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Abstract

The work addresses the optimization of specimen geometry in the context of parameter

identification from full-field measurements. For this purpose, we propose to use topology

optimization tools in order to maximize the sensitivity of the measured displacement field to

sought parameters, under volume fraction constraints and without any a priori information

on the specimen shape. The associated cost function is conveniently defined from sensitivity

fields which are directly available from the identification procedure. In addition, further

analyzes are conducted in order to fully set the theoretical and numerical aspects of the

methodology, and enhance both stability and convergence properties. Numerical experiments

illustrate the interest of the proposed approach, while its validation is performed from a real

identification test using a specimen with optimized topology.
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1. Introduction1

Parameter identification methods have become increasingly sophisticated and powerful2

in solid mechanics in order to qualify material behaviors at best and feed numerical simula-3

tions. Among the large scope of inverse identification methods, we focus here on those based4

on full-field measurements, i.e. performed from digital image correlation (DIC) using a single5

camera [34, 36], stereo image correlation (stereo-DIC) using several cameras [30], or digi-6

tal volume correlation (DVC) using X-ray microtomography or magnetic resonance imaging7

(MRI) [10]. Overviews of available identification techniques from such measurements can be8

found in [9, 33]. The exploitation of full-field measurements, initiated more than 30 years9

ago [40, 69] but widely studied and applied during the last two decades [42, 63, 61, 47, 38],10

constitutes a main breakthrough in the fields of material science and computational me-11

chanics [8, 70, 51]. It allows in particular to set up heterogeneous mechanical tests, with12

numerous (but noisy) measurement information, in order to identify parameters of complex13

constitutive models such as those used for composites [24, 11, 19, 31]. For instance, nowadays14

experiments on simple flat samples use, typically, 1000 16-bit images with up to 100-Mpixel15

definition for the measurement of 2D displacement fields, which provides for 2-200 Gbyte16

data sets. This is in opposition with classical tests in which homogeneity is assumed. Howe-17

ver, due to the large and eclectic amount of experimental data that may be obtained from18

full-field measurements (compared with classical measurement devices such as extensome-19

ters or strain gauges), an important and actual challenge is to extract from these data the20

part of information which is relevant for the identification objective [51]. In order to do so,21

one way consists in a filtering process when post-processing the large amount of data coming22

from DIC, so that only a small part of relevant data is conserved. Another option consists in23

devising the experimental protocol (specimen geometry, loading conditions and history) so24

that a limited amount of measured data constitutes very rich information for the identifica-25

tion purpose. In this latter framework, it is of interest to design optimal specimen on which26

to perform full-field measurements, maximizing the sensitivity of the obtained displacement27

field with respect to the sought parameters and therefore obtain an effective identification28
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procedure. This is the topic of the present work. We point out here that such a design of29

optimal specimen to be tested can not be performed for all material identification problems30

encountered in real-life applications. It can be conducted in practice for some specific ap-31

plications of interest allowing a sufficient flexibility on the specimen geometry, such as the32

identification of constitutive parameters and laws by means of research lab facilities ; this is33

the targeted application in the remainder of the paper.34

35

Until now, very few research works addressed the definition of specific specimen geome-36

try for identification from full-field measurements. These consider sub-optimal approaches37

in which the specimen shape is constrained a priori, i.e. the specimen topology is given,38

leading to a small number of design parameters to set. For instance, shape optimization in39

the context of DIC-FEMU or integrated DIC (IDIC) for parametrized specimen was recently40

carried out in [15, 50] considering the Poisson ratio identification with plates under biaxial41

traction, and with a small amount of design variables related to curvature radii. We also refer42

to [49, 28] for the design of heterogeneous tests adding holes to different samples shapes,43

to [45] for the design of cruciform sample geometries operated with bi-axial tensile devices,44

to [56] for the full design (loading and specimen geometry) of an original test in the context45

of stereo image correlation, enabling to identify several parameters of an anisotropic plastic46

constitutive model from only one test, or to [39] for the comparison of sensitivities to an47

internal length for a damage model from two different tests.48

In the present work we wish to go one step further by using topology optimization [13, 65,49

1, 14] and associated iterative optimization procedures in order to automatically define the50

spatial material distribution inside the working space (for given loading conditions and vo-51

lume fraction), so that a further optimized specimen shape is obtained without any a priori52

information on the topology. Consequently, the heterogeneity of the identification test is in53

this case fully induced by the definition of an original and optimized specimen geometry.54

This is, to the best of the authors knowledge, the first attempt to use topology optimization55

in conjunction with full-field measurements. We consider here two-dimensional problems ;56

the full-field measurements are obtained from DIC, and the identification procedure is per-57
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formed using the FEMU approach. The goal is thus to couple the DIC-FEMU technology58

with topology optimization, leading to the definition of specific specimen in which the mea-59

sured displacement field would be highly sensitive to the constitutive parameters of interest.60

Regarding the topology optimization procedure, we consider here the SIMP (Solid Isotropic61

Material with Penalization) approach, and we use the constrained optimization algorithm62

implemented in the top99.m Matlab code developed in [65]. The core of the research work63

consists in the definition of a convenient cost function based on sensitivity fields which may64

be recovered in a straightforward manner from Hessian matrices in DIC-FEMU. Additio-65

nal ingredients are then introduced in the cost function in order to enhance stability and66

convergence properties of the optimization procedure. Several issues, such as the setting of67

initial conditions or multi-parameter optimization, are also addressed. The performance of68

the approach is illustrated on several numerical examples, and an experimental validation69

of the optimized specimen is also shown.70

71

The remainder of the paper is organized as follows : in Section 2, basic aspects of DIC72

and FEMU methods for parameter identification from full-field measurements are recalled ;73

the coupling between DIC-FEMU and topology optimization, which is the main contribu-74

tion of the paper, is addressed in Section 3 ; several numerical experiments, as well as an75

experimental validation, are reported in Section 4 ; eventually, conclusions and prospects are76

drawn in Section 5.77

2. Basics on DIC and FEMU methods78

2.1. The DIC method for full-field measurement79

Digital image correlation (DIC) is a powerful technique used in solid mechanics to provide80

full-field displacement measurements from mechanical tests of materials and structures [69,81

34, 36]. It consists in registering two (or more) images of the same scene, that are large82

sets of pixels with distribution of gray level values (encoded over few bits, typically 8 to83

16, and stored as matrices), and extracting displacement fields that enable the best match84
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between the image frames. In practice, gray levels are given by a speckle applied to the85

target zone which provides irregular picture texture. In the following, we consider only two86

images : a reference image f(x) and a deformed image g(x) ; x denotes the discrete, and thus87

discontinuous, pixel (or voxel in 3D) position, while f and g refer to gray level magnitudes.88

In this framework, approaches to recover a measured displacement field u(x) from the two89

image frames are based on the local gray level conservation f(x) = g(x+u(x)). Considering90

a first-order Taylor expansion (small perturbations regime) and gradients at theoretical91

convergence (so that ∇g can be approximated with ∇f), this conservation can also be92

written as (see [36]) :93

f(x)− g(x)−∇f · u(x) = 0 (1)

or using an iterative sequential construction of u :94

f(x)− g̃(x)−∇f · δu(k)(x) = 0 (2)

with g̃(x) = g(x + u(k)(x)) the updated deformed image, and δu(k) = u(k+1) − u(k) the95

correction at iteration k.96

In all practical cases, the local gray level conservation is not strictly satisfied due to97

noise, so that regularization is required. A suitable norm ||f − g(.+ u)|| between the signal98

difference (gray level residual) is then chosen with respect to the noise [21] and minimized99

with respect to u. The usual choice of the L2-norm (mean quadratic gap) provides the100

correlation residual functional. Approaches for the computation of u(x) can then be split101

in two categories, depending on the domains on which the gray level residual is defined and102

the way the underlying ill-posed problem is regularized :103

• local DIC approaches (widely employed in commercial DIC codes) use a local mat-104

ching procedure on sub-images or zones of interest (ZOI), treated independently. The105

norm then reads :106 ∑
x∈ZOI

(f(x)− g(x + u(x)))2 (3)

When u is chosen constant locally, the minimization of (3) is equivalent to maximizing107

the cross-correlation (f∗g)(u) =
∑

x∈ZOI f(x)g(x+u). Classically, linear or quadratic108
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displacement fields are used for each ZOI, but the only output of the analysis is still109

the mean displacement at the middle of the ZOI. In local approaches, the small size110

of the ZOI naturally introduces a filtering of the displacement field and drives the111

measurement uncertainties ;112

• global DIC approaches use a norm defined over the whole measurement zone (region of113

interest or ROI), containing a large number Np of pixels, so that a global (nonlinear)114

correlation residual is minimized :115

1

Np

∑
x∈ROI

(f(x)− g(x + u(x)))2 (4)

This leads to a variational formulation with successive linearizations (using (2))116

and corrections (iterative Newton-Raphson scheme) in which a new picture g̃(x) =117

g(x + u(k)(x)) is constructed at each iteration using the current estimate u(k) at ite-118

ration k and (spline) gray level interpolations when sub-pixel resolutions are sought.119

As the minimization of (4) is ill-posed and can not be solved as such (the displa-120

cement is only detectable along the direction of ∇f), these last approaches require121

regularization such as Tikhonov regularization on gradients associated with u (glo-122

bal constraint of smoothness), regularization from the balance equations (equilibrium123

residual gap) [60], or regularization via the choice of a finite-dimensional kinematic124

subspace (decomposing u on a meaningful basis).125

Remark 1. Pixels being poor sensors, the covariance matrix Cn = [Cn(x, ξ)] of gray level126

noise for pixels x and ξ can be introduced in the global correlation residual. It leads to the127

minimization of the Mahalanobis distance between the two images :128

1

Np

∑
x∈ROI

∑
ξ∈ROI

(f(x)− g(x + u(x)))[Cn(x, ξ)]−1(f(ξ)− g(ξ + u(ξ))) (5)

which is optimal and refers to the maximum likelihood with Gaussian distributions [64]. As-129

suming white Gaussian (i.e. spatially uncorrelated) acquisition noise induces that [Cn(x, ξ)] =130

γ2
f [δ(x, ξ)] or Cn = γ2

fI where γf is the standard deviation of noise, so that the functional131
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reads132

1

2γ2
fNp

∑
x∈ROI

(f(x)− g(x + u(x)))2 (6)

Noise is assumed to affect each image f and g independently, which is responsible for the133

factor 1/2 coming as a multiplicative term in the functional. This is equivalent to reporting134

the noise on the deformed image g only and to increase it by a factor 2.135

In the following, we consider global DIC with regularization based on a finite element136

kinematic basis ; this approach is referred to as FE-DIC. We thus write u = NU, with N137

gathering the FEM basis functions and U denoting the vector of unknown nodal values.138

The linear system associated with the minimization, at each iteration k, of the quadratic139

functional issued from (2) and (4) thus reads :140

MDICδU
(k) = b

(k)
DIC (7)

with141

MDIC =
∑

x∈ROI

NT{∇f}{∇f}TN (symmetric positive DIC matrix, computed once for all)

b
(k)
DIC =

∑
x∈ROI

(f − g̃)NT{∇f} (residual vector updated at iteration k)

(8)

In the general case, the matrix MDIC is positive semi-definite. If the image contrast is142

sufficiently fine-scaled with respect to the element size, then MDIC may be positive definite143

and hence the problem is solvable. This condition also implies that the mesh cannot be144

arbitrarily fine, as along with fineness comes first ill-conditioning, and second ill-posedness145

(i.e. rank-deficient Hessian) as for the pixel-wise case.146

Furthermore, and even though it enables to better capture complex geometries and dis-147

placement fluctuations, increasing the spatial resolution with finer FE mesh also increases148

uncertainty (as fewer pixels are then available to determine the value of the kinematic dofs).149

An explicit characterization of the effect of image noise on displacement uncertainty can be150

introduced by evaluating the covariance matrix CU of the measured dofs. From (7), it is151
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straightforward (see [16, 62, 37]) that :152

〈δU〉 = 0 (no systematic bias) ; CU = 〈δU.δUT 〉 = 2γ2
fM−1

DIC (9)

which shows that the displacement noise is spatially correlated (M−1
DIC is not diagonal), and153

that zones with low contrast (such as small FE elements with few pixels per element) are154

particularly subjected to measurement uncertainties. Also, the measured displacement on155

nodes located on the boundary of the ROI are more sensitive to noise due to their reduced156

connectivity. Alternative approaches have been recently developed to overcome the tricky157

compromise between spatial resolution and uncertainty, such as multiscale approaches [54]158

or integrated methods (see Section 2.2.2).159

Remark 2. The correlation residual field provides a good indication on the quality of the160

obtained displacement u. It is ideally expected to consist of white noise, with a dimensionless161

variance of 1. Otherwise, correlation residuals may be used to locally enrich the kinematic162

basis (refining the mesh or adding richer basis functions such as those used in XFEM to163

describe discontinuities [59]).164

In brief, the outputs of DIC analysis are therefore a displacement field U over a kinematic165

basis, as well as the correlation residuals map and noise sensitivity (via the covariance matrix166

CU) which enable to adjust DIC parameters and to weigh the measured information as167

it should. These quantities constitute the inputs of the identification procedure described168

below.169

2.2. FEMU and I-DIC methods for identification from full-field measurements170

2.2.1. The FEMU method171

The measured displacement field, denoted um = NUm and previously obtained from172

global DIC, can be used for indirect identification of a model parameter vector p, each173

component of p being conveniently designed to be dimensionless (e.g. normalization with174

nominal values of the parameters). Among all possible identification methods available with175
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full-field measurements (see [9] for an overview), FEMU is probably the most popular one.176

In its FEMU-U version, it is an incremental method that aims at minimizing the gap bet-177

ween a simulated displacement field us (obtained from a FE computation with constitutive178

model parametrized by p and boundary conditions extracted from DIC) and the measured179

displacement field um. It thus consists in an iterative correction of a FE solution from mea-180

surements, by varying the parameter set p to be identified, and usually considering the same181

mesh to represent um and us.182

Denoting by NU the total number of kinematic dofs, the following cost function is introdu-183

ced :184

TU(p) =
1

NU

[Us(p)−Um]TC−1
U [Us(p)−Um] (10)

It uses an appropriate metric defined from the covariance matrix CU , which provides optimal185

robustness as it naturally propagates the impact of noise coming from images onto the186

uncertainty of the identified parameters [47]. An approximation of CU by means of a mass187

matrix (mean field assumption) may be sufficient and preferred in the definition of TU(p).188

Furthermore, the prefactor 1/NU is chosen so that, at convergence, noise in the measured189

displacement should by itself endow TU(p) = 1.190

The minimization of TU(p) can be conducted in an iterative way from a Gauss-Newton191

gradient descent. For that purpose, a first-order Taylor expansion is introduced :192

Us(p
(n) + δp(n)) = Us(p

(n)) + Spδp
(n) (11)

where δp(n) is the infinitesimal correction of p at iteration n, and Sp = ∂Us/∂p is the matrix193

of sensitivity fields (quantitative measurement of the sensitivity of the displacement field to194

the studied parameters) expressed in pixels. A Newton-Raphson scheme then provides for195

the following linear system at iteration n :196

HFEMUδp
(n) = b

(n)
FEMU (12)

with197

HFEMU = STpC−1
U Sp =

1

2γ2
f

STpMDICSp (Hessian matrix)

b
(n)
FEMU = STpC−1

U (Um −Us(p
(n)))

(13)
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The matrix HFEMU , which is the restriction of MDIC to the subspace generated by sensitivity198

fields, is smaller sized and better conditioned than MDIC . When the original system (12)199

remains badly conditioned, the Levenberg-Marquardt algorithm [46] with enhanced stability200

properties should be preferred to the Gauss-Newton one.201

202

At convergence, the fluctuating part δp of the identified parameters due to noise is203

δp = H−1
FEMUSTpC

−1
U (Um−Us(p)). The global covariance matrix of the identified parameters204

due to image noise thus reads :205

Cp = 〈δp.δpT 〉 = H−1
FEMU (14)

It enables to track down the uncertainties from the measurement step (pixel level) down206

to the identification step (parameter level). Accurate identification resulting from the good207

conditioning of the positive symmetric matrix HFEMU , several scalar criteria qualifying the208

robustness of multi-parameter identification can then be defined, such as : (i) maximizing209

the smallest eigenvalue of HFEMU (worst case) so that all parameters are determined accura-210

tely [15] ; (ii) maximizing the ratio between the smallest and the largest eigenvalues [28] ; (iii)211

considering the uncertainty volume det(HFEMU). We will refer to this point in Section 3.2.212

Remark 3. Reaction forces may also be measured and compared with computed resultants.213

Thus, an additional term can be added in the FEMU functional to minimize [15]. It is of214

the form :215

TF (p) =
1

NF

{Fs(p)− Fm}TC−1
Fm
{Fs(p)− Fm} (15)

where NF is the number of load cells, Fm the measured forces, Fs the computed reaction216

forces with respect to the parameter set p, and CFm the covariance matrix of the measured217

loads. The identification based on the combined displacement fields and reaction forces is218

then achieved by minimizing the global functional :219

TUF (p) =
NU

NU +NF

TU(p) +
NF

NU +NF

TF (p) (16)
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2.2.2. Integrated approach : I-DIC220

In the previously described two-step DIC-FEMU procedure, displacement data are only221

an intermediate quantity whose computation may imply constraints that are not ideal to222

FEMU. The idea in integrated DIC (I-DIC) is to merge measurement and identification223

procedures in a single step by using directly the images (rather than a measured displacement224

field) to determine material parameters. This allows standard FE codes to be used in a non-225

intrusive way. In the I-DIC framework, the gap between image frames f and g is minimized226

using a specific kinematics driven by a parametrized model (strong mechanical content),227

rather than simple standard FE representations. Dofs in DIC are therefore directly related228

to the parameters to be identified (elasticity parameters, stress intensity factors, . . .). The229

functional to be minimized reads :230

1

2γ2
f |Ω|

∑
x∈ROI

(f(x)− g(x + u(x,p)))2 (17)

It leads to the solution of linear systems of the form (at iteration n) :231

HIDICδp
(n) = b

(n)
IDIC (18)

with232

HIDIC = STpMDICSp (Hessian matrix) ; b
(n)
IDIC = STpb

(n)
DIC (19)

which indicates that I-DIC merely consists in projecting the nodal displacement field onto233

the sensitivity fields. In practice, the I-DIC procedure uses closed-form solutions which can234

be obtained analytically, from FEM, or from ROM (parametrized solutions). This may en-235

able to assess sensitivity fields very efficiently [43].236

237

In theory, if the same mesh is used in DIC and for the computation of sensitivity fields,238

the two-step DIC-FEMU procedure and the integrated I-DIC procedure (in which the DIC239

mesh has disappeared) should be equivalent. However, this is valid only for small amplitudes240

of noise, appropriate metric (weighting) in FEMU, and when the smallest element size is not241

critical for DIC. A fine mesh size is not a problem in I-DIC as only a few search directions242
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are chosen (i.e. dofs are not nodal displacements but unknown material parameters), so243

that the modeling error due to a coarse mesh can be avoided. Consequently, as long as the244

approximation error due to the mesh remains well below the uncertainty of DIC, a coarse245

mesh is beneficial, but a finer mesh can also be used with I-DIC if required (depending on246

the complexity of the sample geometry complexity or the picture contrast). In [43], it was247

proposed to choose the element size of the mesh in I-DIC as a decreasing fonction of the248

sensitivity to the studied parameters.249

Remark 4. In I-DIC, correlation residuals with appropriate normalization can be conve-250

niently used to assess the relevance of the mechanical model for explaining the observations.251

They can indeed be used to measure the quality of the identification and guide toward suc-252

cessive enrichment of the constitutive model to progressively reduce the experiment-model253

gap [50].254

In the next section, we design specimen geometries which maximize the sensitivity (and255

therefore minimize uncertainty) in the parameter identification step. This is performed using256

topology optimization associated to a suitable cost function based on eigenvalues of Hessian257

matrices HFEMU or HIDIC . As an illustration, we plot in Fig. 1 the numerical sensitivity fields258

with respect to the shear modulus G12 for three specimen (with different shapes) made of an259

orthotropic linear elastic material (with plane stress assumption, and uniformly distributed260

orthotropy direction) submitted to a pure traction loading with prescribed longitudinal261

displacement on the right side. On the one hand, and as expected, the first specimen with262

rectangular shape does not provide any piece of information for the identification of the263

parameter G12. On the other hand, the second specimen (rectangular shape with hole in264

the center) and third specimen (with unconventional geometry) generate an heterogeneous265

displacement field that makes it sensitive to G12. The geometry of the third specimen, in266

which sensitivity is the largest, has been designed using the topology optimization tools267

which are developed in this work. It leads to a gain of about 103 in the sensitivity compared268

to the specimen with a hole and with similar volume fraction.269

12



Figure 1: Comparison of sensitivity fields for three different specimen (from left to right) under traction

loading, with geometry, x component and y component of the sensitivity field (from top to bottom).
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3. Coupling between DIC-FEMU and topology optimization270

3.1. Background on topology optimization271

3.1.1. General framework272

Topology optimization, initiated in [12], is a well-known method for weight reductions273

of structures, which is a crucial issue in many structural engineering applications. It is also274

a tool of choice for the design of meta-materials by a suitable arrangement of the micro-275

structure [41, 23]. Basically, it is a mathematical process which consists in the automatic276

optimization of the material distribution in a given volume, under specific constraints and277

with respect to given optimality criteria (objective function). In practice, most applications278

consider structural stiffness as the cost function (minimization of the structural compliance),279

and constraints deal with volume fraction (total mass) in addition to solving the mechanical280

problem of interest with given loadings [65, 57]. When considering structures with isotropic281

materials, methodologies for topology optimization are abundant in the literature ; survey282

developments can be found in [66]. Two main approaches have been investigated so far :283

density-based methods and boundary variation methods. The first group of methods uses a284

local density variable to define if there should be solid material (variable set to 1) or void285

(variable set to 0) in subdomains of the structure. The discrete problem associated to den-286

sity variables is usually turned into a continuous one, leading to intermediate densities that287

may be difficult to interpret. Several penalization methods can then be used to steer the288

solution toward a discrete solid/void solution, among which SIMP (Solid Isotropic Material289

Penalization) [13], RAMP (Rational Approximation of Material Properties) [68], SINH [20],290

or SRV (using reciprocal variables) [29]. In the second group of methods, we refer to the level291

set method [2, 22] that uses a scalar function to represent the boundaries, and the phase292

field method [18] that uses a phase field function over a domain composed of two phases.293

Compared with density-based methods, boundary variation methods provide a clear contour294

of the shape and an explicit definition of geometrical parameters. They do not require a pe-295

nalization method, but the computation of topological gradients and the construction of296

complex interpolation schemes are necessary [52].297
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In the present work, a density-based method is used and the SIMP method is employed as a298

penalization method. This latter method has been applied to a broad range of applications299

and physical models [41, 72, 25, 32, 27, 26, 23] and is nowadays implemented in various300

commercial tools in the field of mechanics and multiphysics.301

3.1.2. Practical implementation302

In the SIMP method framework, we consider the methodology developed in [65, 7] for the303

structural stiffness maximization with two-dimensional applications and with plane stress304

assumption. The working space is divided in subdomains or elements e (usually defined from305

a regular mesh with Q4 elements), and the topology of the structure is parameterized by a306

set of density variables ρe ∈ [ρmin, 1], with ρmin > 0 (to keep the mechanical problem well-307

posed) that determines the presence or absence of material in each individual element e. A308

global structural stiffness maximization problem written as a compliance (or complementary309

energy) minimization problem is then treated, and a volume constraint is applied.310

Using the FE framework with a regular mesh made of Ne elements, and denoting by311

ρ = {ρe} the set of density variables, the cost function to be minimized reads :312

c(ρ) = UT (ρ)K(ρ)U(ρ) =
Ne∑
e=1

ργeU
T
eK0Ue (20)

U(ρ) is the vector of nodal displacements, solution of the mechanical FE problem K(ρ)U(ρ) =313

F, and K0 is the elementary stiffness matrix (with full material density). The penalty factor314

γ weighs the impact of material density changes in the stiffness, so that it enables to mo-315

dulate the black and white contrast in the optimized structure as well as the convergence316

speed of the optimization algorithm.317

Remark 5. In the previous context, gradients ∂c/∂ρe can be computed analytically, and it318

is easy to show that :319

∂c

∂ρe
= −γργ−1

e UT
eK0Ue (21)

Introducing the targeted volume fraction fv, the associated constraint reads V (ρ) = fvV0320
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with V0 the total volume of the working space and V (ρ) =
V0

Ne

Ne∑
e=1

ρe the actual material321

volume. The optimization procedure thus leads to a constrained minimization which is ad-322

dressed using the following Lagrangian functional with scalar Lagrange multiplier λ :323

L(ρ, λ) = c(ρ) + λ(V (ρ)− fvV0) (22)

The search of the saddle point of L leads to the solution of constrained minimization pro-324

blems. In practice, this search can be performed using various techniques dedicated to non-325

linear constrained minimizations. Among them, we mention the Sequential Linear Program-326

ming (SLP) performing sequential first order approximations [53], or the Methods of Mo-327

ving Asymptotes (MMA) [71]. Here, and as performed in [65], we use the optimality criteria328

method which is suited for the optimization of a simple energy functional with a single329

constraint. This is an iterative technique which defines an updated approximation λ(k) of330

the Lagrange multiplier at each iteration k using dichotomy.331

Additional tools are classically introduced in the topology optimization algorithm in order332

to improve stability and convergence properties. In particular, a filter that aims at smoo-333

thing density evolutions between neighboring elements (nonlocal effect) is employed [17].334

In the following, we use a filtering technique defined from a convolution matrix with terms335

Ĥ(e, e∗) = 〈rmin − dist(e, e∗)〉+, e and e∗ denoting two elements of the grid, and rmin being336

the maximal distance where Ĥ is non-zero (i.e. parameter that selects the spatial influence337

of the filter). Gradients of the cost function are then weighted (from distances between338

elements) and changed as :339

∂̂c

∂ρe
=

1

ρe
∑Ne

e∗=1 Ĥ(e, e∗)

Ne∑
e∗=1

Ĥ(e, e∗)ρe∗
∂c

∂ρe∗
(23)

A sketch of the resulting global topology optimization algorithm is given in Fig. 2. For340

this latter algorithm, the initial guess is usually chosen as ρe = fv for all e (homogeneous341

material distribution). An illustrative example of the application of the algorithm is given342

in AppendixA.343
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Initial	design

FEM	Analysis

Sensitivity	 analysis
(what	happens	when	the	design	changes	a	little)

Updating	(optimization	step)

Satisfied	?

Plot	results	&	Stop

Figure 2: Global algorithm for topology optimization.

3.1.3. Illustrative comments on the cost function344

We now briefly investigate the mathematical properties of the cost function c(ρ) defi-345

ned in (20) from the structural compliance. The goal here is to highlight the theoretical346

background that makes classical topology optimization mathematically sound, in order to347

address the design of a convenient cost function when coupling with the DIC-FEMU proce-348

dure presented in Section 2.349

To keep the analysis simple and analytical, we consider a 1D problem. It consists in a set350

of three beams of same length L and section S, clamped at x = 0 and subject to a global351

traction loading F at x = L (Fig. 3). The Young modulus of the structural material is352

denoted E, while density variables are denoted ρ1 (central beam) and ρ2 (top and bottom353

beams, using symmetry). Consequently, the vector of density variables is ρ = [ρ1, ρ2]T and354

the volume fraction constraint reads
1

3
(ρ1 + ρ2 + ρ3) = fv in this specific case. The analyti-355

cal solution of the problem leads to the following expression for the compliance cost function356
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Figure 3: Definition of the 1D example (left) and evolution of the cost function c∗(ρ1) for several values of

γ (right).

(using the definition (20)) :357

c(ρ1) =
F 2L

ES

1

ργ1 + 2(3fv−ρ1
2

)γ
=
F 2L

ES
c∗(ρ1) (24)

For fv = 0.5, the evolution of c∗(ρ1) is shown in Fig. 3 with respect to ρ1 ∈ [ρmin, 1] and for358

several values of the penalty factor γ (γ=2, 3, or 4). We clearly observe that the shape and359

gradients of c(ρ1) over the constrained space [ρmin, 1] (or [ρmin, 1]Ne−1 in the general case)360

naturally drives density variables close to 0 or 1, which is beneficial for the stability and361

convergence of the topology optimization algorithm.362

3.2. Procedure for topology optimization dedicated to parameter identification363

3.2.1. General idea364

We now wish to use topology optimization for the design of specimen that optimize365

performance in specific parameter identification. The goal is that, for such specimen, hete-366

rogeneity be created from an unconventional geometry, and the measured displacement field367

be highly sensitive to the constitutive parameters of interest. This requires the setting of368

a scalar cost function which is related to sensitivity with respect to these parameters. For369

that purpose, sensitivity fields which are available once the identification process has been370
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performed constitute rich information ; they indicate where the experiment is sensitive to371

parameters.372

Remark 6. It is important to recall that sensitivity fields Sp = ∂Us/∂p can be computed373

before performing any experiment. Their computation is based on FE analysis and the finite374

difference method (see (11)). This leads to fields initially defined at each node of the mesh,375

which can then be interpolated over the spatial domain using various approaches. We also376

note that alternative numerical strategies providing an efficient derivation of sensibility fields377

may be found, such as those based on virtual body forces or on reduced order modeling [50,378

51] ; they are not considered here.379

As explained in Section 2.2, uncertainty in the parameter identification performed from380

DIC-FEMU (or I-DIC) can be minimized by maximizing eigenvalues λHi of the Hessian381

matrix HFEMU = STpC−1
U Sp which is related to sensitivity fields. Consequently, when consi-382

dering identification of a single parameter p, the cost function c(ρ) to be minimized in the383

topology optimization algorithm should involve 1/λH with λH = STpC−1
U Sp. In the case of384

multiparameter identification such as performed in [55], a choice is to involve 1/min(λHi )385

or max(λHi )/min(λHi ) depending on boundary conditions [28, 15]. These two quantities are386

equivalent when the maximal displacement is given in the problem, but the second one387

avoids divergence issues in the contrary case (e.g. free boundaries). An alternative choice is388

to involve 1/det(HFEMU) = 1/
∏

i λ
H
i . We point out that the choice of cost function, when389

considering multi-parameter identification, is fundamental as it will lead to different optimi-390

zed topologies with compromise between sensitivities to each individual parameter (see the391

illustration in AppendixA.2 for classical topology optimization).392

An illustration of the use of eigenvalues of the Hessian matrix in a cost function is given393

in AppendixB ; it is implemented for simpler shape optimization with few design variables.394

395

When dealing with topology optimization, we propose to replace the initial algorithm396

described in Fig. 2 with a new one described in Fig. 4. In this new algorithm, the FE analysis397
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Initial	design

DIC-FEMU	analysis

Gradients	computation	 :	sensitivity	of	the	
displacement	field	w.r.t	the	parameters

Updating	:	optimization of	the	
shape	of	the	specimen

Satisfied	?

Stop

Figure 4: New algorithm for topology optimization dedicated to optimal parameter identification.

(that classically computes structural stiffness/compliance, or effective properties of a micro-398

structure) is replaced with a (DIC-)FEMU or I-DIC analysis in order to compute sensitivity399

fields and eigenvalues of the Hessian matrix HFEMU to be used in the cost function. These400

are recomputed each time the specimen geometry changes in the iterative algorithm. Other401

parts of the algorithm (optimization method, filtering procedure) are kept unchanged. The402

meaning of the density vector ρ is also unchanged (it does not refer to densities of measure-403

ments). As material density variables ρe are used to compute the FE displacement Us, they404

are naturally involved as weights in the definition of sensitivity fields.405

Remark 7. To avoid any misleading, we will refer to gradients rather than sensitivities406

(which are already used in FEMU) when dealing with derivatives of the cost function c(ρ)407

with respect to elementary density variables ρe. Usually, there is no analytical expression408

of these gradients when merging topology optimization with DIC-FEMU, due to a complex409

and implicit relation between the cost function c and density variables. In practice, gradients410

will be numerically computed using a finite difference approximation.411
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Figure 5: Evolution of the cost function with respect to iterations.

Remark 8. In this pre-conception phase of the specimen, the matrix C−1
U is unknown as no412

full-field measurement is available. For the computation of the Hessian matrix, it is replaced413

with C−1

U = (1/2γ2
f )
∑

eNTN (mean field approximation).414

3.2.2. Setting convenient cost functions415

We now wish to design convenient cost functions that enable stability and convergence in416

the topology optimization process when dealing with parameter sensitivity. In this context,417

it is important to recover similar mathematical properties as these exhibited in Section 3.1.3418

when dealing with classical topology optimization. Indeed, considering again the 2D traction419

test shown in Fig. 1 and optimizing sensitivity with respect to the shear modulus G12, a420

natural choice of the cost function c(ρ) =
1

STG12
C−1

U SG12

leads to the convergence curve shown421

in Fig. 5. We observe oscillations which are due to the fact that the previous cost function422

is far from concave, with slight changes around local minima for some ranges of density423

variables. This favors the occurence of gray zones in the optimized topology, with unstable424

effects and convergence difficulties. Consequently, enhancements should be introduced in the425

definition of c(ρ) to get better numerical properties.426

427

In order to come back to the convenient mathematical background of classical topology428

optimization, we propose to introduce in the cost function a penalization term that forces429
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Figure 6: Plot of various possible penalization functions h(ρ) over [ρmin, 1].

density variables to go close to 0 or 1. It is chosen of the form (for a single identified430

parameter) :431

c(ρ) =
1

λH
+ κ

Ne∑
e=1

exp

(
2− 2

1− (2ρe − 1)2

)
(25)

The chosen penalization function h(ρ) = exp
(

2− 2
1−(2ρ−1)2

)
in each element is plotted in432

Fig. 6. The obtained bell curve allows : (1) a clearer material distribution by forcing density433

variables to go close to 0 or 1 ; (2) possible changes for density variables that would initially434

be close to 0 or 1, as it exhibits small gradients close to 0 or 1, contrary to alternative435

possible penalization functions such as h∗(ρ) = [ρ(1− ρ)]r which present stronger gradients436

in these regions (Fig. 6). In other words, we choose here a regularization that proposes an437

essential singularity in 0 and 1 (h and h(n) vanish at these points), which prevents from438

degeneration ranges in density.439

The scalar penalty parameter κ in (25) should be conveniently chosen, as in any pena-440

lization method, to obtain smooth convergence. In the following, it will be chosen constant441

along the optimization process (even though it could also be dynamically changed, and in442

particular increased at the end of the process to force binarity and clean the optimized443

geometry). Furthermore, the initial configuration of the material distribution should also444

conveniently set in order to converge to a global minimum. These aspects will be addressed445
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in Section 4 from numerical experiments.446

4. Numerical results447

In this section, we design and analyze performance of the proposed approach on several448

numerical experiments. They are all based on two-dimensional test-cases with linear elastic449

materials and plane stress assumption. During the iterative process described in Fig. 4,450

gradients of c(ρ) were obtained using the finite difference method. For each elementary451

density, we thus considered ∂c/∂ρe ≈ (c(ρ+ δρeIe)− c(ρ))/δρe with Ie the vector of size Ne452

with component 1 in line e and 0 elsewhere, and we chose δρe = 0.001 in practice.453

All numerical results dealing with topology optimization were obtained from a home-made454

Matlab software, while the Correli software (under patent [44]) was used to perform DIC.455

4.1. Optimization for Young’s modulus identification in a uniaxial case456

For validation purposes, we first consider a simple case where the goal is to identify457

the Young modulus E of an isotropic material alone from a uniaxial test (see Figure 7458

where boundary conditions are indicated). The topology optimization procedure starts with459

a random distribution of the material inside a rectangular domain split in 40× 20 squared460

elements of equal size. We choose κ = 0 (no penalization), γ = 3, and fv = 0.6. Consequently,461

the cost function which is considered for topology optimization reads :462

c(ρ) =
1

STEC
−1

U SE
(26)

Along the iterations, this cost function is decreased by modifying the material distribution463

and the approach tends, as expected, to the rectangular optimal shape with homogenous464

material density (equal to 0.6). The material distribution is shown in Figure 7 for different465

iterations of the algorithm.466

We observe in Figure 8 that a large increase (factor 104) in the sensitivity is then obtained,467

so that the performance of FEMU identification is optimized. We also observe that the468

convergence of the topology optimization method is very fast as the optimized shape is469
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reached after 5 iterations only. Similar results were obtained from alternative initial material470

distributions.471
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Figure 7: Initial configuration with boundary conditions (top left), and material distribution at iteration 2

(top right), iteration 4 (bottom left), and iteration 5 (bottom right).
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Figure 8: Evolution of the value of the cost function along the iterations of the algorithm.
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4.2. Realistic application with experimental validation472

We now consider a two-dimensional traction test-case with orthotropic linear elastic473

material such as defined in Fig. 1. The orthotropy direction is assumed to be uniformly474

distributed and fixed during the optimization procedure. The identified material parameter is475

here the shear modulus G12 alone, which is a quite complex parameter to identify in practice.476

Consequently, the cost function which is considered for topology optimization reads :477

c(ρ) =
1

STG12
C−1

U SG12

+ κ
Ne∑
e=1

exp

(
2− 2

1− (2ρe − 1)2

)
(27)

4.2.1. Setting parameters of the cost function478

We first investigate the setting or parameters γ and κ, in order to define the best couple479

of values in terms of convergence, stability, and contrast in the optimized geometry. As an480

initial guess, we consider a rectangular geometry of the specimen in which material density481

is homogeneous and equal to fv. It is split in 30× 15 squared elements of equal size. Out of482

G12 to be identified, material parameters are set to E1 = E2 = 1, and ν12 = 0.3.483

The filter parameter is set to rmin = 1.5. Considering fv = 0.6, we take γ in the range [2, 3, 4]484

and κ in the range [0.01, 0.1, 1]. Optimization results are reported in Fig. 9 ; they show the485

convergence of the cost function along the iterations, for several configurations. We observe486

that selecting κ = 0.1 and γ = 3 seems to be the best option ; we will consider this couple of487

values in the remainder of this section. We also indicate that taking γ = 1 would give here488

very poor results, so that the joint use of the penalization function (introduced in Section489

3.2.2) and the power law (classically used in the SIMP approach) seems mandatory.490

Keeping the same example, we now investigate the choice of the initial guess in the opti-491

mization algorithm, as it may influence the obtained solution (with convergence to specific492

local or global minima). We analyze three cases (see Fig. 10) :493

— random material distribution ;494

— checkerboard material distribution ;495

— uniform material distribution.496

Results obtained from these three cases of initial conditions are reported in Fig. 11 ; they497

show similar patterns in the obtained optimal material distribution. Furthermore, the diffe-498
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Figure 9: Results obtained for several sets of parameters (γ, κ) using a logarithmic vertical scale.

Figure 10: The three material distributions used as initial guess : random, checkerboard, uniform (from

left to right).
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Figure 11: Optimal material distribution obtained from the three investigated initial conditions : (a) random

material distribution ; (b) checkerboard material distribution ; (c) uniform material distribution.

rence in the final value of the cost function for the three cases is under 3%. This consolidates499

the opinion on the robustness of the approach. We will consider a checkerboard material500

distribution as the initial guess in the remainder of this section.501

4.2.2. Full optimization of the specimen502

With the previously set parameters of the method, we now consider the maximization503

of sensitivity with respect to the shear modulus G12 on a working space discretized with504

50 × 25 squared elements of equal size. Considering fv = 0.8, the optimization results are505

shown in Fig. 12. We display sensitivity fields ∂U
∂G12
· e1 and ∂U

∂G12
· e2, along directions e1 and506

e2 respectively, for the optimized specimen. We note that the optimized geometry (density507

map) has been filtered for representation. The CPU time to obtain this optimized topology508

was about 10 hours on a laptop with single processor. Nevertheless, and even though it is509

not the focus of the paper, it could be easily decreased by further optimizing the numerical510

procedure (for instance by interpolating gradients between selected computed points) or511

resorting to parallel computing for the computation of the gradients.512

We observe that the optimized specimen is very sensitive to G12, even though there is a513

lack of physical meaning with a small part of material which is not linked to the remainder514

of the structure after filtering (in the non-filtered geometry, there were low densities which515

were removed after filtering).516

4.2.3. Experimental validation of the optimized specimen geometry517

In this last section, we perform the experimental validation of the optimized specimen ob-518

tained in Section 4.2.2. Contrary to previous studies in which measurements were synthetic,519
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Figure 12: Geometry (left) and sensitivity fields with respect to G12 (center and right) obtained from the

optimized specimen.

Figure 13: CAD model of the optimized specimen using CATIA (left) and manufactured specimen with

applied speckle (right).

we now set up an experimental test from the optimized specimen and boundary conditions520

defined in the numerical analysis. We then apply the DIC-FEMU procedure for parameter521

identification.522

523

A first step is to manufacture the specimen. For this purpose, and starting from the524

optimized solution given by the optimization methodology (global idea of the final manufac-525

turable structure), a further step of transfer of the solution into a CAD model is required.526

This is performed using the Catia software, which gives the CAD model shown in Fig. 13.527

The geometry, which is not conventional, can then be realized using a laser cutting machine.528

We point out here that a filtered geometry was considered, removing the internal isolated529

region for manufacturing issues, and therefore slightly modifying the volume fraction. The530
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Figure 14: Sensitivity fields with respect to G12 obtained after removing the internal isolated region from

the optimized specimen.

associated sensitivity fields are shown in Fig. 14 ; they are very similar to those shown in531

Fig. 12 for the original optimized topology, and the corresponding change in the cost function532

value (normalized by the volume fraction) is then less than 2%.533

The chosen orthotropic material is fir wood (which is quite homogeneous) and wood534

parts without any apparent defect are carefully selected in order to be in line with a uniform535

distribution of orthotropy directions ; the orientation of wood fibers then corresponds to536

an orthotropy direction. Full classical specimen are also constructed in order to perform537

comparisons in sensitivities. The obtained specimens, with a speckle applied on faces, are538

shown in Fig. 13.539

The second step consists in applying DIC to the specimens in order to obtain a measured540

displacement field. An INSTRON compression machine is used to perform tests (Fig. 15). In541

practice, boundaries of the specimen are clamped on the jaws during the experimental test.542

Therefore, in order to reproduce similar boundary conditions as in the traction numerical543

test (with free vertical displacement on the right side, see Fig. 1), it is chosen to double the544

specimen and to use symmetry properties to recover such boundary conditions experimen-545

tally.546

A Nikon 24.5 objective is used on the camera with 700×300 pixels and a pixel size of 100 µm.547

The analysis of a first set of 10 unloaded images enables one to recover the initial state and548

information on the measurement noise. DIC is then performed from the Correli software [35].549
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Figure 15: Experimental device used for DIC.

Figure 16: Results of the DIC process : mesh (left), and longitudinal and lateral displacements (center and

right) projected on the deformed geometry (with amplification) of the optimized specimen.

The obtained displacement field (transverse component) for the optimized and doubled spe-550

cimen is given in Fig. 16 ; it illustrates the originality of the designed specimen, which creates551

dissymmetric and heterogenous fields.552

The third and last step consists in identifying the material parameter G12 using the553

FEMU approach (see Section 2.2). The displacement field and boundary conditions extrac-554

ted from DIC are used to drive the identification process.555

Running the identification process then requires to minimize the FEMU cost function. The556

plot of this (normalized) cost function with respect to the value of G12 is reported in Fig. 17,557
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Figure 17: Evolution of the cost function (normalized with its minimum, and with log scale on the vertical

axis) with respect to G12, for the optimized specimen (left) and the full standard specimen (right).

for both optimized and standard (i.e. rectangular) specimens. It is interesting to notice that558

in the standard case, due to the compression test realized, a minimum of the cost function559

should not exist as the shear modulus G12 can not be identified from a pure uniaxial trac-560

tion/compresion test along a main direction of orthotropy. However, imperfect experimental561

boundary conditions coming from DIC are used for the numerical simulations in FEMU, so562

that a uniaxial compression is not simulated in practice (bias in the symmetry) and a low563

sensitivity to shear is found ; however, it is 2000 times smaller than that of the optimized564

specimen.565

From Fig. 17, we also notice that the uncertainty (or confidence interval) on the identified566

parameter is very small for the optimized specimen compared to the standard specimen ;567

this is shown by the strong curvature around the minimum of the cost function. The clear568

minimum obtained for identification from the optimized specimen is in accordance with the569

initial objective of the work. It shows that topology optimization in the context of parame-570

ter identification and with a cost function related to sensitivity fields is both relevant and571

effective. Indeed, if a FEMU method were to be implemented from the optimized specimen572

(using in practice a gradient descent), it would converge much faster as the gradient of the573

curve, which is the FEMU sensitivity, is much steeper.574
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4.3. Optimization for multi-parameter identification575

As a last example, and in order to show the robustness of the method, we apply the576

optimization algorithm for a specimen dedicated to the identification of several material577

parameters. The considered mechanical problem is similar to that considered in Section 4.2,578

with a homogeneous orthotropic behavior and a pure traction loading with prescribed longi-579

tudinal displacement on the right side (see Figure 7). However, the four material parameters580

E1, E2, ν12, and G12 are now identified from full-field measurements. The cost function which581

is chosen reads :582

c(ρ) =
1

min(λHi )
+ κ

Ne∑
e=1

exp

(
2− 2

1− (2ρe − 1)2

)
(28)

where λHi are eigenvalues of the Hessian matrix HFEMU = STpC
−1

U Sp. We choose κ = 0.5,583

γ = 3, and fv = 0.8.584

Splitting the initial rectangular domain in 30 × 15 squared elements of equal size, results585

of the optimization algorithm are given in Fig. 18. They show a fast convergence of the586

procedure (the asymptotic regime is reached after 12 iterations only), with a final sensitivity587

of the specimen increased by a factor 10. Moreover, the algorithm leads to a physically588

acceptable material distribution, i.e. optimal specimen geometry, as it indicates that the589

regions of the working space which need to be considered as solid (black zones in Figure 18)590

are located along the upper and lower boundaries (which is consistent with the identification591

of Young moduli) as well as along 3 bands with 45-degree angle (which is consistent with592

the identification of the shear modulus). The white and light grey zones would be removed593

when manufacturing the optimal specimen.594
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Figure 18: Optimal material distribution obtained at convergence (left), and evolution of the value of the

cost function along the iterations of the algorithm.

5. Conclusions and prospects595

In this paper, we investigated the use of topology optimization in order to optimize596

sensitivity when performing parameter identification from the DIC-FEMU framework. We597

described in details how the implementation could be performed, focusing in particular on a598

convenient definition of the optimality criterion. Numerical results and experimental valida-599

tion confirmed the performance of the approach. The research work thus appears as a novel600

contribution in the literature of full-field measurements and topology optimization, provi-601

ding a practical tool of interest for engineers investigating experimental design and willing602

to optimize the quality of information extracted from their experimental campaign. Never-603

theless, the proposed procedure is associated with several limitations which were pointed604

out in the numerical results. In particular, numerical parameters should be conveniently set605

to ensure fast convergence, numerical costs may be high, and there is a strong issue to tackle606

regarding the physical feasibility of some shapes provided by the method. Consequently,607

the proposed method paves the way for further research studies that may circumvent these608

current limitations ; we can list :609

— the use of other topology optimization procedures such as those based on level sets [3] ;610

— the use of alternative optimization algorithms, such as those based on stochastic611
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formulations (simulated annealing method, genetic algorithms, . . .) which are suited612

to problems with very high multiplicity of minima and with a hierarchical structure.613

These may be simpler to implement (no computation of gradients) and may avoid614

geometry filtering, but they also may lead to a larger number of iterations ;615

— the implementation of relaxation techniques to further improve convergence proper-616

ties of the optimization process ;617

— the introduction of additional constraints in the cost function, related for instance618

to the maximal admissible stress in the structure (avoid tiny parts), to machining619

capabilities and manufacturing constraints [67, 4, 5], or to smoother boundaries of620

the optimized specimen with control of curvatures ;621

— the application of the procedure to nonlinear material behaviors such as plasticity.622

In this context, tools exist to directly link IDIC in Correli 3.0 with the Abaqus623

software [44] ; they could be advantageously used ;624

— the use of reduced order modeling (ROM) techniques in order to improve computa-625

tional costs, as initiated in [50] or discussed in [51].626

All these aspects will be the topics of forthcoming research works.627
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AppendixA. Illustrative implementations of the SIMP topology optimization631

algorithm632

AppendixA.1. Influence of the algorithm parameters633

We consider a simple example on a working space defined as a cantilever beam (Fig. A.19).634

It is clamped on the left and submitted to a unit flexion force on its bottom right corner.635

The remainder part of the domain boundary is free. Defining the volume fraction fv = 0.5,636

the iterative algorithm leads to the optimized geometry given in Fig. A.19. We also illustrate637
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Figure A.19: Illustrative problem with optimal geometry defined from topology optimization.
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Figure A.20: Influence of the penalty factor on the optimized geometry, with γ = 5 (left) and γ = 0.5

(right).

in Fig. A.20 and Fig. A.21, respectively, the influence of the penalty factor (with γ = 5 and638

γ = 0.5) and the filtering process (with several values of rmin).639

AppendixA.2. Influence of the optimality criterion640

The choice of optimality criterion is fundamental as it will lead to different optimized641

topologies. This is illustrated in Fig. A.22 when using topology optimization to maximize642

one the three inertia moments in a square domain:643

Ix =

∫
Ω

µy2dΩ Iy =

∫
Ω

µx2dΩ Iz =

∫
Ω

µ(x2 + y2)dΩ (A.1)

with given volume fraction fv = 0.5.644
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Figure A.21: Impact of the filtering on the optimized geometry, with rmin = 1 (left), rmin = 1.5 (center),

and rmin = 4 (right).
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Figure A.22: Optimization results with respect to inertia moments Ix (left), Iy (center), and Iz (right).

AppendixB. Optimal placement of a hole in a plate645

We perform optimization of parameter sensitivity using few design variables, not a large646

amount of density variables as in the general topology optimization methodology. The647

goal is to ensure that the connexion between DIC-FEMU (that defines the cost function)648

and a standard minimization algorithm is correctly set. Consequently, we perform shape649

optimization rather than topology optimization here.650

We consider a rectangular specimen, made of an isotropic linear elastic material, in which651

a hole is created. The objective is to define the radius r and the position (d1, d2) (in the652

Cartesian coordinate system (O, e1, e2)) of the center of the hole so that the sensitivity with653

respect to the Poisson ratio ν (or the Young modulus E) is maximized. From the FEMU654

Hessian matrix, we thus define the following cost function depending on the design variables655
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Figure B.23: Map of the optimality criterion over the space (d1, d2), for several values of r.

set q = [d1, d2, r]
T :656

c(q) =
1

STνC
−1

U Sν
(or c(q) =

1

STEC
−1

U SE
) (B.1)

The problem then reads:657

qsol = argminqc(q) (B.2)

The evolution of the optimality criterion 1/c(q) over the design space is given in Fig. B.23;658

each map in the (d1, d2) space corresponds to a fixed value of r (the upper map corresponds659

to the smallest value or r considered). We clearly observe that there is a global maximum660

(two from symmetry), which is convenient for the convergence of the optimization algo-661

rithm. In the following, we consider the optimization of the design variables (d1, d2) alone,662

the radius r being given and fixed. In addition, the design space is restricted to a subset of663

the initial rectangle (with size L1×L2) in order to ensure that the hole fully remains in the664

working physical domain.665

666

In order to perform minimization of c(q), we use a Newton-Raphson algorithm. Intro-667

ducing the variation δq in the design variables set, a first-order Taylor expansion applied to668

the cost function reads:669

(c(q + δq))2 =

(
c(q) +

∂c

∂q

T

δq

)T (
c(q) +

∂c

∂q

T

δq

)
= c(q)2 + 2c(q)δqT

∂c

∂q
+ δqT

∂c

∂q

∂c

∂q

T

δq

(B.3)
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so that the condition ∂c(q+δq)
∂δq

= 0 yields:670

c(q)
∂c

∂q
+
∂c

∂q

∂c

∂q

T

δq = 0 =⇒ δq = −c(q)

[
∂c

∂q

∂c

∂q

T]−1
∂c

∂q
(B.4)

However, numerical experiments show that this approach leads to a badly conditioned sys-671

tem. We thus prefer an alternative approach in which the Taylor expansion is directly672

applied to the sensitivity field. It reads:673

S(q + δq) = S(q) +
∂S
∂q
δq (B.5)

so that the cost function becomes:674

c(q + δq) =
1(

S(q) + ∂S
∂q
δq
)T (

S(q) + ∂S
∂q
δq
) (B.6)

Taking derivative and imposing it to zero leads to:675

δq = −
[
∂S
∂q

T ∂S
∂q

]−1
∂S
∂q

T

S(q) (B.7)

At each iteration n of the optimization algorithm, δq(n) is computed and the design variables676

set is updated as q(n+1) = q(n) + δq(n). Iterations are stopped when variations are small i.e.677

||δq(n)|| ≤ ε where ε is a given value.678

679

We apply the algorithm for a radius r = L2/6. Results are given in Fig. B.24; we show the680

evolution of the hole position and that of the value of the cost function along the iterations.681
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Figure B.24: Optimization results for the location of the hole from an initial position: trajectory of the

center (top, in red) and value of the cost function (bottom) along the iterations.

We observe that there is a clear convergence to a local minimum in a rapid and effective682

manner. Oscillations which can be observed in the value of the cost function are purely due683

to geometrical reasons. Indeed, the hole is defined from pixels which induces that the shape684

of the hole surface numerically evolves during the iterations.685
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[43] H. Leclerc, J-N. Périé, S. Roux, F. Hild, Integrated digital image correlation for the identification of778

mechanical properties. MIRAGE 2009, Lecture Notes in Computer Science 2009; 5496:161–171.779

[44] H. Leclerc, J. Neggers, F. Mathieu, F. Hild, S. Roux, Correli 3.0.780

IDDN.FR.001.520008.000.S.P.2015.000.31500, Agence pour la Protection des Programmes, Paris781

2015.782

[45] D. Lecompte, A. Smits, H. Sol, J. Vantomme, D. Van Hemelrijck, Mixed numerical-experimental783

technique for orthotropic parameter identification using biaxial tensile test on cruciform specimens.784

International Journal of Solids and Structures 2007; 44:1643–1656.785

[46] K. Levenberg, A method for the solution of certain nonlinear problems in least squares. Quarterly of786

Applied Mathematics 1944; 2(2):164–168.787

[47] F. Mathieu, H. Leclerc, F. Hild, S. Roux, Estimation of elastoplastic parameters via weighted FEMU788

and integrated-DIC. Experimental Mechanics 2015; 55:105–119.789

[48] N. McCormick, J. Lord, Digital image correlation. Materials today 2010; 13(12):52–54.790

[49] J. Molimard, R. Le Riche, A. vautrin, J.R. Lee, Identification of the four orthotropic plate stiffnesses791

using a single open-hole tensile test. Experimental Mechanics 2005; 45:404–411.792

[50] J. Neggers, F. Mathieu, F. Hild, S. Roux, N. Swiergiel, Improving full-field identification using pro-793

gressive model enrichments. International Journal of Solids and Structures 2017; 118-119:213–223.794

[51] J. Neggers, O. Allix, F. Hild, S. Roux, Big data in experimental mechanics and model order reduction:795

today’s challenges and tomorrow’s opportunities. Archives of Computational Methods in Engineering796

2018; 25(1):143–164.797

[52] J.A. Norato, M.P. Bendsoe, R.B. Haber, D.A. Tortorelli, A topological derivative method for topology798

42



optimization. Structural and Multidisciplinary Optimization 2007; 33(4):375–386.799

[53] F. Palacios-Gomez, L. Lasdon, M. Engquist, Nonlinear optimization by successive linear programming.800

Management Science 1982; 28:1106–1120.801
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