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Abstract 

Neuromorphic systems are designed by mimicking or being inspired by the nervous system, which realizes robust, 

autonomous, and power-efficient information processing by highly parallel architecture. Supervised learning was 

proposed as a successful concept of information processing in neural network. Recently, there has been an increasing 

body of evidence that instruction-based learning is also exploited by the brain. ReSuMe is a proposed algorithm by 

Ponulak and Kasinski in 2010. It proposes a supervised learning for biologically plausible neurons that reproduce 

template signals (instructions) or patterns encoded in precisely timed sequences of spikes. Here, we present a real-

time ReSuMe learning implementation on FPGA using Leaky Integrate-and-fire (LIF) Spiking Neural Network 

(SNN). FPGA allows real-time implementation and embedded system. We show that this implementation can make 

successful the learning on a specific pattern. 

Keywords: Spiking neural network, ReSuMe, LIF, FPGA 

1. Introduction 

Neuromorphic systems are designed by mimicking or 

being inspired by the nervous system, which realizes 

                                                 
*Typeset names in 10 pt Times Roman, uppercase. Use the footnote to indicate the present or permanent address of the author. 

robust, autonomous, and power-efficient information 

processing by highly parallel architecture. There are three 

common methods to realize the neuromorphic circuits, 

which are software1 2 3, analog hardware4 5 6 7 and digital 
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hardware8 9 10 11 12. Software can implement simple 

neuron model but a large scale neural network with 

complex neuron model cannot be realized in real-time. 

The power consumption is also quite important (kW for 

supercomputer). For hardware implementation, 

compared to analog circuits, digital implementations 

consume more power but they are convenient to modify, 

more portable and lower cost for implementation with 

FPGA devices. 

Supervised learning was proposed as a successful 

concept of information processing in neural network13. 

Recently, there has been an increasing body of evidence 

that instruction-based learning is also exploited by the 

brain. 

Remote Supervised Method (ReSuMe) is a new 

supervised learning method for Spiking Neural 

Networks.  

The main reason for the study of ReSuMe is the need to 

invent an effective learning method to control the 

movement of people with physical disabilities. However, 

the in-depth analysis of ReSuMe method shows that this 

method is not only suitable for motion control tasks, but 

also suitable for other practical applications, including 

modeling, identification and control of various non-

stationary and non-linear objects14 15. 

In this paper, we present a real-time ReSuMe learning 

implementation on FPGA using Leaky Integrate-and-fire 

(LIF) Spiking Neural Network (SNN). FPGA allows 

real-time implementation and embedded system16. 

We show that this implementation can make successful 

the learning on a specific pattern. 

2. Method 

This section proposed three methods that applied to the 

ReSuMe learning implementation on FPGA, which are 

LIF-neuron model, Postsynaptic potential (PSP) and 

Spike response model (SRM), as well as ReSuMe 

algorithm. 

2.1. LIF neuron model 

The LIF neuron is one of the simplest spiking neuron 

models. Due to the convenience with which it can be 

analyzed, simulated especially implemented in digital 

silicon neural network, the LIF neuron is very popular17. 

A neuron is modeled as a “leaky integrator” of its input 

I(t):  

𝜏𝑚  
𝑑𝑣

𝑑𝑡
= −𝑣(𝑡) + 𝑅𝐼(𝑡)                  (1) 

where v(t) represents the membrane potential at time t, 

𝜏𝑚 is the membrane time constant and R is the membrane 

resistance. This equation describes a simple resistor-

capacitor (RC) circuit where the leakage term is due to 

the resistor and the integration of I(t) is due to the 

capacitor that is in parallel to the resistor. The spiking 

events are not explicitly modeled in the LIF model. 

Instead, when the membrane potential v(t) reaches a 

certain threshold 𝑣𝑡ℎ (spiking threshold), it is 

instantaneously reset to a lower value 𝑣𝑟  (reset potential) 

and the leaky integration process described by Eq. (1) 

starts a new with the initial value 𝑣𝑟 .  

Consider the case of constant input: I(t) = I. We assume 

𝑣𝑟= 0. The solution of Eq. (1) is then given by: 

𝑣(𝑡) = 𝑅𝐼 [1 − exp (−
𝑡

𝜏𝑚
)]               (2) 

Here v(t) is in an exponential decay. In discrete digital 

sequential circuit, a linear decay method is usually used 

to optimize computing process for saving hardware 

resources. 

𝑑𝑣 = [−𝑣 + 𝑅𝐼]
𝑑𝑡

𝜏𝑚
                  (3) 

Eq. (3) describes the computing equation of dv, then 

solution v = v + dv obviously. 

2.2. Postsynaptic Potential and Spike Response 

Model 

By considering a single postsynaptic neuron i with a 

membrane potential 𝑢𝑖  at time  𝑡  , a simplified SRM is 

defined17. 

𝑢𝑖(𝑡|Χ, 𝑦𝑖) ≔ ∑ 𝑤𝑖𝑗 ∑ 𝜖(𝑡 − 𝑡𝑗
𝑓

)
𝑡

𝑗
𝑓

∈𝑥𝑗
𝑗               (4) 

This SRM signifies a dependence of the neuron’s 

membrane potential on its presynaptic input pattern Χ 

from 𝑛𝑖  synapses. An output spike occurs at a time 𝑡𝑗
𝑓
. 

The term of Eq. (4) describes a weighted summation of 

the pre-synaptic input: the 𝑤𝑖𝑗  corresponds to the 

synaptic weight from a presynaptic neuron j, the kernel 𝜖 

refers to the shape of an evoked PSP. The PSP kernel 

evolves according to  

𝜖(𝑠) =
1

𝐶
∫ exp (−

𝑠′

𝜏𝑚
)𝛼(𝑠 − 𝑠′)𝑑𝑠′Θ(𝑠)

∞

𝑆′=0
    (5) 

The term Θ(𝑠)is the Heaviside step function defined 

such that Θ(𝑠) = 1 for 𝑠 ≥ 0 and Θ(𝑠) = 0. Here we 
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approximate the postsynaptic current’s time course by an 

exponential decay18. 

𝛼(𝑠) =
𝑞

𝜏𝑠
exp (−

𝑠

𝜏𝑠
)Θ(𝑠)                 (6) 

For a further simplified computer in digital circuit, the 

exponential decay 𝛼(𝑠)  substitute the PSP kernel 

evolves 𝜖(𝑠) approximately. 

2.3. ReSuMe architecture and algorithm 

An implementation of ReSuMe in the Liquid State 

Machine (LSM) architecture is proposed as an example19. 

The Liquid State Machine consists of a large, fixed 

“reservoir” network - the neural microcircuit (NMC) 

from which the desired output is obtained by training the 

suitable output connection weights. 

In the implementation of ReSuMe method, the original 

LSM approach has been modified. The modified 

architecture consists of a set of input neurons 𝑁𝑖𝑛 , the 

NMC structure, a set of learning neurons 𝑁𝑙 with a total 

number k and a corresponding set of teacher neurons 𝑁𝑑 

(see Fig.1). NMC receives signal 𝑠𝑖𝑛(𝑡) from 𝑁𝑖𝑛  and 

transforms it into a vector of signals �̂�𝑖
𝑖𝑛(𝑡) which i is 

presented to the learning neurons 𝑛𝑖
𝑙 ∈𝑁𝑙. The teacher 

neurons 𝑁𝑑   are not directly connected with any other 

structure. 

Since we focus more on the ReSuMe learning 

implementation itself on this paper, so we generated pre- 

synapse to the learning neuron as NMC output. 

The modification algorithm, which adjusts weights 

between pre-spike and post-neuron, is applied according 

to the following simplified equation: 
𝑑

𝑑𝑡
𝑤𝑘𝑖(𝑡) = [𝑆𝑑(𝑡) − 𝑆𝑑(𝑡)] ∗ 

[𝑎𝑑 + ∫ 𝑊𝑑(𝑠𝑑)𝑆𝑖𝑛(𝑡 − 𝑠𝑑)𝑑𝑠𝑑∞

0
]         (5) 

The Fig.2 shows a specific weights update process. 

3. Implementation 

These section proposed implementation of above 

methods we introduced above with results showed in 

waveforms. 

3.1. Implementation of LIF neuron 

We implement LIF Neuron with VHDL language in 

FPGA. By adjusting the size of dt and matching different 

time constant, our LIF Neuron can work at very high 

clock frequency (10 kHz), which means that its 

calculation accuracy is very high and the real-time 

requirement is realized. 

 

Fig. 2.  An example waveform of synaptic weight updating in 

ReSuMe learning process. 

 

Fig. 3.   Stimulation of a LIF neuron by a constant input current: 

the time-course of the membrane potential, v(t) with 15 mV 

threshold and 20 mA current I (left); f-I curve for a LIF neuron 

(right).  

 

Fig. 1.  ReSuMe implemented in the modified Liquid State 

Machine Architecture. 
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3.2.  Implementation of PSP and SRM 

As we introduced in 2.2, we use simplified exponential 

decay to achieve RSM and PSP. Because post neurons 

are connected to 500 pre-synaptic inputs, hardware 

resources are still unacceptable if 500 exponential 

operations (even in linear decay) are performed in the 

same clock cycle. We adopt time division multiplexing, 

and use two-stage pipeline to complete 500 sets of PSP 

operations in 1000 clock cycles (actually 501 cycles, 

remaining standby, theoretically supporting input ceiling 

of 999), just using one multiplier and one adder. 

3.3. Implementation of ReSuMe learning 

ReSuMe we implemented includes an exponential 

attenuation (linear attenuation) which attribute to change 

of parameter k. Each time teacher input spike or post-

synaptic neuron spike arrives, weight is updated. 500 

exponential operations are performed. We use 500 clock 

cycles, time division multiplexing to achieve this change, 

and update weight in real-time so that PSP and RSM 

modules are used to calculate the correct weight 

instantly. 

3.4. Architecture of ReSuMe learning 

The overall hardware architecture of ReSuMe learning 

is shown in Fig. 6. We use LIF Neuron as post-synaptic 

neuron, equipped with ReSuMe learning module, and 

500 pre-synaptic inputs are connected to post-synaptic 

neuron. Each connection is operated by PSP and 

summarized by RSM. 

3.5. Results and discussion 

Firstly, we simulate the actual learning waveform of 

ReSuMe. As shown in Fig. 7, we have completed the 

learning of 500 input data containing target patterns and 

random patterns. Post neurons can spike the location of 

each pattern with a minimal delay in 2-4 time steps. Here 

time step means cycle of computing and input patterns. 

For example, if clock frequency is 100 MHz and 

computing needs 1000 cycles under our implementation, 

the time step is 0.01 ms. Then we tested different input 

pattern groups, and completed real-time test and 

verification on the FPGA. 

4. Conclusion 

This paper introduces the advantages of using devices 

such as FPGA to realize the digital neural network. 

Methods of LIF neuron, PSP and RSM module as well as 

ReSuMe learning are described and illustrated on 

hardware implementation. Then the overall framework of 

ReSuMe learning is elaborated, with the different output 

data due to different inputs analyzed. 

 

Fig. 4.  Waveform of PSP process in which indicates once pre-

synaptic input spikes, the PSP starts an exponential decay. 

 

Fig. 6.  Architecture of ReSuMe learning. 

 

Fig.5.  Waveform of ReSuMe weight adjusting process which 

achieves the ideal functions as showed in Fig.2 

 

Fig. 7.  Waveform of different input patterns and their ReSuMe 

learning process. The third result shows that the minimum spike 

interval is 5 time steps. 
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