
HAL Id: hal-02484330
https://hal.science/hal-02484330v1

Submitted on 19 Feb 2020 (v1), last revised 2 Apr 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Space-time pattern extraction in alarm logs for network
diagnosis

Achille Salaün, Anne Bouillard, Marc-Olivier Buob

To cite this version:
Achille Salaün, Anne Bouillard, Marc-Olivier Buob. Space-time pattern extraction in alarm logs for
network diagnosis. MLN 2019: 2nd IFIP International Conference on Machine Learning for Network-
ing, Dec 2019, Paris, France. �hal-02484330v1�

https://hal.science/hal-02484330v1
https://hal.archives-ouvertes.fr

Space-time pattern extraction in alarm logs for
network diagnosis

Achille Salaün1,2, Anne Bouillard1, and Marc-Olivier Buob1

1 Nokia Bell Labs
{achille.salaun, anne.bouillard, marc-olivier.buob}@nokia.com
2 CNRS, Samovar, Télécom SudParis, Institut Polytechnique de Paris

Abstract. Increasing size and complexity of telecommunication net-
works make troubleshooting and network management more and more
critical. As analyzing a log is cumbersome and time consuming, experts
need tools helping them to quickly pinpoint the root cause when a prob-
lem arises. A structure called DIG-DAG able to store chain of alarms in
a compact manner according to an input log has recently been proposed.
Unfortunately, for large logs, this structure may be huge, and thus hardly
readable for experts. To circumvent this problem, this paper proposes a
framework allowing to query a DIG-DAG in order to extract patterns of
interest, and a full methodology for end-to-end analysis of a log.

Keywords: Fault diagnosis · pattern matching · online algorithm.

1 Introduction

Telecommunication networks management becomes a more and more challenging
problem for operators. Indeed, on one hand, their infrastructures involve more
and more devices, new technologies and possibly new manufacturers. On the
other hand, network providers aim at offering a quality of service according to
the Service-Level Agreements (SLAs) established with their clients. Thus, there
is a strong need for fault management in order to save money, time, and human
resources.

That is why network infrastructures are in general monitored. Monitoring
solutions evaluate network performances through measurements. They can also
collect alarms raised by the equipment involved in the infrastructure. The re-
sulting file storing those messages is called a log.

Alarm logs are the raw material used by the expert to understand the cause
of outages. Unfortunately, logs are in practice often very verbose and may be
noisy. The large number of observed machines and alarm types in the log leads
to an important volume of alarms, which complicates the extraction of relevant
information, especially when multiple log files are involved. Log analysis is thus
a difficult, cumbersome and time-consuming task. Network operators need tools
helping them to pinpoint root causes of major incidents and understand the
erroneous processes leading to major failures.

2 A. Salaün et al.

State of the art on root-cause analysis. Root cause analysis (RCA) in
telecommunication networks has been extensively studied as observed in [13].

Many solutions use neural networks (NN). For instance, [14] investigates the
performance of several types of NNs for fault diagnosis of a simulation heat
exchanger. In particular, the authors trained a multi-layer perceptron to map
symptoms onto causes. Regarding the application, it may be impossible to ob-
tain enough training with ground truth. In this case, supervised learning is not
possible. Therefore, the authors also trained self-organizing maps to cluster the
observed symptoms. The observation space is mapped onto a 2D grid and clusters
are derived a posteriori. However, the interpretation of those clusters remains dif-
ficult. [17] considers several time-series and build the correlation matrix of these
signals at each instant. The idea is then to train a convolutional and attention-
based auto-encoder to predict sequences of correlation matrices. Correlation can
be drawn between faulty signals and other ones. Unsupervised, the model takes
into account temporal dependencies but is hardly interpretable.

Bayesian networks (BN) are also common in RCA. Thus, in [2], the authors
split latent causes and observed symptoms into a bipartite BN. Symptoms are
either described by some features or by checking some rules. If the probabilistic
framework favors interpretability of the results, BNs generally face scalability
issues. Indeed, increasing the complexity of the system dramatically increases
the amount of memory to store conditional probabilities. [16] proposes to build
BNs for root-cause analysis in an oriented-object fashion. This helps to design
proper BNs with regard to prior knowledge about the system structure (thanks
to the definition of BN functions), but automation of the model construction is
unclear especially when prior knowledge is unavailable.

In order to explain faulty requests in the eBay Internet Service System, [6]
trains a decision tree classifying faults and successes. Once trained, the path of a
given faulty request is then used as a description of its root cause. The simplicity
of decision trees makes them easy to interpret. Nevertheless, increasing the com-
plexity of the system induces instability in the training phase [3]. Interpretability
may be unclear in such a situation.

Some other solutions comes from pattern matching. [7] introduces a variation
of the Smith-Wasserman algorithm [12] which evaluates the similarity between
two sequences of events. Indeed, root cause may belong to alarm floods that
are similar to a faulty one. [10] splits events streams into chunks that are then
compared to a reference database. [15] uses Finite State Machines storing prior
faulty patterns. It is possible to update the stored patterns a posteriori.

An other approach, [4], proposes an RCA tool inspired from pattern match-
ing techniques. It builds online an automaton storing space-time causalities be-
tween symbols observed in a log. Its construction is unsupervised without losing
in interpretability. Moreover, prior knowledge is optional though adding such
knowledge makes the resulting structure lighter by discarding irrelevant causal-
ities. Nonetheless, the size of the structure is usually too large for a direct use.
For now, we still lack a tool to exploit such a structure and this paper is a first
attempt to overcome that lack.

Space-time pattern extraction in alarm logs for network diagnosis 3

Contributions. Most of works described above try to find the root cause of a
failure or to find correlation between alarms.

In this paper, we rather try to find chains of cascading alarms explaining why
a given incident has occurred. In our approach, we process an input log with some
optional prior knowledge (e.g., the network topology). This information is used
to train a data structure, called DIG-DAG [4], which is designed to store every
chain of alarm present in the input log.

Such a structure is usually too large to be directly interpretable by an expert.
That is why we require a convenient way to extract relevant faulty patterns.

The contributions of this paper are twofold:

1. First, we propose a new query system, allowing to extract small faulty pat-
terns stored in a DIG-DAG and matching the query issued by an expert.
Outputs not only contain the possible root causes of a failure, but also the
entire chain of alarms leading to the failure.

2. Second, we propose an end-to-end methodology for log analysis. It involves
the DIG-DAG and our new query system, but also additional techniques us-
ing graph reductions and clustering techniques. We demonstrate the tractabil-
ity of our framework through the analysis of logs issued by real systems.

Outline of the paper. The remaining of the paper is organized as follows.
Section 2 recalls the DIG-DAG construction from an input log of alarms (and
eventual prior knowledge). Section 3 presents the query system built on top of
DIG-DAG, which is the core of our contribution. In Section 4 details an end-to-
end methodology for log analysis and hints to cope with large logs of alarms.
Section 5 illustrates our proposal on real datasets. Finally, Section 6 concludes
the paper.

2 From log to space-time pattern storage

In this section, we recall the necessary background related to DIG-DAG, a data
structure introduced in [4] able to store space-time patterns. To fix notations,
Section 2.1 formally defines our representation of an alarm log. Section 2.2 in-
troduces directed interval graph (DIG), a graphical representation of the log.
Finally, Section 2.3 presents the DIG-DAG.

2.1 Alarm logs

Nowadays, network operators rely on monitoring solutions to manage their in-
frastructures. Such solutions centralize alarms raised by the equipment into ded-
icated files called logs.

More formally, an alarm log is a finite sequence of timestamped events. More
precisely, we consider that an event is a pair (σ, [s, t]), where σ is a symbol and
[s, t] is a non-empty interval of R+ representing the time interval during which
this event is active. The symbol σ can contain any non-temporal information,

4 A. Salaün et al.

e.g., the name of the corresponding alarm, its severity, the impacted machine,
etc. This constitutes the space aspect of the event. We denote by Σ the set of
all possible symbols and assume this set finite. For an event ` = (σ, [s, t]), we
denote its symbol by λ(`).

A log is then denoted by L = ((σi, [si, ti])i∈{1,...,n}). We assume, without loss
of generality that:

– the values (si) and (ti) are all distinct. Indeed, tie-breaking rules can be used
if it is not the case;

– if σi = σj for some distinct i and j, then [si, ti]∩[sj , tj] = ∅: the corresponding
events do not temporally overlap. If this is not the case, these two events
can be replaced by (σi, [si, ti] ∪ [sj , tj]).

A log can be processed online. An event is said to be active at a time if it
corresponds to a pending alarm at this time. More formally, given log L and
time τ , an event (σ, [s, t]) of L is active at time τ if τ ∈ [s, t]. We note Aτ the
set of active events of log L at time τ . The observed log at time τ is defined as

Lτ
def
= ((σ, [s, t]) ∈ L|s < τ).

Example 1. Consider alphabet Σ = {a, b, c, d} and log L = ((a, [1, 4]), (b, [2, 5]),
(c, [3, 6]), (a, [7, 10]), (c, [8, 11]), (d, [9, 12])). At time τ = 5.5, we have A5.5 =
{(c, [3, 6])} and

L5.5 = ((a, [1, 4]), (b, [2, 5]), (c, [3, 6])).

2.2 DIG: a graph-based representation of an alarm log

In this paragraph, our goal is to represent the log of alarms in a more structured
way. Indeed, fault management is based on finding correlation between alarms,
hence exhibiting some structure in the log. To do so, we first define the notion
of potential causality which enables to translate the log into a graph.

Two events share a potential causality if they are space-related and if they
share a potential time causality. Two events are space-related if their symbol
lies in C ∈ Σ2, which gathers all the relevant pairs of symbols. For example, C
can be tuned to consider the topology of the network (see Sec. 4). Two events
share a potential time causality if one of the events occurs before the other, and
if their activity period overlap. More formally, we say that event ` = (σ, [s, t]) is
a potential cause of `′ = (σ′, [s′, t′]) if

– σσ′ ∈ C: ` and `′ are space-related ;
– s′ ∈ [s, t]: ` and `′ are co-occurrent and ` is active before `′.

This potential causality is denoted by `→ `′.
The directed interval graph (DIG) of L with space relation C is a labeled

directed graph (L,→, λ) where:

– L is the set of vertices;
– → is the set of arcs;

Space-time pattern extraction in alarm logs for network diagnosis 5

– λ : L → Σ is the labeling function inherited form the event: each ver-
tex/event is labeled with its symbol.

This directed graph is acyclic because of the time causality contained in →. As
shown in Figure 1, a DIG can be disconnected.

Example 2. If C = {ab, ac, bc, cd}, then (a, [1, 4])→ (b, [2, 5]) holds, but (b, [2, 5]) 9
(a, [1, 4]) and (a, [1, 4]) 9 (c, [8, 11]) as they break the time causality, and (a, [7, 10]) 9
(d, [9, 12])) because ad /∈ C.

The DIG corresponding to the log L of Example 1 is represented on Figure 1.

a

b

c

a

c

d

1 42 53 6 7 108 119 12
time

Σ

Fig. 1: DIG of L defined in Example 1.

We call space-time pattern or pattern of the log any word of Σ∗ any label of a
path of its DIG. The denomination space-time comes after potential causalities
that can be issued either from topological or from temporal reasons.

2.3 DIG-DAG: a data structure for storing space-time patterns

DIG-DAG is a deterministic automaton-like structure able to store and count
every space-time pattern of a log. It is the base of our root-case analysis approach.
We use the formal language notations. In particular, the empty word is denoted
by ε.

Definition 1 (DIG-DAG). Let L be an alarm log on alphabet Σ, with spatial
relation C and A ⊆ L a set of active events.

A DIG-DAG (V,E, λ,A) of (L,→, λ) is a quadruple satisfying:

– (V,E) is a directed acyclic graph with a unique vertex q0 with in-degree 0,
called the root;

– λ is a labeling function λ : V → Σ ∪ {ε} with λ(q0) = ε and ∀u ∈
V \{q0}, λ(u) ∈ Σ;

– for each vertex u ∈ V and for each σ ∈ Σ, vertex u has at most one successor
v ∈ V such that λ(v) = σ;

6 A. Salaün et al.

– each path `1, ..., `k of the DIG corresponds to a path q0, u1, ..., uk ∈ V k+1

such that λ(`i) = λ(ui) for all i ∈ {1, . . . , k} and conversely;
– A ⊆ V is a subset such that u ∈ A if and only if for all paths from the root

to u there exists a path in (L,→, λ) ending in an active vertex with the same
label. In other words, for each path q0, u1, ..., u there exists a path `1, ..., `u
in (L,→, λ) such that λ(`i) = λ(ui) and `u is active.

One can notice that, given a log L and a spatial relation C, the DIG is unique
but not the DIG-DAG. For example, the DIG-DAG can be minimized or not.
We assume in the rest of the paper that the DIG-DAG is built according to the
deterministic algorithm presented in [4]. This algorithm can be performed online
by processing events in their chronological order.

One of its advantages is its capability to count and store the number of
occurrences of each space-time pattern occurring in (L,→, λ). More precisely,
w : E → N is a weight function counting the number of occurrences of any
pattern ending with that arc: w((u, v)) = n if for any path q0, . . . , u, v, the
pattern λ(q0) · · ·λ(u)λ(v) corresponds to n paths of (L,→, λ).

Finally, as already mentioned above, the DIG-DAG can be interpreted as a
special case of a deterministic automaton, where q0 is the initial state and the
labels are deported to the targets of the transitions.

Example 3. Figure 2 shows the DIG-DAG built from DIG (L,→, λ) (cf. Exam-
ple 1) at time 9.5: the last three events of the log are active. The weights are
depicted above the arcs. For example, a and ac occur twice, while abc occurs
only once. Active vertices are represented in bold.

ε a

b c

c d

2

1

2

1

1

2

1

1

Fig. 2: DIG-DAG built from log L of Example 1; bold vertices are the active
states at time τ = 9.5.

To sum up, a DIG-DAG is a graph structure able to store and count any
space-time pattern occurring is an alarm log. The size of this structure can grow
exponentially with the size of the log. For example, root’s out-degree is exactly
the size of the alphabet Σ and the depth of the structure is the size of a longest
path in the corresponding DIG. The rest of the paper is devoted to the extraction
of patterns of interest.

Space-time pattern extraction in alarm logs for network diagnosis 7

3 Pattern extraction

In this section, we present a generic solution to extract patterns of interest by
queries.

This section presents a new framework able to isolate patterns matching
input queries. These patterns are represented as sub-DIG-DAGs:

Definition 2 (sub-DIG-DAG). Let D = (V,E, λ,A) be a DIG-DAG. For
every subgraph (V ′, E′) of (V,E), the 4-tuple D′ = (V ′, E′, λ|V ′ ,A ∩ V ′) is a
sub-DIG-DAG of D.

Remark that a sub-DIG-DAG is not necessarily a DIG-DAG: it may have
several roots and be disconnected.

Sub-DIG-DAGs are stable with graph operations like intersection, union,
difference.

Definition 3 (query and its resulting sub-DIG-DAG). A query is a 5-
tuple Q = (D, S, T, Vi, Ei), where D = (V,E, λ,A) is a DIG-DAG, S, T, V ′ ⊆ V
and E′ ⊆ E. The result of the query is the largest sub-DIG-DAG (E′, V ′, λ′,A′)
of D such that:

– V ′ ⊆ Vi, E′ ⊆ Ei;
– the vertices with in-degree 0 are in S;
– the vertices with out-degree 0 are in T .

The result of the query is denoted by D(Q).

Intuitively, the sub-DIG-DAG ofD resulting from a queryQ = (D, S, T, Vi, Ei)
is the subgraph of D whose maximal paths all start in S and end in T . These
paths only traverse vertices of Vi and arcs of Ei.

3.1 Regular queries

The definition of queries is very broad, and in this paragraph we restrict to
queries parametrized by a finite automaton, and local properties on the vertices
and arcs. Intuitively, the role of the finite automaton is to extract patterns
satisfying some relations between vertices, while local properties select vertices
and arcs. These properties do not only depend on the symbols of the nodes (which
could otherwise have been done with an automaton), but rely on information that
can be attached to the nodes. For example, this can be useful to extract nodes
that have been recently active or arcs satisfying some weight-based properties.

Definition 4 (Regular query). Let M be a finite automaton, and Pv and Pe
be two properties. The regular query R(S, T,M, Pv, Pe) = (S, T, Vi, Ei), where:

– for all v ∈ Vi, v satisfies Pv;
– for all e ∈ Ei, e satisfies Ev;

8 A. Salaün et al.

Algorithm 1: Input query based sub-DIG-DAG extraction

Input: D,M = (Q,Σ, δ, I, F), S, T, Pv, Pe
Output: a sub-DIG-DAG D′
// Phase 1: Forward exploration

foreach u ∈ V do Q1(u)← ∅;
foreach u ∈ V (in the topological order) do

if u ∈ S ∩ Pv then Q1(u)← Q1(u) ∪ I;
foreach v ∈ V ∩ Pv such that (u, v) ∈ E ∩ Pe do

Q1(v)← Q1(v) ∪ {q′ ∈ Q | ∃q ∈ Q1(u), δ(q, q′) = λ(v)}
// Phase 2: Backward exploration and decision

V ′ ← ∅; E′ ← ∅;
foreach u ∈ V do Q2(u)← ∅;
foreach u ∈ V (in the reverse of the topological order) do

if u ∈ T ∩ Pv then Q2(u)← Q2(u) ∪ (Q1(u) ∩ F);
if Q2(u) 6= ∅ then

V ′ ← V ′ ∪ {u} foreach v such that (v, u) ∈ E ∩ Pe do
if {q ∈ Q1(v) | ∃q′ ∈ Q2(u), δ(q, q′) = λ(v)}} 6= ∅ then

E′ ← E′ ∪ {(v, u)};
Q2(v)← Q2(v) ∪ {q ∈ Q1(v) | ∃q′ ∈ Q2(u), δ(q, q′) = λ(v)}

return D′ = (V ′, E′, λ|E′ ,A ∩ V ′)

– D(R(S, T,M, Pv, Pe)) contains all the paths of D(Q) labeled by a word rec-
ognized by M. Consequently, Vi and Ei are respectively defined by the set of
vertices and arcs belonging to one of those paths;

– D(R(S, T,M, Pv, Pe)) is the minimal sub-DIG-DAG satisfying those prop-
erties.

Algorithm 1 computes the sub-DIG-DAG corresponding to a regular query.
We assume that we know a topological order of the vertices. For this one can
either use a classical algorithm (see [8] for example), or the topological order can
be computed on-the-fly at the DIG-DAG construction.

Algorithm 1 has two phases: the first one identifies, by a forward traversal of
the DIG-DAG all the possible paths starting from S, having vertices and arcs
satisfying Pv and Pe and whose label are prefixes of words recognized of the
automaton. For this, a set Q1(u) is attached to each node, containing all the
states of the automaton that can be reached from a vertex in S.

The second phase performs a backward traversal and identifies the vertices
and arcs in the sub-DIG-DAG. For each vertex u, Q2(u) is the subset of states
in Q1(u) such that there is a path from u to T labeled similarly to a path from a
state of Q2(u) to a final state in the automaton. The vertices and arcs involved
in these paths constitute the sub-DIG-DAG.

More formally, letM = (Q,Σ, δ, I, F) be a finite automaton where Σ denotes
its alphabet, Q the its set of states, I its initial states, F its final states and δ its
transition map. We use the automaton interpretation of a DIG-DAG: the label
of a transition is the label of the extremity of the arc. Thus, the label of a path

Space-time pattern extraction in alarm logs for network diagnosis 9

in the DIG-DAG does not take into account the label of the first node of the
path.

We show next that the result of Algorithm 1 is the sub-DIG-DAG corre-
sponding to the regular query as defined in Definition 4.

Let us first state some properties of Q2(u).

Lemma 1. With the above notations,

– ∀u ∈ V ′, p ∈ Q2(u), ∃v ∈ V ′, q ∈ Q2(v) such that (u, v) ∈ E′ and λ(v) ∈
δ(p, q);

– ∀v ∈ V ′, q ∈ Q2(u), ∃u ∈ V ′, p ∈ Q2(v) such that (u, v) ∈ E′ and λ(v) ∈
δ(p, q);

– for all v ∈ V ′, for all q ∈ Q2(v), there exists a path from a vertex s ∈ S to
v corresponding to a path from i ∈ I to q in M;

– for all v ∈ V ′, for all q ∈ Q2(v), there exists a path from v to a vertex t ∈ T
corresponding to a path from q to f ∈ F in M.

Proof. The first two statements are deduced from lines 5 and 12 of the algorithm,
that is the construction of Q1 and Q2. The last two statements are obtained by
induction from the two firsts.

We prove that the resulting sub-DIG-DAG is indeed the smallest one containing
the intersection of D and M.

Theorem 1. Consider the regular query R(S, T,M, Pv, Pe), and let D′ be the
sub-DIG-DAG returned by Algorithm 1. We have D′ = D(R(S, T,M, Pv, Pe)).

Proof. We have to check the four properties of Definition 4. The two firsts are
straightforward, as all vertices and arcs added to V ′ and E′ respectively check
Pv and Pv (lines 9-13).

We now check the third property: let p = u1, . . . , uf be a path in D labeled by
a word accepted byM, with u1 ∈ S and uf ∈ T . Let q1, . . . , qf be a sequence of
states visited byM for accepting this word. For all i, by construction, qi ∈ Q1(ui)
(line 5). As qf ∈ F and uf ∈ T , qf ∈ Q2(uf) (line 9), and then, qi ∈ Q2(ui) for
all i (line 14): all the arcs of the path are kept.

Finally, we have to check the minimality of the structure, that is that all
the arcs of the graph returned by the algorithm belong to a path labeled by
a word recognized by M. This is a consequence of Lemma 1: consider an arc
(u, v). One can build a path s ∈ S u → v t ∈ T corresponding to
qi ∈ I ∩ Q2(s) p ∈ Q2(u) → q ∈ Q2(v) qf ∈ F ∩ Q2(t) by applying items
3, 1, 4 of the Lemma 1.

Example 4. Let us extract the patterns satisfying the regular expression a(Σ \
{b})∗c from the DIG-DAG represented in Figure 3a, that is all the paths starting
by a, ending c and not containing any b. We choose S = {q0}, T = V . Nodes of
the DIG-DAG are numbered according a topological order. The regular expres-
sion is represented by the automaton shown in Figure 3b. The sub-DIG-DAG
extraction steps of Algorithm 1 are depicted on Figure 4. Phase 1 is displayed

10 A. Salaün et al.

from 4a to 4e and phase 2 from 4f to 4j. Sets Q1(.) are reported below each
vertex for phase 1, and Q2(.) are for phase 2. Arcs and vertices that are added
to E′ and V ′ are represented in bold, and those non selected are dashed.

ε

q0

a

v1

b

v2

c

v3

c

v4

d

v5

(a) sub-DIG-DAG.

q0 q1 q2
a c

Σ\{b}

(b) Automaton.

Fig. 3: DIG-DAG and automaton used for Algorithm 1 in Example 4.

3.2 Sub-DIG-DAG simplification

Queries and in particular regular queries allow to select patterns of interest.
Ideally, the extracted sub-DIG-DAG should be easily readable. As we will see
in Section 5, the number of vertices is often limited, but it happens that the
average degree of the sub-DIG-DAG is too high to get a readable graphical
representation. In this paragraph, we present three methods to improve and
simplify the graph. Note that this simplification cannot be considered as sub-
DIG-DAG extraction, as they might change the structure, by merging nodes,
erase paths and are not compatible with weights. This is not a big issue since
these operations are just for graphical representations.

Transitive reduction. The aim of the transitive reduction is to decrease the
number of arcs. Introduced in [1], this operation removes every arc e = (u, v)
whenever there exists another path between nodes u and v. The resulting graph
is the minimal subgraph (for the arc-inclusion order) that does not break the
connectivity of each connected component of the graph. The transitive reduction
removes some paths from the sub-DIG-DAG, but keeps the longest ones.

Minimization. As said above, a DIG-DAG can be seen as a deterministic
automaton. Moreover, it is acyclic. As a sub-DIG-DAG is a subgraph of the
DIG-DAG, it can also be seen as a deterministic automaton if it has a single
source node. Still, we can use Revuz algorithm [11] to minimize it. Dedicated to

Space-time pattern extraction in alarm logs for network diagnosis 11

ε

{q0}

a

∅
b

∅

c

∅

c

∅

d

∅

(a) Phase 1; Initialization

ε

{q0}

a

{q1}
b

∅

c

∅

c

∅

d

∅

(b) Ph. 1; vertex q0

ε

{q0}

a

{q1}
b

∅

c

∅

c

{q1, q2}

d

∅

(c) Ph. 1; vertex v1

ε

{q0}

a

{q1}
b

∅

c

∅

c

{q1, q2}

d

∅

(d) Ph. 1; vertex v2

ε

{q0}

a

{q1}
b

∅

c

∅

c

{q1, q2}

d

{q1}

(e) Ph. 1; vertex v4

ε

∅

a

∅
b

∅

c

∅

c

∅

d

∅

(f) Phase 2; Initialization

ε

∅

a

∅
b

∅

c

∅

c

∅

d

∅

(g) Ph. 2; vertex v5

ε

∅

a

{q1}
b

∅

c

∅

c

{q2}

d

∅

(h) Ph. 2; vertex v4

ε

∅

a

{q1}
b

∅

c

∅

c

{q2}

d

∅

(i) Ph. 2; vertices v3 and v2

ε

{q0}

a

{q1}
b

∅

c

∅

c

{q2}

d

∅

(j) Ph. 2; vertex v1 and D′

Fig. 4: Algorithm 1 applied to sub-DIG-DAG and automaton of Figure 3.

12 A. Salaün et al.

acyclic deterministic automaton, this algorithm merges equivalent states from
the leaves to the root. The resulting sub-DIG-DAG is minimal and recognizes
exactly the same patterns. However, some states (resp. arcs) having different
weights may be merged in the process.

Source simplification As said at the end of Section 2, the size of the DIG-
DAG grows exponentially with the size of the log. This means that there can
be numerous vertices with the same label, especially corresponding to the same
occurrence of an event. When querying a DIG-DAG, the set S might be described
by some property (a given symbol, and set of symbols), and many sources might
have the same label. We observe that many of them can have the same sets of
successors. Source simplification parses the source nodes and merges those with
the same set of successors. Here again, this operation might not be compliant
with the arc weights.

4 End-to-end analysis of an alarm log

In this section, we explain how to apply the approach described in Sections 2
and 3 for the end-to-end analysis of an alarm log in a root-cause analysis context.
We assume that the log is given and there is no constraint for performing it
online (even if some steps can be performed online). In Section 4.1, we explain
the general approach, and in Section 4.2, we give some solutions when the log is
too large for the analysis to be scalable.

4.1 General approach of the analysis

Log parsing. The first step is to transform the raw log into a sequence of events.
This includes fixing the alphabet, fixing the activity period of each event, and
the time τ when the construction of the log stops.

Alphabet of the log: The choice of the alphabet is decided based on the features
one wants to take into account during the analysis. The most relevant features
are:

– the name of the alarm: this is generally a short text or a number;
– the emitting machine, represented by its identifier. This can be a machine,

the port of a switch, a cell in a wireless network, etc.;
– the severity of the alarm, represented by a number or a color, that grows or

becomes darker with the severity.

Activity period of an event: Depending on whether the log has already been
pre-processed or not, whether an alarm has a cancel time or not, the activity
period of an event must be carefully defined.

The simple case is when an alarm has a emission time and a cancel time, as
they respectively define the star time and the end time of the activity period.

Space-time pattern extraction in alarm logs for network diagnosis 13

When only the emission time is available, this defines only the start time of
the activity period. Its end has to be defined.

In some alarm logs, emission times occur at precise dates. This is the case for
example for KPIs, when their emission is set a few times per hour. In this case
and in order to ensure time causality, a good choice would be to set an activity
period a little longer than the periodicity of the measurements.

If there is no such periodicity, then the time interval can be set up by studying
the average rate of the events. More details on the choice of the activity period
can be found in [4].

Fixing time τ : Even if a log is given as a file and the analysis can be performed
for the whole log, it might be a better idea, sometimes, to stop the construction
before. For example, a peak of alarms detected at time τ indicates that a major
failure is arising in the network at that time. The origin of the problem occurs
before that peak. Moreover, queries of the DIG-DAG can make advantage the
active alarms at time τ .

DIG-DAG construction. Once the log has been well defined, the potential
space causality C is required to build the DIG-DAG. We give below some exam-
ples:

– if no information is available, then C is simply Σ2;
– it the geographic location of the network equipment is known (antennas and

cells in a wireless network for example), then σσ′ ∈ C if and only if the
symbols σ and σ′ represent machines are distant of no more than a few
kilometers.

– if some logical behavior is known, such as a certain type of element or ap-
plication only communication with some other types of machines, one can
build C based on these possible communications.

The DIG-DAG can then be built. Note that additional information can be
added to the structure, such as the weight of the arcs, defined in Section 2.3, or
the last date of activation of each vertex, mentioned in Section 3.

Query of the DIG-DAG. Once the DIG-DAG is built, it stores every space-
time pattern of the log and one can query it. For a regular query, parameters
are S, T,M, Pv, Pe (see Section 3.1). Let us give some examples.

Filtering the arcs: this is done by defining property Pe. Assume that one wants
to extract parts of the DIG-DAG such that there are strong correlations between
the nodes. This is done by using the weights of the arcs, and more precisely, the
ratio r defined in [4], such that for each arc (u, v) of the DIG-DAG, r((u, v)) =
w((u, v))/|L|v, where |L|v is the number of occurrences of v in log L. This is
the ratio between the number of time patterns ending by arc (u, v) has been
observed in the log and the total number of occurrences of v in the log. If this
ratio approaches 1, this means that v is strongly and positively correlated to

14 A. Salaün et al.

these patterns. Property Pe will then select the arcs having a ratio above a given
threshold ρ.

Filtering the nodes: this is done by defining property Pv. Assume that one might
want to discard alarms having the lowest severity to focus on the more important
messages. This is then equivalent to select a subset of Σ. Assume that one wants
to focus on recent alarms only. Then Pv can be set to select nodes that have
been recently active.

Sources: We now define S, the possible sources of the paths. By default, one can
choose S = {q0} to keep every patterns. On the contrary, one could decide to
focus on some types of alarms.

Targets: For the definition of T , one may want to focus on critical events. A
good choice, especially if τ has been chosen in a peak of alarm, is to focus on
active alarms active at τ that have a high severity level.

More specific queries: for more specific queries, the automatonM can be defined.
This can for example be used to follow and check the propagation of faults. For
example, to check the propagation of a faulty behavior from a machine m1 to
another machine m2, one may define an automaton accepting words of the form
Σ∗1Σ

∗
2 , where Σi is the set of alarms emitted from machine mi.

Once the query has been defined, the DIG-DAG is queried according to
Algorithm 1. The readability of resulting sub-DIG-DAGs can be improved by
using the techniques described in Section 3.2.

4.2 Dealing with huge logs

It happens that logs are too huge so that the DIG-DAG can be built in a reason-
able time (or online). In this paragraph, we propose several solutions to overcome
this difficulty. The first one is based on selecting relevant parts of the log, and
the other ones rather modify the alphabet Σ to simplify the log.

Truncation of the log. A first solution consists in selecting only the most
interesting parts of the log. Intuitively, a problem can be detected when the
behavior of the alarms emission process deviates from its normal behavior. For
this, we are interested in the rate on arrival of the alarms, or of a subset of
alarms. Detecting the deviation as soon as possible can help targeting the root
cause.

Several techniques have been proposed to detect automatically deviating be-
haviors. They are all based on tracking the average arrival rate of messages: one
can cite the Moving-average model [9] or [5]. In the solution proposed in the next
section, we consider the latter solution, as it has been demonstrated to track de-
viations more precisely. The arrival rate of messages can be computed online.
Detecting sudden deviations can then be done using Tchebychev inequality.

Space-time pattern extraction in alarm logs for network diagnosis 15

Simplification of the alphabet. The size of the alphabet has a strong impact
on the size of the DIG-DAG. Indeed, the out-degree of each vertex is bounded
by the size of the alphabet.

Spamming alarms. The easiest way to simplify a log is to remove some entries.
Spamming alarms are frequent alarms that do not provide information: they
appear in every log, regularly, whatever the state of the machine. Removing them
would not impact the retrieval of cascades of events for root-cause analysis. They
can also improve the analysis by discarding irrelevant causalities. Those alarms
can be learned through the observation of previous logs, or by pre-processing
the log under analysis.

Clustering co-occurrent alarms. Another way to simplify the log is to cluster co-
occurrent symbols and merge the corresponding events of the log. More precisely,
we define a distance between two symbols σ and σ′ as the Jaccard distance of
their emission intervals: let Iσ = ∪{`∈L | λ(`)=σ}[s`, t`] be the union of all the
intervals of time where symbol σ is emitted. The Jaccard distance of σ and σ′ is

d(σ, σ′) = 1− |Iσ ∩ Iσ
′ |

|Iσ ∪ Iσ′ |
,

where | · | is the L1 norm.
This distance can be generalized to the distance between clusters the follow-

ing way: let C and C ′ be two sets of symbols. Let IC = ∪{`∈L | λ(`)∈σ}[s`, t`].
The Jaccard distance between C and C ′ is

d(C,C ′) = 1− |IC ∩ IC
′ |

|IC ∪ IC′ |
.

From this distance one can build a clustering of alarms in a bottom-up ap-
proach:

– fix a threshold α to merge clusters that have distance less than α;
– while the smallest distance between two any clusters is less than α, merge

the two nearest clusters.

When clusters have been computed, the log needs to be simplified. The new set
of symbols is the set of clusters obtained, and we replace each event (σ, [s, t])
by (C, [s, t]) is σ ∈ C, and merge all the co-occurring events having the same
cluster.

As in the previous paragraph, this can be done by pre-processing the log
under analysis, but could also be learned from previous logs, and the merging of
events be done on-the-fly.

Projection the alphabet and two-step analysis. A third solution to limit the size
of the alphabet, is to project the alphabet. For example, if the alphabet were
initially based on both the emitting machine and the name of the alarm, one can
build a DIG-DAG by projecting the alphabet on the machines only or the alarm

16 A. Salaün et al.

names only. By doing this, events will have to be merged as in the paragraph
above. Such a simplification of the log implies some loss of information, but
projecting on the machines can help locating the problem, and projecting on the
alarm name can help detecting the type of problem that occurred.

This partial information can be used for selecting a sub-set of events of the
original log, and perform a second construction of a DIG-DAG: let us assume
for example that we used only the information of the machines to build the first
DIG-DAG, and performed a query that isolated some parts of the log, hence
some machines of interest. Now, consider the original log and keep only the
events emitted by the machine of interest. The size of this sub-log and of the
alphabet is reduced, so the analysis can be performed by building the DIG-DAG
of the sub-log and querying it.

5 Experimental results

In this section, we apply our methodology (see Section 4) to three real datasets
using a computer with an Intel i7 microprocessor and 8GB RAM.

5.1 Datasets

Log 1 Log 2 Log 3

Duration (h) 1042 48 330

Nb. of entries (total) 35,905 6,873 5,591

Nb. of network elements 115 142 41

Nb. of alarms 43 66 39

Size of the alphabet 242 429 113

Nb. of entries after clustering step 1,095 548 480

Nb. of entries after spamming filtering 635 537 226

Nb. of clusters 103 167 69

Clustering execution time 2.5s 3.7s 0.4s

Nb. of DIG-DAG vertices / edges 20,540 / 443,496 4,364 /177,973 190 / 643

Nb. of query (ρ = 0.7) vertices / edges 19 / 35 142 / 996 34 / 54

DIG-DAG construction time 25.1s 8.9s 38ms

Query construction time 0.7s 1.0s 42ms

Table 1: Experiments summary. First block describes the dimensions of the raw
datasets. Second block shows the dimensions of the logs after alphabet simpli-
fication. Third block highlights the gains obtained by our query system. When
relevant, computation times are mentioned.

We use three private logs issued by three different GSM network elements.
Each line describes a specific event which contains the alarm identifier, the ma-
chine name, the emission time of the alarm, and its severity. Note that each row

Space-time pattern extraction in alarm logs for network diagnosis 17

describes a punctual event, i.e. the activity of the event is only characterized
by its emission time. Severity is a score indicating the importance of the alarm,
equal to 0 for informative messages, 1 for warnings, 2 for mid severe alarms and
3 for major failures. Each triple (machine, alarm-id, severity) corresponds
to a symbol as introduced in Section 2.1.

First block of Table 1 gives for each log its size and its corresponding alpha-
bet. Networks topologies are unknown.

5.2 Simplification of the alphabet and DIG-DAG construction

First of all, a potential causality relationship is defined with regard to punctual
events. As logs may last several days, we consider that an event could cause
another event if it occurred at most one hour earlier. This is enough to catch
relevant causalities.

To limit the size of the DIG-DAG, we cluster co-occurring alarms as described
in Section 4 with α = 0.3. Furthermore, we discard spamming clusters, that is
clusters whose total activity period is more than 24 hours.

The activity in Log 1, before and after alphabet simplification, is represented
in Figure 5. One can check that such simplifications did not alter the behavior
observed in the original log.

3.4 3.45 3.5 3.55 3.6 3.65 3.7 3.75

·106

0

50

100

Time (s)

N
u
m

b
er

o
f

a
ct

iv
e

a
la

rm
s

Number of active alarms in the raw log

Number of active alarms after alphabet simplification

Fig. 5: Number of active alarms over time (raw and simplified logs) in Log 1.

Log sizes after simplifications are shown in the second block of Table 1. Note
that skipping the alphabet simplification in the RCA process leads to larger
structures. For instance, Log 1 is too big to be built quick.

18 A. Salaün et al.

5.3 DIG-DAG queries

Despite their quick computation, the DIG-DAGs are hardly human-readable (see
third block of Table 1). We now extract patterns leading to critical failures.

For each dataset, we query the DIG-DAG with the following parameters:

– S is restricted to relevant vertices that correspond to clusters containing at
least one event of severity greater or equal to 1;

– T is restricted to critical vertices that correspond to clusters containing at
least one event of severity 2 or 3;

– Pv is defined to only consider relevant vertices;
– Pe is defined to only consider arcs of ratio greater than ρ ∈ [0, 1];
– M accepts any pattern.

As we have neither prior knowledge nor expertise about the logs we studied,
the described patterns are very generic. We will see however in the two next
sections that these naive queries still dramatically improve DIG-DAG readability
and contain relevant information about failures.

5.4 Results

Evaluating filtering of queries. This section presents results for different
values of ρ. The greater this parameter, the stricter the filtering.

0 0.2 0.4 0.6 0.8 1
0

50

100

Threshold (ρ)

N
u
m

b
er

o
f

v
er

ti
ce

s
(|
V
ρ
|)

0

2

4

6

·10−3

F
ra

ct
io

n
o
f

v
er

ti
ce

s
|V
ρ
|/
|V
|

0 0.2 0.4 0.6 0.8 1
0

200

400

600

Threshold (ρ)

N
u
m

b
er

o
f

ed
g
es

(|
E
ρ
|)

0

0.5

1

·10−3

F
ra

ct
io

n
o
f

ed
g
es
|E
ρ
|/
|E
|

Fig. 6: Number of vertices |Vρ| (resp. edges |Eρ|) of queries in Log 1 regarding
threshold ρ (left axis). This number is divided by the number of vertices |V |
(resp. edges |E|) in the whole DIG-DAG (right axis).

In Figure 6, for any ρ, queries select a small fraction of the DIG-DAG built
from Log 1. This highlights the efficiency of the queries to extract patterns from
the DIG-DAG. For ρ ≥ 0.7, the corresponding sub-DIG-DAG has less than 19
vertices and 35 arcs, and hence becomes small enough to be human-readable.
The choice of ρ is a compromise between readability and quantity of information.

Space-time pattern extraction in alarm logs for network diagnosis 19

Accuracy of the queries. For each dataset, the root cause has been provided
by experts. These root causes have been highlighted by experts independently of
our work. When ρ = 0.7, the resulting sub-DIG-DAGs contains all the provided
root causes. Moreover, the sub-DIG-DAG provides richer information than just
a root cause. For example, Figure 7 depicts the sub-DIG-DAG obtained for
Log 1 and contains the root cause (77397912,4004,2) provided by experts.
Unfortunately, we did not get further expert feedback regarding the quality of
the sub-DIG-DAGs.

Fig. 7: Sub-DIG-DAG issued by the query of Log 1 (ρ = 0.7). Labels (machine,
alarm-id, severity) are indicated for each vertex. Colors depend on the sever-
ity of the cluster representative. Ratios are indicated on edges.

6 Conclusion

In this article, we proposed a system of queries to extract meaningful and syn-
thetic explanations from causal graph structures. The tool provided is flexible
enough to allow experts to search for specific behaviors within the log. We also
demonstrated how to use this tool for an end-to-end analysis.

However, human expertise is still a necessary component in the RCA process,
and our goal is oriented towards self-diagnosing and self-repairing networks.

Therefore, our future works aim at automatizing the exploitation of the DIG-
DAG structure. Additionally, being able to combine knowledge learnt from sim-
ilar networks would help us to design a fully automatic RCA solution.

References

1. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM Journal on Computing 1(2), 131–137 (1972)

20 A. Salaün et al.

2. Alaeddini, A., Dogan, I.: Using bayesian networks for root cause analysis in statis-
tical process control. Expert Systems with Applications 38(9), 11230–11243 (2011)

3. Aluja-Banet, T., Nafria, E.: Stability and scalability in decision trees. Computa-
tional Statistics 18(3), 505–520 (2003)

4. Bouillard, A., Buob, M.O., Raynal, M., Salaün, A.: Log analysis via space-time
pattern matching. In: 2018 14th International Conference on Network and Service
Management (CNSM). pp. 303–307. IEEE (2018)

5. Bouillard, A., Junier, A., Ronot, B.: Hidden anomaly detection in telecommunica-
tion networks. In: 2012 8th international conference on network and service man-
agement (cnsm) and 2012 workshop on systems virtualiztion management (svm).
pp. 82–90. IEEE (2012)

6. Chen, M., Zheng, A.X., Lloyd, J., Jordan, M.I., Brinewer, E.: Failure diagnosis
using decision trees. In: International Conference on Autonomic Computing, 2004.
Proceedings. pp. 36–43. IEEE (2004)

7. Cheng, Y., Izadi, I., Chen, T.: Pattern matching of alarm flood sequences by a mod-
ified smith–waterman algorithm. chemical engineering research and design 91(6),
1085–1094 (2013)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd Edition. MIT Press (2009)

9. Enders, W.: Stationary Time-Series Models. New York: Wiley (2004)
10. Johannesmeyer, M.C., Singhal, A., Seborg, D.E.: Pattern matching in historical

data. AIChE journal 48(9), 2022–2038 (2002)
11. Revuz, D.: Minimisation of acyclic deterministic automata in linear time. Theo-

retical Computer Science 92(1), 181–189 (1992)
12. Smith, T.F., Waterman, M.S., et al.: Identification of common molecular subse-

quences. Journal of molecular biology 147(1), 195–197 (1981)
13. Solé, M., Muntés-Mulero, V., Rana, A.I., Estrada, G.: Survey on models and tech-

niques for root-cause analysis. arXiv preprint arXiv:1701.08546 (2017)
14. Sorsa, T., Koivo, H.N.: Application of artificial neural networks in process fault

diagnosis. Automatica 29(4), 843–849 (1993)
15. Van Lunteren, J.: High-performance pattern-matching for intrusion detection. In:

Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Com-
puter Communications. pp. 1–13. Citeseer (2006)

16. Weidl, G., Madsen, A.L., Israelson, S.: Applications of object-oriented bayesian
networks for condition monitoring, root cause analysis and decision support on
operation of complex continuous processes. Computers & chemical engineering
29(9), 1996–2009 (2005)

17. Zhang, C., Song, D., Chen, Y., Feng, X., Lumezanu, C., Cheng, W., Ni, J., Zong,
B., Chen, H., Chawla, N.V.: A deep neural network for unsupervised anomaly
detection and diagnosis in multivariate time series data. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 33, pp. 1409–1416 (2019)

