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Abstract

Electrical motors are the most important source of me-
chanical energy in the industrial world. Their modeling
traditionally relies on a physics-based approach, which
aims at taking their complex internal dynamics into ac-
count. In this paper, we explore the feasibility of mod-
eling the dynamics of an electrical motor by following
a data-driven approach, which uses only its inputs and
outputs and does not make any assumption on its in-
ternal behaviour. We propose a novel encoder-decoder
architecture which benefits from recurrent skip connec-
tions. We also propose a novel loss function that takes
into account the complexity of electrical motor quanti-
ties and helps in avoiding model bias. We show that the
proposed architecture can achieve a good learning per-
formance on our high-frequency high-variance datasets.
Two datasets are considered: the first one is generated
using a simulator based on the physics of an induction
motor and the second one is recorded from an indus-
trial electrical motor. We benchmark our solution using
variants of traditional neural networks like feedforward,
convolutional, and recurrent networks. We evaluate var-
ious design choices of our architecture and compare it to
the baselines. We show the domain adaptation capability
of our model to learn dynamics just from simulated data
by testing it on the raw sensor data. We finally show
the effect of signal complexity on the proposed method
ability to model temporal dynamics.

1 Introduction
Electrical motors are so much a part of everyday life
that we seldom give them a second thought. For exam-
ple, when we switch on an electrical vehicle, we confi-
dently expect it to run rapidly up to the correct speed,
provide acceleration, stop when brakes are applied,
and casually predict faults to avoid future mishaps.
Electrical motors have very complex dynamics and it
is essential to have a controller that can provide ro-
bust control based on these dynamics. Electrical mo-
tor controllers also provide protection and supervi-
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sion of the electro-mechanical system (Campbell 1987;
Sisking 1978). For these services, it is imperative to
know the dynamical physical model of electrical mo-
tors. Accurate dynamics is derived from the first princi-
ples of physics. These dynamical models are dependent
on different electrical motor physical quantities like
currents, voltages, speed, fluxes, inductances, and resis-
tances, which are measured directly or indirectly using
sensors or estimators. Accurately measuring some of
these quantities is hard due to the presence of noise.
Operating conditions also affect some of these quanti-
ties, one example being thermal evolution of resistances
with time. Therefore mathematical models cannot be
fully trusted in the design of controllers. A large num-
ber of simulations and human expert knowledge is
required to develop robust controllers. The focus of
this work is to model relationships between different
electrical quantities of an electrical motor. We focus on
deriving currents and electromagnetic torque from volt-
ages and speed recorded from electrical motors using
sensors.

Internet-of-Things (IoT) has made it possible to mon-
itor different electro-mechanical devices in real-time
and also provides sensor data that can be used to learn
the dynamics of the system under consideration. End-
to-end learning of temporal dynamics from time-series
data has been made easier due to methods like Con-
volutional Neural Network (CNN), Recurrent Neural
Network (RNN), and Long-Short Term Memory (LSTM)
structures. By providing a large amount of multidimen-
sional data, it has been shown that RNN and LSTM
approaches can model complex nonlinear feature inter-
actions which are crucial to model complex nonlinear
dynamics.

In line with the current work of (Miller and Hardt
2019), we found that one dimensional CNNs provide
better results. We modified CNNs into an encoder-
decoder architecture and incorporated recurrent skip
connections between corresponding layers of the
encoder-decoder architecture. In order to reduce the
number of parameters, we further modified the recur-
rent architecture by diagonalizing its weights. We com-



pared our proposed model with different benchmarks
using a novel metric which takes into account the com-
plexity of the predicted signals. We also proposed a
novel loss function that takes into account the com-
plexity of the signal while training the networks. We
showed how using the proposed loss function for train-
ing leads to better generalization.

This paper makes the following contributions:

• This is one of the first works addressing the problem
of learning nonlinear dynamics of electrical motors
from recorded time-series data.

• We propose a new Encoder-Decoder architecture to
learn time-series relationship between different elec-
trical quantities.

• We validate our methodology on two datasets; a large
dataset of simulated electrical motor operations and
a small dataset of sensor data recorded from the real-
world operations of electrical motors.

• We propose a novel loss function that uses fast varia-
tions present in the electrical motor signals to avoid
model bias.

• We analyse the capability of the proposed method by
using a new analysis technique and we demonstrate
the transfer learning capability of our approach.

The paper is structured as follows: Section 2 provides
a brief background on electrical motors and recent ad-
vances in physics and time-series modeling. Section 3
describes the data and more specifically how it is col-
lected and preprocessed. Section 4 describes the bench-
mark and the proposed methods. Sections 5 and 6 con-
tains experimental details and the obtained results. In
the last section, conclusions are drawn and some possi-
ble extensions of this work are mentioned.

2 Background
The state space model of an induction motor is pre-
sented in (Jadot et al. 2009). Modeling of electrical mo-
tors based on analytical mechanics and energy con-
sumption is presented in (Jebai et al. 2014). Existing
methods for designing a controller for an induction
motor can be done in two ways; when perfect knowl-
edge of the parameters is available (Espinosa-Perez
and Ortega 1994; Espinosa-Perez and Ortega 1995;
Nicklasson et al. 1997) and when there is an uncer-
tainty associated with the parameters estimation (Chan
and Wang 1990; Stephan, Bodson, and Chiasson 1992;
Marino, Peresada, and Tomei 1999; 2000). Electrical
quantities like resistances and inductances are roughly
estimated in most of the applications. These quan-
tities also vary with change in temperature of the
electrical motor environment. The control law is de-
pendent on these quantities and measuring them re-
quires high precision sensors and numerous expen-
sive experiments. Due to this, acquiring perfect knowl-
edge of the parameters is very impractical and has

very limited applicability in industrial settings. De-
signing controllers in the presence of parametric un-
certainty is done by using adaptation schemes. Two
methods of adaptation are time-scale separation and
time-varying adaptation (Anderson 1977; Zhang 2002;
Jadot et al. 2009). (Silva, Bazzi, and Gupta 2013) presents
a neural network classifier for fault diagnosis in electri-
cal motor operations. They do not use dynamics model-
ing and only rely on supervised labels (Murphey et al.
2006), learn motor dynamics from simulated data and
perform fault detection in simulated motor operations.

The first use of neural networks to model physical
phenomena was presented in (Levin 1990). This paper
presents a multi-layered neural networks for nonlin-
ear prediction and system modeling from time-series
data. Recently, deep neural networks have been used in
learning physical dynamics from data in range of appli-
cations e.g., calorimetry (Carminati et al. 2017), drone
landing (Shi et al. 2019), and nonlinear dynamics identi-
fication (Lusch, Kutz, and Brunton 2018). Karpatne et al.
presents a physics-guided neural network (PGNN) that
leverages the output of physics-based model simula-
tions along with observational features to generate pre-
dictions using a neural network architecture (Karpatne
et al. 2017). Furthermore, they present a novel frame-
work for using physics-based loss functions in the learn-
ing objective of neural networks, in order to ensure that
the model predictions not only show lower errors on
the training set but are also scientifically consistent with
the known physics on the unlabeled set.

RNN and LSTMs have been shown to be very good
at learning hidden temporal dynamics from data in
various applications such as wind speed forecasting
(Ghaderi, Sanandaji, and Ghaderi 2017), estimating
missing measurements in time series (Yoon, Zame, and
Schaar 2017), and consumer event forecasting (Laptev
et al. 2017). Convolutional architectures have recently
been shown to be competitive on many sequence mod-
elling tasks when compared to the de-facto standard
of recurrent neural networks (RNNs), while providing
computational and modeling advantages due to inher-
ent parallelism. In (Bai, Kolter, and Koltun 2018), au-
thors provide an empirical comparison between convo-
lutional and recurrent network in modeling time-series.
Aksan et al. presents a stochastic variant of tempo-
ral convolutional network which performs better than
stochastic RNNs (Aksan and Hilliges 2019). Miller et
al. have shown that in some cases, feed-forward net-
works are better in modeling temporal patterns than
sequential networks (Miller and Hardt 2019).

Li et al. showed that parameters in recurrent neural
networks can be decreased by making neurons inde-
pendent of each other (Li et al. 2018). In time-series
prediction, different events often have different impor-
tance. This can be achieved using asymmetric loss func-
tion which weights distinct parts of signal differently
as shown in (Christoffersen and Diebold 1997).
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(a) Simulated sample.
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(b) Real world sample.

Figure 1: Electrical motor quantities showing first 40 seconds of an electrical motor operation.

Model Architecture Input Output
Shallow Deep

Feed-Forward 4 Linear 5 Linear Flattened vector Middle Value
RNN 1 Recurrent→ 2 Linear 2 Recurrent→ 2 Linear Channelized Same length as input

LSTM 1 LSTM→ 2 Linear 2 LSTM→ 2 Linear Channelized Same length as input
CNN 3 Conv→ 2 Linear 4 Conv→ 2 Linear Channelized Middle Value

Table 1: Architectural details of the benchmark models.

3 Available datasets

It seems there is no large electrical motor operations
dataset available in the research community to train
deep neural networks. We thus introduce two different
datasets for our experiments; one dataset consists of
simulations performed by using the control law pro-
posed in (Jadot et al. 2009) and the second dataset is
recorded from an industrial electrical motor. Data is
collected at a sampling rate of 250Hz. We generate 100
hours of simulation data which cover a wide range of
operating conditions.The dataset consists of the follow-
ing electrical quantities; currents id and iq, voltages ud
and uq, rotor speed ωr, stator pulsation ωs, and torque
τem. The indices d and q denote three phase quantities
represented in a two phase orthogonal rotating refer-
ence frame. The real electrical motor data are collected
from a 4-kilowatt induction motor. Data from 10 vari-
ous operating conditions are collected. Rotor speed and
torque load are different in each of the runs. In total, we
collected 1207 seconds of raw sensor data.

In our experiments, we split the data into four parts;
training and validation parts consist of 70% and 30% of
the simulation data, respectively. We use 20% of the raw
sensor data to fine tune the model trained on the train-
ing set of the simulated data and the rest for testing. We
do not use stator pulsation ωs in our experiments since
it has a trajectory similar to ωr. To train our network, we
normalize our data between (−1, 1) as different electri-
cal quantities have different ranges. Normalized signals
from the first 40 seconds of a simulated sample and a
raw sensor sample are shown in figure 1. It can be seen
that raw sensor data has short term variations due to
inherent noise present on the sensors.

4 Modeling
Benchmark Methods
To the best of our knowledge, this is the first work in
modeling nonlinear dynamics of electrical motor and
we would also like to emphasize that the proposed
datasets are challenging. To illustrate this fact, we pro-
vide several benchmark methods that are derivatives of
standard neural networks. Broadly, feed-forward net-
work, convolutional neural network, recurrent neural
network and Long-Short Term Memory (LSTM) struc-
tures are evaluated. Table 1 shows all the benchmark
networks. For each type of network, we try two vari-
ations, shallow and deep, to evaluate the effect of the
network depth on their learning capability.

Feedforward Neural Networks We use feedfoward
neural networks (FNNs) to show that our proposed
problem and dataset are quite difficult and FNNs have
limited learning capabilities. Row 1 in table 1 provides
the configuration details of the two experimented net-
works.

Sequential Neural Networks Sequential neural net-
works have been used widely to learn from sequential
data. RNNs and LSTMs are two of the most commonly
used sequential neural networks. Configuration details
are shown in rows 2 and 3 in table 1.

Convolutional Neural Networks FNNs have very
limited learning capabilities when the input data is com-
plex like sequential or multidimensional. Recently, con-
volutional neural networks (CNNs) have been shown to
provide competitive performances on sequential data.
The configuration of benchmark for CNNs is shown in
row 4 of table 1.
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Figure 2: Proposed architecture.

Proposed Method
Traditionally, sequential networks have been used to
model temporal dynamics. In our experiments, we
found that RNNs and LSTMs do not provide as good
learning capability as one dimensional CNNs. Since
our task is to perform multivariate prediction over the
same length as the input, we use an architecture where
all layers are made of convolutions. We then carefully
introduce several intuitive modifications to the encoder-
decoder architecture which leads to a better and param-
eter efficient model.

Encoder-Decoder Network To capture temporal dy-
namics from complete input and output window we
introduce an encoder-decoder network. It consists of
encoding and decoding blocks with convolutional and
deconvolutional layers, respectively. The convolutional
and deconvolutional blocks are followed by ReLU acti-
vations. We do not use pooling as in our experiments
we found that they deteriorate the results.

Encoder-Decoder Network with Skip Connection It
has been shown that adding skip connection to encoder-
decoder helps in transferring high level features directly
from one encoding layer to its corresponding decoding
layer (Mao, Shen, and Yang 2016). We also introduce
skip connections between encoding and decoding lay-
ers.

Encoder-Decoder Network with Recurrent Skip Con-
nection Convolution operations are windowed over
the kernel size, this means that convolution cannot
learn temporal relationships which are out of the kernel
sized windows. Adding recurrent layer over convolu-
tional features can overcome this issue. This also helps
in learning temporal patterns in the latent space. We
add recurrent layers after every encoding layers. The

output of the recurrent layer is then sent to the corre-
sponding decoding layers.

Encoder-Decoder Network with Bidirectional Recur-
rent Skip Connection Bidirectional RNNs help in
learning temporal patterns in both direction. For our
use case, as we want to predict for each time step of
the input window. Therefore, we also use bidirectional
RNNs.

Encoder-Decoder Network with Bidirectional Diag-
onalized Recurrent Skip Connection Vanilla RNNs
have a high number of parameters due to matrix multi-
plications between weights and features. Diagonalizing
weights in the recurrent unit decreases the number of
parameters.

The hidden state update equation of an RNN is given
by:

ht = tanh(Wxt + Uht−1 + b) (1)

where xt ∈ RM and ht ∈ RN are the input and hidden
state at time t, respectively. W ∈ RN×M, U ∈ RN×N ,
and b ∈ RN are the weights for the input and the hid-
den vector, and the bias of the neurons. We propose
to impose diagonal structures for the weight matrices
W and U by setting N = M. Let the diagonal vector
of entries be denoted by vectors w and u, respectively.
Practically, this amounts to replacing the matrix multi-
plication operations with Hadamard products � of the
involved vectors. The diagonalized recurrent network
is described as:

ht = tanh(w� xt + u� ht−1 + b) (2)

where w ∈ RM, u ∈ RM, and b ∈ RM are input
weights.



Model Window Size Parameters MAE SMAPE R2

Shallow Feed-Forward 25 751617 77.76 9.79% -0.59
Deep Feed-Forward 20 1118209 78.91 8.53% -0.39

Shallow RNN 100 9889 77.97 8.5% -0.3
Deep RNN 150 12001 78.26 7.76% -0.35

Shallow LSTM 50 13441 79.39 6.41% -0.26
Deep LSTM 100 21889 79.58 6.29% -0.11

Shallow CNN 100 518721 79.51 6.22% -0.13
Deep CNN 100 650049 79.69 6.13% -0.14

Shallow 100 309185 80.63 5.02% 0.08
Deep 100 1096385 81.21 4.57% 0.29
Skip 100 364801 28.96 3.71% 0.42

RNN-Skip 100 638145 28.18 3.42% 0.43
BiRNN-Skip 100 967105 27.96 3.31% 0.41

DiagBiRNN-Skip 100 618465 26.88 1.09% 0.95

Table 2: Experimental details and results for the benchmark models and the proposed model variants obtained on
the simulated validation set. First 8 rows show results for the benchmark models and last 6 rows show results for the
variants of the proposed model. Average of the three output quantities; currents id and iq and electromagnetic torque
τem is shown.

Total Variation Weighted Mean Square Loss
In real world usage of electrical motors, large variations
in the signals occurs less often than small variations.
We observe this effect in our dataset, which causes
model bias toward small variations when trained with
mean square loss. This is not a desirable behavior if
the learned model is used in controllers. To avoid this
problem, we propose a novel asymmetric loss function
that takes into account the signal variations:

LTV-WeightMSE =
1
N

N

∑
i=1

T−1

∑
t=1
|yi

t − yi
t+1|

1
T

T

∑
t=1

(yi
t − ŷi

t)
2

(3)
where yi

t and ŷi
t are the values of output and predicted

sample i at time-step t, respectively. N is the number of
training samples where each sample is of duration T.

5 Experiments
For all our experiments we use an Ubuntu 18.04 OS
with V100 GPU. PyTorch is employed to implement
the benchmark and proposed architectures. Simula-
tion data are collected from a Simulink model which
is heavily used in the motor control industry. To show
the requirements of the proposed method and why
benchmark methods fail, we perform extensive exper-
iments. We vary our architecture by trying different
input lengths, number of layers, and RNN/LSTM hid-
den vector lengths. We try the following input lengths
{5,10,15,20,25,50,100,200} and find out that an input
length greater than 100 is better at capturing the mo-
tor operation dynamics. Depending on the architecture,
different input and output structures are required. Feed-
forward networks take a flattened vector and predict a
single output which is the middle value of the output

signal. RNNs and LSTMs take channelized input and
predict output of the same length. CNNs take chan-
nelized input and predict middle value of the output
signal.

In encoder-decoder variations where an RNN is used,
the hidden vector size is the same as the number of
features in the input vector. In the encoder-decoder
network the input and output lengths are the same. We
train all our models using the proposed TV-weighted
mean square loss function. To find the best architecture,
we use the validation set of the simulated data. Then
we fine-tune the best model on the training set of the
raw data and test it on the raw data test set. We also
train the best performing model using mean square loss
to compare it with the proposed loss function.

To evaluate the capability of the proposed method,
we use different metrics allowing us to compare the
performance at global and local scope of the input sig-
nal. To analyse the learning capability at global scope,
we report mean absolute error (MAE), symmetric mean
absolute percentage error (SMAPE), and coefficient of
determination R2 (Cameron and Windmeijer 1997).

MAE(y, ŷ) =
1
T

T

∑
t=1
|yt − ŷt| (4)

SMAPE(y, ŷ) =
100
T

T

∑
t=1

|ŷt − yt|
|ŷt|+ |yt|

(5)

R2(y, ŷ) = 1− ∑T
t=1(ŷt − ȳ)2

∑T
t=1(yt − ȳ)2

(6)

where yt is the ground truth, ŷt is the predicted output
of the model at time t, and T is the total experiment
duration. ȳ denotes the mean of ground truth y.
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Figure 3: Comparison between the proposed TV-weighted MSE loss and MSE loss used to train the proposed network.
TV-weighted MSE is able to learn about signal windows which have a lot of variations.

Quantity MSE Loss TV-weighted MSE Loss

MAE SMAPE R2 MAE SMAPE R2

id (A) 28.1351 0.9702% 0.6572 27.9123 0.4619% 0.9224
iq (A) 26.8912 2.3925% 0.9507 26.5234 1.9014% 0.9631

τem (Nm) 26.2321 1.5839% 0.9247 26.1978 0.9193% 0.9652

Table 3: Performance of proposed encoder-decoder with diagonalized recurrent skip connection model when trained
using MSE loss and the proposed TV-weighted MSE loss. Results were obtained on the simulated data validation set.

Quantity Simulated Model Fine-tuned Model

MAE SMAPE R2 MAE SMAPE R2

id (A) 39.8392 4.1029% 0.3829 35.3167 2.6429% 0.5637
iq (A) 47.3818 6.3729% 0.4113 42.9472 5.2841% 0.4936

τem (Nm) 38.5628 3.8128% 0.4997 32.3819 2.3891% 0.6017

Table 4: Results obtained for each of the output quantity on the raw test set. ‘Simulated Model‘ column shows the
results of the model trained on the simulated data and ‘Fine-tuned Model‘ column shows the results of the model
fine-tuned on the raw sensor data.

MAE, SMAPE, and R2 values do not provide enough
information about the signal parts where the model
is performing poorly or very well. Thus, we compute
the signal complexity (SC) on sliding windows over
the ground truth signal and plot it versus the corre-
sponding window SMAPE value computed between
the ground truth and the predicted signal. The signal
complexity is given by SCy = ∑W−1

t=1 |yt − yt−1| for a
small window length W. All metrics are reported on
the original range of the respective quantities after re-
scaling.

6 Results
We provide results for the benchmark models and the
variations of the proposed architecture. The first eight
rows of table 2 show the results obtained by different
benchmark models. Window size column shows the
input length on which the best result was obtained.
Hidden vector size for both RNN and LSTM is 32. The
number of parameters is also reported for all the mod-
els. For each of them we report MAE, SMAPE, and R2

values. The average of the three output quantities are

provided; current id, current iq, and electromagnetic
torque τem. All results were obtained on the validation
set of the simulated data. Among benchmark models,
we observe that MAE values are very close for all the
models. But when we compare SMAPE and R2 values,
deep CNN and deep LSTM come out to be the best. In
our experiments, we observe that the models perform
better when the input length is 100 or more. For all
the models, the performance gap between shallow and
deep variants is small. This means that the network
depth provides little advantage in learning nonlinear
dynamics of electrical motors.

Based on the results obtained from the benchmark
methods, we fix the input size to 100 for all our pro-
posed model variants. The last 6 rows of table 2 show
the results of the proposed model variants trained and
validated on the simulated data. First and second rows
show the results of the shallow and deep variant of
the encoder-decoder architecture. We see that MAE is
still comparable to the benchmark models but SMAPE
and R2 value improves. Third row shows the result of
the model where skip connections have been added
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Figure 5: Predicted result of one of the experiments from test set.

between encoder-decoder. MAE gets better in this case.
Fourth and fifth rows correspond to recurrent skip con-
nections with unidirectional and bidirectional recur-
rence, respectively. Having recurrence in skip connec-
tions improves MAE and SMAPE values but comes at
the cost of an increased number of parameters. It can be
seen that bidirectionality has a positive effect on MAE
and SMAPE. Last row shows the best version of our
encoder-decoder model, where we replace RNNs in
skip connections with diagonalized RNNs. This model
outperforms all the methods and has fewer parameters
when compared to other RNN variants.

Table 3 shows the results obtained by the proposed
model when MSE loss and TV-weighted MSE loss were
used in training. All three metrics for all three quantities
improve when the proposed TV-weighted MSE loss is
used in training the DiagBiRNN-Skip Encoder-Decoder
network. Figure 3 shows how the SMAPE values in-
crease when signal complexity increases, and compares
the results with both loss functions. The SMAPE vs SC
plots are 2D histograms where color intensity of each
box represent the number of samples that are in that
bin. We see that signal parts with higher signal complex-
ity occur less often. Our model trained with MSE loss
is able to predict more accurately parts of signal with
small signal complexity. We observe that the model
trained using TV-WeightMSE loss overcomes this issue.

Table 4 shows the results of simulated model and
model fine-tuned on the raw data training set when
tested on the raw data test set. It can be seen that the
proposed model is able to learn the temporal dynamics
of each of the quantities very well just from the simu-
lated data. When the model is fine-tuned on the sensor

data, it seems to be able to learn about the noise associ-
ated with the sensors and yields better results. Figure 4
shows the SMAPE vs signal complexity graph for the
three output quantities obtained from the simulated
and fine-tuned models. We observe that current iq and
torque τem have some signal parts which are more com-
plex than current id. Figure 5 shows the results for one
of the raw samples from the test set. It can be seen that
the model trained on the simulated data has some offset
in its prediction whereas the model fine-tuned on the
sensor data is much closer to the ground truth, even if
it is still not perfect.

7 Conclusion

A novel problem has been investigated: the learning
of electrical motor dynamics from time-series sensor
data. We also have presented a novel encoder-decoder
architecture that uses diagonalized recurrent skip con-
nections to learn the complex temporal dynamics. To
learn the model, a novel loss function has been intro-
duced that avoids prediction bias. We have used trans-
fer learning to fine tune a model trained on large sim-
ulated data on a small raw sensor dataset. Our experi-
ments have shown the promising performance of the
proposed method on a noisy sensor dataset collected
in an industrial context. We have also carried out a de-
tailed analysis at the global and the local scope of the
prediction performed on the test data. Our results show
the feasibility of AI solutions in modeling electrical mo-
tor dynamics, thus opening a new avenue of research
in this area.
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