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The work addresses the optimization of specimen geometry in the context of parameter identification from full-field measurements. For this purpose, we propose to use topology optimization tools in order to maximize the sensitivity of the measured displacement field to sought parameters, under volume fraction constraints and without any a priori information on the specimen shape. The associated cost function is conveniently defined from sensitivity fields which are directly available from the identification procedure. In addition, further analyzes are conducted in order to fully set the theoretical and numerical aspects of the methodology, and enhance both stability and convergence properties. Numerical experiments illustrate the interest of the proposed approach, while its validation is performed from a real identification test using a specimen with optimized topology.

Introduction

Parameter identification methods have become increasingly sophisticated and powerful in solid mechanics in order to qualify material behaviors at best and feed numerical simulations. Among the large scope of inverse identification methods, we focus here on those based on full-field measurements, i.e. performed from digital image correlation (DIC) using a single camera [START_REF] Hild | Digital image correlation: from displacement measurement to identification of elastic properties -a review[END_REF][START_REF] Hild | Digital image correlation[END_REF], stereo image correlation (stereo-DIC) using several cameras [START_REF] Garcia | A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming[END_REF], or digital volume correlation (DVC) using X-ray microtomography or magnetic resonance imaging (MRI) [START_REF] Bay | Digital volume correlation: three-dimensional strain mapping using X-ray tomography[END_REF]. Overviews of available identification techniques from such measurements can be found in [START_REF] Avril | Overview of identification methods of mechanical parameters based on full-field measurements[END_REF][START_REF]Full-field measurements and identification in solid mechanics[END_REF]. The exploitation of full-field measurements, initiated more than 30 years ago [START_REF] Kavanagh | Finite element applications in the characterization of elastic solids[END_REF][START_REF] Sutton | Determination of displacements using an improved digital correlation method[END_REF] but widely studied and applied during the last two decades [START_REF] Latourte | Elastoplastic behavior identification for heterogeneous loadings and materials[END_REF][START_REF] Roux | Digital image mechanical identification (DIMI)[END_REF][START_REF] Réthoré | Robust identification of elasto-plastic constitutive law parameters from digital images using 3D kinematics[END_REF][START_REF] Mathieu | Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC[END_REF][START_REF] Hild | Toward 4D mechanical correlation[END_REF], constitutes a main breakthrough in the fields of material science and computational mechanics [START_REF] Avril | General framework for the identification of constitutive parameters from full-field measurements in linear elasticity[END_REF][START_REF] Sutton | Recent advances and perspectives in digital image correlation[END_REF][START_REF] Neggers | Big data in experimental mechanics and model order reduction: today's challenges and tomorrow's opportunities[END_REF]. It allows in particular to set up heterogeneous mechanical tests, with numerous (but noisy) measurement information, in order to identify parameters of complex constitutive models such as those used for composites [START_REF] Claire | Identification of a damage law by using full-field displacement measurements[END_REF][START_REF] Ben Azzouna | On the identification and validation of an anisotropic damage model using full-field measurements[END_REF][START_REF] Bouterf | Damage law identification from full field displacement measurement: application to four-point bending test for plasterboard[END_REF][START_REF] Gras | Identification of a set of macroscopic elastic parameters in a 3D woven composite: uncertainty analysis and regularization[END_REF]. For instance, nowadays experiments on simple flat samples use, typically, 1000 16-bit images with up to 100-Mpixel definition for the measurement of 2D displacement fields, which provides for 2-200 Gbyte data sets. This is in opposition with classical tests in which homogeneity is assumed. However, due to the large and eclectic amount of experimental data that may be obtained from full-field measurements (compared with classical measurement devices such as extensometers or strain gauges), an important and actual challenge is to extract from these data the part of information which is relevant for the identification objective [START_REF] Neggers | Big data in experimental mechanics and model order reduction: today's challenges and tomorrow's opportunities[END_REF]. In order to do so, one way consists in a filtering process when post-processing the large amount of data coming from DIC, so that only a small part of relevant data is conserved. Another option consists in devising the experimental protocol (specimen geometry, loading conditions and history) so that a limited amount of measured data constitutes very rich information for the identification purpose. In this latter framework, it is of interest to design optimal specimen on which to perform full-field measurements, maximizing the sensitivity of the obtained displacement field with respect to the sought parameters and therefore obtain an effective identification procedure. This is the topic of the present work. We point out here that such a design of optimal specimen to be tested can not be performed for all material identification problems encountered in real-life applications. It can be conducted in practice for some specific applications of interest allowing a sufficient flexibility on the specimen geometry, such as the identification of constitutive parameters and laws by means of research lab facilities ; this is the targeted application in the remainder of the paper.

Until now, very few research works addressed the definition of specific specimen geometry for identification from full-field measurements. These consider sub-optimal approaches in which the specimen shape is constrained a priori, i.e. the specimen topology is given, leading to a small number of design parameters to set. For instance, shape optimization in the context of DIC-FEMU or integrated DIC (IDIC) for parametrized specimen was recently carried out in [START_REF] Bertin | Optimization of a cruciform geometry for the identification of constitutive parameters based upon full-field measurements[END_REF][START_REF] Neggers | Improving full-field identification using progressive model enrichments[END_REF] considering the Poisson ratio identification with plates under biaxial traction, and with a small amount of design variables related to curvature radii. We also refer to [START_REF] Molimard | Identification of the four orthotropic plate stiffnesses using a single open-hole tensile test[END_REF][START_REF] Feld | Constitutive identification of laminated composite materials using heterogeneous full field measurement[END_REF] for the design of heterogeneous tests adding holes to different samples shapes, to [START_REF] Lecompte | Mixed numerical-experimental technique for orthotropic parameter identification using biaxial tensile test on cruciform specimens[END_REF] for the design of cruciform sample geometries operated with bi-axial tensile devices, to [START_REF] Pottier | Out-of-plane testing procedure for inverse identification purpose: application in sheet metal plasticity[END_REF] for the full design (loading and specimen geometry) of an original test in the context of stereo image correlation, enabling to identify several parameters of an anisotropic plastic constitutive model from only one test, or to [START_REF] Jailin | Virtual hybrid test control of sinuous crack[END_REF] for the comparison of sensitivities to an internal length for a damage model from two different tests.

In the present work we wish to go one step further by using topology optimization [START_REF] Bendsoe | Optimal shape design as a material distribution problem[END_REF][START_REF] Sigmund | A 99 line topology optimization code written in Matlab[END_REF][START_REF] Allaire | Shape optimization by the homogenization method[END_REF][START_REF] Bendsoe | Topology optimization: theory, methods and applications[END_REF] and associated iterative optimization procedures in order to automatically define the spatial material distribution inside the working space (for given loading conditions and volume fraction), so that a further optimized specimen shape is obtained without any a priori information on the topology. Consequently, the heterogeneity of the identification test is in this case fully induced by the definition of an original and optimized specimen geometry. This is, to the best of the authors knowledge, the first attempt to use topology optimization in conjunction with full-field measurements. We consider here two-dimensional problems ; the full-field measurements are obtained from DIC, and the identification procedure is per-formed using the FEMU approach. The goal is thus to couple the DIC-FEMU technology with topology optimization, leading to the definition of specific specimen in which the measured displacement field would be highly sensitive to the constitutive parameters of interest.

Regarding the topology optimization procedure, we consider here the SIMP (Solid Isotropic Material with Penalization) approach, and we use the constrained optimization algorithm implemented in the top99.m Matlab code developed in [START_REF] Sigmund | A 99 line topology optimization code written in Matlab[END_REF]. The core of the research work consists in the definition of a convenient cost function based on sensitivity fields which may be recovered in a straightforward manner from Hessian matrices in DIC-FEMU. Additional ingredients are then introduced in the cost function in order to enhance stability and convergence properties of the optimization procedure. Several issues, such as the setting of initial conditions or multi-parameter optimization, are also addressed. The performance of the approach is illustrated on several numerical examples, and an experimental validation of the optimized specimen is also shown.

The remainder of the paper is organized as follows : in Section 2, basic aspects of DIC and FEMU methods for parameter identification from full-field measurements are recalled ; the coupling between DIC-FEMU and topology optimization, which is the main contribution of the paper, is addressed in Section 3 ; several numerical experiments, as well as an experimental validation, are reported in Section 4 ; eventually, conclusions and prospects are drawn in Section 5.

Basics on DIC and FEMU methods

The DIC method for full-field measurement

Digital image correlation (DIC) is a powerful technique used in solid mechanics to provide full-field displacement measurements from mechanical tests of materials and structures [START_REF] Sutton | Determination of displacements using an improved digital correlation method[END_REF][START_REF] Hild | Digital image correlation: from displacement measurement to identification of elastic properties -a review[END_REF][START_REF] Hild | Digital image correlation[END_REF]. It consists in registering two (or more) images of the same scene, that are large sets of pixels with distribution of gray level values (encoded over few bits, typically 8 to 16, and stored as matrices), and extracting displacement fields that enable the best match between the image frames. In practice, gray levels are given by a speckle applied to the target zone which provides irregular picture texture. In the following, we consider only two images : a reference image f (x) and a deformed image g(x) ; x denotes the discrete, and thus discontinuous, pixel (or voxel in 3D) position, while f and g refer to gray level magnitudes.

In this framework, approaches to recover a measured displacement field u(x) from the two image frames are based on the local gray level conservation f (x) = g(x + u(x)). Considering a first-order Taylor expansion (small perturbations regime) and gradients at theoretical convergence (so that ∇g can be approximated with ∇f ), this conservation can also be written as (see [START_REF] Hild | Digital image correlation[END_REF]) :

f (x) -g(x) -∇f • u(x) = 0 (1)
or using an iterative sequential construction of u :

f (x) -g(x) -∇f • δu (k) (x) = 0 (2) 
with g(x) = g(x + u (k) (x)) the updated deformed image, and

δu (k) = u (k+1) -u (k) the correction at iteration k.
In all practical cases, the local gray level conservation is not strictly satisfied due to noise, so that regularization is required. A suitable norm ||f -g(. + u)|| between the signal difference (gray level residual) is then chosen with respect to the noise [START_REF] Buljac | Digital volume correlation: review of progress and challenges[END_REF] and minimized with respect to u. The usual choice of the L 2 -norm (mean quadratic gap) provides the correlation residual functional. Approaches for the computation of u(x) can then be split in two categories, depending on the domains on which the gray level residual is defined and the way the underlying ill-posed problem is regularized :

• local DIC approaches (widely employed in commercial DIC codes) use a local matching procedure on sub-images or zones of interest (ZOI), treated independently. The norm then reads :

x∈ZOI (f (x) -g(x + u(x))) 2 (3) 
When u is chosen constant locally, the minimization of (3) is equivalent to maximizing the cross-correlation (f * g)(u) = x∈ZOI f (x)g(x+u). Classically, linear or quadratic displacement fields are used for each ZOI, but the only output of the analysis is still the mean displacement at the middle of the ZOI. In local approaches, the small size of the ZOI naturally introduces a filtering of the displacement field and drives the measurement uncertainties ;

• global DIC approaches use a norm defined over the whole measurement zone (region of interest or ROI), containing a large number N p of pixels, so that a global (nonlinear) correlation residual is minimized :

1 N p x∈ROI (f (x) -g(x + u(x))) 2 (4) 
This leads to a variational formulation with successive linearizations (using ( 2))

and corrections (iterative Newton-Raphson scheme) in which a new picture g(x) =

g(x + u (k) (x)
) is constructed at each iteration using the current estimate u (k) at iteration k and (spline) gray level interpolations when sub-pixel resolutions are sought.

As the minimization of ( 4) is ill-posed and can not be solved as such (the displacement is only detectable along the direction of ∇f ), these last approaches require regularization such as Tikhonov regularization on gradients associated with u (global constraint of smoothness), regularization from the balance equations (equilibrium residual gap) [START_REF] Réthoré | An extended and integrated digital image correlation technique applied to the analysis of fractured samples[END_REF], or regularization via the choice of a finite-dimensional kinematic subspace (decomposing u on a meaningful basis).

Remark 1. Pixels being poor sensors, the covariance matrix C n = [C n (x, ξ)] of gray level noise for pixels x and ξ can be introduced in the global correlation residual. It leads to the minimization of the Mahalanobis distance between the two images :

1 N p x∈ROI ξ∈ROI (f (x) -g(x + u(x)))[C n (x, ξ)] -1 (f (ξ) -g(ξ + u(ξ))) (5) 
which is optimal and refers to the maximum likelihood with Gaussian distributions [START_REF] Roux | Optimal procedure for the identification of constitutive parameters from experimentally measured displacement fields[END_REF]. Assuming white Gaussian (i.e. spatially uncorrelated) acquisition noise induces that [C n (x, ξ)] =

γ 2 f [δ(x, ξ)] or C n = γ 2 f I
where γ f is the standard deviation of noise, so that the functional reads

1 2γ 2 f N p x∈ROI (f (x) -g(x + u(x))) 2 (6) 
Noise is assumed to affect each image f and g independently, which is responsible for the factor 1/2 coming as a multiplicative term in the functional. This is equivalent to reporting the noise on the deformed image g only and to increase it by a factor 2.

In the following, we consider global DIC with regularization based on a finite element kinematic basis ; this approach is referred to as FE-DIC. We thus write u = NU, with N gathering the FEM basis functions and U denoting the vector of unknown nodal values.

The linear system associated with the minimization, at each iteration k, of the quadratic functional issued from ( 2) and (4) thus reads :

M DIC δU (k) = b (k) DIC (7) 
with 

M
In the general case, the matrix M DIC is positive semi-definite. If the image contrast is sufficiently fine-scaled with respect to the element size, then M DIC may be positive definite and hence the problem is solvable. This condition also implies that the mesh cannot be arbitrarily fine, as along with fineness comes first ill-conditioning, and second ill-posedness (i.e. rank-deficient Hessian) as for the pixel-wise case.

Furthermore, and even though it enables to better capture complex geometries and displacement fluctuations, increasing the spatial resolution with finer FE mesh also increases uncertainty (as fewer pixels are then available to determine the value of the kinematic dofs).

An explicit characterization of the effect of image noise on displacement uncertainty can be introduced by evaluating the covariance matrix C U of the measured dofs. From [START_REF] Andreassen | Efficient topology optimization in Matlab using 88 lines of code[END_REF], it is straightforward (see [START_REF] Besnard | Finite-element" displacement fields analysis from digital images: application to Portevin-Le Châtelier bands[END_REF][START_REF] Roux | Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches[END_REF][START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF]) that :

δU = 0 (no systematic bias) ; C U = δU.δU T = 2γ 2 f M -1 DIC (9) 
which shows that the displacement noise is spatially correlated (M -1 DIC is not diagonal), and that zones with low contrast (such as small FE elements with few pixels per element) are particularly subjected to measurement uncertainties. Also, the measured displacement on nodes located on the boundary of the ROI are more sensitive to noise due to their reduced connectivity. Alternative approaches have been recently developed to overcome the tricky compromise between spatial resolution and uncertainty, such as multiscale approaches [START_REF] Passieux | Multiscale displacement field measurement using digital image correlation: application to the identification of elastic properties[END_REF] or integrated methods (see Section 2.2.2).

Remark 2. The correlation residual field provides a good indication on the quality of the obtained displacement u. It is ideally expected to consist of white noise, with a dimensionless variance of 1. Otherwise, correlation residuals may be used to locally enrich the kinematic basis (refining the mesh or adding richer basis functions such as those used in XFEM to describe discontinuities [START_REF] Réthoré | Extended digital image correlation with crack shape optimization[END_REF]).

In brief, the outputs of DIC analysis are therefore a displacement field U over a kinematic basis, as well as the correlation residuals map and noise sensitivity (via the covariance matrix C U ) which enable to adjust DIC parameters and to weigh the measured information as it should. These quantities constitute the inputs of the identification procedure described below.

2.2. FEMU and I-DIC methods for identification from full-field measurements

The FEMU method

The measured displacement field, denoted u m = NU m and previously obtained from global DIC, can be used for indirect identification of a model parameter vector p, each component of p being conveniently designed to be dimensionless (e.g. normalization with nominal values of the parameters). Among all possible identification methods available with full-field measurements (see [START_REF] Avril | Overview of identification methods of mechanical parameters based on full-field measurements[END_REF] for an overview), FEMU is probably the most popular one.

In its FEMU-U version, it is an incremental method that aims at minimizing the gap between a simulated displacement field u s (obtained from a FE computation with constitutive model parametrized by p and boundary conditions extracted from DIC) and the measured displacement field u m . It thus consists in an iterative correction of a FE solution from measurements, by varying the parameter set p to be identified, and usually considering the same mesh to represent u m and u s .

Denoting by N U the total number of kinematic dofs, the following cost function is introduced :

T U (p) = 1 N U [U s (p) -U m ] T C -1 U [U s (p) -U m ] (10) 
It uses an appropriate metric defined from the covariance matrix C U , which provides optimal robustness as it naturally propagates the impact of noise coming from images onto the uncertainty of the identified parameters [START_REF] Mathieu | Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC[END_REF]. An approximation of C U by means of a mass matrix (mean field assumption) may be sufficient and preferred in the definition of T U (p).

Furthermore, the prefactor 1/N U is chosen so that, at convergence, noise in the measured displacement should by itself endow T U (p) = 1.

The minimization of T U (p) can be conducted in an iterative way from a Gauss-Newton gradient descent. For that purpose, a first-order Taylor expansion is introduced :

U s (p (n) + δp (n) ) = U s (p (n) ) + S p δp (n) (11) 
where δp (n) is the infinitesimal correction of p at iteration n, and S p = ∂U s /∂p is the matrix of sensitivity fields (quantitative measurement of the sensitivity of the displacement field to the studied parameters) expressed in pixels. A Newton-Raphson scheme then provides for the following linear system at iteration n :

H F EM U δp (n) = b (n) F EM U (12) 
with

H F EM U = S T p C -1 U S p = 1 2γ 2 f S T p M DIC S p (Hessian matrix) b (n) F EM U = S T p C -1 U (U m -U s (p (n) )) (13) 
The matrix H F EM U , which is the restriction of M DIC to the subspace generated by sensitivity fields, is smaller sized and better conditioned than M DIC . When the original system [START_REF] Bendsoe | Generating optimal topologies in structural design using a homogenization method[END_REF] remains badly conditioned, the Levenberg-Marquardt algorithm [START_REF] Levenberg | A method for the solution of certain nonlinear problems in least squares[END_REF] with enhanced stability properties should be preferred to the Gauss-Newton one.

At convergence, the fluctuating part δp of the identified parameters due to noise is

δp = H -1 F EM U S T p C -1 U (U m -U s (p)).
The global covariance matrix of the identified parameters due to image noise thus reads :

C p = δp.δp T = H -1 F EM U (14) 
It enables to track down the uncertainties from the measurement step (pixel level) down to the identification step (parameter level). Accurate identification resulting from the good conditioning of the positive symmetric matrix H F EM U , several scalar criteria qualifying the robustness of multi-parameter identification can then be defined, such as : (i) maximizing the smallest eigenvalue of H F EM U (worst case) so that all parameters are determined accurately [START_REF] Bertin | Optimization of a cruciform geometry for the identification of constitutive parameters based upon full-field measurements[END_REF] ; (ii) maximizing the ratio between the smallest and the largest eigenvalues [START_REF] Feld | Constitutive identification of laminated composite materials using heterogeneous full field measurement[END_REF] ; (iii) considering the uncertainty volume det(H F EM U ). We will refer to this point in Section 3.2.

Remark 3. Reaction forces may also be measured and compared with computed resultants.

Thus, an additional term can be added in the FEMU functional to minimize [START_REF] Bertin | Optimization of a cruciform geometry for the identification of constitutive parameters based upon full-field measurements[END_REF]. It is of the form :

T F (p) = 1 N F {F s (p) -F m } T C -1 Fm {F s (p) -F m } (15) 
where N F is the number of load cells, F m the measured forces, F s the computed reaction forces with respect to the parameter set p, and C Fm the covariance matrix of the measured loads. The identification based on the combined displacement fields and reaction forces is then achieved by minimizing the global functional :

T U F (p) = N U N U + N F T U (p) + N F N U + N F T F (p) (16) 

Integrated approach : I-DIC

In the previously described two-step DIC-FEMU procedure, displacement data are only an intermediate quantity whose computation may imply constraints that are not ideal to FEMU. The idea in integrated DIC (I-DIC) is to merge measurement and identification procedures in a single step by using directly the images (rather than a measured displacement field) to determine material parameters. This allows standard FE codes to be used in a nonintrusive way. In the I-DIC framework, the gap between image frames f and g is minimized using a specific kinematics driven by a parametrized model (strong mechanical content), rather than simple standard FE representations. Dofs in DIC are therefore directly related to the parameters to be identified (elasticity parameters, stress intensity factors, . . .). The functional to be minimized reads :

1 2γ 2 f |Ω| x∈ROI (f (x) -g(x + u(x, p))) 2 (17) 
It leads to the solution of linear systems of the form (at iteration n) :

H IDIC δp (n) = b (n) IDIC (18) 
with

H IDIC = S T p M DIC S p (Hessian matrix) ; b (n) IDIC = S T p b (n) DIC (19) 
which indicates that I-DIC merely consists in projecting the nodal displacement field onto the sensitivity fields. In practice, the I-DIC procedure uses closed-form solutions which can be obtained analytically, from FEM, or from ROM (parametrized solutions). This may enable to assess sensitivity fields very efficiently [START_REF] Leclerc | Integrated digital image correlation for the identification of mechanical properties[END_REF].

In theory, if the same mesh is used in DIC and for the computation of sensitivity fields, the two-step DIC-FEMU procedure and the integrated I-DIC procedure (in which the DIC mesh has disappeared) should be equivalent. However, this is valid only for small amplitudes of noise, appropriate metric (weighting) in FEMU, and when the smallest element size is not critical for DIC. A fine mesh size is not a problem in I-DIC as only a few search directions are chosen (i.e. dofs are not nodal displacements but unknown material parameters), so that the modeling error due to a coarse mesh can be avoided. Consequently, as long as the approximation error due to the mesh remains well below the uncertainty of DIC, a coarse mesh is beneficial, but a finer mesh can also be used with I-DIC if required (depending on the complexity of the sample geometry complexity or the picture contrast). In [START_REF] Leclerc | Integrated digital image correlation for the identification of mechanical properties[END_REF], it was proposed to choose the element size of the mesh in I-DIC as a decreasing fonction of the sensitivity to the studied parameters.

Remark 4. In I-DIC, correlation residuals with appropriate normalization can be conveniently used to assess the relevance of the mechanical model for explaining the observations.

They can indeed be used to measure the quality of the identification and guide toward successive enrichment of the constitutive model to progressively reduce the experiment-model gap [START_REF] Neggers | Improving full-field identification using progressive model enrichments[END_REF].

In the next section, we design specimen geometries which maximize the sensitivity (and therefore minimize uncertainty) in the parameter identification step. This is performed using topology optimization associated to a suitable cost function based on eigenvalues of Hessian matrices H F EM U or H IDIC . As an illustration, we plot in Fig. 1 the numerical sensitivity fields with respect to the shear modulus G 12 for three specimen (with different shapes) made of an orthotropic linear elastic material (with plane stress assumption, and uniformly distributed orthotropy direction) submitted to a pure traction loading with prescribed longitudinal displacement on the right side. On the one hand, and as expected, the first specimen with rectangular shape does not provide any piece of information for the identification of the parameter G 12 . On the other hand, the second specimen (rectangular shape with hole in the center) and third specimen (with unconventional geometry) generate an heterogeneous displacement field that makes it sensitive to G 12 . The geometry of the third specimen, in which sensitivity is the largest, has been designed using the topology optimization tools which are developed in this work. It leads to a gain of about 10 3 in the sensitivity compared to the specimen with a hole and with similar volume fraction. Topology optimization, initiated in [START_REF] Bendsoe | Generating optimal topologies in structural design using a homogenization method[END_REF], is a well-known method for weight reductions of structures, which is a crucial issue in many structural engineering applications. It is also a tool of choice for the design of meta-materials by a suitable arrangement of the microstructure [START_REF] Larsen | Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio[END_REF][START_REF] Catapano | Stiffness and strength optimization of the anisotropy distribution for laminated structures[END_REF]. Basically, it is a mathematical process which consists in the automatic optimization of the material distribution in a given volume, under specific constraints and with respect to given optimality criteria (objective function). In practice, most applications consider structural stiffness as the cost function (minimization of the structural compliance), and constraints deal with volume fraction (total mass) in addition to solving the mechanical problem of interest with given loadings [START_REF] Sigmund | A 99 line topology optimization code written in Matlab[END_REF][START_REF] Ranaivomiarana | Concurrent optimization of material spatial distribution and material anisotropy repartition for two-dimensional structures[END_REF]. When considering structures with isotropic materials, methodologies for topology optimization are abundant in the literature ; survey developments can be found in [START_REF] Sigmund | Topology optimization approaches: a comparative review[END_REF]. Two main approaches have been investigated so far :

density-based methods and boundary variation methods. The first group of methods uses a local density variable to define if there should be solid material (variable set to 1) or void (variable set to 0) in subdomains of the structure. The discrete problem associated to density variables is usually turned into a continuous one, leading to intermediate densities that may be difficult to interpret. Several penalization methods can then be used to steer the solution toward a discrete solid/void solution, among which SIMP (Solid Isotropic Material Penalization) [START_REF] Bendsoe | Optimal shape design as a material distribution problem[END_REF], RAMP (Rational Approximation of Material Properties) [START_REF] Stolpe | An alternative interpolation scheme for minimum compliance topology optimization[END_REF], SINH [START_REF] Bruns | A reevaluation of the SIMP method with filtering and an alternative formulation for solid-void topology optimization[END_REF],

or SRV (using reciprocal variables) [START_REF] Fuchs | The SRV constraint for 0/1 topological design[END_REF]. In the second group of methods, we refer to the level set method [START_REF] Allaire | Conception optimale des structures[END_REF][START_REF] Burger | A survey on level set methods for inverse problems and optimal design[END_REF] that uses a scalar function to represent the boundaries, and the phase field method [START_REF] Bourdin | The phase-field method in optimal design[END_REF] that uses a phase field function over a domain composed of two phases.

Compared with density-based methods, boundary variation methods provide a clear contour of the shape and an explicit definition of geometrical parameters. They do not require a penalization method, but the computation of topological gradients and the construction of complex interpolation schemes are necessary [START_REF] Norato | A topological derivative method for topology optimization[END_REF].

In the present work, a density-based method is used and the SIMP method is employed as a penalization method. This latter method has been applied to a broad range of applications and physical models [START_REF] Larsen | Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio[END_REF][START_REF] Swan | Voigt-Reuss topology optimization for structures with linear elastic material behaviours[END_REF][START_REF] Desmorat | Compliance optimization with nonlinear elastic materials: application to constitutive laws dissymetric in tension-compression[END_REF][START_REF] Gersborg-Hansen | Topology optimization of heat conduction problems using the finite volume method[END_REF][START_REF] Desmorat | Structural rigidity optimization with frictionless unilateral contact[END_REF][START_REF] Desmorat | Structural rigidity optimization with an initial design dependent stress field: application to thermo-elastic stress loads[END_REF][START_REF] Catapano | Stiffness and strength optimization of the anisotropy distribution for laminated structures[END_REF] and is nowadays implemented in various commercial tools in the field of mechanics and multiphysics.

Practical implementation

In the SIMP method framework, we consider the methodology developed in [START_REF] Sigmund | A 99 line topology optimization code written in Matlab[END_REF][START_REF] Andreassen | Efficient topology optimization in Matlab using 88 lines of code[END_REF] for the structural stiffness maximization with two-dimensional applications and with plane stress assumption. The working space is divided in subdomains or elements e (usually defined from a regular mesh with Q4 elements), and the topology of the structure is parameterized by a set of density variables ρ e ∈ [ρ min , 1], with ρ min > 0 (to keep the mechanical problem wellposed) that determines the presence or absence of material in each individual element e. A global structural stiffness maximization problem written as a compliance (or complementary energy) minimization problem is then treated, and a volume constraint is applied.

Using the FE framework with a regular mesh made of N e elements, and denoting by ρ = {ρ e } the set of density variables, the cost function to be minimized reads :

c(ρ) = U T (ρ)K(ρ)U(ρ) = Ne e=1 ρ γ e U T e K 0 U e (20) 
U(ρ) is the vector of nodal displacements, solution of the mechanical FE problem K(ρ)U(ρ) = F, and K 0 is the elementary stiffness matrix (with full material density). The penalty factor γ weighs the impact of material density changes in the stiffness, so that it enables to modulate the black and white contrast in the optimized structure as well as the convergence speed of the optimization algorithm.

Remark 5. In the previous context, gradients ∂c/∂ρ e can be computed analytically, and it is easy to show that :

∂c ∂ρ e = -γρ γ-1 e U T e K 0 U e (21) 
Introducing the targeted volume fraction f v , the associated constraint reads V (ρ) = f v V 0 with V 0 the total volume of the working space and V (ρ) =

V 0 N e Ne e=1
ρ e the actual material volume. The optimization procedure thus leads to a constrained minimization which is addressed using the following Lagrangian functional with scalar Lagrange multiplier λ :

L(ρ, λ) = c(ρ) + λ(V (ρ) -f v V 0 ) (22) 
The search of the saddle point of L leads to the solution of constrained minimization problems. In practice, this search can be performed using various techniques dedicated to nonlinear constrained minimizations. Among them, we mention the Sequential Linear Programming (SLP) performing sequential first order approximations [START_REF] Palacios-Gomez | Nonlinear optimization by successive linear programming[END_REF], or the Methods of Moving Asymptotes (MMA) [START_REF] Svanberg | The method of moving asymptotes -a new method for structural optimization[END_REF]. Here, and as performed in [START_REF] Sigmund | A 99 line topology optimization code written in Matlab[END_REF], we use the optimality criteria method which is suited for the optimization of a simple energy functional with a single constraint. This is an iterative technique which defines an updated approximation λ (k) of the Lagrange multiplier at each iteration k using dichotomy.

Additional tools are classically introduced in the topology optimization algorithm in order to improve stability and convergence properties. In particular, a filter that aims at smoothing density evolutions between neighboring elements (nonlocal effect) is employed [START_REF] Bourdin | Filters in topology optimization[END_REF].

In the following, we use a filtering technique defined from a convolution matrix with terms H(e, e * ) = r min -dist(e, e * ) + , e and e * denoting two elements of the grid, and r min being the maximal distance where H is non-zero (i.e. parameter that selects the spatial influence of the filter). Gradients of the cost function are then weighted (from distances between elements) and changed as : 

∂c ∂ρ e = 1
A sketch of the resulting global topology optimization algorithm is given in Fig. 2. For this latter algorithm, the initial guess is usually chosen as ρ e = f v for all e (homogeneous material distribution). An illustrative example of the application of the algorithm is given in AppendixA. 

Illustrative comments on the cost function

We now briefly investigate the mathematical properties of the cost function c(ρ) defined in [START_REF] Bruns | A reevaluation of the SIMP method with filtering and an alternative formulation for solid-void topology optimization[END_REF] from the structural compliance. The goal here is to highlight the theoretical background that makes classical topology optimization mathematically sound, in order to address the design of a convenient cost function when coupling with the DIC-FEMU procedure presented in Section 2.

To keep the analysis simple and analytical, we consider a 1D problem. It consists in a set of three beams of same length L and section S, clamped at x = 0 and subject to a global traction loading F at x = L (Fig. 3). The Young modulus of the structural material is denoted E, while density variables are denoted ρ 1 (central beam) and ρ 2 (top and bottom beams, using symmetry). Consequently, the vector of density variables is ρ = [ρ 1 , ρ 2 ] T and the volume fraction constraint reads 1 3 (ρ 1 + ρ 2 + ρ 3 ) = f v in this specific case. The analytical solution of the problem leads to the following expression for the compliance cost function (using the definition ( 20)) :

c(ρ 1 ) = F 2 L ES 1 ρ γ 1 + 2( 3fv-ρ 1 2 ) γ = F 2 L ES c * (ρ 1 ) (24) 
For f v = 0.5, the evolution of c * (ρ 1 ) is shown in Fig. 3 with respect to ρ 1 ∈ [ρ min , 1] and for several values of the penalty factor γ (γ=2, 3, or 4). We clearly observe that the shape and gradients of c(ρ 1 ) over the constrained space [ρ min , 1] (or [ρ min , 1] Ne-1 in the general case)

naturally drives density variables close to 0 or 1, which is beneficial for the stability and convergence of the topology optimization algorithm.

3.2.

Procedure for topology optimization dedicated to parameter identification

General idea

We now wish to use topology optimization for the design of specimen that optimize performance in specific parameter identification. The goal is that, for such specimen, heterogeneity be created from an unconventional geometry, and the measured displacement field be highly sensitive to the constitutive parameters of interest. This requires the setting of a scalar cost function which is related to sensitivity with respect to these parameters. For that purpose, sensitivity fields which are available once the identification process has been performed constitute rich information ; they indicate where the experiment is sensitive to parameters.

Remark 6. It is important to recall that sensitivity fields S p = ∂U s /∂p can be computed before performing any experiment. Their computation is based on FE analysis and the finite difference method (see [START_REF] Ben Azzouna | On the identification and validation of an anisotropic damage model using full-field measurements[END_REF]). This leads to fields initially defined at each node of the mesh, which can then be interpolated over the spatial domain using various approaches. We also note that alternative numerical strategies providing an efficient derivation of sensibility fields may be found, such as those based on virtual body forces or on reduced order modeling [START_REF] Neggers | Improving full-field identification using progressive model enrichments[END_REF][START_REF] Neggers | Big data in experimental mechanics and model order reduction: today's challenges and tomorrow's opportunities[END_REF] ; they are not considered here.

As explained in Section 2.2, uncertainty in the parameter identification performed from DIC-FEMU (or I-DIC) can be minimized by maximizing eigenvalues λ H i of the Hessian matrix H F EM U = S T p C -1 U S p which is related to sensitivity fields. Consequently, when considering identification of a single parameter p, the cost function c(ρ) to be minimized in the topology optimization algorithm should involve 1/λ H with λ H = S T p C -1 U S p . In the case of multiparameter identification such as performed in [START_REF] Pérez Zerpa | A new robust formulation for optical-flow/material identification problems[END_REF], a choice is to involve 1/ min(λ H i ) or max(λ H i )/ min(λ H i ) depending on boundary conditions [START_REF] Feld | Constitutive identification of laminated composite materials using heterogeneous full field measurement[END_REF][START_REF] Bertin | Optimization of a cruciform geometry for the identification of constitutive parameters based upon full-field measurements[END_REF]. These two quantities are equivalent when the maximal displacement is given in the problem, but the second one avoids divergence issues in the contrary case (e.g. free boundaries). An alternative choice is to involve 1/det(H F EM U ) = 1/ i λ H i . We point out that the choice of cost function, when considering multi-parameter identification, is fundamental as it will lead to different optimized topologies with compromise between sensitivities to each individual parameter (see the illustration in AppendixA.2 for classical topology optimization).

An illustration of the use of eigenvalues of the Hessian matrix in a cost function is given in AppendixB ; it is implemented for simpler shape optimization with few design variables.

When dealing with topology optimization, we propose to replace the initial algorithm described in Fig. 2 with a new one described in Fig. 4. In this new algorithm, the FE analysis (that classically computes structural stiffness/compliance, or effective properties of a microstructure) is replaced with a (DIC-)FEMU or I-DIC analysis in order to compute sensitivity fields and eigenvalues of the Hessian matrix H F EM U to be used in the cost function. These are recomputed each time the specimen geometry changes in the iterative algorithm. Other parts of the algorithm (optimization method, filtering procedure) are kept unchanged. The meaning of the density vector ρ is also unchanged (it does not refer to densities of measurements). As material density variables ρ e are used to compute the FE displacement U s , they are naturally involved as weights in the definition of sensitivity fields.

Remark 7. To avoid any misleading, we will refer to gradients rather than sensitivities (which are already used in FEMU) when dealing with derivatives of the cost function c(ρ)

with respect to elementary density variables ρ e . Usually, there is no analytical expression of these gradients when merging topology optimization with DIC-FEMU, due to a complex and implicit relation between the cost function c and density variables. In practice, gradients will be numerically computed using a finite difference approximation. 

Setting convenient cost functions

We now wish to design convenient cost functions that enable stability and convergence in the topology optimization process when dealing with parameter sensitivity. In this context, it is important to recover similar mathematical properties as these exhibited in Section 3.1.3 when dealing with classical topology optimization. Indeed, considering again the 2D traction test shown in Fig. 1 and optimizing sensitivity with respect to the shear modulus G 12 , a natural choice of the cost function c(ρ) = 1

S T G 12 C -1 U S G 12
leads to the convergence curve shown in Fig. 5. We observe oscillations which are due to the fact that the previous cost function is far from concave, with slight changes around local minima for some ranges of density variables. This favors the occurence of gray zones in the optimized topology, with unstable effects and convergence difficulties. Consequently, enhancements should be introduced in the definition of c(ρ) to get better numerical properties.

In order to come back to the convenient mathematical background of classical topology optimization, we propose to introduce in the cost function a penalization term that forces density variables to go close to 0 or 1. It is chosen of the form (for a single identified parameter) :

c(ρ) = 1 λ H + κ Ne e=1 exp 2 - 2 1 -(2ρ e -1) 2 (25) 
The chosen penalization function h(ρ) = exp 2 -

2 1-(2ρ-1) 2
in each element is plotted in Fig. 6. The obtained bell curve allows : (1) a clearer material distribution by forcing density variables to go close to 0 or 1 ; (2) possible changes for density variables that would initially be close to 0 or 1, as it exhibits small gradients close to 0 or 1, contrary to alternative possible penalization functions such as h * (ρ) = [ρ(1 -ρ)] r which present stronger gradients in these regions (Fig. 6). In other words, we choose here a regularization that proposes an essential singularity in 0 and 1 (h and h (n) vanish at these points), which prevents from degeneration ranges in density.

The scalar penalty parameter κ in ( 25) should be conveniently chosen, as in any penalization method, to obtain smooth convergence. In the following, it will be chosen constant along the optimization process (even though it could also be dynamically changed, and in particular increased at the end of the process to force binarity and clean the optimized geometry). Furthermore, the initial configuration of the material distribution should also conveniently set in order to converge to a global minimum. These aspects will be addressed in Section 4 from numerical experiments.

Numerical results

In this section, we design and analyze performance of the proposed approach on several numerical experiments. They are all based on two-dimensional test-cases with linear elastic materials and plane stress assumption. During the iterative process described in Fig. 4, gradients of c(ρ) were obtained using the finite difference method. For each elementary density, we thus considered ∂c/∂ρ e ≈ (c(ρ + δρ e I e ) -c(ρ))/δρ e with I e the vector of size N e with component 1 in line e and 0 elsewhere, and we chose δρ e = 0.001 in practice.

All numerical results dealing with topology optimization were obtained from a home-made Matlab software, while the Correli software (under patent [44]) was used to perform DIC.

Optimization for Young's modulus identification in a uniaxial case

For validation purposes, we first consider a simple case where the goal is to identify the Young modulus E of an isotropic material alone from a uniaxial test (see Figure 7 where boundary conditions are indicated). The topology optimization procedure starts with a random distribution of the material inside a rectangular domain split in 40 × 20 squared elements of equal size. We choose κ = 0 (no penalization), γ = 3, and f v = 0.6. Consequently, the cost function which is considered for topology optimization reads :

c(ρ) = 1 S T E C -1 U S E (26) 
Along the iterations, this cost function is decreased by modifying the material distribution and the approach tends, as expected, to the rectangular optimal shape with homogenous material density (equal to 0.6). The material distribution is shown in Figure 7 for different iterations of the algorithm.

We observe in Figure 8 that a large increase (factor 10 4 ) in the sensitivity is then obtained, so that the performance of FEMU identification is optimized. We also observe that the convergence of the topology optimization method is very fast as the optimized shape is distributions. 

Realistic application with experimental validation

We now consider a two-dimensional traction test-case with orthotropic linear elastic material such as defined in Fig. 1. The orthotropy direction is assumed to be uniformly distributed and fixed during the optimization procedure. The identified material parameter is here the shear modulus G 12 alone, which is a quite complex parameter to identify in practice.

Consequently, the cost function which is considered for topology optimization reads :

c(ρ) = 1 S T G 12 C -1 U S G 12 + κ Ne e=1 exp 2 - 2 1 -(2ρ e -1) 2 (27) 

Setting parameters of the cost function

We first investigate the setting or parameters γ and κ, in order to define the best couple of values in terms of convergence, stability, and contrast in the optimized geometry. As an initial guess, we consider a rectangular geometry of the specimen in which material density is homogeneous and equal to f v . It is split in 30 × 15 squared elements of equal size. Out of G 12 to be identified, material parameters are set to E 1 = E 2 = 1, and ν 12 = 0.3.

The filter parameter is set to r min = 1.5. Considering f v = 0.6, we take γ in the range [START_REF] Allaire | Conception optimale des structures[END_REF][START_REF] Allaire | Structural optimization using sensitivity analysis and a level-set method[END_REF][START_REF] Allaire | Shape optimization of a layer by layer mechanical constraint for additive manufacturing[END_REF] and κ in the range [0.01, 0.1, 1]. Optimization results are reported in Fig. 9 ; they show the convergence of the cost function along the iterations, for several configurations. We observe that selecting κ = 0.1 and γ = 3 seems to be the best option ; we will consider this couple of values in the remainder of this section. We also indicate that taking γ = 1 would give here very poor results, so that the joint use of the penalization function (introduced in Section 3.2.2) and the power law (classically used in the SIMP approach) seems mandatory.

Keeping the same example, we now investigate the choice of the initial guess in the optimization algorithm, as it may influence the obtained solution (with convergence to specific local or global minima). We analyze three cases (see Fig. 10) :

-random material distribution ; -checkerboard material distribution ;

-uniform material distribution.

Results obtained from these three cases of initial conditions are reported in Fig. 11 ; they show similar patterns in the obtained optimal material distribution. Furthermore, the diffe- rence in the final value of the cost function for the three cases is under 3%. This consolidates the opinion on the robustness of the approach. We will consider a checkerboard material distribution as the initial guess in the remainder of this section.

Full optimization of the specimen

With the previously set parameters of the method, we now consider the maximization of sensitivity with respect to the shear modulus G 12 on a working space discretized with 50 × 25 squared elements of equal size. Considering f v = 0.8, the optimization results are shown in Fig. 12. We display sensitivity fields ∂U ∂G 12 • e 1 and ∂U ∂G 12 • e 2 , along directions e 1 and e 2 respectively, for the optimized specimen. We note that the optimized geometry (density map) has been filtered for representation. The CPU time to obtain this optimized topology was about 10 hours on a laptop with single processor. Nevertheless, and even though it is not the focus of the paper, it could be easily decreased by further optimizing the numerical procedure (for instance by interpolating gradients between selected computed points) or resorting to parallel computing for the computation of the gradients.

We observe that the optimized specimen is very sensitive to G 12 , even though there is a lack of physical meaning with a small part of material which is not linked to the remainder of the structure after filtering (in the non-filtered geometry, there were low densities which were removed after filtering).

Experimental validation of the optimized specimen geometry

In this last section, we perform the experimental validation of the optimized specimen obtained in Section 4.2.2. Contrary to previous studies in which measurements were synthetic, we now set up an experimental test from the optimized specimen and boundary conditions defined in the numerical analysis. We then apply the DIC-FEMU procedure for parameter identification.

A first step is to manufacture the specimen. For this purpose, and starting from the optimized solution given by the optimization methodology (global idea of the final manufacturable structure), a further step of transfer of the solution into a CAD model is required. This is performed using the Catia software, which gives the CAD model shown in Fig. 13.

The geometry, which is not conventional, can then be realized using a laser cutting machine.

We point out here that a filtered geometry was considered, removing the internal isolated region for manufacturing issues, and therefore slightly modifying the volume fraction. The The chosen orthotropic material is fir wood (which is quite homogeneous) and wood parts without any apparent defect are carefully selected in order to be in line with a uniform distribution of orthotropy directions ; the orientation of wood fibers then corresponds to an orthotropy direction. Full classical specimen are also constructed in order to perform comparisons in sensitivities. The obtained specimens, with a speckle applied on faces, are shown in Fig. 13.

The second step consists in applying DIC to the specimens in order to obtain a measured displacement field. An INSTRON compression machine is used to perform tests (Fig. 15). In practice, boundaries of the specimen are clamped on the jaws during the experimental test.

Therefore, in order to reproduce similar boundary conditions as in the traction numerical test (with free vertical displacement on the right side, see Fig. 1), it is chosen to double the specimen and to use symmetry properties to recover such boundary conditions experimentally.

A Nikon 24.5 objective is used on the camera with 700×300 pixels and a pixel size of 100 µm.

The analysis of a first set of 10 unloaded images enables one to recover the initial state and information on the measurement noise. DIC is then performed from the Correli software [START_REF] Hild | CORRELI Q4: a software for "finite-element" displacement field measurements by digital image correlation[END_REF]. The obtained displacement field (transverse component) for the optimized and doubled specimen is given in Fig. 16 ; it illustrates the originality of the designed specimen, which creates dissymmetric and heterogenous fields.

The third and last step consists in identifying the material parameter G 12 using the FEMU approach (see Section 2.2). The displacement field and boundary conditions extracted from DIC are used to drive the identification process.

Running the identification process then requires to minimize the FEMU cost function. The plot of this (normalized) cost function with respect to the value of G 12 is reported in Fig. 17, for both optimized and standard (i.e. rectangular) specimens. It is interesting to notice that in the standard case, due to the compression test realized, a minimum of the cost function should not exist as the shear modulus G 12 can not be identified from a pure uniaxial traction/compresion test along a main direction of orthotropy. However, imperfect experimental boundary conditions coming from DIC are used for the numerical simulations in FEMU, so that a uniaxial compression is not simulated in practice (bias in the symmetry) and a low sensitivity to shear is found ; however, it is 2000 times smaller than that of the optimized specimen.

From Fig. 17, we also notice that the uncertainty (or confidence interval) on the identified parameter is very small for the optimized specimen compared to the standard specimen ;

this is shown by the strong curvature around the minimum of the cost function. The clear minimum obtained for identification from the optimized specimen is in accordance with the initial objective of the work. It shows that topology optimization in the context of parameter identification and with a cost function related to sensitivity fields is both relevant and effective. Indeed, if a FEMU method were to be implemented from the optimized specimen (using in practice a gradient descent), it would converge much faster as the gradient of the curve, which is the FEMU sensitivity, is much steeper.

Optimization for multi-parameter identification

As a last example, and in order to show the robustness of the method, we apply the optimization algorithm for a specimen dedicated to the identification of several material parameters. The considered mechanical problem is similar to that considered in Section 4.2, with a homogeneous orthotropic behavior and a pure traction loading with prescribed longitudinal displacement on the right side (see Figure 7). However, the four material parameters

E 1 , E 2 , ν 12
, and G 12 are now identified from full-field measurements. The cost function which is chosen reads :

c(ρ) = 1 min(λ H i ) + κ Ne e=1 exp 2 - 2 1 -(2ρ e -1) 2 (28) 
where λ H i are eigenvalues of the Hessian matrix

H F EM U = S T p C -1
U S p . We choose κ = 0.5, γ = 3, and f v = 0.8.

Splitting the initial rectangular domain in 30 × 15 squared elements of equal size, results

of the optimization algorithm are given in Fig. 18. They show a fast convergence of the procedure (the asymptotic regime is reached after 12 iterations only), with a final sensitivity of the specimen increased by a factor 10. Moreover, the algorithm leads to a physically acceptable material distribution, i.e. optimal specimen geometry, as it indicates that the regions of the working space which need to be considered as solid (black zones in Figure 18) are located along the upper and lower boundaries (which is consistent with the identification of Young moduli) as well as along 3 bands with 45-degree angle (which is consistent with the identification of the shear modulus). The white and light grey zones would be removed when manufacturing the optimal specimen. 

Conclusions and prospects

In this paper, we investigated the use of topology optimization in order to optimize sensitivity when performing parameter identification from the DIC-FEMU framework. We described in details how the implementation could be performed, focusing in particular on a convenient definition of the optimality criterion. Numerical results and experimental validation confirmed the performance of the approach. The research work thus appears as a novel contribution in the literature of full-field measurements and topology optimization, providing a practical tool of interest for engineers investigating experimental design and willing to optimize the quality of information extracted from their experimental campaign. Nevertheless, the proposed procedure is associated with several limitations which were pointed out in the numerical results. In particular, numerical parameters should be conveniently set to ensure fast convergence, numerical costs may be high, and there is a strong issue to tackle regarding the physical feasibility of some shapes provided by the method. Consequently, the proposed method paves the way for further research studies that may circumvent these current limitations ; we can list :

-the use of other topology optimization procedures such as those based on level sets [START_REF] Allaire | Structural optimization using sensitivity analysis and a level-set method[END_REF] ;

-the use of alternative optimization algorithms, such as those based on stochastic formulations (simulated annealing method, genetic algorithms, . . .) which are suited to problems with very high multiplicity of minima and with a hierarchical structure.

These may be simpler to implement (no computation of gradients) and may avoid geometry filtering, but they also may lead to a larger number of iterations ;

-the implementation of relaxation techniques to further improve convergence properties of the optimization process ;

-the introduction of additional constraints in the cost function, related for instance to the maximal admissible stress in the structure (avoid tiny parts), to machining capabilities and manufacturing constraints [START_REF] Sorensen | Topology and thickness optimization of laminated composites including man-ufacturing constraints[END_REF][START_REF] Allaire | Shape optimization of a layer by layer mechanical constraint for additive manufacturing[END_REF][START_REF] Allaire | Structural optimization under overhang constraints imposed by additive manufacturing technologies[END_REF], or to smoother boundaries of the optimized specimen with control of curvatures ;

-the application of the procedure to nonlinear material behaviors such as plasticity.

In this context, tools exist to directly link IDIC in Correli 3.0 with the Abaqus software [44] ; they could be advantageously used ;

-the use of reduced order modeling (ROM) techniques in order to improve computational costs, as initiated in [START_REF] Neggers | Improving full-field identification using progressive model enrichments[END_REF] or discussed in [START_REF] Neggers | Big data in experimental mechanics and model order reduction: today's challenges and tomorrow's opportunities[END_REF].

All these aspects will be the topics of forthcoming research works. 

AppendixA.2. Influence of the optimality criterion

The choice of optimality criterion is fundamental as it will lead to different optimized topologies. This is illustrated in 

AppendixB. Optimal placement of a hole in a plate

We perform optimization of parameter sensitivity using few design variables, not a large amount of density variables as in the general topology optimization methodology. The goal is to ensure that the connexion between DIC-FEMU (that defines the cost function) and a standard minimization algorithm is correctly set. Consequently, we perform shape optimization rather than topology optimization here.

We consider a rectangular specimen, made of an isotropic linear elastic material, in which (or c(q) = 1

S T E C -1 U S E ) (B.1)
The problem then reads:

q sol = argmin q c(q) (B.
2)

The evolution of the optimality criterion 1/c(q) over the design space is given in to the smallest value or r considered). We clearly observe that there is a global maximum (two from symmetry), which is convenient for the convergence of the optimization algorithm. In the following, we consider the optimization of the design variables (d 1 , d 2 ) alone, the radius r being given and fixed. In addition, the design space is restricted to a subset of the initial rectangle (with size L 1 × L 2 ) in order to ensure that the hole fully remains in the working physical domain.

In order to perform minimization of c(q), we use a Newton-Raphson algorithm. Introducing the variation δq in the design variables set, a first-order Taylor expansion applied to the cost function reads:

(c(q + δq)) 2 = c(q) + ∂c ∂q However, numerical experiments show that this approach leads to a badly conditioned system. We thus prefer an alternative approach in which the Taylor expansion is directly applied to the sensitivity field. It reads:

S(q + δq) = S(q) + ∂S ∂q δq (B.5) so that the cost function becomes: c(q + δq) = 1 S(q) + ∂S ∂q δq T S(q ) + ∂S ∂q δq

(B.6)
Taking derivative and imposing it to zero leads to:

δq = - ∂S ∂q T ∂S ∂q -1 ∂S ∂q T S(q) (B.7)
At each iteration n of the optimization algorithm, δq (n) is computed and the design variables set is updated as q (n+1) = q (n) + δq (n) . Iterations are stopped when variations are small i.e.

||δq (n) || ≤ where is a given value.

We apply the algorithm for a radius r = L 2 /6. Results are given in 
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 1 Figure 1: Comparison of sensitivity fields for three different specimen (from left to right) under traction loading, with geometry, x component and y component of the sensitivity field (from top to bottom).
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 2 Figure 2: Global algorithm for topology optimization.
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 3 Figure 3: Definition of the 1D example (left) and evolution of the cost function c * (ρ 1 ) for several values of γ (right).
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 4 Figure 4: New algorithm for topology optimization dedicated to optimal parameter identification.
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 51 Figure 5: Evolution of the cost function with respect to iterations.
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 6 Figure 6: Plot of various possible penalization functions h(ρ) over [ρ min , 1].
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 7 Figure 7: Initial configuration with boundary conditions (top left), and material distribution at iteration 2 (top right), iteration 4 (bottom left), and iteration 5 (bottom right).
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 8 Figure 8: Evolution of the value of the cost function along the iterations of the algorithm.
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 9 Figure 9: Results obtained for several sets of parameters (γ, κ) using a logarithmic vertical scale.
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 10 Figure 10: The three material distributions used as initial guess : random, checkerboard, uniform (from left to right).
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 11 Figure 11: Optimal material distribution obtained from the three investigated initial conditions : (a) random material distribution ; (b) checkerboard material distribution ; (c) uniform material distribution.
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 12 Figure 12: Geometry (left) and sensitivity fields with respect to G 12 (center and right) obtained from the optimized specimen.
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 13 Figure 13: CAD model of the optimized specimen using CATIA (left) and manufactured specimen with applied speckle (right).
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 14 Figure 14: Sensitivity fields with respect to G 12 obtained after removing the internal isolated region from the optimized specimen.
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 15 Figure 15: Experimental device used for DIC.

Figure 16 :

 16 Figure 16: Results of the DIC process : mesh (left), and longitudinal and lateral displacements (center and right) projected on the deformed geometry (with amplification) of the optimized specimen.

Figure 17 :

 17 Figure 17: Evolution of the cost function (normalized with its minimum, and with log scale on the vertical axis) with respect to G 12 , for the optimized specimen (left) and the full standard specimen (right).
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 18 Figure 18: Optimal material distribution obtained at convergence (left), and evolution of the value of the cost function along the iterations of the algorithm.
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 19 Figure A.19: Illustrative problem with optimal geometry defined from topology optimization.
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 20 Figure A.20: Influence of the penalty factor on the optimized geometry, with γ = 5 (left) and γ = 0.5 (right).

  Fig. A.22 when using topology optimization to maximize one the three inertia moments in a square domain:I x = Ω µy 2 dΩ I y = Ω µx 2 dΩ I z = Ω µ(x 2 + y 2 )dΩ (A.1)with given volume fraction f v = 0.5.

Figure A. 21 :

 21 Figure A.21: Impact of the filtering on the optimized geometry, with r min = 1 (left), r min = 1.5 (center), and r min = 4 (right).

Figure A. 22 :

 22 Figure A.22: Optimization results with respect to inertia moments I x (left), I y (center), and I z (right).

a

  Figure B.23: Map of the optimality criterion over the space (d 1 , d 2 ), for several values of r.

Fig. B. 23 ;

 23 each map in the (d 1 , d 2 ) space corresponds to a fixed value of r (the upper map corresponds

Figure B. 24 :

 24 Figure B.24: Optimization results for the location of the hole from an initial position: trajectory of the center (top, in red) and value of the cost function (bottom) along the iterations.
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We observe that there is a clear convergence to a local minimum in a rapid and effective manner. Oscillations which can be observed in the value of the cost function are purely due to geometrical reasons. Indeed, the hole is defined from pixels which induces that the shape of the hole surface numerically evolves during the iterations.