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I. COUPLED DIPOLES: GREEN DYADIC METHOD
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FIG. S1. Coupled dipole approximation at the example of a dielectric sphere. (a) Volume discretization of the nanoparticle.
(b) Dipolar polarizabilities are assumed for each cell of the discretization. The self-consistent fields are calculated through
evaluation of the coupling between all pairs of cells. (c-d) Illustration of the self-consistent electric polarization distribution
P(r) inside the particle for a small (c) and large (d) silicon sphere.

The field at every meshcell inside the nanostructure can be calculated for instance using the Green Dyadic Method
(GDM).S1 In the GDM, the nanostructure is discretized in cubic elements of side-length d (figure S1a) and each of
these mesh-points is treated as an oscillating electric dipole with an effective, isotropic polarizability (cgs units)

α(ri, ω) =
ǫi(ω)− ǫenv(ω)

4π
· Vcell . (S1)

The permittivity ǫi corresponds to the material of the nanostructure at location ri. ǫenv is the isotropic and homoge-
neous permittivity of the environment.

From the optical wave-equation, a relation between the incident field and the field inside the nanostructure can be
derived, leading ultimately to a set of 3N coupled linear equations (with N the number of meshpoints):S2

E0 = M ·E (S2)

where the matrix M consists of 3× 3 sub-matrices

Mij = I · δij − α(ri, ω)Genv(ri, rj , ω) . (S3)

Here, I is the Cartesian unitary tensor, δij the Kronecker delta function and Genv is the Green’s Dyad for the
environment, coupling the dipolar elements i and j (see Fig. S1b). Additionally to the vacuum-tensor G0, further
Dyads can be added to the Green’s tensor, like a surface term Gs to account for the influence of a substrate:S3

Genv(ri, rj , ω) = G0(ri, rj , ω) +Gs(ri, rj , ω) . (S4)

Finally, to handle the divergence of the vacuum Green’s function at ri = rj , a normalization scheme is applied:

G0(ri, ri, ω) = IC(ω) (S5)
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which, for a cubic discretization grid, givesS4

C(ω) = −

4π

3

1

ǫenv.(ω)vcell

. (S6)

Inversion of the matrix M then directly leads to the electric field inside the structure E(ω) upon excitation by an
arbitrary illumination field E0(ω). The polarization of every cell – assuming linear, isotropic materials – is finally
given by p(ri, ω) = χi(ω)E(ri, ω) with χi(ω) = (ǫi(ω)− ǫenv(ω))/4π, where p effectively represents an electric dipole
moment.

The assumption that the meshpoints of the discretized particle can be described by dipolar polarizabilities allows
us now to treat every discretization cell of the structure as an oscillating dipolar source of radiation. In this approxi-
mation, once the dipole moments p(ri, ω) at all mesh positions ri are known (Fig. S1c-d), the scattered field at any
location r outside the structure can be calculated as the coherent sum of the fields emitted by the ensemble of dipoles:

Escat(r, ω) =

N∑

i=0

Genv(r, ri, ω) · p(ri, ω) . (S7)

Genv is the Green’s dyad for the environment without the nanostructure. Using the according mixed electric-magnetic
Green’s Dyad, also the optical magnetic field (and in consequence also the Poynting vector) can be obtained in both,
the near- and the far-field region.S1,S2
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II. GEOMETRIC MODELS
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•Npolygons = 1 or 2
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FIG. S2. Artistic sketches of the geometric models used (a) for the planar gold structures and (b) for the silicon nanostructures.
While the top illustrations are not on absolute scales, several random examples of the actual training data are shown below.

Figure S2(a) shows the geometric model and parameter ranges used for generating the training data of the planar
gold nanostructure internal field predictor network. We use a polygonal structure with up to 10 random edges ri,
oriented along an elliptical shape with two random major axis lengths S1 and S2. The edge coordinates are uniformly
distributed on the ellipse and then randomly shifted by up to half the major axis length in both directions. In case
two polygons are generated, they are additionally moved by random X and Y offsets. Overlapping parts are fused
together. In a second step, a random number of smaller polygonal holes are introduced, where we proceed in the
same way as for the large polygon. The structures are finally randomly rotated on the XY plane. The structures are
discretized on a grid with stepsize 15 nm. Occasionally occurring structures which cover a larger area than the ANN
input layer of 76× 76 cells, are discarded. Gold refractive index is taken from Ref. S14.

The Si structures consist of a random number of cuboidal blocks of random lateral dimensions. For convenience,
the height is set constant to 200 nm, but we emphasize that thanks to the fully 3D convolutional neural network
architecture, this is not a requirement of the approach. The blocks are discretized with a stepsize of 20 nm and are
randomly placed in an area of 45 × 45 steps. Overlapping blocks are fused together. Silicon refractive index taken
from Ref. S15.

The geometries are fed into the input layer of the according gold or silicon ANN. If a position in the 3D grid is
occupied by material, the according element in the input layer is set to “1”. If there is no gold (respectively silicon),
it is set “0”.
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III. IMPLEMENTATION DETAILS OF THE 3D FULLY CONVOLUTIONAL NEURAL NETWORK
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FIG. S3. Sketch of the 3D convolutional artificial neural network layout at the example of the silicon predictor network. The
three-dimensional geometry (illustration on top left) is fed into the input layer of the ANN as an array of size (45× 45× 10),
containing a value 0 (no silicon) or 1 (silicon) for every cell point of the discretized volume. The fully convolutional network
follows an encoder-decoder architecture and is organized in a sequence of residual blocks, each of which containing three
successive convolutional operations followed by batch normalization and a leaky rectifying linear unit nonlinearity (“leaky
ReLU” with α = 0.1). Residual connections including each a further convolutional layer are used to allow the learning to form
identity operations which helps for efficient back-propagation of gradients and accelerates training of deep ANNs.S16 Additionally
we implement shortcut connections between the last leaky ReLU of the encoder stage blocks which we concatenate to the input
layers of the residual blocks in the decoder part. This has been demonstrated to significantly improve reconstruction of fine
spatial features.S17 Finally, the network returns six output layers with linear activation, each having the same dimensions as the
network input layer. Those six layers which contain the real and imaginary parts of the x, y and z components of the complex
electric field inside the nanostructure (see illustration on bottom left). 3D convolutional kernel dimensions are indicated in
parentheses.

We use a three-dimensional fully convolutional neural network for the prediction of the internal electric polariza-
tion of the nanostructures, as illustrated in figure S3. We construct a symmetric, fully convolutional network with
“U-Net”S17 type shortcut connections between corresponding convolutional and up-sampling units. These shortcut
connections between the down- and up-sampling blocks (top, respectively bottom part in the network illustration in
Fig. S3) help to accurately reconstruct spatial information from the strongly compressed center layers of the ANN.
To be able to efficiently train the very deep networks, we organize the network in residual blocksS16,S18. The layer
dimensions of the residual blocks in the down-sampling part of the ANN are successively reduced using “max pooling”
operations, the number of kernels is doubled after each pooling layer. In the decoder part of the ANN (bottom
in Fig. S3), we reconstruct spatial information from the compressed layers using residual blocks and “up-sampling”
layers, arranged in a symmetric configuration with respect to the down-sampling part of the network. To preserve the
dimensions used in the encoder stage, “zero padding” is applied following the up-sampling operations, if necessary.

In the case of the planar gold nanostructures, the Z dimension of the geometry consists of a single layer of mesh
points. So the third dimension of all layers and kernel filters is set equal 1 in this case.

Training was done for both datasets on mean square error loss using the ADAM optimizer at a learning rate
of 0.00005 and with a batch size of 64.
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IV. NEAR- AND FAR-FIELD PREDICTION EXAMPLES FROM THE VALIDATION DATA

In figure S4 and figure S5, we show validation set examples for the gold, respectively silicon networks and compare
derived physical observables to numerical simulations. The figures show examples with decreasing prediction perfor-
mance from top (i) to bottom (vi). The last two rows in both figures represent “outliers” in terms of the boxplots in
the main text figure 5.

Figures S4 and S5 (a) show near-field intensity maps in the vicinity of the nanostructure. (b) shows back focal
plane (BFP) backscattering intensity plots. (c) shows scattering radiation pattern in the XZ plane. (d) shows the
far field polarization state of backscattered light.
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FIG. S4. Representative gold nanostructures from the validation set. Examples were chosen that show decreasing prediction
fidelity from top (i) to bottom (vi). (a) near-field intensity 30 nm above the nanostructure. (b) back focal plane image. (c)
far-field scattering pattern in XZ plane. (d) far-field backscattering polarization state.
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FIG. S5. Representative silicon nanostructures from the validation set. Examples were chosen that show decreasing prediction
fidelity from top (i) to bottom (vi). (a) near-field intensity in the glass substrate, 100 nm below the nanostructure. (b) back
focal plane image. (c) far-field scattering pattern in XZ plane. (d) far-field backscattering polarization state.
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V. GOLD NANO-DIMER: NEAR-FIELD INTERACTIONS; OPTICAL CHIRALITY
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FIG. S6. Reproducibility of near-field enhancement and optical chirality at the example of a gold dimer. (a) Sketch of the
symmetric gold dimer (each pad 195 × 240 × 15 nm3). (b) Top view of the electric field vectors inside the gold pads upon
X polarized plane wave illumination, incident from the top for different gaps sizes. Left column: numerical simulation, right
column: ANN prediction. (c) Field enhancement in the center of the gap (red cross in (a)), calculated from the ANN prediction
(solid lines) or with numerical simulations (dashed lines). (d) optical chirality C at 30 nm above the gap center (red cross
in (e)), normalized to the chirality CLCP of a left-circular polarized plane wave. (e) Sketch of asymmetric gold dimer. One
constituent is vertically shifted by a distance ∆Y relative to the other. (f) Same as (b) for the asymmetric dimer and different
relative positions ∆Y . (g) optical chirality C, normalized to CLCP, calculated 30 nm above the middle of the gap, vertically
centered at the left gold pad (red cross in (e)). Full field simulations (blue lines) are compared to calculations in which optical
interactions have been artificially turned off (orange lines), see main text. All data were taken for a normally incident plane
wave (k along −Z, λ0 = 700 nm), with linear polarization along OX.

To assess the ability of the neural network to predict near-field interactions between two particles, we show in the
main text a nano-dimer built from two silicon blocks. Here we show the plasmonic counterpart made from a single
layer of 15 nm high gold mesh cells, predicted by the planar gold polygon network.

As in the case of silicon dimers, the general trends are predicted by the neural network, yet with less accuracy
in the gold case. We attribute this mainly to the fact that the gold dimer structure is entirely different than what
the polygonal structures, the network was trained on. Most importantly, the training dataset contains almost no
structures with gaps, whereas very particular effects occur due to strong coupling in plasmonic structures with small
gaps. This is the reason why the near-field enhancement at very short distances is incorrectly predicted (figure S6c).
This conclusion is further supported by the case of deactivated near-field interactions (orange lines S6c), where the
network prediction agrees much better to the simulations, than in the case with interactions. Despite the rather limited
capability of extrapolation to scenarios including strong optical near-field interactions, the general qualitative trend
is correctly predicted also by the ANN, as the coupling between the two pads at short distances reduces significantly
the electric field intensity in the gap in the here shown case.

The same conclusions hold also for the asymmetric dimer, shown in figure S6(e-g). While in the near-field quiver
plots (Fig. S6f) again the limited accuracy of the predictions become visible under conditions of small gap coupling,
the general trends for the optical chirality as here chosen near-field observable are consistent with simulations. The
study also reveals an interesting behavior in the gold case. While in silicon dimers, coupling between the two blocks
is the reason which gives rise to a significant near-field chirality, in case of the gold dimer optical interactions between
the two pads quench the near-field chirality above the gap.
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VI. TRAINING CONVERGENCE
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a) planar gold polygon network
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FIG. S7. Training convergence of (a) the gold-polygon network and (b) the silicon block network.

Figure S7 shows the mean square error loss of the neural network for (a) gold and (b) silicon nanostructure field
prediction. Loss on training data is shown in blue, validation loss as orange lines. After 100 epochs of training no
further improvement on neither set was observed for the validation data.

[S1] C. Girard, Reports on Progress in Physics 68, 1883 (2005).
[S2] P. R. Wiecha, Computer Physics Communications 233, 167 (2018).
[S3] C. Girard, A. Dereux, O. J. F. Martin, and M. Devel, Physical Review B 52, 2889 (1995).
[S4] C. Girard, E. Dujardin, G. Baffou, and R. Quidant, New Journal of Physics 10, 105016 (2008).
[S5] B. T. Draine and P. J. Flatau, Journal of the Optical Society of America A 11, 1491 (1994).
[S6] P. R. Wiecha, L.-J. Black, Y. Wang, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, Scientific Reports 7, 40906

(2017).
[S7] P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. Colas des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey,

T. Baron, and V. Paillard, ACS Photonics 4, 2036 (2017).
[S8] G. Baffou, R. Quidant, and C. Girard, Physical Review B 82, 165424 (2010).
[S9] C. Girard, P. R. Wiecha, A. Cuche, and E. Dujardin, Journal of Optics 20, 075004 (2018).

[S10] P. R. Wiecha, A. Arbouet, C. Girard, T. Baron, and V. Paillard, Physical Review B 93, 125421 (2016).
[S11] N. K. Balla, P. T. C. So, and C. J. R. Sheppard, Optics Express 18, 21603 (2010).
[S12] A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, Physical Review B 84, 235429 (2011).
[S13] A. Teulle, R. Marty, S. Viarbitskaya, A. Arbouet, E. Dujardin, C. Girard, and G. Colas des Francs, Journal of the

Optical Society of America B 29, 2431 (2012).
[S14] P. B. Johnson and R. W. Christy, Physical Review B 6, 4370 (1972).
[S15] D. F. Edwards, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic Press, Burlington, 1997) pp.

547 – 569.
[S16] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, arXiv:1602.07261 [cs] (2016), arXiv:1602.07261 [cs].
[S17] O. Ronneberger, P. Fischer, and T. Brox, arXiv:1505.04597 [cs] (2015), arXiv:1505.04597 [cs].
[S18] K. He, X. Zhang, S. Ren, and J. Sun, arXiv:1512.03385 [cs] (2015), arXiv:1512.03385 [cs].


	Supporting informations for: Deep learning meets nanophotonics: A generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures
	Coupled dipoles: Green Dyadic Method
	Geometric models
	Implementation details of the 3D fully convolutional neural network
	Near- and far-field prediction examples from the validation data
	Gold nano-dimer: near-field interactions; optical chirality 
	Training convergence
	References


