
HAL Id: hal-02484088
https://hal.science/hal-02484088v1

Submitted on 7 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dataset Augmentation and Dimensionality Reduction of
Pinna-Related Transfer Functions

Corentin Guezenoc, Renaud Seguier

To cite this version:
Corentin Guezenoc, Renaud Seguier. Dataset Augmentation and Dimensionality Reduction of Pinna-
Related Transfer Functions. Audio Engineering Society Convention, May 2020, Vienna, Austria.
�10.17743/aesconv.2020.978-1-942220-32-9�. �hal-02484088�

https://hal.science/hal-02484088v1
https://hal.archives-ouvertes.fr
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FAST Research Team
IETR (CNRS UMR 6164)

CentraleSupélec
Rennes, France

Efficient modeling of the inter-individual variations of head-related transfer functions (HRTF)
is a key matter to the individualization of binaural synthesis. In previous work, we augmented a
dataset of 119 pairs of ear shapes and pinna-related transfer functions (PRTFs), thus creating a wide
dataset of 1005 ear shapes and PRTFs generated by random ear drawings (WiDESPREaD) and
acoustical simulations. In this article, we investigate the dimensionality reduction capacity of two
principal component analysis (PCA) models of magnitude PRTFs, trained on WiDESPREaD and
on the original dataset, respectively. We find that the model trained on the WiDESPREaD dataset
performs best, regardless of the number of retained principal components.

I. INTRODUCTION

Head-related transfer functions (HRTFs) individual-
ization is a key matter in binaural synthesis [1]. A lot
of work has been done towards proposing user-friendly
personalization methods, either based on anthropomet-
ric measurements [2–4] or on perceptual feed-back [5–9],
most of which rely on HRTF databases. Although some of
these approaches propose to select a best-mach HRTF set
among a database [6], others rely on a statistical model
of the inter-individual variations of HRTF sets [4, 7–9].
In particular, an interesting direction of work consists
in fitting an HRTF model to the listener based on his
perceptual feed-back [7–9], either by tuning himself the
model parameters, or by using an optimization process
that prompts the listener for perceptual feed-back. In
this context, tuning time must be kept as low as possible.
Thus, it is essential for the HRTF model to be as compact
as possible, i.e. having as few parameters as possible.

However, the databases that are currently available have
few subjects compared to the dimensionality of the data.
Indeed, the largest one, the Acoustics Research Institute
(ARI) dataset [10], includes HRTF sets for 201 subjects,
while the dimensionality of the data is of roughly 1.2 · 106

(256 time-domain samples × 2300 directions × 2 ears) for
a typical high-resolution HRTF set [11]. To address this
matter, in previous work [12] we proposed a method to
augment a dual dataset of 119 ear point clouds [13] and
corresponding pinna-related transfer functions (PRTFs).
The method consists in drawing new ear shapes according
to the observed statistical distribution then computing
the corresponding PRTF sets by means of fast-multipole
boundary element method (FM-BEM). The resulting aug-
mented dataset, named WIDESPREaD (wide dataset of
ear shapes and pinna-related transfer functions generated
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by random ear drawings) includes 1005 artificial subjects
and is freely available on the sofacoustics website1.

In the present article, we look into how using this new
dataset instead of the original one for training improves
the capacity of principal component analysis (PCA) to re-
duce the dimensionality of log-magnitude2 PRTF sets. To
this end, a 20-fold cross-validation of PCA is performed on
each dataset. The training and validation reconstruction
errors are then compared for various numbers of retained
principal components (PCs).

The paper is organized as follows. First, we present
the original dataset of 119 pairs of ear shape and corre-
sponding simulated PRTF sets. Second, we summarize
the process of data augmentation that led to the creation
of the WiDESPREaD dataset. Third, we present the
construction of two PCA models of magnitude PRTF set,
trained on the original and augmented dataset, respec-
tively. Fourth, we discuss the dimensionality reduction
capacity of both PCA models by studying the cumula-
tive proportion of variance, then by performing a 20-fold
cross-validation in order to evaluate their performance on
data left out of the training set. Finally, we discuss the
results.

II. A DATASET OF 3-D EAR SCANS AND
MATCHING SIMULATED PRTFS

The original dataset is composed of pairs of ear mesh
and matching simulated PRTF set for 119 human subjects.

The database of 119 ear meshes was constituted in pre-
vious work by Ghorbal et al. [13]. As part of that work,
3D scans were acquired using a structure-light based scan-
ner, before being normalized in size and rigidly aligned.

1 https://www.sofacoustics.org/data/database/widespread
2 We focus here on the magnitude spectra, as the perceptual defects
due to a lack of individualization mostly derive from the distortion
of the spectral cues [14].
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Finally, the point clouds were registered: every point
cloud has the same number nv = 18176 of vertices, and
the vertex indexing is semantically coherent from one
subject to the other. Meshes can be derived from the
point clouds thanks to a set of 35750 triangular faces
defined identically for all point clouds by the indices of
the nv vertices.

In order to compute the PRTF sets, we closed the
ear meshes using a cylinder-like support mesh. We then
performed the acoustical simulations by FM-BEM using
the mesh2hrtf [15] software by Ziegelwanger et al. This
step is described in more details in [12].

III. DATASET AUGMENTATION

In a previous paper [12], exploiting the initial dataset
of 119 pairs of ear shapes and PRTFs, we proposed a
method to generate new examples based on a generative
model of 3-D ear shapes and boundary element method
simulations. As a result, the WiDESPREaD dataset was
created and made available to other researchers, featuring
1005 artificial subjects. In this section, we summarize the
data augmentation process (the curious reader can refer
to [12] for more details).

A. Statistical Ear Shape Model

Thanks to the fact that the ear point clouds are in
correspondence, we were able to perform a PCA.

By concatenating the x, y and z coordinates, ev-
ery point cloud was represented as a row vector ei

of R3nv , where i = 1, . . . NO, with NO the num-
ber of subjects in the original dataset. Let us denote
by E = {e1, e2, . . . eNO

} the dataset of 119 ear point
clouds. The corresponding data matrix XE ∈ RNO×3nv

was constructed by stacking the ear point cloud row

vectors vertically XE = (e1
t, . . . eNO

t)
t
. Addition-

ally, let ē = 1
NO

NO∑
i=1

ei be the average ear shape and

X̄E = (ē . . . ē)
t ∈ RNO×3nv the matrix constituted of the

average shape stacked NO times, and let ΓE ∈ R3nv×3nv

be the covariance matrix of XE:

ΓE =
1

NO − 1

(
XE − X̄E

)t (
XE − X̄E

)
. (1)

PCA can thus be written as

YE =
(
XE − X̄E

)
UE

t, (2)

where UE is obtained by diagonalizing ΓE

ΓE = Ut
EΣE

2UE, (3)

with ΣE
2 ∈ R(NO−1)×(NO−1) a diagonal matrix that con-

tains its eigenvalues σE1
2, σE2

2, . . . σENO−1
2

ΣE
2 =

σE1
2

. . .

σENO−1
2

 (4)

ordered so that σE1
2 ≥ σE2

2 ≥ · · · ≥ σENO−1
2, and with

UE ∈ R(NO−1)×3nv an orthogonal matrix that contains
the corresponding eigenvectors uE1

, uE2
, . . . uENO−1

∈
R3nv

UE =

 uE1

...
uENO−1

 . (5)

The eigenvalues denote how much variance in the input
data is explained by the corresponding eigenvectors.

B. Random Drawing of Ear Shapes

The PCA model was then used as a generative model
to randomly draw an arbitrary large number NW of new
ear shapes.

For all subject of index j = 1, . . . NW, a
principal component (PC) weights vector yEWj

=

(yEWj,1
, . . . yEWj,NO−1

) ∈ RNO−1 was obtained by draw-

ing the (NO − 1) PC weights yEWj,1
, . . . yEWj,NO−1

inde-

pendently according to their respective observed proba-
bility laws N (0, σ2

E1
), . . .N (0, σ2

ENO−1
).

Then, the corresponding ear shapes were reconstructed
by inverting Equation (2) eW1

...
eWNW

 = XEW = UEYEW + X̄E, (6)

where YEW
∈ RNW×(NO−1) is the matrix whose rows are

the NW PC weights vectors

YEW
=

 yEW1

...
yEWNW

 =

 yEW1,1
. . . yEW1,NO−1

...
. . .

...
yEWNW,1

. . .yEWNW,NO−1

 . (7)

C. Simulation of PRTF Sets

Finally, NW PRTF sets were calculated from the NW

ear point clouds as it was done in the case of the original
dataset (see Sub-Section II).

For illustration purposes, the ear shapes and PRTF
sets of the first 10 artificial subjects of WiDESPREaD
are displayed in Figure 1.
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(a)

(b)

FIG. 1: Visualization of the first 10 subjects of WiDESPREaD. (a) Meshes derived from the synthetic ear shapes
eW1 , . . . eW10 . Color represents the vertex-to-vertex euclidean distance to the generative model’s average ē. (b)

Log-magnitude PRTF sets 20 · log10(pW1), . . . 20 · log10(pW10) displayed in the median sagittal plane.

IV. PRINCIPAL COMPONENT ANALYSIS OF
MAGNITUDE PRTFS

Let us denote by pO1 , . . . pONO
∈ Rnf×nd and

pW1
, . . . pWNW

∈ Rnf×nd the log-magnitude PRTF
sets of the original and WiDESPREaD datasets, respec-
tively, where log-magnitude PRTFs are meant here as
20 · log10 (| · |) of the complex PRTFs.

We concatenated the filters from all nd directions of

each log-magnitude PRTF set pSi
∈ Rnf×nd into a row

vector of Rnfnd , where i = 1, . . . NS and S ∈ {O, W}.
Further on, pSi

designates the row vector representation
of the log-magnitude PRTF set. The logarithmic scale
was chosen for its coherence with human perception.

The data matrices XO ∈ RNO×nfnv and XW ∈
RNS×nfnv were then constituted by stacking vertically

the log-magnitude PRTF sets: XO =
(
pO1

t . . . pONO

t
)t
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and XW =
(
pW1

t . . . pWNW

t
)t
. PCA was then per-

formed on each dataset as described by Equations (2) and
(4) in the case of ear point clouds.

V. DIMENSIONALITY REDUCTION
CAPACITY

PCA can be used as a dimensionality reduction tech-
nique by only retaining the first m PCs [16], where
m ∈ {1, . . . NS − 1} and S ∈ {O, W} designates the
dataset:

Ỹ
(m)
S =

 yS1,1
. . . yS1,m

0 . . . 0
...

. . .
...

...
. . .

...
ySNS,1

. . . ySNS,m
0 . . . 0

 , (8)

where ySi,j
is the value of matrix YS at the ith row and

jth column for all i = 1, . . . NS and j = 1, . . . NS − 1.

A. Cumulative Percentage of Total Variance

Approximated data can be then reconstructed by in-
verting Equation (2):

X̃
(m)
S = Ỹ

(m)
S US + X̄S . (9)

A simple but useful metric to evaluate the dimensional-
ity reduction capacity of a PCA model is the cumulative
percentage of total variance (CPV) [16, section 6.1]:

CPVS(m) = 100 ·

 m∑
j=1

σSj
2

 /

NS−1∑
j=1

σSj
2

 , (10)

where S ∈ {O,W} represents either the original or the
WiDESPREaD set of log-magnitude PRTFs and where
m ∈ {1, . . . NS − 1} is the number of retained PCs.

Let us note that CPV is closely related to the dimen-
sionality reduction-related mean-square reconstruction
error (MSE) of the training set [16, section 6.1]. This
relation can be expressed as follows:

CPVS(m) = 100 ·
1−MSE(X̃

(m)
S ,XS)

MSE(X̄S ,XS)
, (11)

where

MSE(A,B) =
1

q

1

r
(A−B) (A−B)

t
, (12)

for all A,B ∈ Rq×r and q, r ∈ N .
CPVs of both original and WiDESPREaD log-

magnitude PRTF PCA models are plotted in Figure 2.
In the case of the original dataset, we observe, as in [12],
that most PCs i.e. 95% (112 out of 118) of them are re-
quired to reach the threshold of 99% of the total variance.

It would seem that we can not find a linear sub-space
of the space generated by our NO = 119 examples in
which log-magnitude PRTF sets are well represented. As
far as we can see, a first possible explanation is that
log-magnitude PRTF sets populate a linear sub-space of
Rnfnd whose dimension is greater than NO − 1 = 118. A
second explanation may be the existence of a non-linear
manifold which would cause PCA to require all principal
components to describe accurately the training set, in-
dependently of the number of training examples. Either
way, it is hard to conclude without more subjects, which
initially motivated the creation of the WiDESPREaD
dataset.

It can be observed that, for equal numbers of retained
PCs, the CPV is lower in the original case than in the
WiDESPREaD one. For instance, a CPV of 99% is
reached using 112 PCs for the first while many more,
i.e. 866, are needed for the latter. Although this may
appear as a regression, let us bear in mind that the CPV
represents a proportion of the total variance observed in
the dataset. However, the total variance is not the same
in both datasets. Indeed, the examples of magnitude
PRTFs in WiDESPREaD are more numerous and were
synthesized so that their statistical distribution was real-
istic. Hence, as expected, the examples of this dataset are
more diverse than that of the original dataset, resulting
in a higher total variance. In other words, the new PCA
model captures variations of magnitude PRTFs that were
not present in the original dataset, and naturally uses
more principal components to do so.

In the case of WiDESPREaD, the 99% CPV threshold
is reached by retaining 86% (866 out of 1004) of the PCs.
In other words, the last 138 principal components are not
needed to approximate log-magnitude PRTF sets of the
training set with reasonable accuracy. The ratio of PCs
to be retained is noticeably smaller than in the case of the
original dataset, which is an indication that the model
trained on WiDESPREaD PRTFs may perform better at
representing log-magnitude PRTF sets in general.

B. 20-Fold Cross-Validation

In order to assess and compare the capacity of both
PCA models to generalize to new examples, we performed
a 20-fold cross-validation for each one of them.

Each dataset S ∈ {O, W} was equally divided in
K = 20 sub-groups, each containing about 5% of the
subjects. Each sub-group of index k = 1, . . . K was
then used in turn as a validation set for a PCA model
trained the subjects of the remaining K − 1 folds. For all
k = 1, . . . K and for all dataset S ∈ {O, W}, let there be
IStrain,k

⊂ {1, . . . , NS} and ISval,k
⊂ {1, . . . , NS} the sets

of subject indices that constitute the kth fold’s training
and validation sets, respectively.

Let there be a fold k = 1, . . . K and a dataset
S ∈ {O, W}. PCA was performed on the data matrix
XStrain,k

= (pSi)i∈IStrain,k
. Re-writing Equation (2) using
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FIG. 2: Cumulative percentage of total variance (CPV)
of log-magnitude PRTF PCA models as a function of
number of retained principal components. Please note
that the x-axes are on different scales, due to the large
difference in number of subjects (and thus number of
PCs) between models. Up: Original dataset. Down:

WiDESPREaD.

this notation, the PCA transform can be written:

YStrain,k
=
(
XStrain,k

− X̄Strain,k

)
UStrain,k

t. (13)

Examples from the validation set XSval,k
=

(pSi)i∈ISval,k
were then projected in the training space as

follows:

YSval,k
=
(
XSval,k

− X̄Strain,k

)
UStrain,k

t. (14)

Finally, the training and validation data matrices
were reconstructed from the PC weights. The num-
ber of PCs retained for reconstruction, m, varied in
{0, . . . card(ISval,k

)− 1}, where card(IStrain,k
) = (K −

1)
⌊
NS

K

⌋
is the number of training subjects. Thus, using

the same notation as in Equation (8) and according to (9),
training and validation sets were reconstructed according
to the following equations:

X̃
(m)
Strain,k

= Ỹ
(m)
Strain,k

UStrain,k
+ X̄Strain,k

, (15)

and

X̃
(m)
Sval,k

= Ỹ
(m)
Sval,k

UStrain,k
+ X̄Strain,k

. (16)

The MSE reconstruction error was then averaged across
all folds for both training sets

εMSE,train(S) =
1

K

K∑
k=1

MSE
(
X̃

(m)
Strain,k

,XStrain,k

)
, (17)

and validation sets

εMSE,val(S) =
1

K

K∑
k=1

MSE
(
X̃

(m)
Sval,k

,XStrain,k

)
. (18)

The training and validation reconstruction errors for
both original and WiDESPREaD dataset are displayed in
Figure 3. A first observation is that, when retaining all
principal components in both models, the WiDESPREaD
PCA model reconstructs validation data with a notably
lower error (2.3 dB2) than the original model (6.0 dB2),
that is a factor of 2.6.

More interestingly, for identical numbers of retained
components, the WiDESPREaD cross-validation error is
always lower than that of the original model. In particular,
the lowest cross-validation error ever attained by the
original model, 6.0 dB2 (for m = 94 retained PCs) is
reached by the WiDESPREaD one using as few as 35
retained PCs. In other words, 35 PCs are sufficient to
obtain a generalization error lower than when using the
original model with all of its 94 PCs.

VI. DISCUSSION

One of the observations that led to the creation of
WiDESPREaD was the fact that, in the original log-
magnitude PRTF PCA model, almost all PCs, i.e. 95%
(112 / 118) of the PCs were necessary to retain at least 99%
of the total variance observed in the dataset [12]. Reas-
suringly, by training in the same manner a log-magnitude
PRTF PCA model on the augmented PRTF dataset, we
observe that a smaller ratio of PCs of 86% (866 / 1004)
is required to reach a CPV of 99% (see Sub-Section V A).
Thus, it would seem that increasing the number of sub-
jects allowed us indeed to identify a linear sub-space of
RNS−1 that is able to contain most of the inter-individual
variability of log-magnitude PRTF sets.

Nevertheless, this is to be taken with caution. Indeed,
while we increased the number of subjects by a factor
8.5, the decrease in the ratio of PCs required to reach a
CPV of 99% is rather modest (95% to 86%). Hence, the
possibility remains that adding more subjects would keep
increasing significantly the number of PCs required to
represent 99% the information, which would be the case
if there was a non-linear manifold, for instance.

However, cross-validation yielded promising results as
to providing a compact representation of log-magnitude
PRTF sets in general (see Sub-Section V B). Indeed, the
PCA model based on WiDESPREaD seemed able to
generalize to new examples better (lower reconstruction
error) than the model trained on the original dataset.

When comparing both models with all their PCs re-
tained, it could be expected. Indeed, approximating new
data thanks to a PCA model while retaining all PCs is
equivalent to a projection into the (NS − 1)-dimensional
space generated by linear combinations of the NS training
examples, and the WiDESPREaD dataset has about 9
times more examples than the original one.
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FIG. 3: Mean-square reconstruction errors (MSE) of log-magnitude PRTF sets, averaged over 20 cross-validation folds,
for various numbers of retained PCs, for both original (left) and WiDESPREaD (right) datasets. Training errors are
displayed as blue points while validation errors are represented as red crosses. The blue dashed and red dotted lines
are a cubic interpolation of the training and validation errors, respectively. Please note that the x-axes are on different

scales, due to the large difference in number of subjects between models.

However, and more interestingly, the generalization
error curve for the WiDESPREaD case is lower than
that of the original dataset, regardless of the number of
retained PCs.

Furthermore, only 35 components (out of 949) are
needed for the WiDESPREaD cross-validation reconstruc-
tion error to subceed the lowest cross-validation error ever
attained in the case of the original dataset i.e. with 94
retained PCs out of 94.

VII. CONCLUSION

In this article, we presented a dataset of 119 pairs of ear
mesh and matching calculated PRTF set. Thereupon, we
presented briefly how this dataset was augmented in pre-
vious work [12], resulting in a wide dataset of 1005 pairs
of ear mesh and matching calculated PRTF set, named
WiDESPREaD. Building upon this original dataset, we
then summarized how an augmented dataset of 1005 pairs
of ear mesh and matching calculated PRTF set was gen-
erated, according to a method introduced in a previous
article. We then trained PCA models of log-magnitude
PRTF sets on each original and augmented dataset, before

comparing their dimensionality reduction performance on
both training and validation data using tools such as
the cumulative proportion of total variance and k-fold
cross-validation.

Overall, we found that using the WiDESPREaD dataset
improved the performances of PCA at modeling and re-
ducing the dimensionality of log-magnitude PRTF sets,
in comparison with the original dataset. These results
are encouraging and tend to corroborate the promising
character of the process of synthetic data generation that
we proposed in [12], which could benefit to applications
such as HRTF adaptation based on listener feed-back or
anthropometry.

As the possibility for a non-linear manifold in the space
of log-magnitude PRTFs is not ruled out (see Section VI),
future work includes using a non-linear dimensionality
reduction technique on the database of WiDESPREaD
PRTFs and compare its performance with PCA.

Furthermore, it may be interesting to use other metrics
in addition to MSE to evaluate dimensionality reduction
error, such as inter-subject spectral difference (ISSD) [2]
and simulated sagittal plane sound localization errors
using the psycho-acoustic model by Baumgartner et al.
[17].
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