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2Sorbonne Université, CNRS, Laboratoire de Probabilités, Statistiques et Modélisations (LPSM),

75252 PARIS Cedex 05, FRANCE, gilles.pages@sorbonne-universite.fr.

Abstract

We study the convergence rate of the optimal quantization for a probability measure se-

quence (µn)n∈N∗ on Rd converging in the Wasserstein distance in two aspects: the first one is

the convergence rate of optimal quantizer x(n) ∈ (Rd)K of µn at level K; the other one is the

convergence rate of the distortion function valued at x(n), called the “performance” of x(n).

Moreover, we also study the mean performance of the optimal quantization for the empirical

measure of a distribution µ with finite second moment but possibly unbounded support. As

an application, we show that the mean performance for the empirical measure of the mul-

tidimensional normal distribution N (m,Σ) and of distributions with hyper-exponential tails

behave like O( logn√
n

). This extends the results from [BDL08] obtained for compactly supported

distribution. We also derive an upper bound which is sharper in the quantization level K but

suboptimal in n by applying results in [FG15].

keywords: Clustering performance, Convergence rate of optimal quantization , Distortion func-

tion, Empirical measure, Optimal quantization.

1 Introduction

The K-means clustering procedure in the unsupervised learning area was first introduced by

[Mac67], which consists in partitioning a data set of observations {η1, ..., ηN} ⊂ Rd into K classes

Gk, 1 ≤ k ≤ K with respect to a cluster center x = (x1, ..., xK) in order to minimize the quadratic

distortion function DK,η defined by

x = (x1, ..., xK) ∈ (Rd)K 7→ DK,η(x) :=
1

N

N∑
n=1

min
k=1,...,K

d(ηn, xk)2, (1.1)

where d denotes a distance on Rd. The classification of the observations {η1, ..., ηN} ⊂ Rd in

[Mac67] can be described as follows

G1 =
{
ηn ∈ {η1, ..., ηN} : d(ηn, x1) ≤ min

2≤j≤K
d(ηn, xj)

}
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G2 =
{
ηn ∈ {η1, ..., ηN} : d(ηn, x2) ≤ min

1≤j≤K,j 6=2
d(ηn, xj)

}
\ G1

· · ·
GK =

{
ηn ∈ {η1, ..., ηN} : d(ηn, xK) ≤ min

1≤j≤K−1
d(ηn, xj)

}
\
(
GK−1 ∪ · · · ∪ G1

)
. (1.2)

If a cluster center x∗ = (x∗1, ..., x
∗
K) satisfies DK,η(x∗) = infy∈(Rd)K DK,η(y), we call x∗ an optimal

cluster center (or K-means) for the observation η = (η1, ..., ηN ). Such an optimal cluster center

always exists but is generally not unique.

K-means clustering has a close connection with quadratic optimal quantization, originally de-

veloped as a discretization method for the signal transmission and compression by the Bell labo-

ratories in the 1950s (see [IEE82] and [GG12]). Nowadays, optimal quantization has also become

an efficient tool in numerical probability, used to provide a discrete representation of a probability

distribution. To be more precise, let |·| denote the Euclidean norm on Rd induced by the canonical

inner product 〈·|·〉 and let X be an Rd-valued random variable defined on (Ω,F ,P) with probabil-

ity distribution µ having a finite second moment. The quantization method consists in discretely

approximating µ by using a K-tuple x = (x1, ..., xK) ∈ (Rd)K and its weight w = (w1, ..., wK) as

follows,

µ ' µ̂x :=

K∑
k=1

wkδxk ,

where δa denotes the Dirac mass at a, the weights wk are computed by wk = µ
(
Ck(x)

)
, k = 1, ...,K,

and
(
Ck(x)

)
1≤k≤K is a Voronöı partition induced by x, that is, a Borel partition on Rd satisfying

Ck(x) ⊂ Vk(x) :=
{
ξ ∈ Rd

∣∣ |ξ − xk| = min
1≤j≤K

|ξ − xj |
}
, k = 1, ...,K. (1.3)

The value K in the above description is called the quantization level and the K-tuple above

x = (x1, ..., xK) is called a quantizer (or quantization grid, codebook in the literature). Moreover,

we define the (quadratic) quantization error function eK,µ of µ (or of X) at level K by

x = (x1, ..., xK) ∈ (Rd)K 7−→ eK,µ(x) :=
[ ∫

Rd
min

1≤k≤K
|ξ − x|2 µ(dξ)

]1/2
. (1.4)

The set argmin eK,µ is not empty (see e.g. [GL00][see Theorem 4.12]) and any element x∗ =

(x∗1, ..., x
∗
K) in argmin eK,µ is called a (quadratic) optimal quantizer for the probability distribution

µ at level K. Moreover, we call

e∗K,µ = inf
y=(y1,...,yK)∈(Rd)K

eK,µ(y) (1.5)

the optimal (quadratic) quantization error (optimal error for short) at level K.

The connection between K-means clustering and quadratic optimal quantization is the follow-

ing: if the distance d in (1.1) and (1.2) is the Euclidean distance and if we consider the empirical

measure µ̄N of the dataset {η1, ..., ηN} defined by

µ̄N :=
1

N

N∑
n=1

δηn , (1.6)

then the distortion function DK,η defined in (1.1) is in fact e2
K,µ̄N

and argminDK,η = argmin eK,µ̄N .

That is, an optimal quantizer of µ̄N is in fact an optimal cluster center for the dataset {η1, ..., ηN}.

In Figure 1, we show an optimal quantizer and its weights for the standard normal distribution

N
(
0, I2

)
in R2 at level 60, where Id denotes the identity matrix of size d×d. The color of the cells
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in the figure represents the weight of each point xk in the quantizer x = (x1, ..., xK). In Figure 2,

we show an optimal cluster center at level K = 20 for an i.i.d simulated sample {η1, ..., η500} of

the N (0, I2) distribution.

Figure 1: An optimal quantizer for N
(
0, I2

)
at level 60.

Figure 2: An optimal cluster center (blue points)

for an observation {η1, ..., η500}
i.i.d∼ N (0, I2)

(grey points).

For p ∈ [1,+∞), let Pp(Rd) denote the set of all probability measures on Rd with a finite

pth-moment. Let µ, ν ∈ Pp(Rd) and let Π(µ, ν) denote the set of all probability measures on

(Rd×Rd, Bor(Rd)⊗2) with marginals µ and ν, where Bor(Rd) denotes the Borel σ-algebra on Rd.
For p ≥ 1, the Lp-Wasserstein distance Wp on Pp(Rd) is defined by

Wp(µ, ν) =
(

inf
π∈Π(µ,ν)

∫
Rd×Rd

|x− y|p π(dx, dy)
) 1
p

= inf
{[

E |X − Y |p
] 1
p

, X, Y : (Ω,A,P)→ (Rd, Bor(Rd)) with PX = µ,PY = ν
}
.

(1.7)

The space Pp(Rd) equipped with the Wasserstein distance Wp is a Polish space, i.e. is separable

and complete (see [Bol08]). If µ, ν ∈ Pp(Rd), then for any q ≤ p, Wq(µ, ν) ≤ Wp(µ, ν).

With a slight abuse of notation, we define the distortion function for the optimal quantization

as follows.

Definition 1.1 (Distortion function). Let K ∈ N∗ be the quantization level. Let µ ∈ P2(Rd). The

(quadratic) distortion function DK,µ of µ at level K is defined by

x = (x1, ..., xK) ∈ (Rd)K 7−→ DK,µ(x) =

∫
Rd

min
1≤i≤K

|ξ − xi|2 µ(dξ) = e2
K,µ(x). (1.8)

For a fixed (known) probability distribution µ, its optimal quantizers can be computed by

several algorithms such as the CLVQ algorithm (see e.g. [Pag15][Section 3.2]) or the Lloyd I

algorithm (see e.g. [Llo82], [Kie82] and [PY16]). However, another situation exists: the probability

distribution µ is unknown but there exists a known sequence (µn)n≥1 converging in the Wasserstein

distance to µ. A typical example is the empirical measure of an i.i.d. µ-distributed sequence
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random vectors (see (1.10) below). The empirical measure of non i.i.d. random vectors appears

for example when dealing with the particle method associated to the McKean-Vlasov equations

(see [Liu19][Section 7.1 and Section 7.5]) or the simulation of the invariant measure of the diffusion

process (see [LP02] and [Lem05][Chapter 4]). This leads us to study the consistency and the

convergence rate of the optimal quantization for aWp-converging probability distribution sequence

(µn)n≥1.

There exist several studies in the literature. The consistency of the optimal quantizers was first

proved in [Pol82b].

Theorem (Pollard’s Theorem). Let µn ∈ P2(Rd), n ∈ N∗ ∪ {∞} with W2(µn, µ∞) → 0 as n →
+∞. Assume card

(
supp(µn)

)
≥ K, for n ∈ N∗ ∪ {+∞}. For n ≥ 1, let x(n) =

(
x

(n)
1 , ..., x

(n)
K

)
be a K-optimal quantizer for µn, then the quantizer sequence (x(n))n≥1 is bounded in Rd and any

limiting point of (x(n))n≥1, denoted by x(∞), is an optimal quantizer of µ∞. (1)

Let µn ∈ P2(Rd), n ∈ N∪ {∞} with W2(µn, µ∞)→ 0 as n→ +∞. Let x(n) denote an optimal

quantiser of µn. There are two ways to study the convergence rate of the optimal quantizers. The

first way is to directly evaluate the distance between x(n) and argminDK,µ∞ . The second way is

called the quantization performance, defined by

DK,µ∞(x(n))− inf
x∈(Rd)K

DK,µ∞(x). (1.9)

This quantity describes the distance between the optimal error of µ∞ and the quantization error of

x(n) considered as a quantizer of µ∞ (even x(n) is obviously not “optimal” for µ∞). Several results

of convergence rate exist in the framework of the empirical measure. Let X1(ω), ..., Xn(ω), ... be

i.i.d random vectors with probability distribution µ ∈ P2(Rd) and let

µωn :=
1

n

n∑
i=1

δXi(ω) (1.10)

be the empirical measure of µ. The almost sure convergence of W2(µωn , µ) has been proved in

[Pol82b][Theorem 7]. Let x(n),ω denotes an optimal quantizer of µωn at level K. In [Pol82a], the

author has proved that if µ has a unique optimal quantizer x at level K, then the convergence rate

(convergence in distribution) of
∣∣x(n),ω − x

∣∣ is O(n−1/2) under appropriate conditions. Moreover,

if µ has a support contained in B(0, R), where B(0, R) denotes the ball in Rd centered at 0 with

radius R, an upper bound of the mean performance has been proved in [BDL08], shown as follows,

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 12K ·R2

√
n

.

In this paper, we extend the convergence results in [Pol82a] and in [BDL08] in two perspectives:

first, we give an upper bound of the quantization performance

DK,µ∞(x(n))− inf
x∈(Rd)K

DK,µ∞(x). (1.11)

and that of related optimal quantizers for any probability distribution sequence (µn)n≥1 converging

(1)In [Pol82b][see Theorem 9], the author used

µK ∈ P(K) :=
{
ν ∈ P2(Rd) such that card

(
supp(ν)

)
≤ K

}
to represent a “quantizer” at level K. Such a quantizer µK is called “quadratic optimal” for a probability measure
µ if W2(µK , µ) = e∗K,µ. We propose an alternative proof in Appendix A by using the usual representation of the

quantizer x ∈ (Rd)K but still call this theorem “Pollard’s Theorem”.
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in the Wasserstein distance. Then, we generalize the clustering performance results in [BDL08] to

empirical measures in P2(Rd) possibly having an unbounded support.

Our main results are as follows. We obtain in Section 2 a non-asymptotic upper bound for the

quantization performance: for every n ∈ N∗,

DK,µ∞(x(n))− inf
x∈(Rd)K

DK,µ∞(x) ≤ 4e∗K,µ∞W2(µn, µ∞) + 4W2
2 (µn, µ∞). (1.12)

Moreover, if DK,µ∞ is twice differentiable at

FK :=
{
x = (x1, ..., xK) ∈ (Rd)K

∣∣ xi 6= xj , if i 6= j
}

(1.13)

and if the Hessian matrix HDK,µ∞ of DK,µ∞ is positive definite in the neighboorhood of every

optimal quantizer x(∞) ∈ GK(µ∞) having the eigenvalues lower bounded by a λ∗ > 0, then, for n

large enough,

d
(
x(n), GK(µ∞)

)2 ≤ 8

λ∗
e∗K,µ∞ · W2(µn, µ∞) +

8

λ∗
· W2

2 (µn, µ∞),

where d(ξ, A) := mina∈A |ξ − a| denotes the distance between a point ξ ∈ Rd and a set A ⊂ Rd.

Several criterions for the positive definiteness of the Hessian matrix HDK,µ of the distortion

function DK,µ are established in Section 3. We show in Section 3.1 the conditions under which the

distortion function DK,µ is twice differentiable in every x ∈ FK and give the exact formula of the

Hessian matrix HDK,µ . Moreover, we also discuss several sufficient and necessary conditions for

the positive definiteness of the Hessian matrix in dimension d ≥ 2 and in dimension 1.

In Section 4, we give two upper bounds for the clustering performance EDK,µ(x(n), ω) −
infx∈(Rd)K DK,µ(x), where x(n), ω is an optimal quantizer of µωn defined in (1.10). If µ ∈ Pq(Rd)
for some q > 2, a first upper bound is established in Proposition 4.1

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x)

≤ Cd,q,µ,K ×


n−1/4 + n−(q−2)/2q if d < 4 and q 6= 4

n−1/4
(

log(1 + n)
)1/2

+ n−(q−2)/2q if d = 4 and q 6= 4

n−1/d + n−(q−2)/2q if d > 4 and q 6= d/(d− 2)

,

where Cd,q,µ,K is a constant depending on d, q, µ and the quantization level K. This result is

a direct application of the non-asymptotic upper bound (1.12) combined with results in [FG15]

about the mean convergence rate of the empirical measure for the Wasserstein distance. If d ≥ 4

and q > 2d
d−2 , this constant Cd,q,µ,K is roughly decreasing as K−1/d (see Remark 4.1). This upper

bound is sharper in K compared with the upper bound (1.14) below, although it suffers from the

curse of dimensionality.

Meanwhile, we establish another upper bound for the clustering performance in Theorem 4.1,

which is sharper in n but increasing faster than linearly in K. This upper bound is

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 2K√
n

[
r2
2n + ρK(µ)2 + 2r1

(
r2n + ρK(µ)

)]
, (1.14)

where rn :=
∥∥max1≤i≤n |Xi|

∥∥
2

and ρK(µ) is the maximum radius of optimal quantizers for µ,

defined by

ρK(µ) := max
{

max
1≤k≤K

|x∗k| , (x∗1, ..., x
∗
K) is an optimal quantizer of µ at level K

}
. (1.15)
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In particular, we give a precise upper bound for µ = N (m,Σ), the multidimensionnal normal

distribution

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ Cµ ·
2K√
n

[
1 + log n+ γK logK

(
1 +

2

d

)]
, (1.16)

where lim supK γK = 1 and Cµ = 12 ·
[
1 ∨ log

(
2
∫
Rd exp( 1

4 |ξ|
4
)µ(dξ)

)]
. If µ = N (0, Id), Cµ =

12(1 + d
2 ) · log 2.

We start our discussion with a brief review on the properties of optimal quantization.

1.1 Properties of the Optimal Quantization

Let GK(µ) = argminDK,µ denote the set of all optimal quantizers at level K of µ and let e∗K,µ
denote the optimal quantization error of µ defined in (1.5).

Proposition 1.1. Let K ∈ N∗. Let µ ∈ P2(Rd) and card
(
supp(µ)

)
≥ K.

(i) If K ≥ 2, then e∗K,µ < e∗K−1, µ.

(ii) (Existence and boundedness of optimal quantizers) The set GK(µ) is nonempty and compact

so that ρK(µ) defined in (1.15) is finite for any fixed K. Moreover, if x = (x1, ..., xK) is an

optimal quantizer of µ, then x ∈ FK , where FK is defined in (1.13).

(iii) If the support of µ, denoted by supp(µ), is a compact, then for every optimal quantizer

x = (x1, ..., xK) ∈ GK(µ), its elements xk, 1 ≤ k ≤ K are contained in the closure of convex

hull of supp(µ), denoted by Hµ := conv
(
supp(µ)

)
.

For the proof of Proposition 1.1-(i) and (ii), we refer to [GL00][see Theorem 4.12] and for the

proof of (iii) to Appendix B.

Theorem. (Non-asymptotic Zador’s Theorem, see [LP08] and [Pag18][Theorem 5.2]) Let η > 0.

If µ ∈ P2+η(Rd), then for every quantization level K, there exists a constant Cd,η ∈ (0,+∞) which

depends only on d and η such that

e∗K,µ ≤ Cd,η · σ2+η(µ)K−1/d, (1.17)

where for r ∈ (0,+∞), σr(µ) = mina∈Rd
[ ∫

Rd |ξ − a|
r
µ(dξ)

]1/r
.

When µ has an unbounded support, we know from [PS12] that limK ρK(µ) = +∞. The same

paper also gives an asymptotic upper bound of ρK when µ has a polynomial tail or a hyper-

exponential tail.

Theorem. ([PS12][see Theorem 1.2]) Let µ ∈ Pp(Rd) be absolutely continuous with respect to the

Lebesgue measure λd on Rd and let f denote its density function.

(i) Polynomial tail. For p ≥ 2, if µ has a c-th polynomial tail with c > d + p in the sense that

there exists τ > 0, β ∈ R and A > 0 such that ∀ξ ∈ Rd, |ξ| ≥ A =⇒ f(ξ) = τ
|ξ|c (log |ξ|)β, then

lim
K

log ρK
logK

=
p+ d

d(c− p− d)
. (1.18)
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(ii) Hyper-exponential tail. If µ has a (ϑ, κ)-hyper-exponential tail in the sense that there exists

τ > 0, κ, ϑ > 0, c > −d and A > 0 such that ∀ξ ∈ Rd, |ξ| ≥ A =⇒ f(ξ) = τ |ξ|c e−ϑ|ξ|κ , then

lim sup
K

ρK
(logK)1/κ

≤ 2ϑ−1/κ
(

1 +
2

d

)1/κ

. (1.19)

Furthermore, if d = 1, limK
ρK

(logK)1/κ
=
(

3
ϑ

)1/κ
.

We give now the definition of the radially controlled distribution, which will be useful to control

the convergence rate of the density function f(x) to 0 when x converges in every direction to infinity.

Definition 1.2. Let µ ∈ P2(Rd) be absolutely continuous with respect to the Lebesgue measure λd
on Rd having a continuous density function f . We call µ is k-radially controlled on Rd if there

exists A > 0 and a continuous non-increasing function g : R+ → R+ such that

∀ξ ∈ Rd, |ξ| ≥ A, f(ξ) ≤ g(|ξ|) and

∫
R+

xd−1+kg(x)dx < +∞.

Note that the c-th polynomial tail with c > k + d and the hyper-exponential tail are sufficient

conditions to satisfy the k-radially controlled assumption. A typical example of hyper-exponential

tail is the multidimensional normal distribution N (m,Σ).

For µ, ν ∈ P2(Rd) and for every K ∈ N∗, we have

‖eK,µ − eK,ν‖sup
:= sup

x∈(Rd)K
|eK,µ(x)− eK, ν(x)| ≤ W2(µ, ν), (1.20)

by a simple application of the triangle inequality for the L2−norm (see e.g. [GL00] Formula (4.4)

and Lemma 3.4). Hence, if (µn)n≥1 is a sequence in P2(Rd) converging for the W2-distance to

µ∞ ∈ P2(Rd), then for every K ∈ N∗,

‖eK,µn − eK,µ∞‖sup ≤ W2(µn, µ∞)
n→+∞−−−−−→ 0. (1.21)

2 General Case

In this section, we first establish in Theorem 2.1 a non-asymptotic upper bound of the quantization

performance DK,µ∞(x(n)) − infx∈(Rd)K DK,µ∞(x). Then we discuss the convergence rate of the

optimal quantizer sequence in Theorem 2.2.

Theorem 2.1 (Non-asymptotic upper bound for the quantization performance). Let K ∈ N∗ be

the quantization level. For every n ∈ N∗ ∪ {∞}, let µn ∈ P2(Rd) with card
(
supp(µn)

)
≥ K.

Assume that W2(µn, µ∞)→ 0 as n→ +∞. For every n ∈ N∗, let x(n) be an optimal quantizer of

µn. Then

DK,µ∞(x(n))− inf
x∈(Rd)K

DK,µ∞(x) ≤ 4e∗K,µ∞W2(µn, µ∞) + 4W2
2 (µn, µ∞),

where e∗K,µ∞ is the optimal error of µ∞ at level K defined in (1.5).

Proof of Theorem 2.1. Let x(∞) be an optimal quantizer of µ∞. Remark that here we do not need

that x(∞) is the limit of x(n). First, we have (see e.g. Corollary 4.1 in [Gyö02])

eK,µ∞(x(n))− e∗K,µ∞ = eK,µ∞(x(n))− eK,µn(x(n)) + eK,µn(x(n))− eK,µ∞(x(∞))
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≤ 2 ‖eK,µ∞ − eK,µn‖sup ≤ 2W2(µn, µ∞), (2.1)

where the first inequality is due to the fact that for any µ, ν ∈ P2(Rd) with respective K-level

optimal quantizers xµ and xν , if eK,µ(xµ) ≥ eK,ν(xν), we have

|eK,µ(xµ)− eK,ν(xν)| = eK,µ(xµ)− eK,ν(xν) ≤ eK,µ(xν)− eK,ν(xν) ≤ ‖eK,µ∞ − eK,µn‖sup .

If eK,µ(xµ) ≤ eK,ν(xν), we have the same inequality by the same reasoning.

Moreover,

DK,µ∞(x(n))− inf
x∈(Rd)K

DK,µ∞(x) = DK,µ∞(x(n))−DK,µ∞(x(∞))

≤
[
eK,µ∞(x(n)) + eK,µ∞(x(∞))

](
eK,µ∞(x(n))− eK,µ∞(x(∞))

)
≤ 2
[
eK,µ∞(x(n))− eK,µ∞(x(∞)) + 2eK,µ∞(x(∞))

]
· W2(µn, µ∞)

(
by (2.1)

)
≤ 4
[
W2(µn, µ∞) + e∗K,µ∞

]
· W2(µn, µ∞)

(
by (2.1)

)
≤ 4e∗K,µ∞W2(µn, µ∞) + 4W2

2 (µn, µ∞).

Let B(x, r) denote the ball centered at x with radius r. Recall that FK :=
{
x = (x1, ..., xK) ∈

(Rd)K
∣∣ xi 6= xj , if i 6= j

}
. Remark that if x ∈ FK , then every y ∈ B

(
x, 1

3 min1≤i,j≤K,i6=j |xi − xj |
)

still lies in FK . In the following theorem, we give an estimate of the convergence rate of the optimal

quantizer sequence x(n), n ∈ N∗.

Theorem 2.2 (Convergence rate of optimal quantizers). Let K ∈ N∗ be the quantization level. For

every n ∈ N∗ ∪ {∞}, let µn ∈ P2(Rd) with card
(
supp(µn)

)
≥ K. Assume that W2(µn, µ∞) → 0

as n→ +∞. For every n ∈ N∗, let x(n) be an optimal quantizer of µn and let GK(µ∞) denote the

set of all optimal quantizers of µ∞. If the following assumptions hold

(a) the distortion function DK,µ∞ is twice differentiable at every x ∈ FK ;

(b) card
(
GK(µ∞)

)
< +∞;

(c) for every x(∞) ∈ GK(µ∞), the Hessian matrix of DK,µ∞ , denoted by HDK,µ∞ , is positive

definite in the neighbourhood of x(∞) having eigenvalues lower bounded by some λ∗ > 0,

then, for n large enough,

d
(
x(n), GK(µ∞)

)2 ≤ 8

λ∗
e∗K,µ∞ · W2(µn, µ∞) +

8

λ∗
· W2

2 (µn, µ∞).

Remark 2.1. Section 3 provides a detailed discussion of the conditions in Theorem 2.2 and their

relation between each other.

(1) First, in Section 3, we establish that if µ∞ is 1-radially controlled, then its distortion function

DK,µ∞ is twice continuously differentiable at every x ∈ FK and give an exact formula of the Hessian

matrix HDK,µ∞ (x) in Proposition 3.1. Thus, one may obtain Condition (c) either by an explicit

computation or by numerical methods. Moreover, if HDK,µ is positive definite at x ∈ FK , it is also

positive definite in its neighbourhood. In Section 3.2, we establish several sufficient conditions for

the positive definiteness of the Hessian matrix HDK,µ∞ in the neighbourhood of x(∞) ∈ GK(µ∞)

in one dimension.

(2) If the distribution µ∞ is 1-radially controlled, a necessary condition for Condition (c) is Con-

dition (b) (see Lemma 3.1). Thus, if card
(
GK(µ∞)

)
= +∞, it is more reasonable to consider the

non-asymtotic upper bound of the performance (Theorem 2.1) to study the convergence rate of

8



the optimal quantization. A typical example is the standard multidimensional normal distribution

µ∞ = N (0, Id): it is 1-radially controlled and any rotation of an optimal quantizer x is still optimal

so that card
(
GK(µ∞)

)
= +∞.

Proof of Theorem 2.2. Since the quantization level K is fixed throughout the proof, we will drop

the subscripts K and µ of the distortion function DK,µ and we will denote by Dn (respectively,

D∞) the distortion function of µn (resp. µ∞).

After Pollard’s theorem, (x(n))n∈N∗ is bounded and any limiting point of x(n) lies in GK(µ∞).

We may assume that, up to the extraction of a subsequence of x(n), still denoted by x(n), we have

x(n) → x(∞) ∈ GK(µ∞). Hence d
(
x(n), GK(µ∞)

)
≤
∣∣x(n) − x(∞)

∣∣.
Proposition 1.1 implies that x(∞) ∈ FK . As D∞ is twice differentiable at x(∞), the second

order Taylor expansion of D∞ at x(∞) reads:

D∞(x(n)) = D∞(x(∞)) +
〈
∇D∞(x(∞)) | x(n) − x(∞)

〉
+

1

2
HD∞(ζ(n))(x(n) − x(∞))⊗2,

where HD∞ denotes the Hessian matrix of D∞, ζ(n) lies in the geometric segment (x(n), x(∞)) and

for a matrix A and a vector u, Au⊗2 stands for uTAu.

As x(∞) ∈ GK(µ∞) = argminD∞ and card
(
supp(µ∞)

)
≥ K, one has ∇D∞(x(∞)) = 0. Hence

D∞(x(n))−D∞(x(∞)) =
1

2
HD∞(ζ(n))(x(n) − x(∞))⊗2. (2.2)

It follows from Theorem 2.1 that

HD∞(ζ(n))(x(n) − x(∞))⊗2 = 2
(
D∞(x(n))−D∞(x(∞))

)
≤ 8e∗K,µ∞W2(µn, µ∞) + 8W2

2 (µn, µ∞). (2.3)

By Condition (c), HD∞ is assumed to be positive definite in the neighbourhood of all x(∞) ∈
GK(µ∞) having eigenvalues lower bounded by some λ∗ > 0. As ζ(n) lies in the geometric segment

(x(n), x(∞)) and x(n) → x(∞), there exists an n0(x(∞)) such that for all n ≥ n0, HD∞(ζ(n)) is a

positive definite matrix. It follows that, for n ≥ n0,

λ∗
∣∣∣x(n) − x(∞)

∣∣∣2 ≤ HD∞(ζ(n))(x(n) − x(∞))⊗2

≤ 8e∗K,µ∞W2(µn, µ∞) + 8W2
2 (µn, µ∞).

Thus, one can directly conclude by multiplying at each side of the above inequality by 1
λ∗ .

Based on conditions in Theorem 2.2, if we know the exact limit of the optimal quantizer sequence

x(n), we have the following result whose proof is similar to that of Theorem 2.2.

Corollary 2.1. Let K ∈ N∗ be the quantization level. For every n ∈ N∗ ∪ {∞}, let µn ∈ P2(Rd)
with card

(
supp(µn)

)
≥ K. Assume that W2(µn, µ∞) → 0 as n → +∞. Let x(n) ∈ argmin DK,µn

such that limn x
(n) → x(∞). If the Hessian matrix of DK,µ∞ is positive definite in the neighbour-

hood of x(∞), then, for n large enough,∣∣∣x(n) − x(∞)
∣∣∣2 ≤ C(1)

µ∞ · W2(µn, µ∞) + C(2)
µ∞ · W

2
2 (µn, µ∞),

where C
(1)
µ∞ and C

(2)
µ∞ are real constants only depending on µ∞.
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3 Hessian matrix HDK,µ of the distortion function DK,µ

Let µ ∈ P2(Rd) with card
(
supp(µ)

)
≥ K and let x∗ be an optimal quantizer of µ at level K. In

Section 3.1, we show conditions under which the distortion function DK,µ is twice differentiable

and give the exact formula of its Hessian matrix HDK,µ . In Section 3.2, we give several criterions

for the positive definiteness of the Hessian matrix HDK,µ in the neighbourhood of an optimal

quantizer x∗ in dimension 1.

3.1 Hessian matrix HDK,µ on Rd

If µ is absolutely continuous with respect to the Lebesgue measure λd on Rd with the density

function f , then the distortion function DK,µ is differentiable (see [Pag98]) at all point x =

(x1, ..., xK) ∈ FK with

∂DK,µ
∂xi

(x) = 2

∫
Vi(x)

(xi − ξ)f(ξ)λd(dξ), for i = 1, ...,K. (3.1)

In the following Proposition, we give a criterion for the twice differentiability of the distortion

function DK,µ.

Proposition 3.1. Let µ ∈ P2(Rd) be absolutely continuous with respect to the Lebesgue measure

λd on Rd with a continuous density function f . If µ is 1-radially controlled, then

(i) the distortion function DK,µ is twice differentiable at every x ∈ FK and the Hessian matrix

HDK,µ(x) =
[
∂2DK,µ
∂xj∂xi

(x)
]

1≤i≤j≤K
is defined by

∂2DK,µ
∂xj∂xi

(x) = 2

∫
Vi(x)∩Vj(x)

(xi − ξ)⊗ (xj − ξ) ·
1

|xj − xi|
f(ξ)λijx (dξ), if j 6= i, (3.2)

∂2DK,µ
∂x2i

(x) = 2
[
µ
(
Vi(x)

)
Id −

∑
i 6=j

1≤j≤K

∫
Vi(x)∩Vj(x)

(xi − ξ)⊗ (xi − ξ) ·
1

|xj − xi|
f(ξ)λijx (dξ)

]
, (3.3)

where in (3.2) and (3.3), u ⊗ v := [uivj ]1≤i,j≤d for any two vectors u = (u1, ..., ud) and

v = (v1, ..., vd) in Rd;

(ii) every element
∂2DK,µ
∂xj∂xi

of the Hessian matrix HDK,µ is continuous at every x ∈ FK .

The proof of Proposition 3.1 is postponed to Appendix C. The following lemma shows that

under the condition of Proposition 3.1, Condition (c) in Theorem 2.2 implies Condition (b).

Lemma 3.1. Let µ ∈ P2(Rd) be absolutely continuous with the respect to the Lebesgue measure λd
on Rd with a continuous density function f . If µ∞ is 1-radially controlled and card

(
GK(µ∞)

)
=

+∞, then there exists a point x ∈ GK(µ∞) such that the Hessian matrix HDK,µ∞ of DK,µ∞ at x

has an eigenvalue 0.

Proof of Lemma 3.1. We denote by HD∞ instead of HDK,µ∞ to simplify the notation. Proposi-

tion 1.1 implies that GK(µ∞) is a compact set. If card
(
GK(µ∞)

)
= +∞, there exists x, x(k) ∈

GK(µ∞), k ∈ N∗ such that x(k) → x when k → +∞. Set uk := x(k)−x
|x(k)−x| , k ≥ 1, then we have

|uk| = 1 for all k ∈ N∗. Hence, there exists a subsequence ϕ(k) of k such that uϕ(k) converges to

some ũ with |ũ| = 1.
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The Taylor expansion of DK,µ∞ at x reads:

DK,µ∞(xϕ(k)) = DK,µ∞(x) +
〈
∇DK,µ∞(x)

∣∣ xϕ(k) − x
〉

+
1

2
HD∞(ζϕ(k))(xϕ(k) − x)⊗2,

where ζϕ(k) lies in the geometric segment (xϕ(k), x). Since x, x(k), k ∈ N∗ ∈ GK(µ∞), then

∇DK,µ∞(x) = 0 and for any k ∈ N∗, DK,µ∞(xϕ(k)) = DK,µ∞(x). Hence, for any k ∈ N∗,
HD∞(ζϕ(k))(xϕ(k) − x)⊗2 = 0. Consequently, for any k ∈ N∗,

HD∞(ζϕ(k))
( xϕ(k) − x∣∣xϕ(k) − x

∣∣)⊗2

= 0.

Thus we have HD∞(x)ũ⊗2 = 0 by letting k → +∞, so that HD∞(x) has an eigenvalue 0.

3.2 A criterion for positive definiteness of HD∞(x∗) in 1-dimension

Let µ ∈ P2(R) with card
(
supp(µ)

)
≥ K. Assume that µ is absolutely continuous with respect

to the Lebesgue measure having a density function f . In the one-dimensional case, it is useful to

point out a sufficient condition for the uniqueness of optimal quantizer. A probability distribution

µ is called strongly unimodal if its density function f satisfies that I = {f > 0} is an open (possibly

unbounded) interval and log f is concave on I. Let F+
K :=

{
x = (x1, ..., xK) ∈ RK | −∞ < x1 <

x2 < ... < xK < +∞
}

.

Lemma 3.2. For K ∈ N∗, if µ is strongly unimodal with card
(
supp(µ)

)
≥ K, then there is only

one stationary (then optimal) quantizer of level K in F+
K .

We refer to [Kie83], [Tru82], [BP93] and [GL00][see Theorem 5.1] for the proof of Lemma 3.2

and for more details.

Given a K-tuple x = (x1, ..., xK) ∈ F+
K , the Voronoi region Vi(x) can be explicitly written:

V1(x) = (−∞, x1+x2

2 ], VK(x) = [xK−1+xK
2 ,+∞) and Vi(x) = [xi−1+xi

2 , xi+xi+1

2 ] for i = 2, ...,K − 1.

For all x ∈ F+
K , DK,µ is differentiable at x and by (3.1) and

∇DK,µ(x) =

ñ∫
Vi(x)

2(xi − ξ)f(ξ)dξ

ô
i=1,...,K

. (3.4)

Therefore, as ∇DK,µ(x∗) = 0, one can solve the optimal quantizer x∗ ∈ F+
K as follows,

x∗i =

∫
Vi(x∗)

ξf(ξ)dξ

µ
(
Vi(x∗)

) , for i = 1, ...,K. (3.5)

For any x ∈ F+
K , the Hessian matrix HDK,µ of DK,µ at x is a tridiagonal symmetry matrix and

can be calculated as follows,

HDK,µ(x) =



A1 −B1,2 −B1,2

. . .

−Bi−1,i Ai −Bi−1,i −Bi,i+1 −Bi,i+1

. . .

−BK−1,K AK −BK−1,K

 ,

(3.6)

where Ai = 2µ
(
Ci(x)

)
for 1 ≤ i ≤ K and Bi,j = 1

2 (xj − xi)f(
xi+xj

2 ) for 1 ≤ i < j ≤ K. Let Fµ

11



be the cumulative distribution function of µ, then

A1 = 2µ
(
C1(x)

)
= 2Fµ

(x1 + x2

2

)
,

Ai = 2µ
(
Ci(x)

)
= 2
[
Fµ

(xi+1 + xi
2

)
− Fµ

(xi−1 + xi
2

)]
, for i = 2, ...,K − 1,

AK = 2µ
(
CK(x)

)
= 2
[
1− Fµ

(xK−1 + xK
2

)]
.

Then the continuity of each term in the matrix HDK,µ(x) can be directly derived from the continuity

of Fµ.

For 1 ≤ i ≤ K, we define Li(x) :=

K∑
j=1

∂2DK,µ
∂xi∂xj

(x). The following proposition gives sufficient

conditions to obtain the positive definiteness of HDK,µ(x∗).

Proposition 3.2. Let µ ∈ P2(R) with card
(
supp(µ)

)
≥ K. Assume that µ is absolutely contin-

uous with respect to the Lebesgue measure having a density function f . Any of the following two

conditions implies the positive definiteness of HDK,µ(x∗),

(i) µ is the uniform distribution,

(ii) f is differentiable and log f is strictly concave.

In particular, (ii) also implies that Li(x
∗) > 0, i = 1, ...,K.

Proposition 3.2 is proved in Appendix D. Remark that, under the conditions of Proposition

3.2, µ is strongly unimodal so that there is exactly one optimal quantizer in F+
K for µ at level K.

The conditions in Proposition 3.2 directly imply the following convergence rate results.

Theorem 3.1. Let K ∈ N∗ be the quantization level. For every n ∈ N∗∪{∞}, let µn ∈ P2(R) with

card
(
supp(µn)

)
≥ K be such that W2(µn, µ∞) → 0 as n → +∞. Assume that µ∞ is absolutely

continuous with respect to the Lebesgue measure, written µ∞(dξ) = f(ξ)dξ. Let x(n) be an optimal

quantizer of µn converging to x(∞). Then any one of the following two conditions

(i) µ∞ is the uniform distribution

(ii) f is differentiable and log f is strictly concave

implies the existence of constants C
(1)
µ∞ and C

(2)
µ∞ only depending on µ∞ such that for n large enough,∣∣∣x(n) − x(∞)

∣∣∣2 ≤ C(1)
µ∞ · W2(µn, µ∞) + C(2)

µ∞ · W
2
2 (µn, µ∞).

Proof. Let DK,µ∞ denote the distortion function of µ∞ and let HD∞ denote the Hessian matrix

of DK,µ∞ .

(i) Let gk(x) be the k-th leading principal minor ofHD∞(x) defined in (3.6), then gk(x), k = 1, ...,K,

are continuous functions in x since every element in this matrix is continuous. Proposition 3.2

implies gk(x(∞)) > 0, thus there exists r > 0 such that for every x ∈ B(x(∞), r), gk(x(∞)) > 0 so

that HD∞(x) is positive definite. What remains can be directly proved by Corollary 2.1.

(ii) The function Li(x) :=

K∑
j=1

∂2DK,µ∞
∂xi∂xj

(x) is continuous on x and Proposition 3.2 implies that

Li(x
(∞)) > 0. Hence, there exists r > 0 such that ∀x ∈ B(x(∞), r), Li(x) > 0. From (3.6),

12



one can remark that the i-th diagonal elements in HD∞(x) is always larger than Li(x) for any

x ∈ RK , then after Gershgorin Circle theorem, we derive that HD∞(x) is positive definite for every

x ∈ B(x(∞), r). What remains can be directly proved by Corollary 2.1.

4 Empirical measure case

Let K ∈ N∗ be the quantization level. Let µ ∈ P2+ε(Rd) for some ε > 0 and card
(
supp(µ)

)
≥ K.

Let X be a random variable with distribution µ and let (Xn)n≥1 be a sequence of independent

identically distributed Rd-valued random variables with probability distribution µ. The empirical

measure is defined for every n ∈ N∗ by

µωn :=
1

n

n∑
i=1

δXi(ω), ω ∈ Ω, (4.1)

where δa is the Dirac mass at a. For n ≥ 1, let x(n),ω be an optimal quantizer of µωn . The

superscript ω is to emphasize that both µωn and x(n),ω are random and we will drop ω when there

is no ambiguity. We cite two results of the convergence of W2(µωn , µ) among so many researches

in this topic: the a.s. convergence in [Pol82b][see Theorem 7] and the Lp-convergence rate of

Wp(µ
ω
n , µ) in [FG15].

Theorem. ([FG15][see Theorem 1]) Let p > 0 and let µ ∈ Pq(Rd) for some q > p. Let µωn denote

the empirical measure of µ defined in (4.1). There exists a constant C only depending on p, d, q

such that, for all n ≥ 1,

E
(
Wp
p (µωn , µ)

)
≤ CMp/q

q (µ)×


n−1/2 + n−(q−p)/q if p > d/2 and q 6= 2p

n−1/2 log(1 + n) + n−(q−p)/q if p = d/2 and q 6= 2p

n−p/d + n−(q−p)/q if p ∈ (0, d/2) and q 6= d/(d− p)

, (4.2)

where Mq(µ) =
∫
Rd |ξ|

q
µ(dξ).

Let DK,µ denote the distortion function of µ and let DK,µn denote the distortion fuction of µωn
for any n ∈ N∗. Recall by Definition 1.1 that for c = (c1, ..., cK) ∈ (Rd)K ,

DK,µ(c) = E min
1≤k≤K

|X − ck|2 = E
[
|X|2 + min

1≤k≤K

(
− 2〈X|ck〉+ |ck|2

)]
,

and DK,µn(c) =
1

n

n∑
i=1

min
1≤k≤K

|Xi − ck|2 =
1

n

n∑
i=1

|Xi|2 + min
1≤k≤K

(
− 2

n

n∑
i=1

〈Xi|ck〉+ |ck|2
)
.

The a.s. convergence of optimal quantizers for the empirical measure has been proved in [Pol81].

We give a first upper bound of the clustering performance by applying directly Theorem 2.1 and

(4.2).

Proposition 4.1. Let K ∈ N∗ be the quantization level. Let µ ∈ Pq(Rd) for some q > 2 with

card(supp(µ)) ≥ K and let µωn be the empirical measure of µ defined in (4.1). Let x(n),ω be an

optimal quantizer at level K of µωn. Then for any n > K,

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x)

≤ Cd,q,µ,K ×


n−1/4 + n−(q−2)/2q if d < 4 and q 6= 4

n−1/4
(

log(1 + n)
)1/2

+ n−(q−2)/2q if d = 4 and q 6= 4

n−1/d + n−(q−2)/2q if d > 4 and q 6= d/(d− 2)

. (4.3)
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where Cd,q,µ,K is a constant depending on d, q, µ and the quantization level K.

The reason why we only consider n > K is that for a fixed n ∈ N∗, the empirical measure µn
defined in (4.1) is supported by n points, which implies that, if n ≤ K, the optimal quantizer of

µn at level K, viewed as a set, is in fact supp(µn). This makes the above bound of no interest.

Following the remark after Theorem 1 in [FG15], one can remark that if the probability distribution

µ has sufficiently large moments (namely if q > 4 when d ≤ 4 and q > 2d/(d − 2) when d > 4),

then the term n−(q−2)/2q is negligible and can be removed.

Proof of Proposition 4.1. For every ω ∈ Ω and for every n > K, Theorem 2.1 implies that

DK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 4e∗K,µW2(µωn , µ) + 4W2
2 (µωn , µ).

Thus,

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 4e∗K,µEW2(µωn , µ) + 4EW2
2 (µωn , µ).

It follows from (4.2) applied with p = 2 that

EW2
2 (µωn , µ) ≤ Cd,q,µ ×


n−1/2 + n−(q−2)/q if d < 4 and q 6= 4

n−1/2 log(1 + n) + n−(q−2)/q if d = 4 and q 6= 4

n−2/d + n−(q−2)/q if d > 4 and q 6= d/(d− 2)

, (4.4)

where Cd,q,µ = C·M2/q
q (µ) and C is the constant in (4.2). Moreover, as EW2(µωn , µ) ≤

(
EW2

2 (µωn , µ)
)1/2

and
√
a+ b ≤

√
a+
√
b for any a, b ∈ R+, Inequality (4.2) also implies

EW2(µωn , µ) ≤ C1/2
d,q,µ ×


n−1/4 + n−(q−2)/2q if d < 4 and q 6= 4

n−1/4
(

log(1 + n)
)1/2

+ n−(q−2)/2q if d = 4 and q 6= 4

n−1/d + n−(q−2)/2q if d > 4 and q 6= d/(d− 2)

.

Consequently,

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 4e∗K,µEW2(µωn , µ) + 4EW2
2 (µωn , µ).

≤ 8(C
1/2
d,q,µe

∗
K,µ ∨ Cd,q,µ)×

n−1/4 + n−(q−2)/2q if d < 4 and q 6= 4

n−1/4
(

log(1 + n)
)1/2

+ n−(q−2)/2q if d = 4 and q 6= 4

n−1/d + n−(q−2)/2q if d > 4 and q 6= d/(d− 2)

. (4.5)

One can conclude by setting Cd,q,µ,K := 8(C
1/2
d,q,µe

∗
K,µ ∨ Cd,q,µ).

Remark 4.1. When d ≥ 4, if q−2
q > 2

d i.e. q > 2d
d−2 , Inequality (4.4) can be upper bounded as

follows,

EW2
2 (µωn , µ) ≤ 2Cd,q,µn

−1/d ×

{
n−

1
4 log(1 + n) if d = 4 and q 6= 4

n−
1
d if d > 4 and q 6= d/(d− 2)

≤ 2Cd,q,µK
−1/d ×

{
n−

1
4 log(1 + n) if d = 4 and q 6= 4

n−
1
d if d > 4 and q 6= d/(d− 2)

,

since we consider only n ≥ K and if q > 2d
d−2 , the term n−(q−2)/2q becomes negligible as n grows.
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Consequently, (4.5) can be bounded by

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 4e∗K,µEW2(µωn , µ) + 4EW2
2 (µωn , µ).

≤ 8(C
1/2
d,q,µe

∗
K,µ ∨ 2Cd,q,µK

−1/d)×{
n−

1
4

[
(log(1 + n))

1
2 + log(1 + n)

]
if d = 4 and q 6= 4

2n−
1
d if d > 4 and q 6= d/(d− 2)

. (4.6)

By the non-asymptotic Zador theorem (1.17), one has

e∗K,µ ≤ Cd,q(µ)σq(µ)K−1/d

with σq(µ) = mina∈Rd
[∫

Rd |ξ − a|
q
µ(dξ)

]1/q
. Thus, Inequality (4.6) can be upper-bounded as

follows,

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 4e∗K,µEW2(µωn , µ) + 4EW2
2 (µωn , µ).

≤ 8K−1/d
(
C

1/2
d,q,µCd,q(µ)σq(µ) ∨ 2Cd,q,µ

)
×{

n−
1
4

[
(log(1 + n))

1
2 + log(1 + n)

]
if d = 4 and q 6= 4

2n−
1
d if d > 4 and q 6= d/(d− 2)

,

from which one can remark that the constant Cd,q,µ,K in Proposition 4.1 is roughly decreasing as

K−1/d.

A second upper bound of the clustering performance is provided in the following theorem.

Theorem 4.1. Let K ∈ N∗ be the quantization level. Let µ ∈ P2(Rd) with card (supp(µ)) ≥ K and

let µωn be the empirical measures of µ defined in (4.1), generated by i.i.d observations X1, ..., Xn, ....

We denote by x(n),ω ∈ (Rd)K an optimal quantizer of µωn at level K. Then,

(a) General upper bound of the performance.

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 2K√
n

[
r2
2n + ρK(µ)2 + 2r1

(
r2n + ρK(µ)

)]
, (4.7)

where rn :=
∥∥max1≤i≤n |Xi|

∥∥
2

and ρK(µ) is the maximum radius of optimal quantizers of µ,

defined in (1.15).

(b) Asymptotic upper bound for distribution with polynomial tail. For p > 2, if µ has a c-th

polynomial tail with c > d+ p, then

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ K√
n

[
Cµ,p n

2/p + 6K
2(p+d)
d(c−p−d)γK

]
,

where Cµ,p is a constant depending µ, p and limK γK = 1.

(c) Asymptotic upper bound for distribution with hyper-exponential tail. Recall that µ has a

hyper-exponential tail if µ = f · λd and there exists τ > 0, κ, ϑ > 0, c > −d and A > 0 such

that ∀ξ ∈ Rd, |ξ| ≥ A ⇒ f(ξ) = τ |ξ|c e−ϑ|ξ|κ . If κ ≥ 2, we can obtain a more precise upper

bound of the performance

E
[
DK,µ(x(n),ω)− inf

x∈(Rd)K
DK,µ(x)

]
≤ Cϑ,κ,µ ·

K√
n

[
1 + (log n)2/κ + γK(logK)2/κ

(
1 +

2

d

)2/κ]
,
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where Cϑ,κ,µ is a constant depending ϑ, κ, µ and lim supK γK = 1.

In particular, if µ = N (m,Σ), the multidimensional normal distribution, we have

E
[
DK,µ(x(n),ω)− inf

x∈(Rd)K
DK,µ(x)

]
≤ Cµ ·

K√
n

[
1 + log n+ γK · (logK)

(
1 +

2

d

)]
,

where lim supK γK = 1 and Cµ = 24 ·
(
1 ∨ log 2Ee|X|2/4

)
where X is a random variable with

distribution µ. Moreover, when µ = N (0, Id), Cµ = 24(1 + d
2 ) · log 2.

The proof of Theorem 4.1 relies on the Rademacher process theory. A Rademacher sequence

(σi)i∈{1,...,n} is a sequence of i.i.d random variables with a symmetric {±1}-valued Bernoulli dis-

tribution, independent of (X1, ..., Xn) and we define the Rademacher process Rn(f), f ∈ F by

Rn(f) := 1
n

∑n
i=1 σif(Xi). Remark that the Rademacher process Rn(f) depends on the sample

{X1, ..., Xn} of the probability measure µ.

Theorem (Symmetrization inequalites). For any class F of µ-integrable functions, we have

E ‖µn − µ‖F ≤ 2E ‖Rn‖F ,

where for a probability distribution ν, ‖ν‖F := supf∈F |ν(f)| := supf∈F
∣∣∫

Rd fdν
∣∣ and ‖Rn‖F :=

supf∈F |Rn(f)|.

For the proof of the above theorem, we refer to [Kol11][see Theorem 2.1]. Another more detailed

reference is [VDVW96][see Lemma 2.3.1]. We will also introduce the Contraction principle in the

following theorem and we refer to [BLM13][see Theorem 11.6] for the proof.

Theorem (Contraction principle). Let x1, ..., xn be vectors whose real-valued components are in-

dexed by T , that is, xi = (xi,s)s∈T . For each i = 1, ..., n, let ϕi : R → R be a Lipschitz func-

tion such that ϕi(0) = 0. Let σ1, ..., σn be independent Rademacher random variables and let

cL = max1≤i≤n supx,y∈R
x 6=y

∣∣∣ϕi(x)−ϕi(y)
x−y

∣∣∣ be the uniform Lipschitz constant of the function ϕi. Then

E
[

sup
s∈T

n∑
i=1

σiϕi(xi,s)
]
≤ cL · E

[
sup
s∈T

n∑
i=1

σixi,s

]
. (4.8)

Remark that, if we consider random variables (Y1,s, ..., Yn,s)s∈T independent of (σ1, ..., σn) and

for all s ∈ T and i ∈ {1, ..., n}, Yi,s is valued in R, then (4.8) implies that

E
[

sup
s∈T

n∑
i=1

σiϕi(Yi,s)
]

= E
{
E
[

sup
s∈T

n∑
i=1

σiϕi(Yi,s) | (Y1,s, ..., Yn,s)s∈T

]}
≤cL · E

{
E
[

sup
s∈T

n∑
i=1

σiYi,s | (Y1,s, ..., Yn,s)s∈T

]}
≤ cL · E

[
sup
s∈T

n∑
i=1

σiYi,s
]
. (4.9)

The proof of Theorem 4.1 is inspired by that of Theorem 2.1 in [BDL08].

Proof of Theorem 4.1. (a) In order to simplify the notation, we will denote by D (respectively Dn)

instead of DK,µ (resp. DK,µn) the distortion function of µ (resp. µn). For any c = (c1, ..., cK) ∈
(Rd)K , note that the distortion function D(c) of µ can be written as

D(c) = E
[

min
1≤k≤K

|X − ck|2
]

= E
[
|X|2 + min

1≤k≤K
(−2〈X|ck〉+ |ck|2)

]
.

We define D(c) := min1≤k≤K
(
− 2〈X|ck〉+ |ck|2

)
. Similarly, for the distortion function Dn of the
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empirical measure µn,

Dn(c) =
1

n

n∑
i=1

min
1≤k≤K

|Xi − ck|2 =
1

n

n∑
i=1

|Xi|2 + min
1≤k≤K

(
− 2

n

n∑
i=1

〈Xi|ck〉+ |ck|2
)
,

we define Dn(c) := min1≤k≤K
(
− 2
n

∑n
i=1〈Xi|ck〉+ |ck|2

)
. We will drop ω in x(n),ω to alleviate the

notation throughout the proof. Let x ∈ argminDK,µ. It follows that

E
[
D(x(n))−D(x)

]
= E

[
D(x(n))−D(x)

]
= E

[
D(x(n))−Dn(x(n))

]
+ E

[
Dn(x(n))−D(x)

]
≤ E

[
D(x(n))−Dn(x(n))

]
+ E

[
Dn(x)−D(x)

]
. (4.10)

Define for η, x ∈ Rd, fη(x) = −2〈η|x〉+ |η|2.

Part (i): Upper bound of E[D(x(n)) − Dn(x(n))]. Let Rn(ω) := max1≤i≤n |Xi(ω)|. Remark that

for every ω ∈ Ω, Rn(ω) is invariant with the respect to all permutations of the components of

(X1, ..., Xn). Let BR denote the ball centred at 0 with radius R. Then, owing to Proposition

1.1-(iii), x(n) = (x
(n)
1 , ..., x

(n)
K ) ∈ BKRn . Hence,

E [D(x(n))−Dn(x(n))] ≤ E sup
c∈BKRn

(
D(c)−Dn(c)

)
= E

[
sup

c∈BKRn

(
E min

1≤k≤K
fck(X)− 1

n

n∑
i=1

min
1≤k≤K

fck(Xi)
)]

= E
[

sup
c∈BKRn

E
[ 1

n

n∑
i=1

min
1≤k≤K

fck(X ′i)−
1

n

n∑
i=1

min
1≤k≤K

fck(Xi)
∣∣X1, ..., Xn

]]
, (4.11)

where X ′1, ..., X
′
n are i.i.d random variable with the distribution µ, independent of (X1, ..., Xn).

Let R2n := max1≤i≤n |Xi| ∨ |X ′i|, then (4.11) becomes

E [D(x(n))−Dn(x(n))] ≤ E
[

sup
c∈BKR2n

E
[ 1

n

n∑
i=1

min
1≤k≤K

fck(X ′i)−
1

n

n∑
i=1

min
1≤k≤K

fck(Xi)
∣∣X1, ..., Xn

]]
≤ E

[
E
[

sup
c∈BKR2n

( 1

n

n∑
i=1

min
1≤k≤K

fck(X ′i)−
1

n

n∑
i=1

min
1≤k≤K

fck(Xi)
)∣∣X1, ..., Xn

]]
= E

[
sup

c∈BKR2n

1

n

n∑
i=1

(
min

1≤k≤K
fck(X ′i)− min

1≤k≤K
fck(Xi)

)]
. (4.12)

The distribution of (X1, ..., Xn, X
′
1, ..., X

′
n) and that of R2n are invariant with the respect to all

permutation of the components in (X1, ..., Xn, X
′
1, ..., X

′
n). Hence,

E [D(x(n))−Dn(x(n))] = E
[

sup
c∈BKR2n

1

n

n∑
i=1

σi
(

min
1≤k≤K

fck(X ′i)− min
1≤k≤K

fck(Xi)
)]

≤ E
[

sup
c∈BKR2n

1

n

n∑
i=1

σi min
1≤k≤K

fck(X ′i)
]

+ E
[

sup
c∈B

RK2n

1

n

n∑
i=1

σi min
1≤k≤K

fck(Xi)
]

= 2E
[

sup
c∈BKR2n

1

n

n∑
i=1

σi min
1≤k≤K

fck(Xi)
]
. (4.13)

In the second line of (4.13), we can change the sign before the second term since −σi has the

same distribution of σi, and we will continue to use this property throughout the proof. Let
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SK = E
[

sup
c∈BKR2n

1

n

n∑
i=1

σi min
1≤k≤K

fck(Xi)
]

and we provide an upper bound for SK by induction on

K in what follows.

I For K = 1,

S1 = E
[

sup
c∈BR2n

1

n

n∑
i=1

σi min
1≤k≤K

fc(Xi)
]

= E
[

sup
c∈BR2n

1

n

n∑
i=1

σi
(
− 2〈c|Xi〉+ |c|2

)]
≤ 2E

[
sup

c∈BR2n

1

n

n∑
i=1

σi〈c|Xi〉
]

+ E
[

sup
c∈BR2n

1

n

n∑
i=1

σi |c|2
]

≤ 2

n
E
[

sup
c∈BR2n

〈c|
n∑
i=1

σiXi〉
]

+
1

n
E
[ ∣∣∣∣∣

n∑
i=1

σi

∣∣∣∣∣ · |R2n|2
]

≤ 2

n
E
[

sup
c∈BR2n

∣∣∣∣∣
n∑
i=1

σiXi

∣∣∣∣∣ · |c| ]+
1

n
E

∣∣∣∣∣
n∑
i=1

σi

∣∣∣∣∣ · E |R2n|2

(by Cauchy-Schwarz inequality and independence of σi and Xi)

≤ 2

n

∥∥∥∥∥
n∑
i=1

σiXi

∥∥∥∥∥
2

· ‖R2n‖2 +
1

n

∥∥∥∥∥
n∑
i=1

σi

∥∥∥∥∥
2

2

· ‖R2n‖22

≤ 2

n

√
n ‖X1‖2 · ‖R2n‖2 +

1√
n
‖R2n‖22 ≤

‖R2n‖2√
n

(
2 ‖X1‖2 + ‖R2n‖2

)
. (4.14)

The first inequality of the last line of (4.14) follows from E |
∑n
i=1 σiXi|

2
= E

∑n
i=1 σ

2
iX

2
i = nEX2

1

since the (σ1, ..., σn) is independent of (X1, ..., Xn) and Eσi = 0. For n ∈ N∗, define rn :=

‖max1≤i≤n |Yi|‖2, where Y1, ..., Yn are i.i.d random variables with probability distribution µ. Hence,

r2n = ‖R2n‖2, since (Y1, ..., Y2n) has the same distribution as (X1, ..., Xn, X
′
1, ..., X

′
n). Therefore,

S1 ≤
r2n√
n

(
2 ‖X1‖2 + r2n

)
.

I For K = 2,

S2 = E
[

sup
c=(c1,c2)∈B2

R2n

1

n

n∑
i=1

σi
(
fc1(Xi) ∧ fc2(Xi)

)]
=

1

2
E
[

sup
c∈B2

R2n

1

n

n∑
i=1

σi
(
fc1(Xi) + fc2(Xi)− |fc1(Xi)− fc2(Xi)|

)]
(as a ∧ b =

a+ b

2
− |a− b|

2
)

≤ 1

2

{
E
[

sup
c∈B2

R2n

1

n

n∑
i=1

σi
(
fc1(Xi) + fc2(Xi)

)]
+ E

[
sup

c∈B2
R2n

1

n

n∑
i=1

σi |fc1(Xi)− fc2(Xi)|
]}

≤ 1

2

{
2S1 + E

[
sup

c∈B2
R2n

1

n

n∑
i=1

σi
(
fc1(Xi)− fc2(Xi)

)]} (
by (4.9)

)
≤ 1

2

{
2S1 + E

[
sup

c1∈BR2n

1

n

n∑
i=1

σifc1(Xi)
]

+ E
[

sup
c2∈BR2n

1

n

n∑
i=1

σifc2(Xi)
]}
≤ 2S1. (4.15)

I Next, we will show by induction that SK ≤ KS1 for every K ∈ N∗. Assume that SK ≤ KS1,

for K + 1,

SK+1 = E
[

sup
c∈BK+1

R2n

1

n

n∑
i=1

σi min
1≤k≤K+1

fck(Xi)
]
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= E
[

sup
c∈BK+1

R2n

1

n

n∑
i=1

σi
(

min
1≤k≤K

fck(Xi) ∧ fcK+1
(Xi)

)]
≤ 1

2
E
{

sup
c∈BK+1

R2n

1

n

n∑
i=1

σi

[(
min

1≤k≤K
fck(Xi) + fcK+1

(Xi)
)
−
∣∣∣∣ min
1≤k≤K

fck(Xi)− fcK+1
(Xi)

∣∣∣∣ ]}

≤ 1

2
E
{

sup
c∈BK+1

R2n

1

n

n∑
i=1

σi
(

min
1≤k≤K

fck(Xi) + fcK+1
(Xi)

)
+ sup
c∈BK+1

R2n

1

n

n∑
i=1

σi

∣∣∣∣ min
1≤k≤K

fck(Xi)− fcK+1
(Xi)

∣∣∣∣ }
≤ 1

2
(SK + S1 + SK + S1) ≤ SK + S1 ≤ (K + 1)S1. (4.16)

Hence,

E [D(x(n))−Dn(x(n))] ≤ 2SK ≤ 2KS1 ≤
2K · r2n√

n

(
2 ‖X1‖2 + r2n

)
. (4.17)

Part (ii): Upper bound of E [Dn(x) − D(x)]. As x = (x1, ..., xK) is an optimal quantizer of µ, we

have max1≤k≤K |xk| ≤ ρK(µ) owing to the definition of ρK(µ) in (1.15). Consequently,

E
[
Dn(x)−D(x)

]
≤ E sup

c∈BK
ρK (µ)

[
Dn(c)−D(c)

]
By the same reasoning of Part (I), we have E

[
Dn(x)−D(x)

]
≤ 2K√

n
ρK(µ)

(
2 ‖X1‖2 +ρK(µ)

)
. Hence

E
[
D(x(n))−D(x)

]
≤ 2K√

n
r2n

(
2 ‖X1‖2 + r2n

)
+

2K√
n
ρK(µ)

(
2 ‖X1‖2 + ρK(µ)

)
≤ 2K√

n

[
r2
2n + ρ2

K(µ) + 2r1

(
r2n + ρK(µ)

)]
. (4.18)

The proof of (b) and (c) is postponed in Appendix E.

5 Appendix

5.1 Appendix A: Proof of Pollard’s Theorem

Proof of Pollard’s Theorem. Since the quantization level K is fixed, in this proof, we drop the

subscript K of the distortion function and denote by Dn (respectively, D∞) the distortion function

of µn (resp. µ∞).

We know x(n) ∈ argmin Dn owing to Proposition 1.1, that is, for all y ∈ (y1, ..., yK) ∈ (Rd)K ,

we have Dn(x(n)) ≤ Dn(y). For every fixed y = (y1, ..., yK), we have Dn(y)→ D∞(y) after (1.21)

so that

lim sup
n

Dn(x(n)) ≤ inf
y∈(Rd)K

D∞(y). (5.1)

Assume that there exists an index set I ⊂ {1, ...,K} and Ic 6= ∅ such that (x
(n)
i )i∈I,n≥1 is
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bounded and (x
(n)
i )i∈Ic,n≥1 is not bounded. Then there exists a subsequence ψ(n) of n such thatx

ψ(n)
i → x̃

(∞)
i , i ∈ I,∣∣∣xψ(n)

i

∣∣∣→ +∞, i ∈ Ic.

After (1.21), we have Dψ(n)(x
(ψ(n)))1/2 ≥ D∞(x(ψ(n)))1/2 −W2(µψ(n), µ∞). Hence,

lim inf
n
Dψ(n)(x

(ψ(n)))1/2 ≥ lim inf
n
D∞(x(ψ(n)))1/2

so that

lim inf
n
Dψ(n)(x

(ψ(n)))1/2 ≥ lim inf
n
D∞(x(ψ(n)))1/2

=
[

lim inf
n

∫
min

i∈{1,...,K}

∣∣∣x(ψ(n))
i − ξ

∣∣∣2 µ∞(dξ)
]1/2

≥
[ ∫

lim inf
n

min
i∈{1,...,K}

∣∣∣x(ψ(n))
i − ξ

∣∣∣2 µ∞(dξ)
]1/2

=
[ ∫

min
i∈I

∣∣∣x(∞)
i − ξ

∣∣∣2 µ∞(dξ)
]1/2

, (5.2)

where we used Fatou’s Lemma in the third line. Thus, (5.1) and (5.2) imply that∫
min
i∈I

∣∣∣x(∞)
i − ξ

∣∣∣2 µ∞(dξ) ≤ inf
y∈(Rd)K

D∞(y). (5.3)

This implies that I = {1, ...,K} after Proposition 1.1 (otherwise, (5.3) implies that e|I|,∗(µ∞) ≤
eK,∗(µ∞) with |I| < K, which is contradictory to Proposition 1.1-(i)). Therefore, (x(n)) is bounded

and any limiting point x(∞) ∈ argminx∈(Rd)KD∞(x).

5.2 Appendix B: Proof of Proposition 1.1 - (iii)

We define the open Voronöı cell generated by xi with respect to the Euclidean norm | · | by

V oxi(x) =
{
ξ ∈ Rd

∣∣ |ξ − xi| < min
1≤j≤K,j 6=i

|ξ − xj |
}
. (5.4)

It follows from [GL00][see Proposition 1.3] that intVxi(x) = V oxi(x), where intA denotes the interior

of a set A. Moreover, if we denote by λd the Lebesgue measure on Rd, we have λd
(
∂Vxi(x)

)
= 0,

where ∂A denotes the boundary of A (see [GL00][Theorem 1.5]). If µ ∈ P2(Rd) and x∗ is an

optimal quantizer of µ, even if µ is not absolutely continuous with the respect of λd, we have

µ
(
∂Vxi(x

∗)
)

= 0 for all i ∈ {1, ...,K} (see [GL00][Theorem 4.2]).

Proof. Assume that there exists an x∗ = (x∗1, ..., x
∗
K) ∈ GK(µ) in which there exists k ∈ {1, ...,K}

such that x∗k /∈ Hµ.

Case (I): µ
(
V ox∗k

(Γ∗) ∩ supp(µ)
)

= 0. The distortion function can be written as

DK,µ(x∗) =

K∑
i=1

∫
Cxi (x)

|ξ − x∗i |
2
µ(dξ) =

K∑
i=1

∫
V oxi

(x)

|ξ − x∗i |
2
µ(dξ)

(since x∗ is optimal and |·| is Euclidean, µ
(
∂Vxi(Γ

∗)
)

= 0 and intVxi(Γ) = V oxi(Γ))
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=

K∑
i=1,i6=k

∫
V oxi

(x)

|ξ − x∗i |
2
µ(dξ) = DK,µ(x̃), (5.5)

where x̃ = (x∗1, ..., x
∗
k−1, x

∗
k+1, ..., x

∗
K). Therefore, Γ̃ = {x∗1, ..., x∗k−1, x

∗
k+1, ..., x

∗
K} is also a K-level

optimal quantizer with card(Γ̃) < K, contradictory to Proposition 1.1 - (i).

Case (II): µ
(
V ox∗k

(Γ∗) ∩ supp(µ)
)
> 0. Since x∗k 6= Hµ, there exists a hyperplane H strictly

separating x∗k and Hµ. Let x̂∗k be the orthogonal projection of x∗k on H. For any z ∈ Hµ, let b

denote the point in the segment joining z and x∗k which lies on H, then 〈b − x̂∗k|x∗k − x̂∗k〉 = 0.

Hence,

|x∗k − b|
2

= |x̂∗k − b|
2

+ |x∗k − x̂∗k|
2
> |x̂∗k − b|

2
.

Therefore, |z − x̂∗k| ≤ |z − b|+ |b− x̂∗k| < |z − b|+ |x∗k − b| = |z − x∗k|.

Let B(x, r) denote the ball on Rd centered at x with radius r. Since µ
(
V ox∗k

(Γ∗)∩ supp(µ)
)
> 0,

there exists α ∈ V ox∗k(Γ∗)∩ supp(µ) such that ∃ r ≥ 0, µ
(
B(α, r)

)
> 0 (when r = 0, B(α, r) = {r}).

Moreover,

∀β ∈ B(α, r), |β − x̂∗k| < |β − x∗k| < min
i 6=k
|β − x̂∗i | . (5.6)

Let x̂ := (x∗1, ..., x
∗
k−1, x̂

∗
k, x
∗
k+1, ..., x

∗
K), (5.6) implies DK,µ(x̂) < DK,µ(x∗). This is contradictory

with the fact that x∗ is an optimal quantizer. Hence, x∗ ∈ Hµ.

5.3 Appendix C: Proof of Proposition 3.1

We use Lemma 11 in [FP95] to compute the Hessian matrix HDK,µ of DK,µ.

Lemma 5.1 (Lemma 11 in [FP95]). Let ϕ be a countinous R-valued function defined on [0, 1]d.

For every x ∈ DK :=
{
y ∈

(
[0, 1]d

)K | yi 6= yj if i 6= j
}

, let Φi(x) :=
∫
Vi(x)

ϕ(ω)dω. Then Φi is

continuously differentiable on DK and

∀i 6= j,
∂Φi
∂xj

(x) =

∫
Vi(x)∩Vj(x)

ϕ(ξ)
{1

2
−→n ijx +

1

|xj − xi|
× (

xi + xj
2

− ξ)
}
λijx (dξ) (5.7)

and
∂Φi
∂xi

(x) = −
∑

1≤j≤K,j 6=i

∂Φj
∂xi

(x), (5.8)

where −→n ijx :=
xj−xi
|xj−xi| ,

Mx
ij :=

{
u ∈ Rd | 〈u− xi + xj

2
| xi − xj〉 = 0

}
(5.9)

and λijx (dξ) denotes the Lebesgue measure on the affine hyperplane Mx
ij.

Note that one can simplify the result of Lemma 5.1 as follows,

∀i 6= j,
∂Φi
∂xj

(x) =

∫
Vi(x)∩Vj(x)

ϕ(ξ)
{1

2

xj − xi
|xj − xi|

+
1

|xj − xi|
(
xi + xj

2
− ξ)

}
λijx (dξ)

=

∫
Vi(x)∩Vj(x)

ϕ(ξ)
1

|xj − xi|
{xj − xi

2
+
xi + xj

2
− ξ
}
λijx (dξ)

=

∫
Vi(x)∩Vj(x)

ϕ(ξ)
1

|xj − xi|
(xj − ξ)λijx (dξ). (5.10)
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Proof of Proposition 3.1. (i) Set ϕi,M (ξ) = (xi − ξ)f(ξ)χM (ξ) with

χM (ξ) :=


1 |ξ| ≤M
M + 1− |ξ| M < |ξ| ≤M + 1

0 |ξ| > M + 1

.

Set ΦMi (x) =
∫
Vi(x)

ϕi,M (ξ)dξ and Φi(x) =
∫
Vi(x)

(xi− ξ)f(ξ)dξ for i = 1, ...,K. Then (3.1) implies

that
∂DK,µ
∂xi

= 2Φi, i = 1, ...,K.

For j = 1, ...,K and j 6= i, it follows from (5.10) that

∂ΦMi
∂xj

(x) =

∫
Vi(x)∩Vj(x)

(xi − ξ)⊗ (xj − ξ) ·
1

|xj − xi|
f(ξ)χM (ξ)λijx (dξ), (5.11)

and for i = 1, ...,K,

∂ΦMi
∂xi

(x) =
[(∫

Vi(ξ)

f(ξ)χM (ξ)dξ
)
Id −

∑
i 6=j

1≤j≤K

∫
Vi(x)∩Vj(x)

(xi − ξ)⊗ (xi − ξ) ·
1

|xj − xi|
f(ξ)χM (ξ)λijx (dξ)

]
,

(5.12)

where in (5.11) and (5.12), u ⊗ v := [uivj ]1≤i,j≤d for any two vectors u = (u1, ..., ud) and v =

(v1, ..., vd) in Rd.

We prove now the differentiability of Φi in three steps.

I Step 1 : We prove in this part that for every x ∈ FK ,

hij(x) :=

∫
Vi(x)∩Vj(x)

(xi − ξ)⊗ (xj − ξ) ·
1

|xj − xi|
f(ξ)λijx (dξ) < +∞.

If Vi(x)∩ Vj(x) = ∅, it is obvious that hij(x) = 0 < +∞. Now we assume that Vi(x)∩ Vj(x) 6= ∅.

Without loss of generality, we assume that V1(x)∩ V2(x) = ∅ and we prove in the following h12 is

well defined i.e. (h12(x) ∈ R.

Let

α(x, ξ) := (x1 − ξ)⊗ (x2 − ξ) ·
1

|x2 − x1|
f(ξ). (5.13)

Then

h12(x) =

∫
V1(x)∩V2(x)

α(x, ξ)λ12
x (dξ).

Let (e1, ..., ed) denote the canonical basis of Rd. Set ux = x1−x2

|x1−x2| . As x1 6= x2, there exists

at least one i0 ∈ {1, ..., d} s.t. 〈ux | ei0〉 6= 0. Then (ux, ei, 1 ≤ i ≤ d, i 6= i0) forms a new

basis of Rd. Applying the Gram-Schmidt orthonormalization procedure, we derive the existence

of a new orthonormal basis (ux1 , ..., u
x
d) of Rd such that ux1 = ux. Moreover, the Gram-Schmidt

orthonormalization procedure also implies that uxi , 1 ≤ i ≤ d is continuous in x. With respect to

this new basis (ux1 , ..., u
x
d), the hyperplane Mx

12 defined in (5.9) can be written by

Mx
12 =

x1 + x2

2
+ span

(
uxi , i = 2, ..., d

)
,

where span(S) denotes the vector subspace of Rd spanned by S. Moreover, note that

V1(x) ∩ V2(x) =
{
ξ ∈Mx

12

∣∣ min
k=3,...,K

|xk − ξ| ≥ |x1 − ξ| = |x2 − ξ|
}
.

Then, for every fixed ξ /∈ ∂
(
V1(x) ∩ V2(x)

)
, the function x 7→ 1V1(x)∩V2(x)(ξ) is continuous in
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x ∈ FK and

λ12
x

(
∂
(
V1(x) ∩ V2(x)

))
= 0 (5.14)

since V1(x) ∩ V2(x) is a polyhedral convex set in Mx
12.

Now by a change of variable ξ = x1+x2

2 +
∑d
i=2 riu

x
i ,

h12(x) =

∫
Rd−1

1V12(x)

(
(r2, ..., rd)

)
α
(
x,
x1 + x2

2
+

d∑
i=2

riu
x
i

)
dr2...drd, (5.15)

where

V12(x) :=
{

(r2, ..., rd) ∈ Rd−1
∣∣∣ min

3≤k≤K

∣∣∣xk − x1 + x2

2
−

d∑
i=2

riu
x
i

∣∣∣ ≥ ∣∣∣x1 − x2

2
−

d∑
i=2

riu
x
i

∣∣∣}. (5.16)

Let ∂V12(x) be the boundary of V12(x) given by

∂V12(x) :=
{

(r2, ..., rd) ∈ Rd−1
∣∣∣ min

3≤k≤K

∣∣∣xk− x1 + x2

2
−

d∑
i=2

riu
x
i

∣∣∣ =
∣∣∣x1 − x2

2
−

d∑
i=2

riu
x
i

∣∣∣}. (5.17)

Then (5.14) implies that λRd−1

(
∂V12(x)

)
= 0 where λRd−1 denotes the Lebesgue measure of the

subspace span
(
uxi , i = 2, ..., d

)
.

It is obvious that for any a = (a1, ..., ad), b = (b1, ..., bd) ∈ Rd, we have |aibj | ≤ |a| |b| , 1 ≤ i, j ≤
d. Thus the absolute value of every term in the matrix

α(x,
x1 + x2

2
+

d∑
i=2

riu
x
i )

=

(
x1−x2

2 −
∑d
i=2 riu

x
i

)
⊗
(
x2−x1

2 −
∑d
i=2 riu

x
i

)
|x2 − x1|

f
(x1 + x2

2
+

d∑
i=2

riu
x
i

)
(5.18)

can be upper-bounded by∣∣x1−x2

2 −
∑d
i=2 riu

x
i

∣∣∣∣x2−x1

2 −
∑d
i=2 riu

x
i

∣∣
|x2 − x1|

f
(x1 + x2

2
+

d∑
i=2

riu
x
i

)

≤

(∣∣x1−x2

2

∣∣+
∣∣∑d

i=2 riu
x
i

∣∣)2

|x2 − x1|
f
(x1 + x2

2
+

d∑
i=2

riu
x
i

)
≤ Cx(1 +

d∑
i=2

r2
i )f
(x1 + x2

2
+

d∑
i=2

riu
x
i

)
(5.19)

where Cx > 0 is a constant depending only on x.

The distribution µ is assumed to be 1-radially controlled i.e. there exist a constant A > 0 and

a continuous and decreasing function g : R+ → R+ such that

∀ξ ∈ Rd, |ξ| ≥ A, f(ξ) ≤ g(|ξ|) and

∫
R+

xdg(x)dx < +∞. (5.20)

Now let K := 1
2 |x1 + x2| ∨ A and let r :=

∑d
i=2 riu

x
i . As g is a non-increasing function, it follows
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that

Cx(1 +

d∑
i=2

r2
i )f
(x1 + x2

2
+

d∑
i=2

riu
x
i

)
≤ Cx(1 + |r|2) sup

ξ∈B(0,3K)

f(ξ)1{|r|≤2K} + Cx(1 + |r|2)g
(∣∣∣x(n)

1 + x
(n)
2

2
+

d∑
i=2

riu
x
i

∣∣∣)1{|r|≥2K}.

≤ Cx(1 + |r|2) sup
ξ∈B(0,3K)

f(ξ)1{|r|≤2K} + Cx(1 + |r|2)g
(
|r| −K

)
1{|r|≥2K}. (5.21)

Switching to polar coordinates, one obtains by letting s = |r|∫
Rd−1

Cx |r|2 g
(
|r| −K

)
1{|r|≥2K}dr2...drd

≤ Cx,d
∫
R+

s2g(s−K)1{s≥2K}s
d−2ds ≤ Cx,d

∫ ∞
K

(s+K)dg(s)ds

≤ 2dCx,d

∫ ∞
K

(Kd + sd)g(s)ds < +∞,

where the last inequality follows from (5.20). Thus one obtains∫
Rd−1

[
Cx(1 + |r|2) sup

ξ∈B(0,3K)

f(ξ)1{|r|≤2K} + Cx(1 + |r|2)g
(
|r| −K

)
1{|r|≥2K}

]
dr2...drd < +∞.

Hence h12 is well-defined since ∫
V1(x)∩V2(x)

|α(x, ξ)|λ12
x (dξ) < +∞. (5.22)

I Step 2 : Now we prove that for any x ∈ FK ,

sup
y∈B(x, εx)

∣∣∣∣∂ΦMi
∂xj

(y)− hij(y)

∣∣∣∣ M→+∞−−−−−→ 0, (5.23)

where εx = 1
3 min1≤i<j≤K |xi − xj | and (5.23) means every term in the matrix converges to 0.

First, for every fixed y ∈ B(x, εx), the absolute value of every term in the following matrix

∂ΦMi
∂xj

(y)− hij(y) =

∫
Vi(y)∩Vj(y)

(yi − ξ)⊗ (yj − ξ)
|yj − yi|

f(ξ)
(
1− χM (ξ)

)
λijy (dξ)

can be upper bounded by

fM (y) :=

∫
Vi(y)∩Vj(y)∩

(
Rd\B(0,M+1)

) |yi − ξ||yj − ξ||yj − yi|
f(ξ)λijy (dξ). (5.24)

Moreover, the inequality (5.22) implies that fM (y) converges to 0 for every y ∈ B(x, εx) as M →
+∞. As (fM )M is a monotonically decreasing sequence, one can obtain

sup
y∈B(x,ε)

∣∣fM (y)
∣∣→ 0

owing to Dini’s theorem, which in turn implies the convergence in (5.23).

I Step 3 : It is obvious that ΦMi (x) converges to Φi(x) for every x ∈ Rd as M → +∞ since
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µ ∈ P2(Rd). Hence ∂Φ1

∂x2
(x) = h12(x). Then one can directly obtain (3.2) since

∂DK,µ
∂xjxi

= 2∂Φi
∂xj

= 2hij
by applying (3.1). The proof for (3.3) is similar.

(ii) We will only prove the continuity of
∂2DK,µ
∂x1∂x2

and
∂2DK,µ
∂x2

1
at a point x ∈ FK . The proof for

∂2DK,µ
∂xi∂xj

for others i, j ∈ {1, ...,K} is similar. We take the same definition of α(x, ξ) in (5.13), then

∂2DK,µ
∂x1∂x2

(x) = 2

∫
V1(x)∩V2(x)

α(x, ξ)λ12
x (dξ)

and by the same change of variable (5.15) as in (i), we have

∂2DK,µ
∂x1∂x2

(x) = 2

∫
Rd−1

1V12(x)

(
(r2, ..., rd)

)
α
(
x,
x1 + x2

2
+

d∑
i=2

riu
x
i

)
dr2...drd

with the same definition of V12(x) as in (5.16).

Let us now consider a sequence x(n) = (x
(n)
1 , ..., x

(n)
K ) ∈ (Rd)K converging to a point x =

(x1, ..., xK) ∈ FK satisfying that for every n ∈ N∗,

∣∣x(n) − x
∣∣ ≤ δx :=

1

3
min

1≤i,j≤K,i6=j
|xi − xj | , (5.25)

so that x(n) ∈ FK for every n ∈ N∗. For a fixed (r2, ..., rd) ∈ Rd−1, the continuity of x 7→
α(x, x1+x2

2 +
∑d
i=2 riu

x
i ) in FK can be obtained by the continuity of (x, ξ) 7→ α(x, ξ) and the

continuity of Gram-Schmidt orthonormalization procedure.

By the same reasoning as in (5.19), the absolute value of every term in the matrix

α
(
x(n),

x
(n)
1 + x

(n)
2

2
+

d∑
i=2

r
(n)
i ux

(n)

i

)
can be upper bounded by(∣∣x(n)

1 −x
(n)
2

2

∣∣+
∣∣∑d

i=2 riu
x(n)

i

∣∣)2∣∣∣x(n)
2 − x(n)

1

∣∣∣ f
(x(n)

1 + x
(n)
2

2
+

d∑
i=2

r
(n)
i ux

(n)

i

)
,

where there exists a constant Cx depending only on x such that(∣∣x(n)
1 −x

(n)
2

2

∣∣+
∣∣∑d

i=2 riu
x(n)

i

∣∣)2∣∣∣x(n)
2 − x(n)

1

∣∣∣ ≤ Cx(1 +

d∑
i=2

r2
i )

since by (5.25), one can get

∀n ∈ N∗,∀i, j ∈ {1, ...,K} with i 6= j, δx ≤
∣∣∣x(n)
i − x(n)

j

∣∣∣ ≤ max
1≤i,j≤K

|xi − xj |+ 2δx.

Moreover, if we take K := 1
2 supn

∣∣∣x(n)
1 + x

(n)
2

∣∣∣ ∨A and take rn :=
∑d
i=2 riu

x(n)

i , then

Cx(1 +

d∑
i=2

r2
i )f
(x(n)

1 + x
(n)
2

2
+

d∑
i=2

riu
x(n)

i

)
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≤ Cx(1 + |r|2) sup
ξ∈B(0,3K)

f(ξ)1{|r|≤2K} + Cx(1 + |r|2)g
(∣∣∣x(n)

1 + x
(n)
2

2
+

d∑
i=2

riu
x(n)

i

∣∣∣)1{|r|≥2K}.

≤ Cx(1 + |r|2) sup
ξ∈B(0,3K)

f(ξ)1{|r|≤2K} + Cx(1 + |r|2)g
(
|r| −K

)
1{|r|≥2K}. (5.26)

By the same reasoning as in (i)-Step 1, we have∫
Rd−1

[
Cx(1 + |r|2) sup

ξ∈B(0,3K)

f(ξ)1{|r|≤2K} + Cx(1 + |r|2)g
(
|r| −K

)
1{|r|≥2K}

]
dr2...drd < +∞,

which implies
∂2DK,µ
∂x1∂x2

(x(n)) → ∂2DK,µ
∂x1∂x2

(x) as n → +∞ by applying Lebesgue’s dominated conver-

gence theorem. Thus
∂2DK,µ
∂x1∂x2

is continuous at x ∈ FK .

It remains to prove the continuity of x 7→ µ
(
V1(x)

)
=
∫
Rd 1V1(x)(ξ)f(ξ)λd(dξ) to obtain the

continuity of
∂2DK,µ
∂x2

1
defined in (3.3). Remark that

V1(x) =
{
ξ ∈ Rd

∣∣ |ξ − x1| ≤ min
1≤j≤K

|ξ − xj |
}
,

and by [GL00][Proposition 1.3],

∂V1(x) =
{
ξ ∈ Rd

∣∣ |ξ − x1| = min
1≤j≤K

|ξ − xj |
}
.

Then for any ξ /∈ ∂V1(x), the function x 7→ 1V1(x)(ξ) is continuous. As the norm |·| is the

Euclidean norm, then λd(∂Vi(x)) = 0 (see [GL00][Proposition 1.3 and Theorem 1.5]). For any

x ∈ FK and a sequence x(n) converging to x, we have 1V1(x(n))(ξ)f(ξ) ≤ f(ξ) ∈ L1(λd). Thus

the continuity of x 7→ µ
(
V1(x)

)
=
∫
Rd 1V1(x)(ξ)f(ξ)λd(dξ) is a direct application of Lebesgue’s

dominated convergence theorem.

5.4 Appendix D: Proof of Proposition 3.2

Proof. (i) We will only deal with the uniform distribution U([0, 1]). The proof is similar for other

uniform distributions.

In [GL00][see Example 4.17 and 5.5] and [BFP98], the authors show that Γ∗ = { 2i−1
2K : i −

1, ...,K} is the unique optimal quantizers of U([0, 1]). Let x∗ = ( 1
2K , ...,

2i−1
2K , ..., 2K−1

2K ), then one

can compute explicitly HD(x∗):

HD(x∗) =



3
2K − 1

2K 0
. . .

. . .
. . .

− 1
2K

1
K − 1

2K
. . .

. . .
. . .

0 − 1
2K

3
2K

 , (5.27)

The matrix HD(x∗) is tridiagonal. If we denote by fk(x∗) its k-th leading principal minor and

we define f0(x∗) = 1, then

fk(x∗) =
1

K
fk−1(x∗)− 1

4K2
fk−2(x∗) for k = 2, ...,K − 1, (5.28)
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and f1(x∗) = 3
2K and fK(x∗) = |HD(x∗)| = 3

K fK−1(x∗) − 1
4K2 fK−2(x∗) (see [EM03]). One can

solve from the three-term recurrence relation that

fk(x∗) =
2k + 1

2kKk
, for k = 1, ...,K − 1 (5.29)

And fK(x∗) =
2K + 1

2KKK
+

1

2K
fK−1. (5.30)

In fact, (5.29) is true for k = 1. Suppose (5.29) holds for k ≤ K − 2, then owing to (5.28)

fk+1(x∗) =
1

K
· 2k + 1

2kKk
− 1

4K2
· 2(k − 1) + 1

2k−1Kk−1
=

2(k + 1) + 1

2k+1Kk+1
.

Then it is obvious that fk(x∗) > 0 for k = 1, ...,K. Thus, HD(x∗) is positive definite.

(ii) We define for i = 2, ...,K, x̃∗i =
x∗i−1+x∗i

2 , then the Voronoi region Vi(x
∗) = [x̃∗i , x̃

∗
i+1] for

i = 2, ...,K − 1, V1(x∗) = (−∞, x̃∗2] and VK(x∗) = [x̃∗K ,+∞).

For 2 ≤ i ≤ K − 1,

Li(x
∗) = Ai − 2Bi−1,i − 2Bi,i+1

= 2µ
(
Vi(x

∗)
)
− (x∗i − x∗i−1)f(

x∗i−1 + x∗i
2

)− (x∗i+1 − x∗i )f(
x∗i + x∗i+1

2
)

= 2µ
(
Vi(x

∗)
)
− 2(x∗i − x̃∗i )f(x̃∗i )− 2(x̃∗i+1 − x∗i )f(x̃∗i+1)

=
2

µ
(
Vi(x∗)

){µ(Vi(x∗))2 − [x∗iµ
(
Vi(x

∗)
)

− x̃∗iµ
(
Vi(x

∗)
)
]f(x̃∗i )− [x̃∗i+1µ

(
Vi(x

∗)
)
− x∗iµ

(
Vi(x

∗)
)
]f(x̃∗i+1)

}
=

2

µ
(
Vi(x∗)

){µ(Vi(x∗))2 − [

∫
Vi(x∗)

ξf(ξ)dξ − x̃∗i
∫
Vi(x∗)

f(ξ)dξ]f(x̃∗i )

− [x̃∗i+1

∫
Vi(x∗)

f(ξ)dξ −
∫
Vi(x∗)

ξf(ξ)dξ]f(x̃∗i+1)
} (

owing to (3.5)
)

=
2

µ
(
Vi(x∗)

){µ(Vi(x∗))2 − f(x̃∗i )

∫
Vi(x∗)

(ξ − x̃∗i )f(ξ)dξ + f(x̃∗i+1)

∫
Vi(x∗)

(ξ − x̃∗i+1)f(ξ)dξ
}
.

(5.31)

In order to study the positivity of Li(x
∗), we define a function ϕi(u) for any i ∈ {1, ...,K} and

for any u = (u1, ..., uK+1) ∈ F+
K+1 by

ϕi(u) :=
[ ∫ ui+1

ui

f(ξ)dξ
]2 − f(ui)

∫ ui+1

ui

(ξ − ui)f(ξ)dξ + f(ui+1)

∫ ui+1

ui

(ξ − ui+1)f(ξ)dξ, (5.32)

Lemma 5.2. If f is positive and differentiable and if log f is strictly concave, then for all u =

(u1, ..., uK+1) ∈ F+
K+1, we have the following results for ϕi(u) defined in (5.32),

(a) for every i = 1, ...,K, ϕi(u) > 0;

(b) ∂ϕ1

∂u1
(u) < 0;

(c) ∂ϕK
∂uK+1

(u) > 0.

Proof of lemma 5.2. For a fixed i ∈ {1, ...,K}, the partial derivatives of ϕi are

∂ϕi
∂ui

(u) = −2
[ ∫ ui+1

ui

f(ξ)dξ
]
f(ui)− f ′(ui)

∫ ui+1

ui

(ξ − ui)f(ξ)dξ + f(ui)f(ui+1)(ui+1 − ui)
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∂ϕi
∂ui+1

(u) = 2
[ ∫ ui+1

ui

f(ξ)dξ
]
f(ui+1) + f ′(ui+1)

∫ ui+1

ui

(ξ − ui+1)f(ξ)dξ

− f(ui)f(ui+1)(ui+1 − ui)
∂ϕi
∂ul

(u) = 0, for all l 6= i and l 6= i+ 1. (5.33)

The second derivatives of ϕi are

∂2ϕi
∂ui+1∂ui

(u) =
∂2ϕi

∂ui∂ui+1
(u) = −f(ui+1)f(ui) + (ui+1 − ui)

(
f(ui)f

′(ui+1)− f ′(ui)f(ui+1)
)

∂2ϕi
∂ul∂ui

(u) =
∂2ϕi
∂ui∂ul

(u) = 0 for all l 6= i and l 6= i+ 1. (5.34)

If log f is strictly concave, then (log f)′ =
f ′

f
is strictly decreasing. For u ∈ F+

K+1, we have

ui+1 > ui, then
f ′(ui+1)

f(ui+1)
− f ′(ui)

f(ui)
=

f ′(ui+1)f(ui)− f(ui+1)f ′(ui)

f(ui)f(ui+1)
< 0.

Thus f ′(ui+1)f(ui)− f(ui+1)f ′(ui) < 0 and from which one can get
∂2ϕi

∂ui+1∂ui
(u) < 0.

In fact, ϕi,
∂ϕi
∂ui

, ∂ϕi
∂ui+1

and ∂2ϕi
∂ui+1∂ui

only depend on the variables ui and ui+1.

(a) For 1 ≤ i ≤ K, ϕi(ui+1, ui+1) = 0. After the Mean value theorem, there exists γ ∈ (ui, ui+1)

such that
1

ui − ui+1

(
ϕi(ui, ui+1)− ϕi(ui+1, ui+1)

)
=
∂ϕi
∂ui

(γ, ui+1). (5.35)

Moreover, there exists ζ ∈ (γ, ui+1) such that

1

ui+1 − γ
(∂ϕi
∂ui

(γ, ui+1)− ∂ϕi
∂ui

(γ, γ)
)

=
∂2ϕi

∂ui+1∂ui
(γ, ζ).

As γ < ζ,
∂2ϕi

∂ui+1∂ui
(γ, ζ) < 0. Thus

∂ϕi
∂ui

(γ, ui+1) < 0, since
∂ϕi
∂ui

(γ, γ) = 0. Then ϕi(ui, ui+1) >

0 by applying
∂ϕi
∂ui

(γ, ui+1) < 0 in (5.35).

(b) After the Mean value theorem, there exists γ′ ∈ (u1, u2) such that

∂2ϕ1

∂u1∂u2
(u1, γ

′) =
1

u2 − u1

(∂ϕ1

∂u1
(u1, u2)− ∂ϕ1

∂u1
(u1, u1)

)
.

As
∂2ϕ1

∂u1∂u2
(u1, γ

′) < 0 and
∂ϕ1

∂u1
(u1, u1) = 0, one can get

∂ϕ1

∂u1
(u1, u2) < 0.

(c) In the same way, there exists ζ ′ ∈ (uK , uK+1) such that

∂2ϕK
∂uK∂uK+1

(ζ ′, uK+1) =
1

uK − uK+1

( ∂ϕK
∂uK+1

(uK , uK+1)− ∂ϕK
∂uK+1

(uK+1, uK+1)
)
.

As
∂2ϕK

∂uK∂uK+1
(ζ ′, uK+1) < 0 and

∂ϕK
∂uK+1

(uK+1, uK+1) = 0, one gets
∂ϕK
∂uK+1

(uK , uK+1) > 0.

Proof of Proposition 3.2, continuation. We set x̃∗,M := (−M, x̃∗2, ..., x̃
∗
K ,M) with M large enough

such that x̃∗,M ∈ F+
K+1, then for 2 ≤ i ≤ K− 1, Li(x

∗) = 2
µ(Vi(x∗))

ϕi(x̃
∗,M ). Thus Li(x

∗) > 0, i =
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2, ...,K − 1 owing to Lemma 5.2-(a).

For i = 1,

L1(x∗) = A1(x∗)− 2B1,2(x∗)

=
2

µ
(
V1(x∗)

){µ(V1(x∗)
)2 − f(x̃∗2)

∫
V1(x∗)

(x̃∗2 − ξ)f(ξ)dξ
}
.

If we denote D1(x∗) := µ
(
V1(x∗)

)2 − f(x̃∗2)
∫
V1(x∗)

(x̃∗2 − ξ)f(ξ)dξ, then

D1(x∗) = lim
M→+∞

ϕ1(x̃∗,M ) + f(−M)

∫
VM1 (x∗)

(
ξ − (−M)

)
f(ξ)dξ,

where VM1 (x∗) = [−M, x̃∗2].

For all M such that −M < x̃∗2, f(−M)

∫
VM1 (x∗)

(
ξ − (−M)

)
f(ξ)dξ > 0, then

lim
M→+∞

f(−M)

∫
VM1 (x∗)

(
ξ − (−M)

)
f(ξ)dξ ≥ 0.

It follows from Lemma 5.2-(b) that
∂ϕ1

∂u1
(u) < 0 for u ∈ F+

K+1, so that for a fixed M1 such that

x̃∗,M1 ∈ F+
K+1, we have ϕ1(x̃∗,M1) ≤ lim

M→+∞
ϕ1(x̃∗,M ). We also have ϕ1(x̃∗,M1) > 0 by applying

Lemma 5.2-(a). It follows that

D1(x∗) = lim
M→+∞

ϕ1(x̃∗,M ) + lim
M→+∞

f(−M)

∫
VM1 (x∗)

(
ξ − (−M)

)
f(ξ)dξ

≥ ϕ1(x̃∗,M1) + lim
M→+∞

f(−M)

∫
VM1 (x∗)

(
ξ − (−M)

)
f(ξ)dξ

> 0.

Then L1(x∗) =
2

µ
(
V1(x∗)

)D1(x∗) > 0.

The proof of LK(x∗) is similar by applying Lemma 5.2-(c). Thus HD(x∗) is positive definite

owing to Gershgorin circle theorem.

5.5 Appendix E: Proof of Theorem 4.1 - (b) and (c)

Proof of Theorem 4.1. (b) If µ has a c-th polynomial tail with c > d + p, then µ ∈ Pp(Rd). Let

X,X1, ..., Xn be i.i.d random variable with probability distribution µ. Then,

rn = ‖Rn‖22 = E
[

max (|X1| , ..., |Xn|)2
]

= E
[

max(|X1|p , ..., |Xn|p)2/p
]

≤E
([ n∑

i=1

|Xi|p
]2/p) ≤ [E( n∑

i=1

|Xi|p
)]2/p

=
[
nE |X|p

]2/p
= n2/p ‖X‖2p , (5.36)

where the last line is due to the fact that X1, ..., Xn have the same distribution as X. Moreover,

we have

ρK(µ) = K
p+d

d(c−p−d)γK with lim
K→+∞

γK = 1 (5.37)
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owing to (1.18). It follows from (4.18) that

E
[
D(x(n))−D(x)

]
≤ 2K√

n

[
3r2

2n +
(
(2m2) ∨ ρK(µ)

)
· ρK(µ)

]
since r2n ≥ m2 after the definitions of r2n and m2. In addition, (5.37) implies that ρK(µ)→ +∞
as K → +∞ and, for large enough K, ρK(µ) ≥ 2m2. Therefore,

E
[
D(x(n))−D(x)

]
≤2K√

n

(
3 · (2n)2/p ‖X‖2p + 3K

p+d
d(c−p−d)γK

)
=
K√
n

(
Cµ,p n

2/p + 6K
p+d

d(c−p−d)γK
)
,

where Cµ,p = 6 · 22/p ‖X‖2p and limK γK = 1.

(c) The distribution µ is assumed to have a hyper-exponential tail, that is, µ = f · λd with

f(ξ) = τ |ξ|c e−ϑ|ξ|κ for |ξ| large enough with c > −d. The real constant κ is assumed to be greater

than or equal to 2. Let X be a random variable with probability distribution µ. Therefore, for

every λ ∈ (0, ϑ), E eλ|X|κ < +∞ and

rn = ‖Rn‖22 = E
[

max(|X1| , ..., |Xn|)2
]

= E
[

max(|X1|κ , ..., |Xn|κ)2/κ
]

=E
([ 1

λ
log
(

max(eλ|X1|κ , ..., eλ|Xn|
κ

)
)]2/κ)

≤
Å

1

λ

ã2/κ [
logEmax(eλ|X1|κ , ..., eλ|Xn|

κ

)
]2/κ

≤
Å

1

λ

ã2/κ {
logE

[ n∑
i=1

eλ|Xi|
κ
]}2/κ

=

Å
1

λ

ã2/κ {
log(nE eλ|X|

κ

)
}2/κ

=

Å
1

λ

ã2/κ (
logE eλ|X|

κ

+ log n
)2/κ

, (5.38)

where the last line of (5.38) is due to the fact that X1, ..., Xn have the same distribution than X.

Under the same assumption as before, it follows from (1.19) that

ρK(µ) ≤ γK(logK)1/κ · 2ϑ−1/κ
(
1 +

2

d

)1/κ
with lim sup

K→+∞
γK ≤ 1. (5.39)

Moreover, it follows from (4.18) that

E
[
D(x(n))−D(x)

]
≤ 2K√

n

[
3r2

2n +
(
(2m2) ∨ ρK(µ)

)
· ρK(µ)

]
since r2n ≥ m2 after the definitions of r2n and m2. In addition, (5.39) implies that ρK(µ)→ +∞
as K → +∞ and, for large enough K, ρK(µ) ≥ 2m2. Therefore,

E
[
D(x(n))−D(x)

]
≤2K√

n

{
3 ·
(

1 ∨ log
(
2E eλ|X|

κ) )2/κ( 1

λ

)2/κ[
(log n)2/κ + 1

]}
+ 4ϑ−2/κγK(logK)2/κ

(
1 +

2

d

)2/κ
. (5.40)

Inequality (5.40) is true for all λ ∈ (0, ϑ). We may take λ = ϑ
2 . It follows that

E
[
D(x(n))−D(x)

]
≤ Cϑ,κ,µ ·

K√
n

[
1 + (log n)2/κ + γK(logK)2/κ

(
1 +

2

d

)2/κ]
, (5.41)

where Cϑ,κ,µ =
[
6
(

2
ϑ

)2/κ · (1 ∨ log 2E eϑ|X|κ/2)
]
∨ 8ϑ−2/κ and lim supK γK = 1.
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Multi-dimensional normal distribution is a special case of hyper-exponential tail distribution,

i.e. if µ = N (m,Σ), we have κ = 2, ϑ = 1
2 and c = 0. By the same reasoning as before,

E
[
D(x(n))−D(x)

]
≤ Cµ ·

K√
n

[
1 + log n+ γK logK

(
1 +

2

d

)]
,

where Cµ = 24·
(
1∨log 2E e|X|2/4

)
. When µ = N (0, Id), Cµ = 24(1+ d

2 )·log 2, since E e|X|2/4 = 2d/2

by the moment-generating function of a χ2 distribution.
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