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Abstract

In this study, the effective constitutive behavior of heterogeneous materials
comprising bimodular phases is investigated through a computational approach
and by referring to Curnier-type bimodularity. Different microstructures char-
acterized by spherical inclusions or voids are addressed, by analyzing different
loading scenarios. Numerical results, obtained via an iterative finite-element
scheme, highlight the influence of intraphase constitutive non-linearities induced
by the tension/compression transition of the local material stiffness. Moreover,
coupling effects between hydrostatic and deviatoric states are elucidated. The
macroscale material response results dependent on the loading condition, and it
is driven by perturbative effects of heterogeneous fields locally induced by pores
or inclusions.

Keywords: bimodular composites, bimodular porous materials, non-linear
constitutive response, computational homogenization.

1. Introduction

Creating materials with optimized overall properties has long been a central
concern in many engineering applications. As such, a variety of heterogeneous
materials (e.g., composites, porous media) have been manufactured in the past,
by designing specific microstructures in order to satisfy specific targets. How-
ever, for some of those materials, the relation between microscopic physical
mechanisms (arising at the local lengthscale of the heterogeneities) and the
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macroscopic constitutive response (observed at the larger scale of the specimen)
has yet to be completely identified.

This is for instance the case of bimodular materials, defined as elastic ma-
terials exhibiting different costitutive response in tension and in compression
(?????). A wide number of materials belong to such a class of macroscale non-
linear constitutive behavior, as for instance concrete, biological gels, graphite,
NiTi shape memory alloys, fiber-reinforced composite materials, damaged ma-
terials containing microcracks (?????).

In the available literature, bimodularity effects have been generally explored
by referring to classes of engineering-relevant materials whose constitutive re-
sponse is bimodular at the macroscopic lengthscale, even though their sub-
constituents locally exhibit a linear elastic behavior. This is for instance the case
of layered materials such as nacre (?) or fiber-reinforced composites (?), whose
effective elastic response results bimodular as a consequence of interphases non-
linearity sources. These latter are for instance related to the unilateral contact
between microstructural domains (?), unilateral response of damaged interfaces
between different phases (???), microscale instabilities (?), asymmetric mechan-
ical response of microvoids or microcracks (??). Many recent studies address
such a non-linear mechanical response via both experimental and analytical
approaches(??????????).

At the macroscale, the constitutive response of these materials is described
by discriminating the tension/compression values of the elastic moduli in terms
of some relevant stress or strain measures (?). A modeling approach is based
on the criterion of positive-negative signs of principal stresses, proposed by Am-
bartsumyan (?) and mainly applied for describing bimodular materials with an
isotropic macroscale symmetry (????????). Some macroscopic fiber-governed
models, inspired to the pioneering work of ?, refer to the sign of the strain com-
ponent along the fiber direction. Many applications of such an approach to hier-
archical fiber-reinforced composites can be found in literature (???????????).
A consistent generalization in the framework of the so-called conewise materials
was proposed by ?, by extending basic elements of classical smooth elasticity to
piecewise smooth elasticity under the continuity requirement of strain energy
and stress (?).

Notwithstanding the effort provided in theoretical modelling, and also due
to the variety of materials involved, a complete characterization of the elas-
tic response of bimodular media has not been furnished yet. The main open
questions are the following. It is not clear whether a material with bimodular
constituents also behaves as bimodular at the macroscopic scale. Further, it
is not fully understood how the non-linearity induced by heterogeneous strain
fields impacts on the overall response of the material.

This paper aims to contribute to answer to those questions. Different com-
posite and porous materials, where one or more of the constituents are bimod-
ular, are numerically investigated. In detail, reference is made to the elastic
bimodularity traced by ? and briefly recalled in Section 2. The numerical
treatment of the non-linear elastic microscale problem introduced in Section 2
is discussed in Section 3, specifically addressing different microstructures and
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loading scenarios. Results, obtained via non-linear computations based on an
iterative finite-element scheme, are proposed in Section 4. Finally, some con-
cluding remarks are summarized in Section 5.

2. Problem statement

Let Ω be a representative volume element (rve) of a composite material,
whose exterior boundary is ∂Ω, consisting of a matrix (Ω1) and a spherical
inclusion (Ω2) with volume fraction f = |Ω2|/|Ω| (see Fig.1). The domain
is a cube of edge length B and the inclusion is centered. The same rve is
used to study a porous material, while intending Ω2 as a void region and f as
the porosity p. The following notation is adopted throughout the paper: bold
characters denote vectors and second-order tensors; blackboard letters indicate
fourth-order tensors; the symbol : stands for the double product operator; J =
(I⊗I)/3 and K = I−J are the hydrostatic and deviatoric fourth-order projector
tensors (I being the fourth-order identity tensor), respectively, and the volume
average of space-dependent quantities over the domain Ω is defined as

〈·〉 =
1

|Ω|

∫
Ω

· dΩ. (1)

A Cartesian reference system is introduced with respect to which x identifies the
position of a point in Ω. Microscopic (resp., macroscopic) second-order strain
and stress tensors are ε(x) and σ(x) (resp., E and Σ), whereas ξ(x) is the
microscopic displacement field.

Phases are considered as perfectly bonded and the rve is assumed to undergo
homogeneous strain boundary conditions. As a result, the elastic microscale
problem is: 

divσ(x) = 0

σ(x) = C(x, ε(x)) : ε(x) x ∈ Ω

ε(x) = sym∇ξ(x)

(2)

ξ(x) = E · x x ∈ ∂Ω (3)

where the affine displacement conditions in Eq. (3) comply with the average
rule E = 〈ε〉. The macroscopic second-order stress tensor Σ is defined by the
stress average: Σ = 〈σ〉.

Constitutive response of each phase is assumed to obey to an elastic be-
havior, generally non-linear. In detail, the stress-strain relationship is σ(x) =
C(x, ε(x)) : ε(x), where the secant elasticity tensor C generally depends on the
position x and on the local strain state ε(x). Aiming to investigate the non-
linear mechanical response of composite and porous materials comprising at
least a bimodular phase, two classes of constitutive descriptions are considered:
an isotropic linearly elastic constitutive law (C constant with respect to ε(x)),
and an isotropic Curnier-type piece-wise linear elastic behavior, characterized
by C locally depending on ε(x). In the second case, the elastic moduli of the
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Figure 1: Representative volume element. Notation.

material vary in each point to accommodate the evolution of the strain state
and, as briefly recalled in the Appendix, the elasticity tensor results in (?):

C(ε) =

{
C− = 2µK + 3k−J if tr(ε) < 0

C+ = 2µK + 3k+J if tr(ε) > 0
(4)

where C− and C+ identify compression-like and tensile-like elasticity tensors,
respectively; k−/k+ are the compression/tension values of the bulk modulus,
and µ is the shear modulus. Note that the bimodularity only manifests itself via
the volumetric part of the strain energy, whereas the deviatoric one is unaffected.
Equation (4) leaves undefined the case tr(ε) = 0 (namely, corresponding to
neutral strain states) where the bulk modulus discontinuously jumps from k− to
k+. Strain states corresponding to null volumetric part are numerically handled
as described in the Section 3.

3. Numerical modelling

Different rves with a single pore or with a single inclusion are defined by
considering two values of volume fraction/porosity (5% and 15%), and they are
compared with the case of a bulk material (f = p = 0). Various study cases are
addressed, where either one or both the constituents are assumed as bimodular.
Table 1 reports the adopted notation and material properties.

Representative volume elements with randomly-distributed inclusions are
considered. In this case, inclusions are linearly elastic and embedded in a piece-
wise linear matrix with volume fraction f = 5% (i.e., study case PL1 L2 in
Table 1). A cubic domain with 27 identical inclusions, and a cubic domain
with 64 inclusions, characterized by different sizes (ratio between maximum
and minimum diameters equal to 4) are defined (see Fig. 2). In the first case,
the minimum distance among inclusions centers, normalized with respect to
B, results equal to 0.26 (normalized standard deviation equal to 0.04). In the
second case, the minimum distance among inclusions centers, normalized with
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(a) (b)

Figure 2: Representative volume elements with randomly-distributed inclusions. (a) cubic
domain with 27 identical inclusions; (b) cubic domain with 64 inclusions, characterized by
different sizes (ratio between maximum and minimum diameters equal to 4).

respect to B, results equal to 0.2 (normalized standard deviation equal to 0.06),
and the normalized average radius of inclusions is 0.047 (normalized standard
deviation equal to 0.025). For both multi-inclusion rve models, inclusions do
not touch or intersect each other.

Each three-dimensional rve model is discretized via 10-nodes Lagrange tetra-
hedral elements, with second-order interpolating functions. The average mesh
size is set equal to 5·10−2B (resp., 2·10−2B) for single-inclusion domains (resp.,
multi-inclusion domains). Various homogeneous strain boundary conditions are
enforced: uniaxial (UNI), biaxial (BIA), hydrostatic (HYD), purely deviatoric
(DEV) and mixed (HYD+DEV) loadings. With reference to the notation in-
troduced in Eq. (3) and in Fig. 1, the macroscopic strain tensor is assigned as:

E =



ε0ex ⊗ ex UNI
ε0(ex ⊗ ex + ey ⊗ ey) BIA
ε0(ex ⊗ ex + ey ⊗ ey + ez ⊗ ez) HYD
γ0(ex ⊗ ey + ey ⊗ ex) DEV
ε0(ex ⊗ ex + ey ⊗ ey + ez ⊗ ez)+ HYD+DEV
+γ0(ex ⊗ ey + ey ⊗ ex)

(5)

where ε0 ∈ [−0.1, 0.1] and γ0 ∈ [0, 0.1] are dimensionless strain parameters, and
symbol ⊗ indicates the dyadic product.

Owing to the piece-wise linearity introduced by a bimodular phase, an it-
erative scheme is numerically implemented (see Fig. 3) by a custom Matlab
code (MathWorks Inc., Natick, MA), integrated within the finite-element envi-
ronment Comsol Multiphysics (COMSOL Inc., Burlington, MA). This allows to
match local values of the bulk modulus k(trε) with the sign of trε. Assuming
the material properties as element-wise distributed, the correspondence between
the value of the local bulk modulus k (i.e., k− or k+) and the sign of trε(x)
for each element of the bimodular domain is checked (see Eq. (4)). The lo-
cal elastic properties are initialized as equal to the tension ones. Afterwards,
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Figure 3: Solution algorithm implemented in present study.

the loading condition is applied and the microscopic strain field is computed.
The element-wise value of trε(x) is computed by referring to the correspond-
ing element orthocenter. In agreement with Eq. (4), for finite elements where
trε(x) < 0 the local elastic properties are assigned equal to the compression
ones. The computational step associated to the considered loading condition is
repeated until no further changes in local elastic properties are needed. The iter-
ative procedure converges irrespective of initialization conditions. For instance,
referring to the case PL1 L2 (with f = 5%) under a DEV loading scenario (see
Table 1 and Eq. (5)), Fig. 4 depicts the number n of elements where changes of
the material properties occur during the simulations (normalized with respect
to the total number of elements N) versus the iteration step i. For bimodu-
lar elements three initialization cases are investigated: with tension properties;
with compression properties; random initialization. As it clearly appears, the
convergence rate is practically the same, the solution reaching the convergence
after five steps.

Situations though may occur where the absolute value of the hydrostatic
strain is smaller than the numerical precision. In those cases, the bulk modulus
of elements with |trε| < 10−6 (physically corresponding to local neutral strain
states) is assigned as follows: (i) k+, (ii) k− and (iii) (k− + k+)/2. Sensitivity
analyses showed that results are almost identical in the three cases. The third
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Table 1: Material properties for case studies herein considered. As a notation rule, XXr XXr
identifies the XX-type constitutive law (L for linearly elastic and PL for piece-wise linearly
elastic) for the phase r (1 for the matrix and 2 for the inclusion). As regards the bulk mod-
ulus, values in (respectively, not inside) brackets refer to tensile (respectively, compression)
restriction.

f [%] k1 [GPa] µ1 [GPa] k2 [GPa] µ2 [GPa]
Porous/bulk
PL1 0; 5; 15 2.4 (20.1) 1.9 – –

Composites
L1 PL2 5; 15 7.5 3.5 24.2 (201.2) 18.9
PL1 L2 5; 15 2.4 (20.1) 1.9 179.0 189.0
PL1 PL2 5; 15 2.3 (8.4) 1.7 24.2 (201.2) 18.9

1 2 3 4 5 6
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5 I n i t i a l i z a t i o n
 t e n s i o n
 c o m p r e s s i o n
 r a n d o m

n/N

i

Figure 4: Convergence of the computational procedure. Number n of bimodular elements
where changes of the material properties occur during the simulations (normalized with respect
to the total number of elements N) vs. the iteration step i. Case PL1 L2 (with f = 5%)
under a DEV loading condition (see Table 1 and Eq. (5)).
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Table 2: The hydrostatic, the second-order deviatoric and the third-order deviatoric macro-
scopic strain invariants corresponding to the macroscopic strain boundary conditions defined
in Eq. (5).

UNI BIA HYD DEV HYD+DEV
IE
1 ε0 2ε0 3ε0 0 3ε0

JE
2 ε2

0/3 ε2
0/3 0 γ2

0 γ2
0

JE
3 2ε3

0/27 -2ε3
0/27 0 0 0

description is thus adopted in the following.
For each loading condition, the effective stress invariants are computed. The

hydrostatic, the second-order deviatoric and the third-order deviatoric macro-
scopic stress invariants are defined as IΣ

1 = trΣ, JΣ
2 = Σdev : Σdev/2, and

JΣ
3 = detΣdev, where Σdev is the deviatoric part of the macroscopic stress ten-

sor. On the other hand, the strain invariants are IE
1 = trE, JE

2 = Edev : Edev/2,
and JE

3 = detEdev, where Edev is the deviatoric part of the macroscopic strain
tensor. The microscopic stress and strain invariants can be similarly defined.

Table 2 summarizes the values of the macroscopic strain invariants corre-
sponding to the boundary conditions introduced in Eq. (5).

4. Numerical results

In what follows, numerical results obtained by considering the previously-
introduced procedure are presented and analyzed.

4.1. Single-pore rves

The macroscopic mechanical responses of single-pore rves undergoing uniax-
ial, biaxial, hydrostatic, and purely deviatoric loading conditions are reported
in Figs. 5 and 6, by comparing cases associated to different values of porosity
p, including also the bulk material case (p = 0).

For the porous material, numerical results reveal that:

• under uniaxial, biaxial, and hydrostatic loading, the macroscopic stress
invariants exhibit an asymmetric behavior with respect to the macroscopic
neutral state (i.e., ε0 = 0), as depending on the porosity p;

• the increase of the porosity level tends to reduce the piece-wise linearity
feature in the effective hydrostatic stress response (namely, referring to IΣ

1 )
with respect to the bulk case, mainly by reducing the slope for positive
macroscale strains;

• in contrast to the bulk case, the porosity affects the macroscopic devia-
toric stress response (namely described by JΣ

2 and JΣ
3 ) by introducing an

asymmetry with respect to the macroscopic neutral state when tensile and
compressive strain boundary conditions are analyzed;
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• a hydrostatic loading does not introduce any deviatoric stress state at the
macroscale (JΣ

2 = JΣ
3 = 0 for each analyzed value of ε0);

• a purely deviatoric strain boundary condition induces a coupled macroscale
hydrostatic response, proportional to the porosity degree (see Fig. 6(b)).

Hence, proposed results show that a porous bimodular material exhibits a cou-
pling (resp., uncoupling) between hydrostatic and deviatoric macroscopic stress
response when a purely deviatoric (resp., purely hydrostatic) macroscopic strain
is applied.

4.2. Single-inclusion rves

Results concerning the macroscopic mechanical response of single-inclusion
rves undergoing uniaxial, biaxial, hydrostatic, and purely deviatoric loading
conditions are reported in Figs. 7 to 12, by comparing cases associated to
different values of inclusion volume fraction f . In particular, Figs. 7-8 and
Figs. 9-10 refer to the cases characterized by the bimodularity of only one
phase. Figures 7-8 address the case of a bimodular inclusion (L1 PL2, see Table
1), whereas Figs. 9-10 refer to the case of a bimodular matrix (PL1 L2). Finally,
Figs. 11-12 show results for a single-inclusion rve with both matrix and inclusion
characterized by a bimodular constitutive law (PL1 PL2).

For the case of a piece-wise inclusion embedded in a linear elastic matrix,
proposed results show that:

• the macroscopic hydrostatic stress invariant exhibits a very slight bilinear
feature, tending to increase when the volume fraction f of the bimodular
inclusion increases;

• independently of f value, the second- and third-order deviatoric stress
invariants remain symmetric in tension and compression (see Figs. 7(c)
to 7(f));

• similarly to the case of a porous bimodular material, a coupling between
deviatoric and hydrostatic effective responses occurs when a purely devi-
atoric loading is applied, as depending on the volume fraction f of the
bimodular phase.

As regards the case of a linear elastic inclusion embedded in a bimodular
matrix:

• a bilinear response similar to the case of a bimodular porous rve is ob-
served;

• the matrix bimodularity reflects in a strong bilinear behavior of the hy-
drostatic invariant at the macroscale and in an evident asymmetry of the
macroscopic deviatoric stress invariants with respect to the extension and
contraction states;
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Figure 5: Macroscopic mechanical response of a bimodular single-pore rve (PL1, see Table
1) for different values of porosity p and for uniaxial and biaxial loading scenarios. The case
p = 0 describes the bulk material behavior.
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Figure 6: Macroscopic mechanical response of a bimodular single-pore rve (PL1, see Table 1)
for different values of porosity p and for hydrostatic and purely deviatoric loading scenarios.
The case p = 0 describes the bulk material behavior.
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Figure 7: Macroscopic mechanical response of a single-inclusion rve, characterized by a linear
matrix and a bimodular inclusion (L1 PL2, see Table 1), for different values of inclusion
volume fraction f and for uniaxial and biaxial loading scenarios.
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Figure 8: Macroscopic mechanical response of a single-inclusion rve, characterized by a linear
matrix and a bimodular inclusion (L1 PL2, see Table 1), for different values of inclusion
volume fraction f and for hydrostatic and purely deviatoric loading scenarios.
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• the increase of the inclusion volume fraction f induces an increase in both
bilinear and asymmetry features;

• a purely deviatoric homogeneous strain boundary condition induces a cou-
pling between hydrostatic and deviatoric mechanical responses, and this
coupling increases with f (see Fig. 10).

As the comparison between Figs. 9-10 and 11-12 confirms, a similar macroscale
mechanical response is observed in the case PL1 PL2, that is by considering both
matrix and inclusion as bimodular (Figs. 11-12).

As previously recalled (see Section 2) a bimodular Curnier-type isotropic
material is characterized by different bulk moduli in traction and compression
and by a constant shear modulus. In this framework, present numerical results
show that such a condition is no longer satisfied at the macroscale, the effective
properties not complying with a bimodular Curnier-type isotropic behavior.
Such an evidence is highlighted by the asymmetry depicted in panels (c) and
(d) of Figs. 5, 9, and 12. Moreover, the occurrence of a significant coupling
between hydrostatic and deviatoric macroscale responses (panels (b) and (d) of
Figs. 6, 8, 10, and 12) suggests the onset of a certain anisotropy degree at the
macroscale, strictly depending on the local perturbative effects induced by the
pore or by the inclusion.

In order to furnish further insights on such an aspect, and since the observed
similarities, in the following reference will be made only to the case PL1 L2
(linear elastic inclusion embedded in a bimodular matrix). In detail, Fig. 13
depicts the microscale distributions of the hydrostatic strain invariant (Iε1), of
the second-order deviatoric strain invariant (Jε

2 ), and of the bulk modulus (k)
computed under tension and compression biaxial loading conditions, for different
inclusion volume fractions. Different patterns of the second-order deviatoric
strain invariant are numerically experienced when tension or compression states
are analyzed, confirming the asymmetry reported in Fig. 9(d) and resulting
more evident by increasing f . Moreover, by referring to a purely deviatoric
loading condition, Fig. 14 reports the distribution of the local bulk modulus
as resulting by the sign of the microscopic hydrostatic strain. Depending on
the inclusion volume fraction, the local constitutive response can be regarded as
referred to three well-defined sub-phases, associated to the tension/compression
bulk modulus restrictions and to the inclusion. Since the local distribution of the
microscopic hydrostatic strain, corresponding to a null macroscopic hydrostatic
strain value, a cross-shaped arrangement of tension/compression sub-phases can
be distinguished within the matrix domain. In detail, the tension/compression
sub-phases correspond to the 62%/33% volume fractions of the overall domain
for an inclusion volume fraction equal to f = 5%, and to 52.7%/32.3% volume
fractions for f = 15%. Such an intraphase heterogeneity has been computed
as independent on the amount of the macroscopic deviatoric strain (i.e., on the
value of γ0).

Furthermore, the local distributions of the bulk modulus depicted in Fig. 14
give a straight indication on the source of the coupling effects. As a matter of
fact, they derive from the loss in macroscopic constitutive symmetry induced by
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the previously-highlighted tension/compression cross-shaped arrangement, lead-
ing to the occurrence of a spherical macroscopic stress under a purely deviatoric
macroscale strain state.

Such results have motivated the idea of considering the macroscopic mechan-
ical response under mixed loading scenarios (HYD+DEV), defined by combining
a macroscopic hydrostatic state (HYD) with a purely deviatoric one (DEV) (see
Figs. 15 and 16). In this case, hydrostatic/deviatoric coupling effects produce a
strong non-linear macroscopic response in the neighborhood of ε0 = 0. In par-
ticular, a non linear transition from a compression-driven to a traction-driven
behavior is observed for all considered stress invariants, with non-linear regimes
increasing by improving the macroscopic deviatoric state. The volume fractions
of tension/compression sub-phases change with the amount of the macroscopic
hydrostatic loading (i.e., with ε0). Such an occurrence is depicted in Fig. 17,
that reports the evolution of the sub-phases volume fractions versus ε0. As
Fig. 16 shows, when ε0 increases the localized intraphase heterogeneity and the
corresponding loss of constitutive symmetry tend to disappear, leading to fully
uncoupled tension-driven or compression-driven macroscopic behaviors. On the
contrary, a suitable choice of the macroscopic spherical strain allows to control
the heterogeneity distribution as well as the coupling effect.

4.3. Multi-inclusion rves

Numerical results obtained by considering PL1 L2 multi-inclusion rves are
presented and analyzed. In these cases, since the random arrangements herein
considered, the computed macroscopic mechanical response is practically equiv-
alent to the one determined for the PL1 L2 single-inclusion rve (see Figs. 9-10),
with differences always less then 0.5%. Thus, computations on multi-inclusion
rves confirm that possible boundary effects arising on single-inclusion rves can
be retained negligible. For the sake of compactness, macroscopic stress invari-
ants computed for multi-inclusion rves are herein omitted.

Under a purely deviatoric loading condition, results in Figs. 18 and 19
depict the distributions of the local bulk modulus and of the microscopic hydro-
static strain. These results allow to confirm the occurrence of a cross-shaped
arrangement of tension/compression sub-phases within the matrix domain and
around each inclusion, as a result of local perturbative effects. Such an in-
traphase heterogeneity is associated to tension-driven and compression-driven
matrix domains characterized by a well-defined average orientation (at about 45
degrees with respect ex and ey directions), confirming the onset of a certain loss
of macroscopic constitutive symmetry degree. Although subphases align along
clearly-visible mean directions, Figs. 18 and 19 highlight that both the local
patterns of such matrix subphases and their coalescence are strictly depend-
ing on the inclusion arrangement and dimensions. In detail, small inclusions
tend to produce reduced intraphase heterogeneity and subphases coalescence is
promoted when the inclusion distance is reduced.
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Figure 9: Macroscopic mechanical response of a single-inclusion rve, characterized by a bi-
modular matrix and a linear inclusion (PL1 L2, see Table 1), for different values of inclusion
volume fraction f and for uniaxial and biaxial loading scenarios.
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Figure 10: Macroscopic mechanical response of a single-inclusion rve, characterized by a
bimodular matrix and a linear inclusion (PL1 L2, see Table 1), for different values of inclusion
volume fraction f and for hydrostatic and purely deviatoric loading scenarios.

17



- 0 . 0 9 - 0 . 0 6 - 0 . 0 3 0 . 0 0 0 . 0 3 0 . 0 6 0 . 0 9
- 1 . 5

0 . 0

1 . 5

3 . 0

IΣ 1 [G
Pa

]

ε0

U N I
 f  =  0 . 0 5
 f  =  0 . 1 5

(a)

- 0 . 0 9 - 0 . 0 6 - 0 . 0 3 0 . 0 0 0 . 0 3 0 . 0 6 0 . 0 9
- 3

0

3

6

IΣ 1 [G
Pa

]

E m

B I A
 f  =  0 . 0 5
 f  =  0 . 1 5

(b)

- 0 . 0 6 - 0 . 0 3 0 . 0 0 0 . 0 3 0 . 0 6
0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

JΣ 2 [G
Pa

2 ]

ε0

U N I
 f  =  0 . 0 5
 f  =  0 . 1 5

(c)

- 0 . 0 9 - 0 . 0 6 - 0 . 0 3 0 . 0 0 0 . 0 3 0 . 0 6 0 . 0 9
0 . 0 0

0 . 0 3

0 . 0 6

0 . 0 9
JΣ 2 [G

Pa
2 ]

ε0

B I A
 f  =  0 . 0 5
 f  =  0 . 1 5

(d)

- 0 . 0 9 - 0 . 0 6 - 0 . 0 3 0 . 0 0 0 . 0 3 0 . 0 6 0 . 0 9

- 0 . 0 2

0 . 0 0

0 . 0 2

JΣ 3 [G
Pa

3 ]

ε0

U N I
 f  =  0 . 0 5
 f  =  0 . 1 5

(e)

- 0 . 0 9 - 0 . 0 6 - 0 . 0 3 0 . 0 0 0 . 0 3 0 . 0 6 0 . 0 9

- 0 . 0 2

0 . 0 0

0 . 0 2

JΣ 3 [G
Pa

3 ]

ε0

B I A
 f  =  0 . 0 5
 f  =  0 . 1 5

(f)

Figure 11: Macroscopic mechanical response of a single-inclusion rve, characterized by a
bimodular matrix and a bimodular inclusion (PL1 PL2, see Table 1), for different values of
inclusion volume fraction f and for uniaxial and biaxial loading scenarios.
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Figure 12: Macroscopic mechanical response of a single-inclusion rve, characterized by a
bimodular matrix and a bimodular inclusion (PL1 PL2, see Table 1), for different values of
inclusion volume fraction f and for hydrostatic and purely deviatoric loading scenarios.
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(a) (b)

Figure 13: Case PL1 L2. Single-inclusion rve. Microscopic hydrostatic, and second-order
deviatoric strain invariants, and bulk modulus on the π plane (see Fig. 1), computed under
tension and compression (left and right column, respectively) biaxial loading conditions. (a)
f = 0.05; (b) f = 0.15.

Figure 14: Case PL1 L2. Single-inclusion rve. Microscopic hydrostatic strain invariant and
bulk modulus on π plane (see Fig. 1), computed under a purely deviatoric loading condition
(γ0 = 0.06) for f = 0.05 (left column) and f = 0.15 (right column).
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Figure 15: Macroscopic mechanical response of a single-inclusion rve, characterized by a
bimodular matrix and a linear inclusion (PL1 L2, see Table 1), for inclusion volume fraction
f = 0.05 and under a mixed load (HYD+DEV), for different values of γ0 and macroscopic
spherical strain ε0 (see Eq. (5)). On the right, details of the non-linear regimes in the
neighborhood of ε0 = 0 are reported.
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Figure 16: Case PL1 L2. Single-inclusion rve. Microscopic hydrostatic strain invariant
and bulk modulus on π plane (see Fig. 1) computed under a mixed loading condition
(HYD+DEV), for f = 0.05 and for different values of ε0.

Figure 17: Case PL1 L2. Single-inclusion rve. Evolution of volume fractions for the tension
and compression sub-phases, computed under a mixed loading condition (HYD+DEV) and
for f = 5%, versus ε0. Volume fractions of the tension and the compression sub-phases are
denoted with s+ and s−, respectively.
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Figure 18: Multi-inclusion randomically arranged rve (PL1 L2, f = 0.05, 27 identical in-
clusions). Microscopic hydrostatic strain invariant and bulk modulus distribution computed
under a purely deviatoric loading condition (γ0 = 0.02) on two different rve cross-sections
(indicated in red in the bottom side of the Figure).

Figure 19: Multi-inclusion randomically arranged rve (PL1 L2, f = 0.05, 64 inclusions with
different sizes). Microscopic hydrostatic strain invariant and bulk modulus distribution com-
puted under a purely deviatoric loading condition (γ0 = 0.02) on the rve cross-section indicated
in red.
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5. Conclusions

In this paper, the non-linear mechanical response of heterogeneous materials
comprising bimodular phases is numerically investigated via a computational
strategy based on an iterative finite-element scheme. Elastic bimodularity is
dealt with reference to the theoretical framework developed by ?. Porous, single-
and multi-inclusion models undergoing different homogeneous strain boundary
conditions are considered, by combining matrix and/or inclusion bimodularity
descriptions with a linearly elastic model.

As recalled in Section 2 an isotropic bimodular Curnier-type material is
characterized by different bulk moduli in tension and compression and by a
constant shear modulus. In this framework, experienced numerical results have
shown that at the macroscale such a requirement is no longer satisfied for the
cases under investigation. In detail, although the effective material response is
characterized by a bilinear elastic behavior, the heterogeneous material does not
behave as an isotropic bimodular Curnier-type matter. In order to investigate
about the possibility that effective material response can comply with a more
complex bilinear response (i.e., anisotropic bimodular Curnier type) different
macroscale strain-based conditions should be considered for defining neutral
states. Nevertheless, this is beyond the purpose of the present work and it will
be addressed in future studies.

Proposed results highlighted that, when the matrix is bimodular (for both
porous and composite rves), the occurrence of a significant coupling between
hydrostatic and deviatoric macroscale responses is observed. Such coupling
effects suggest the onset of a certain anisotropy degree at the macroscale, strictly
depending on the local perturbation on the microscale strain field induced by
the pore or by the inclusion. A one-way coupling mechanism is also observed:
purely macroscopic hydrostatic strain-based condition does not introduce any
deviatoric stress effect at the macroscale, whereas a purely deviatoric strain state
produces effective hydrostatic stresses. Moreover, under a purely deviatoric
loading condition, the analysis of the local bulk modulus distribution, as result of
the sign of the microscopic hydrostatic strain, has confirmed the occurrence of a
cross-shaped arrangement of traction/compression sub-phases within the matrix
domain for both single-inclusion and multi-inclusion rves. Hence, the macroscale
costitutive response changes depending on the combination of hydrostatic and
deviatoric loading.

Appendix

In what follows, the theoretical background of the elastic bimodularity de-
veloped by ? is briefly recalled. Bimodular materials are herein assumed to be
described via a piece-wise linearly elastic response, representing a subclass of
the so-called conewise linear elastic materials.

Let the local strain state ε belong to the strain space E . The latter is
assumed to be divided into two complementary subdomains, by means of the
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hypersurface I described by the equation g(ε) = 0, with g being a continuous
differentiable scalar function of ε. Therefore, it results E = E− ∪ E+ ∪ I, where

I = {ε ∈ E| g(ε) = 0},
E− = {ε ∈ E| g(ε) < 0}, (6)

E+ = {ε ∈ E| g(ε) > 0}.

Accordingly, by assuming the condition g(ε) = 0 as representative of a strain-
based neutral state, E− and E+ can be thought as corresponding to contiguous
strain subdomains associated to different stiffness tensors.

Correspondingly, the piece-wise linear stress-strain relationship straight re-
sults in:

σ(ε) = C(ε) : ε =

{
σ−(ε) = C− : ε if g(ε) ≤ 0

σ+(ε) = C+ : ε if g(ε) ≥ 0
(7)

where C− and C+ identify compression-like and tensile-like fourth-order elas-
ticity tensors, respectively, satisfying major and minor symmetries.

Continuity requirements at I for both strain energy and second-order stress
tensor σ imply (?) that:

[C(ε)] := C+ − C− = s
∂g(ε)

∂ε
⊗ ∂g(ε)

∂ε
∀ε | g(ε) = 0 (8)

where s is the jump coefficient and ∂g(ε)/∂ε|I denotes the unit normal at the
hypersurface I. As formally proved in ?, since C+ and C− are constant, the
compression/tension interface I reduces to a hyperplane. Moreover, relationship
(8) prescribes that the elasticity-tensor jump across I is normal to the interface
and there is no tangential discontinuity.

It is worth pointing out that the elasticity tensor C in Eq. (7) does not exist
in a classical sense at the interface I. Nevertheless, by excluding inextensible
and incompressible materials, it can be represented through the concepts of
subgradient and subdifferential (?).

Assuming that the constitutive restrictions in Eq. (7) obey to isotropic
symmetry, it is possible to show that (?):

• the interface I is defined by the hyperplane g(ε) = tr(ε) = 0, whose unit
normal is the second-order identity tensor I = ∂tr(ε)/∂ε,

• the bulk modulus k is piece-wise constant with a jump for tr(ε) = 0,

• the shear modulus µ is constant (namely, continuous through I).

Therefore, the elasticity tensor can be written as:

C(ε) =


C− = 2µK + 3k−J if tr(ε) < 0

C+ = 2µK + 3k+J if tr(ε) > 0

∂εσ = C− + 3(1− λ)sJ
= C+ − 3λsJ ∀λ ∈ [0, 1]

if tr(ε) = 0

(9)
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where ∂εσ is the set of subgradients of the stress field with respect to the strain,
J = (I ⊗ I)/3 and K = I − J are the hydrostatic and deviatoric fourth-order
projector tensors (I being the fourth-order identity tensor), respectively (?), and
k− and k+ are the compression/tension restrictions of the bulk modulus, with
s = [k(ε)] = k+ − k− when tr(ε) = 0.
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