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Abstract: We use a supervised machine-learning model based on a neural network to predict the 

temporal and spectral intensity profiles of the pulses that form upon nonlinear propagation in 

optical fibers with both normal and anomalous second-order dispersion. We also show that the 

model is able to retrieve the parameters of the nonlinear propagation from the pulses observed at 

the output of the fiber. Various initial pulse shapes as well as initially chirped pulses are 

investigated. 
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I. Introduction 

Pulse shaping based on nonlinear phenomena in optical fibers has become a remarkable tool to 

tailor the spectral and temporal content of light signals [1, 2], leading to the generation of a large 

variety of optical waveforms such as ultra-short compressed pulses [3],  parabolic- [4], 

triangular- [5] and rectangular- [6] profiled pulses. Very different features of the nonlinear pulse 

evolution can be observed depending on the sign of the fiber group-velocity dispersion (GVD), 

which result in specific changes of the pulse temporal shape, spectrum and phase profile. 

Specifically, because the nonlinear dynamics of pulses propagating in fibers with normal GVD 

are generally sensitive to the initial pulse conditions, it is possible to nonlinearly shape 

conventional laser pulses into various specialized waveforms through control of the initial pulse 

temporal intensity and/or phase profile [1]. Conversely, the temporal and spectral features of 

pulses propagating in fibers with anomalous GVD are typically governed by soliton dynamics 

[7]. Yet, due to the typically wide range of degrees of freedom involved, predicting the behavior 

of nonlinear pulse shaping can be computationally demanding, especially when dealing with 

inverse problems.  

Owing to its power of extracting essential information from large amounts of data, machine 

learning is bringing a revolutionary reform to research in the physical sciences [8]. In the field of 

photonics, a number of studies have been recently reported in laser design and optimization [9-

11], complex nonlinear dynamics [12], design of photonic crystal fibers and optical components 

[13, 14], pulse characterization [15], and optical communications [16, 17]. In [18], we have 

shown that the combination of a graphical approach with the machine-learning method of neural 

networks (NNs) can provide a rapid and precise identification of the parameters of nonlinear 

pulse shaping systems based on pulse propagation in a normally dispersive fiber that are required 

to generate pulses with preset temporal features. In this paper, we use a supervised learning 

model based on a NN to predict the temporal and spectral intensity profiles of the pulses that 

form upon nonlinear propagation in fibers with both normal and anomalous dispersion. We also 

assess the ability of the NN to solve the inverse problem of determining the nonlinear 

propagation properties from the pulses observed at the fiber output and to classify the output 

pulses according to the initial pulse shape. Furthermore, we show how our model can handle the 

nonlinear shaping of initially chirped pulses.  
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II.  Problem under study and numerical tools 

The general scheme for nonlinear shaping that we consider in this paper comprises a pre-chirping 

stage followed by a nonlinear propagation stage. Within this scheme, an initial pulse 0(t) with a  

peak power P0  is first propagated through a dispersive medium, such as a pair of diffraction 

gratings, a prism pair [19], a segment of hollow core or standard fiber with very low nonlinearity 

[20, 21]. This linear propagation imprints a parabolic spectral phase onto the pulse: C0 ω
2 / 2, 

where the chirp coefficient C0 equals the cumulative GVD of the medium ( being the angular 

frequency). The so obtained chirped pulse is then propagated through a fiber that reshapes both 

its temporal and spectral intensity profiles. Our main interest here is in these physical quantities 

of the pulse that can be directly recorded in experiments, rather than in the complex envelope of 

the electric field. Different initial pulse shapes are studied: a Gaussian pulse 

 2 2
0 0 0( ) exp / 2t P t T   , a hyperbolic secant pulse  0 0 0( ) sech /t P t T  , a parabolic pulse 

 2 2
0 0 0 0( ) 1 /t P t T T t     and a second-order super-Gaussian pulse  

 4 4
0 0 0( ) exp / 2t P t T   . Here, T0 is a characteristic temporal value of the pulse and θ(x) is the 

Heaviside function. 

To generate data that characterizes the nonlinear shaping process, we use the nonlinear 

Schrödinger equation (NLSE) [7], which can describe well a variety of nonlinear phenomena 

associated with pulse propagation in fibers in spite of the fact that it only includes two physical 

effects, namely, linear GVD and nonlinear self-phase modulation (SPM). The NLSE for the 

complex electric field envelope, ψ(z,t), is written as  
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where z is the propagation coordinate, t is the retarded time, and β2 and γ are the respective GVD 

and Kerr nonlinearity coefficients of the fiber. Note that the effects of linear loss can be 

neglected given the very low loss of silica fibers in the telecommunication wavelength window. 

Here we also neglect higher-order linear and nonlinear effects as the leading-order behavior is 
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well approximated by Eq. (1). It is useful to normalize Eq. (1) by introducing the dimensionless 

variables: 0/u P , ξ = z/LD, τ = t/T0, and write it in the form 

 
  2
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where LD = T0
2/|2| and LNL = 1/(P0) are the respective dispersion length and nonlinear length 

associated with the initial pulse, and the parameter N (‘soliton-order’ number) is introduced as N2 

= LD/LNL. This way, the nonlinear shaping problem, which depends on the six physical 

parameters (T0, P0, C0, 2, L) where L is the fiber length, is mapped onto a problem in the 

three-dimensional space of  (, N, 2
0 0/C C T ). This dimensionality reduction relaxes the 

complexity of the problem, and for a specific selected set of normalized parameters there are 

many groups of physical parameters suitable the defining equations of ξ, N and C. 

Equation (2) is solved with a standard split-step Fourier propagation algorithm [7], using a 

uniform grid of 213 points on a time window of length 80 T0. In order to generate the temporal 

and spectral properties for the NN, we perform anamorphic sampling of the output intensity 

profile provided by Eq. (2). This enables us to well represent both the details of the short pulses 

that can be encountered in the anomalous dispersion regime of the fiber and the longer pulses 

that are observed in the normal dispersion regime. Given the symmetry of the problem 

(symmetry of the NLSE and the initial temporal condition), we can restrict our sampling to the 

positive times and frequencies only. This way we can maintain the number of useful points 

moderate. Hence, we consider A = 65 points on the interval 0 to 25 T0 to represent the temporal 

intensity profiles of the pulses, and B = 35 points on the interval 0 to 3.4/T0 for the spectral 

intensities. The sampled data and the initial conditions are used to train a NN and validate its 

predictions. We employ a feed-forward NN relying on the Bayesian regularization back 

propagation algorithm and including three hidden layers with fourteen neurons each, as shown in 

Fig. 1. This NN is programmed in Matlab using the neural network toolbox. 
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(a) 

 

Figure 1: Neural network model used to: (a) predict the output pulse intensity profiles from the 

fiber, and (b) to retrieve the nonlinear propagation properties. 

 

 

III. Nonlinear shaping of initially transform-limited pulses 

In this section, we study the problem of the nonlinear shaping of initially-transform limited 

pulses (i.e., with C0 = 0), which can be handled in the parameter space of normalized propagation 

length and soliton-order number, (, N). 

A/ Prediction of the output pulse properties  

The training step here involves feeding the NN with an ensemble of 4500 data (both temporal 

and spectral) generated from numerical simulations of the NLSE and associated with the 

propagation of a Gaussian pulse with  ranging from 0.025 to 2.5. 1500 randomly chosen data 

points are used to cover the parameter space in the normal dispersion regime of the fiber with N 

ranging from 0.025 to 4, and 3000 randomly chosen points for the anomalous dispersion regime 
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with N ranging from 0.025 to 3. After training, the NN is tested on a distinct ensemble of 25000 

data not used in the training step. Figure 2 shows the temporal and spectral profiles of the pulse 

obtained from the network for  = 2 and N = 4 when the fiber has normal GVD, and for  = 1.8 

and N = 2.5 at anomalous dispersion. The predictions from the NN algorithm show excellent 

agreement with the results of the NLSE propagation model over most part of the pulse shape and 

spectrum. The network is able to reproduce the large temporal and spectral broadening 

experienced by the pulse upon propagation in the normal dispersion regime. With anamorphic 

sampling of its output, the network is also able to resolve the details of the temporally 

compressed pulse and the concomitant more complex structure of the spectrum that are observed 

after propagation at anomalous dispersion. Nevertheless, some discrepancies with the expected 

results are visible, and are more pronounced in the anomalous regime in which the propagation 

dynamics are more complex. 

 

 

 

Figure 2: Temporal (panels 1) and spectral (panels 2) intensity profiles of an initial Gaussian 

pulse after propagation in (a) a normally dispersive fiber with  = 2 and N = 4, and (b) an 

anomalously dispersive fiber with  = 1.8 and N = 2.5. The predictions from the NN algorithm 

(blue circles) are compared with the results of NLSE numerical simulations (black curves). Also 

shown are the input intensity profiles (red dotted curves 
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As a measure of the prediction error of the NN algorithm we use the parameter of misfit between 

the (normalized) output temporal or spectral intensity profile generated by the network, INN/SNN, 

and the expected profile produced by numerical simulation of the NLSE, INLS/SNLS: 
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In Eq. (3), the expected profiles are interpolated to the same time or frequency points used for 

sampling the network output. The results obtained for 25000 randomly chosen combinations of 

input parameters  and N in the normal and anomalous dispersion regimes of the fiber are 

summarized in Fig. 3(a), and confirm that the nonlinear pulse shaping occurring in a fiber with 

normal GVD is easier to predict than that occurring in the anomalous dispersion regime. This can 

be physically explained by the more complex nonlinear pulse dynamics that take place in the 

presence of anomalous dispersion, involving compression and/or splitting stages over short 

propagation distances. The distributions of values of the temporal and spectral misfit parameters 

(Fig. 3(b)) show that, remarkably, more than 90% of the error realizations are well confined to 

values below 0.04, but some error values are spread out over a wider range. This deviation 

mostly occurs in the anomalous dispersion regime.  
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Figure 3: (a) Maps of misfit parameter values between the NN predictions and the NLSE 

simulation results for the output pulse shape (subplot a1) and optical spectrum (subplot a2) in the 

two-dimensional space (N,), relating to the propagation of a Gaussian pulse in the normal and 

anomalous dispersion regimes of the fiber with randomly chosen combinations of  and N. (b) 

Distribution densities of the temporal (subplot b1) and spectral (subplot b2) misfit parameter 

values.  

 

 

B/ Retrieval of the propagation characteristics 

The inverse problem at hand is much more complex: from a pulse shape and spectrum that are 

generated after propagation in the fiber, the properly trained network should be able to retrieve 

the parameters , N as well as the regime of dispersion of the fiber. One could tackle this inverse 

problem by using reverse propagation, that is, solving the NLSE to the backward direction [22, 

23]. However, this method would require knowledge of the peak power (or energy) of the pulse 

at the fiber output, whereas we only consider here the pulse shape characteristics. 
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For the inverse NN training phase, we use the same data set as that used for the direct problem. 

The results of testing the trained NN on 25000 randomly chosen new simulated output pulses are 

shown in Fig. 4. We can see from Fig. 4(a) that the estimation error on  (and N (N) 

(defined as the difference between the retrieved parameter value and the target value extracted 

from the NLSE simulation data) is very close to zero for all test realizations except those 

corresponding to low input powers or short propagation lengths for which the changes in the 

temporal and spectral shapes of the propagating pulse are negligibly small, thus leading to 

similar shapes for different  values. If we limit the data points to the ranges  ≥0.25 and 

N≥0.25, then, interestingly, each temporal and spectral shape can be unambiguously associated 

with a single parameter set (, N). The network is able to work out the sign of the fiber 

dispersion perfectly. The distribution densities of the estimation errors shown in Fig. 4(b) 

confirm the remarkable accuracy of the results obtained with the NN algorithm: the root-mean 

square errors on  and N are below 2 10-3 and 2.7 10-3, respectively. 
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Figure 4: (a) Maps of estimation error values on the soliton number N (subplot a1) and 

normalized propagation length  (subplot a2) in the two-dimensional space (N, ) for both 

normal and anomalous dispersion, when the NN is interrogated with randomly chosen new 

simulated output pulses from the fiber. The red dashed lines delimit the data domain that is used 

for the statistical error analysis. (b) Distribution densities of the estimation errors on N (subplot 

b1) and  (subplot b2). 

 

We also study the effect of the initial pulse shape on the network’s ability to solve the inverse 

problem. Maps of values of the estimation error on the normalized propagation length are 

provided in Fig. 5 for 25000 test realizations for each of the initial shapes: hyperbolic secant, 

parabolic and super-Gaussian pulse. A difficulty arises with the hyperbolic secant pulse 

propagating in the anomalous regime of the fiber: the estimation error is non-negligible for 

values of the soliton-order number around 1. This originates in the evolution of the fundamental 

soliton (N=1), which propagates without changing its shape, thereby making the propagation 

length difficult to evaluate. Furthermore, higher-order solitons (characterized by integers N>1) 

follow a periodic evolution pattern, which entails that the same pulse shape may be associated 

with different propagation lengths [24]. We expect that the effects  of energy dissipation or 
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higher-order linear /nonlinear propagation effects, can alleviate this ambiguity.. Initially 

parabolic pulses can be better handled by the inverse problem NN. The model still works with 

initially super-Gaussian pulses, whose dynamics can be rather different especially in the 

anomalous dispersion regime in which the waveforms undergo splitting followed by 

compression [25]. We can also see from Fig. 5 that, again, the anomalous dispersion regime of 

the fiber is more complex to deal with. 

 

 

 

Figure 5: Maps of estimation error values on the normalized propagation length  in the two-

dimensional space (N, ) for both normal and anomalous dispersion, when the NN is interrogated 

with randomly chosen new simulated output pulses from the fiber corresponding to input (a) 

hyperbolic secant, (b) parabolic and (c) super-Gaussian pulses. 

 

C/ Identification of the initial pulse shape 

For this problem, we train the network on an ensemble of 16000 simulated output pulses from 

the fiber corresponding to a mix of Gaussian, hyperbolic secant, parabolic and super-Gaussian 

initial pulse shapes and randomly chosen combinations of input parameters  and N. The data 

relating to the propagation of hyperbolic secant pulses in the anomalous dispersion regime is 

excluded from the training set.. Then we ask the trained network to categorize 105 new unlabeled 
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simulated output pulses (distinct from the training data) according to the initial waveform and to 

retrieve the associated propagation parameters. As we can observe from Fig. 6(a), the 

classification accuracy of the NN algorithm is remarkably high: there are only 9 errors, which 

represent less than .01% of the total number of input samples. The estimation error on the 

propagation length has increased compared to the inverse problem studied in the previous 

section, where a single initial waveform is considered at a time. After exclusion of the data 

points falling into the critical parameter region (or N  below 0.25), we can expect rms errors on 

the propagation length and soliton-order number of 0.076 and 0.085, respectively [Fig. 6(b)]. 

 

 

Figure 6: Points where errors in the detection of the initial pulse shape occur (subplot a1) and 

map of estimation error values on the normalized propagation length  (subplot a2) in the two-

dimensional space (N, ) for both normal and anomalous dispersion, when the NN is interrogated 

with randomly chosen new simulated output pulses from the fiber corresponding to an unlabeled 

mix of input Gaussian, hyperbolic secant, parabolic and super-Gaussian pulses. In subplot a1, the 

color of the circle indicates the class label that is not predicted correctly. The red dashed lines 

delimit the data domain that is used for the statistical error analysis. (b) Distribution densities of 

the estimation errors on N (subplot b1) and  (subplot b2).   
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III. Nonlinear shaping of initially chirped pulses 

In this section, we include an additional degree of freedom in our analysis by considering a 

possible pre-chirping of the pulses that are transmitted through the fiber. Our focus is here on 

pulse propagation in the normal regime of dispersion. Depending on the chirp of the input pulse, 

the initial stage of nonlinear dynamics in the fiber, where Kerr-induced SPM dominates over 

GVD, may be very different. Indeed, input pulses with a negative chirp coefficient C0 will 

experience spectral compression as a result of SPM [26, 27], whereas for initially positively 

chirped (or Fourier transform-limited) pulses, spectral broadening will drive the nonlinear 

dynamics and eventually lead to optical wave-breaking [28]. In [18], we used a graphical method 

to find the combinations of values for the parameters N and C that support the formation of 

pulses with specified temporal features in the fiber.  

A/ Prediction of the output pulse properties 

The NN learns the NLSE model from an ensemble of 2 104 simulations of the propagation of an 

initial Gaussian pulse with randomly chosen combinations of values for ,N and C over the 

ranges 0.025 to 3, 1.5 to 5, and -3.4 to 3.4, respectively. For this configuration, the data is 

sampled over a temporal interval of 30 T0 and a spectral window of 2.3/T0. We then test the 

trained NN on 7 104 simulations from a distinct ensemble of random initial conditions. Figure 7 

shows typical examples of the nonlinear pulse shaping occurring in the fiber: formation of 

parabolic-like pulses with rectangular-like spectra when the chirp of the input pulses is positive 

[subplot (a)] [29], and narrowing of the pulse spectrum for negative input chirp [subplot (b)] 

[27]. It is clear that the NN algorithm performs impressively in reproducing the output pulse 

shapes.  
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Figure 7: Temporal (panels 1) and spectral (panels 2) intensity profiles of an initial Gaussian 

pulse after propagation in a normally dispersive fiber with (a)  = 2.3, N = 3, and C= -2.42, and 

(b)  = 2, N = 3 and C= 2.42.  The predictions from the NN algorithm (blue circles) are 

compared with the results of NLSE numerical simulations (black curves). Also shown are the 

input intensity profiles (red dotted curves).  

 

B/ Inverse problem 

The results of testing the inverse problem NN on 7 104 new simulated output pulses are 

summarized in Fig. 8. We note that the fiber nonlinearity is essential to distinguishing the 

combinations of ,N and C values that are associated with each test pulse. Indeed, pulse pre-

chirping entails a drop of the pulse peak power, which in turn results in a frequent occurrence of 

estimation errors on ,N and C for the test realizations that relate to low values of N. Therefore, 

we restrict the statistical error analysis to the test data associated with N >1.5. We can see from 

Fig. 8 that the values of the input parameters obtained from the network algorithm are in 

agreement with the known values from the simulation data, but the estimation errors are higher 

than those made in the case of initially transform-limited pulses: the  rms deviations are 0.36, 

0.09 and 0.55 for  , N and C respectively.  
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Figure 8: (a) Map of estimation error values on the normalized propagation length  in the three-

dimensional space (N, , C), when the NN is interrogated with randomly chosen simulated 

output pulses from the fiber. (b) Regressions between the predicted values of N,  and C from the 

NN algorithm and the exact target values from the simulated data. (c) Distribution densities of 

the estimation errors on N,  and C. 
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IV. Conclusion 

We have successfully used a supervised machine-learning model based on a NN to solve both 

the direct and inverse problems relating to the shaping of optical pulses that occur upon 

nonlinear propagation in optical fibers. Remarkably, within the range of system parameters 

considered, any temporal and spectral shape generated at the fiber output from the propagation of 

an initially Fourier-transform limited Gaussian pulse can be unambiguously associated with a 

single set of normalized propagation length and soliton-order number values, (, N). Our results 

show that a properly trained network can greatly help the design and characterization of fiber-

based shaping systems by providing immediate and sufficiently accurate solutions. We have 

limited our discussion here to passive non-dissipative propagation. An interesting extension of 

the method described will be to the analysis of the attraction of parabolic pulses towards a self-

similar state in normally dispersive nonlinear fibers with linear gain [4]. Furthermore, although 

demonstrated here in a fiber optics context, the principle of using NN architectures to solve wave 

equation-based inverse problems is expected to apply to many physical systems [30, 31]. 
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