities: the average normal stress, 〈σn〉, and the relative standard deviation of σn, RSD(σn).350

Fig. 11 draws these quantities on the reference sphere, and on one of its equators using a polar representation.

Before describing these plots, it is worth noting that the spatial average over the reference sphere of 〈σn〉

appears to be almost insensitive with respect to the HGM volume fraction (0.37 MPa and 0.36 MPa for

0.1 and 0.5 contents, respectively). Regarding the distribution of 〈σn〉, the axisymmetry of the field over

the reference sphere together with the smoothness of the polar curves, reveals at least qualitatively that the355

sphere distribution is isotropic and the number of spheres (256) is sufficient for that purpose. Actually, the

same representations made for single spheres are clearly not axisymmetric. The effect to the HGM volume

fraction is not important but not negligible : 〈σn〉 increases in the tensile test direction and decreases in the

transverse direction when decreasing the HGM content. A 13% decrease is observed in the tensile direction

between 0.1 and 0.5. It is interesting to compare the results obtained on 〈σn〉 with the normal stress around360

a sphere, assuming a uniform stress field equal to the average applied stress (plotted in green, Fig. 11). It
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can be noted that the mean normal stress field tends towards a uniform stress assumption when increasing

the microsphere volume content. Regarding the relative standard deviation of σn, the axisymmetry of the

field is less pronounced and the polar curve exhibit fluctuations, revealing that the number of spheres (256)

is not sufficient to provide precise quantitative results but enough to draw sound qualitative trends. A365

few large peaks, observed on the fields, are associated to quasi contacts between spheres. They could have

been avoided by using a repulsion distance in the random sequential adsorption, as often proposed in order

to avoid numerical issues in FE simulations [Segurado and Llorca (2002); Gilormini et al. (2017); Brown

et al. (2018); De Francqueville et al. (2019)]. Finally, despite of these fluctuations, it is clear that the

Relative Standard Deviation of σn increases significantly with the HGM content, especially in the tensile370

test direction (+40% between 0.1 to 0.5 contents). To conclude this analysis, it is demonstrated here that

if the level of normal stresses decreases in average when increasing the HGM content (-13% in the axial

stress direction), the relative standard deviation of σn increases in a larger proportion (+40% in the axial

stress direction). Hence, if the HGM/matrix interface decohesion is confirmed being a significant damage

mechanism, increasing the HGM volume fraction should promote this mechanism.375
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Figure 11: Average (left) and Relative Standard Deviation (right) of the normal stress at HGM/matrix interface evaluated on

256 spheres and gathered on a reference sphere. Simulations are performed for a uniaxial stress loading (1 MPa), with elastic

properties reported in table 1, a resolution of 3 and the following composite voxels types : MS=l, SG=v and no triple voxels

for that resolution. On the polar representation, corresponding to the equator drawn on the spheres, grey circles correspond

to 0MPa and 1MPa (the applied uniaxial stress).
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6. Conclusions and future prospects

Since the last generation of Hollow Glass Microspheres (HGM), the development of HGM-thermoplastic

composites is in progress in order to increase the stiffness of the material while reducing the density. Together

with the development of a manufacturing process of polypropylene HGM composites, a numerical approach

is in progress to predict their macroscopic mechanical behavior but also the local stresses arising within the380

composites. Instead of using a standard Finite Element approach, one purpose of the paper is to demonstrate

the capabilities of FFT-based solvers for this specific application, at first for elastic behaviors. The second

purpose concerns the application and validation of the method with respect to an in-house manufactured

material characterized experimentally.

The use of composite voxels is proposed and optimized in order to overcome two main issues: the385

thin thickness of HGM together with a uniform grid-refinement and the evaluation of normal stresses at

HGM/matrix interface with a non-adapted, voxel-based mesh. The macroscopic behavior can be evaluated

precisely with a spatial resolution as low as 0.7 (voxel in the HGM thickness) and a resolution of 3 is

required for evaluating normal stresses at HGM/matrix interface. In addition, the paper also demonstrates

that evaluating interface normal stresses directly with an FFT-based solver is not possible without using390

composite voxels.

The numerical method has been applied and compared to experimental results obtained on in-house

manufactured HGM-polypropylene composites. Realistic random microstructures were generated from mea-

surements (sphere diameters and thickness) and observations (homogeneous distribution of spheres verified

by X-ray tomography). The Young moduli evaluated experimentally for different HGM volume fraction395

(0.1, 0.2, 0.3, 0.4 and 0.5) compares very well to the prediction of the model, whereas the so-called ”(N+1)

phases” analytical model is too stiff. Finally, in view of a potential interfacial debonding mechanism (to

be confirmed by an experimental study in progress), a statistical analysis of the interface normal stress

distribution is proposed as a function of the HGM content, for a given uniaxial stress loading. In average,

the normal stress in the tensile direction slightly decreases (-13%) when increasing the content from 0.1 to400

0.5, while, on the other hand, its Relative Standard Deviation increases significantly (+40%).

Now alleviated the issues associated to the application of FFT-based solvers to HGM composites, the

next step will be to introduce the non-linear behavior of the matrix and the potential damage mechanisms

such as interfacial debonding. Finally, if all the elastic simulations presented in the paper were performed

on a single computer, FFT-based solvers can be efficiently parallelized through distributed memory imple-405

mentations (as proposed in the code AMITEX [Ami]) which can be of a major interest when dealing with

non-linear constitutive behaviors.
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Appendix A
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Figure 12: Histogram plot of relative error as a fonction of all combinations of composite voxels homogenization rules for the

resolution of 0.75, 1.5 and 2 and for the reference matrix properties (i.e. shell/matrix elastic contrast = 63).
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Appendix B

This appendix investigates the question of a possible artifact that would correlate the surface normal410

stresses (at Matrix-Shell interface) to the glass volume content, suspecting higher stresses with higher glass

content. Figure 12 and 13, plot for every composite voxels the surface stress as a function of its glass content.

It is clear that such a correlation is not observed. In addition, arbitrarily chosen microspheres are extracted

to display, for the Matrix-Shell composite voxels, the glass content and the surface normal stresses. While

the glass content looks random, the distribution of surface stresses is rather smooth and not correlated to415

the glass content.

Figure 13: The normal stresses at HGM/matrix interfaces as a function of the glass volume content on every composite voxels

evaluated on a microstructure with 256 spheres and HGM volume fraction of 0.1. The top sphere represents the distribution of

the glass volume content in the composite voxels of one HGM (chosen arbitrarily), and at the bottom, the normal stress from

the same microsphere.
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Figure 14: The normal stresses at HGM/matrix interfaces as a function of the glass volume content on every composite voxels

evaluated on a microstructure with 256 spheres and HGM volume fraction of 0.5. The top sphere represents the distribution of

the glass volume content in the composite voxels of one HGM (chosen arbitrarily), and at the bottom, the normal stress from

the same microsphere.
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